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1. Introduction and terminology

Throughout this paper (X, ‖·‖) and (Y, ‖·‖) stand for two real Banach spaces.

Definition 1. Let s, t ∈ (0, 1) be fixed real numbers, and let D ⊂ X be a convex
set. A function f : D → [−∞,∞) is said to be
(s, t)-convex, if

∧

x,y∈D

f(sx + (1 − s)y) ≤ tf(x) + (1 − t)f(y), (1)

(s, t)-affine, if
∧

x,y∈D

f(sx + (1 − s)y) = tf(x) + (1 − t)f(y). (2)

If the inequality (1) is satisfied for t = s then we say that f is t-convex, if
t = s = 1

2 then f is said to be Jensen-convex. If the Eq. (2) is satisfied for
s = t, and all t ∈ [0, 1], then we say that f is affine.

In [7] Kuhn proved that every t-convex function is Jensen-convex (cf.
Daróczy and Páles [1] for a simple argument). Some properties of (s, t)-convex
functions are contained in [8]. In particular in [8] Kuhn remarks that f must be
constant if t is rational. He also mentions that he does not know any example
of a non constant (s, t)-convex functions for s �= t. In a natural way a problem
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of a characterization of (s, t)-convex functions, for s �= t appears in this context
(independently asked by Rolewicz [5]). The complete solution of this problem
was given by Matkowski and Pycia in [10] (see also [5] for partial solution). To
present the main result contained in [10] we need the following

Definition 2. The elements s, t ∈ R are said to be conjugate if either they
are both transcendental, or they are algebraically conjugate, i.e. they are both
algebraic and have the same minimal polynomial with rational coefficients.

The main result contained in [10] reads as follows

Theorem 1. ([10]) Let D ⊂ X be an open and convex set. Suppose that
s, t ∈ (0, 1) are fixed.
If s, t are conjugate then there exists a non-constant additive function φ : X →
R such that

φ(tx + (1 − t)y) = sφ(x) + (1 − s)φ(y), x, y ∈ X.

If s, t are not conjugate then every (s, t)-convex function f : D → [−∞,∞)
i.e. such that

f(tx + (1 − t)y) ≤ sf(x) + (1 − s)f(y), x, y ∈ D,

is a constant function.

In the sequel we will use the following remark contained in [10].(Actually
in [10] the authors assume that D is an open interval but such a restriction is
inessential).

Remark 1 ([10]). Let D ⊂ X be a convex and open set, and let f : D →
[−∞,∞) be an (s, t)-convex function. If there exists a point x0 ∈ D such that
f(x0) = −∞ then f ≡ −∞.

A survey of results concerning (s, t)-convex functions may be found in the
papers [5,8,10], in particular, the following version of the theorem of Rodé (cf.
[12]), has been proved by Kuhn in [8] and by Kominek in [5].

Theorem 2. Let D be an open and convex subset of a real linear space endowed
with a semi-linear topology and let f : D → R be an (s, t)-convex function.
Then for every z ∈ D there exists a function Gz : D → R such that
(1) Gz(tx + (1 − t)y) = sGz(x) + (1 − s)Gz(y), x, y ∈ D;
(2) Gz(z) = f(z);
(3) Gz(x) ≤ f(x), x ∈ D.

In 1989 Veselý and Zajic̆ek introduced an interesting generalization of func-
tions which are representable as a difference of two convex functions. In the
paper [13] the authors introduced the following definition
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Definition 3. Let D ⊂ X be a convex and open set. A map F : D → Y is called
delta-convex if there exists a continuous and convex functional f : D → R such
that f + y∗ ◦ F is continuous and convex for any member y∗ of the space Y ∗

dual to Y with ‖y∗‖ = 1. If this is the case then we say that F is a delta-convex
mapping with a control function f .

It turns out that a continuous function F : D → Y is a delta-convex
mapping controlled by a continuous function f : D → R if and only if the
functional inequality

∥∥∥F
(x + y

2

)
− F (x) + F (y)

2

∥∥∥ ≤ f(x) + f(y)
2

− f
(x + y

2

)
, (3)

is satisfied for all x, y ∈ D (Corollary 1.18 in [13]).
In the paper [2] Ger generalized this result. He has shown that if the inequal-

ity (3) holds for all x, y ∈ D and the function

D � x ⇒ f(x) + ‖F (x)‖, (4)

is upper bounded on a set T ⊂ D whose Q-convex hull convQ(T ) forms a second
cathegory Baire subset of X then F is locally Lipschtzian, in particular, F is
a delta-convex mapping controlled by f . Moreover, if Y is a separable space
and the function given by the formula (4) is Christensen measurable then it
provides the same effect.

The inequality (3) may obviously be investigated without any regularity
assumption upon F and f . Motivated by these two concepts we introduce the
following definition.

Definition 4. Let D ⊂ X be a convex set. A map F : D → Y is called delta
(s, t)-convex with a control function f : D → R if the inequality

‖tF (x) + (1 − t)F (y) − F (sx + (1 − s)y)‖ ≤ tf(x) + (1 − t)f(y)
−f(sx + (1 − s)y) (5)

holds for all x, y ∈ D. If the above inequality is satisfied for t = s, then we say
that F is a delta t-convex mapping, if t = s = 1

2 then F is said to be delta
Jensen-convex.

As an immediate consequence of Theorem 1 we get

Corollary 1. Every delta (s, t)-convex mapping with not conjugate s, t ∈ (0, 1)
is constant.

2. Results

In the proof of our first result we use the following corollary, which is a conse-
quence of the Hahn–Banach theorem.
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Corollary 2. Let (X, ‖ · ‖) be a real normed space. Then for each x ∈ X

‖x‖ = sup{x∗(x) : x∗ ∈ X∗, ‖x∗‖ = 1}.

The following result establishes necessary and sufficient conditions for a
given map to be delta (s, t)-convex.

Theorem 3. Let D ⊂ X be a convex set and let F : D → Y , f : D → R. The
following conditions are pairwise equivalent:

(i) F is a delta (s, t) − convex mapping controlled by f,
(ii) for every y∗ ∈ Y ∗, ‖y∗‖ = 1, the function y∗ ◦ F + f is (s, t)-convex,
(iii) for every y∗ ∈ Y ∗, ‖y∗‖ = 1, the function y∗ ◦ F − f is (s, t)-concave.

Proof. (i) implies (iii). Assume that

‖tF (x) + (1 − t)F (y) − F (sx + (1 − s)y)‖ ≤ tf(x) + (1 − t)f(y)
−f(sx + (1 − s)y),

for all x, y ∈ D. Let y∗ ∈ Y ∗, ‖y∗‖ = 1 be arbitrary. From the above inequality
and Corollary 2 it follows that

y∗(tF (x) + (1 − t)F (y) − F (sx + (1 − s)y))
≤ tf(x) + (1 − t)f(y) − f(sx + (1 − s)y),

or, equivalently,

y∗(tF (x) + (1 − t)F (y)) − tf(x) − (1 − t)f(y) ≤ y∗(F (sx + (1 − s)y))
−f(sx + (1 − s)y).

(iii) implies (ii). Replace y∗ by −y∗ in (iii).
(ii) implies (i). For every y∗ ∈ Y ∗, ‖y∗‖ = 1 we have

y∗(F (sx + (1 − s)y)) + f(sx + (1 − s)y) ≤
ty∗(F (x)) + (1 − t)y∗(F (y)) − tf(x) − (1 − t)f(y)

and, consequently,

‖tF (x) + (1 − t)F (y) − F (sx + (1 − s)y)‖ = sup{y∗(tF (x) + (1 − t)F (y)
−F (sx + (1 − s)y)) : ‖y∗‖ = 1}
≤ tf(x) + (1 − t)f(y)
−f(sx + (1 − s)y),

which completes the proof. �

Let us observe, that delta (s, t)-convex mappings provide a generalization of
functions which are representable as a difference of two (s, t)-convex functions.

Proposition 1. Let D ⊂ X be a convex set. In the case where Y = R, ‖·‖ = | · |
a map F : D → R is delta-(s, t)-convex, if and only if, F is a difference of two
(s, t)-convex functions.
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Proof. Assume f : D → R is a control function for F . For all x, y ∈ D we have

|tF (x) + (1 − t)F (y) − F (sx + (1 − s)y)| ≤ tf(x) + (1 − t)f(y)
−f(sx + (1 − s)y).

Put

φ1 :=
1
2
(F + f) and φ2 :=

1
2
(f − F ).

It is easy to see that both φ1 and φ2 are (s, t)-convex functions, moreover,
F = φ1−φ2. Conversely let F = φ1−φ2, where φ1, φ2 are (s, t)-convex. Setting
f := φ1 +φ2 we infer that both f −F and f +F are (s, t)-convex, whence, for
every x, y ∈ D we obtain

|tF (x) + (1 − t)F (y) − F (sx + (1 − s)y)|
≤ tf(x) + (1 − t)f(y) − f(sx + (1 − s)y),

which finishes the proof. �

Using a well-known Daróczy and Páles representation of the mean x+y
2 we

get the following

Lemma 1. Let D ⊂ X be a convex set. If a mapping F : D → Y is delta
(s, t)-convex, then it is delta Jensen-convex.

Proof. Take an arbitrary y∗ ∈ Y ∗ such that ‖y∗‖ = 1. From the identity (cf.
Daróczy and Páles [1])

x + y

2
= s

[
s
x + y

2
+ (1 − s)y

]
+ (1 − s)

[
sx + (1 − s)

x + y

2

]

and (s, t)-convexity of the function h := y∗ ◦ F + f we have for all x, y ∈ D

h

(
x + y

2

)
= h

(
s

[
s
x + y

2
+ (1 − s)y

]
+ (1 − s)

[
sx + (1 − s)

x + y

2

])

≤ th

(
s
x + y

2
+ (1 − s)y

)
+ (1 − t)h

(
sx + (1 − s)

x + y

2

)

≤ t2h

(
x + y

2

)
+ t(1 − t)h(x) + (1 − t)th(y)

+(1 − t)2h
(

x + y

2

)
,

which means that

t(1 − t)h
(

x + y

2

)
≤ t(1 − t)

h(x) + h(y)
2

, x, y ∈ D,

and consequently,

y∗
(

F (x) + F (y)
2

− F

(
x + y

2

))
≤ f(x) + f(y)

2
− f

(
x + y

2

)
, x, y ∈ D,
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whence, in view of the arbitrariness of y∗ and on account of Corollary 2 we get
∥∥∥∥

F (x) + F (y)
2

− F

(
x + y

2

)∥∥∥∥ ≤ f(x) + f(y)
2

− f

(
x + y

2

)
.

The proof of our lemma is finished. �
Observe that, on account of the above lemma the results obtained by Ger

in [2] concerning delta Jensen-convex mappings are also true for delta (s, t)-
convex mappings.

Now, we are able to prove our main result. The following theorem corre-
sponds to a classical support theorem for (s, t)-convex functions.

Theorem 4. Let D ⊂ X be an open and convex set, and let F : D → Y
be a delta (s, t)-convex map with a control function f : D → R. Then for
an arbitrary point y ∈ D there exist (s, t)-affine maps Ay : D → Y and
ay : D → R such that

∧

x∈D

‖F (x) − Ay(x)‖ ≤ f(x) − ay(x),

moreover,

Ay(y) = F (y), ay(y) = f(y).

Proof. Fix an arbitrary point y ∈ D. Consider the following family of pairs of
maps

H := {(H,h) : H is delta (s, t)-convex with control function h,
h(y) = f(y), ‖F (x) − H(x)‖ ≤ f(x) − h(x), x ∈ D}.

Observe that H �= ∅, because (F, f) ∈ H. Define an order relation � on H as
follows

(H1, h1) � (H2, h2) ⇔ ‖H1(x) − H2(x)‖ ≤ h2(x) − h1(x), x ∈ D.

We will show that every chain has a lower bound in H. Let L ⊂ H be an
arbitrary chain. Define the function h0 : D → [−∞,∞) by the formula

h0(x) := inf{h(x) : (H,h) ∈ L}, x ∈ D.

Observe that h0 is (s, t)-convex in D. To see it take arbitrary x, z ∈ D and
arbitrary c1, c2 ∈ R such that

h0(x) < c1, h0(z) < c2.

By the definition of h0 there exist (H1, h1), (H2, h2) ∈ L such that

h1(x) < c1 and h2(z) < c2.

Therefore (say (H1, h1) � (H2, h2)) we obtain by the (s, t)-convexity of h1 and
h2

tc1 + (1 − t)c2 > th1(x) + (1 − t)h2(z) ≥ th1(x) + (1 − t)h1(z)
≥ h1(sx + (1 − s)z) ≥ h0(sx + (1 − s)z).
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Tending in the above inequalities with c1 → h0(x), c2 → h0(z) we get the
(s, t)-convexity of h0. Since h0(y) = f(y) > −∞, then by Remark 1 h0 has
finite values.

There exists a sequence {(Hn, hn)}n∈N ⊂ L such that

h0(x) = lim
n→∞ hn(x), x ∈ D.

Since the sequence {hn}n∈N is convergent, in particular it is a Cauchy sequence,
so
∧

ε>0

∨

n0∈N

∧

n,m≥n0

‖Hn(x) − Hm(x)‖ ≤ max{hn(x) − hm(x), hm(x)−hn(x)} < ε.

Therefore {Hn}n∈N is also a Cauchy sequence and consequently it is conver-
gent. Let H0 be its limit. First we must check whether the definition of H0 is
correct. If a sequence {(Kn, kn)}n∈N ⊂ L satisfies the condition

h0(x) = lim
n→∞ kn(x), x ∈ D,

then using the same argumentation it is easy to check that {Kn}n∈N is a
Cauchy sequence, and consequently converges. Let

K0(x) = lim
n→∞ Kn(x), x ∈ D,

whence

‖K0(x) − H0(x)‖ ≤ ‖K0(x) − Kn(x)‖+‖Kn(x) − Hn(x)‖+‖Hn(x)−H0(x)‖
≤ ‖K0(x) − Kn(x)‖ + max{kn(x) − hn(x), hn(x) − kn(x)}

+ ‖Hn(x) − H0(x)‖ →n→∞ 0,

and this implies that K0 = H0.
Let us observe that (H0, h0) is a lower bound of the chain L. Fix an arbi-

trary (H,h) ∈ L. Let a sequence {(Hn, hn)}n∈N ⊂ L be such that

lim
n→∞ Hn = H0 and lim

n→∞ hn = h0.

Since
∧

x∈D

h0(x) ≤ h(x),

then, because L is a chain we have for all n ∈ N

‖Hn(x) − H(x)‖ ≤ max{hn(x) − h(x), h(x) − hn(x)},

and letting n → ∞ we obtain

‖H0(x) − H(x)‖ ≤ h(x) − h0(x), x ∈ D,

and then (H0, h0) � (H,h). Due to the arbitrariness of (H,h) ∈ L we infer
that (H0, h0) is a lower bound of the chain L.
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Now, we will show that (H0, h0) ∈ H. Indeed, since h0(y) = f(y) also
H0(y) = F (y). Note that, because

∧

n∈N

‖F (x) − Hn(x)‖ ≤ f(x) − hn(x),

we have

‖F (x) − H0(x)‖ = lim
n→∞ ‖F (x) − Hn(x)‖ ≤ f(x) − h0(x), x ∈ D.

To see that H0 is delta (s, t)-convex with a control function h0 fix arbi-
trary points x, z ∈ D. Let x1 := x, x2 := z, x3 := sx + (1 − s)z. There exist
sequences {(Hj

n, hj
n)}n∈N ⊂ L, j = 1, 2, 3 such that

lim
n→∞ Hj

n(xj) = H0(xj) and lim
n→∞ hj

n(xj) = h0(xj), j = 1, 2, 3.

Let

(Pn, pn) := min�{(Hj
n, hj

n) : j = 1, 2, 3}.

Observe that, because
∧

n∈N

‖Pn(xj) − H0(xj)‖ ≤ pn(xj) − h0(xj) ≤ hj
n(xj) − h0(xj) →n→∞ 0,

and since for all n ∈ N we have

‖tPn(x) + (1 − t)Pn(z) − Pn(sx + (1 − s)z)‖
≤ tpn(x) + (1 − t)pn(z) − pn(sx + (1 − s)z),

then, letting n → ∞ we obtain

‖tH0(x) + (1 − t)H0(z) − H0(sx + (1 − s)z)‖
≤ th0(x) + (1 − t)h0(z) − h0(sx + (1 − s)z).

By the Kuratowski–Zorn lemma there exists a minimal element (H,h) ∈ H.
For an arbitrary fixed point z ∈ D define the following maps

Hz(x) :=
1
t

[
H(sx + (1 − s)z) − (1 − t)H(z)

]
,

hz(x) :=
1
t

[
h(sx + (1 − s)z) − (1 − t)h(z)

]
.

First we will show that (Hz, hz) ∈ H. For every x ∈ D we have

‖F (x) − Hz(x)‖ ≤ ‖F (x) − H(x)‖ + ‖H(x) − Hz(x)‖
≤ f(x) − h(x)+‖H(x) − 1

t
[H(sx+(1 − s)z)−(1 − t)H(z)]‖

≤ f(x) − h(x) + h(x) − 1
t
[h(sx + (1 − s)z) − (1 − t)h(z)]

= f(x) − hz(x).
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Let us observe that Hz is delta (s, t)-convex with a control function hz. To
see it fix x, u ∈ D arbitrarily.. Since H is delta (s, t)-convex with a control
function h we obtain

∥∥∥tHz(x) + (1 − t)Hz(u) − Hz(sx + (1 − s)u)
∥∥∥

=
∥∥∥H(sx + (1 − s)z) − (1 − t)H(z)

+
1 − t

t
H(su + (1 − s)z) − (1 − t)2

t
H(z)

−1
t
H(s[sx + (1 − s)u] + (1 − s)z) +

1 − t

t
H(z)

∥∥∥

=
∥∥∥H(sx + (1 − s)z) − (1 − t)H(z) +

1 − t

t
H(su + (1 − s)z)

− (1 − t)2

t
H(z)

−1
t
H(s[sx + (1 − s)z] + (1 − s)[su + (1 − s)z]) +

1 − t

t
H(z)

∥∥∥

=
1
t

∥∥∥tH(sx + (1 − s)z) + (1 − t)H(su + (1 − s)z)

−H(s[sx + (1 − s)z] + (1 − s)[su + (1 − s)z])
∥∥∥

≤ 1
t

[
th(sx + (1 − s)z) + (1 − t)h(su + (1 − s)z)

−h(s[sx + (1 − s)z] + (1 − s)[su + (1 − s)z])
]

= t
[1
t

(
h(sx + (1 − s)z) − h(z)

)]
+ (1 − t)

[1
t

(
h(su + (1 − s)z) − h(z)

)]

−1
t

[
h(s[sx + (1 − s)u] + (1 − s)z) − h(z)

]

= thz(x) + (1 − t)hz(u) − hz(sx + (1 − s)u).

Since, in particular, hy(y) = f(y), Hy(y) = F (y) and

‖H(x) − Hy(x)‖ ≤ h(x) − hy(x), x ∈ D,

then (Hy, hy) ∈ H and because (Hy, hy) � (H,h) then by the minimality of
(H,h) we get

hy(x) = h(x) and Hy(x) = H(x), x ∈ D.

Hence for every z ∈ D we have

hz(y) =
1
t
[h(sy + (1 − s)z) − (1 − t)h(z)] = hy(y) = f(y),
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then evidently Hz(y) = F (y), and we infer that (Hz, hz) ∈ H, and using again
the minimality of (H,h) we get that for all x, z ∈ D

h(sx + (1 − s)z) = th(x) + (1 − t)h(z), and,

H(sx + (1 − s)z) = tH(x) + (1 − t)H(z).

This completes the proof. �
The following Theorem states that the existence of a support mapping at

an arbitrary point in fact characterizes delta (s, t)-convexity.

Theorem 5. Let D ⊂ X be an open and convex set. A map F : D → Y is delta
(s, t)-convex with a control function f : D → R if and only if, for every point
y ∈ D there exist (s, t)-affine maps Ay : D → Y and ay : D → R such that

‖F (x) − Ay(x)‖ ≤ f(x) − ay(x), x ∈ D,

moreover,

Ay(y) = F (y), ay(y) = f(y).

Proof. The sufficiency results from Theorem 4. To prove the necessity fix arbi-
trary x, z ∈ D. Put y := sx + (1 − s)z. By our assumption we get

‖tF (x) + (1 − t)F (z) − F (y)‖ =
∥∥t(F (x) − Ay(x)) + (1 − t)(F (z) − Ay(z))

−(F (y) − Ay(y))
∥∥

≤ t‖F (x) − Ay(x)‖ + (1 − t)‖F (z) − Ay(z)‖
≤ t(f(x) − ay(x)) + (1 − t)(f(z) − ay(z))

−(f(y) − ay(y))
= tf(x) + (1 − t)f(z) − f(y).

The proof is complete. �
It follows from the proof of Theorems 4 and 5 that for delta convex map-

pings the following theorem holds true

Theorem 6. Let D ⊂ X be an open and convex set. A map F : D → Y is delta
convex with a control function f : D → R i.e. it satisfies for all x, y ∈ D and
α ∈ [0, 1] the inequality

‖αF (x) + (1 − α)F (y) − F (αx + (1 − α)y)‖ ≤ αf(x) + (1 − α)f(y)
−f(αx + (1 − α)y)

if and only if, for every point y ∈ D there exist affine maps Ay : D → Y and
ay : D → R such that

∧

x∈D

‖F (x) − Ay(x)‖ ≤ f(x) − ay(x),

moreover,

Ay(y) = F (y), ay(y) = f(y).
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Remarks
1. Substituting F := 0 in our theorems we obtain the well-known results

concerning classical (s, t)-convexity.
2. Let us observe that there is a close relationship between the theory of delta

convex mappings and the problems of Hyers–Ulam stability, developed by
studying the following functional inequality

‖tF (x) + (1 − t)F (y) − F (sx + (1 − s)y)‖ ≤ Φ(x, y), x, y ∈ D,

where

Φ(x, y) := tf(x) + (1 − t)f(y) − f(sx + (1 − s)y).

In Theorem 4 we have shown that there exists the solution A : D → Y of the
equation

F (sx + (1 − s)y) = tF (x) + (1 − t)F (y), x, y ∈ D,

such that

‖F (x) − A(x)‖ ≤ φ(x), x ∈ D,

where φ(x) := f(x) − a(x), for some (s, t)-affine function a : D → R. In the
case s = t = 1

2 we get the stability result for Jensen equation.
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w Katowicach nr 1087, Katowice (1989)

[5] Kominek, Z.: On (a,b)-convex functions. Arch. Math. 58, 64–69 (1992)
[6] König, H.: On the abstract Hahn–Banach theorem due to Rodé. Aequ. Math. 34, 89–

95 (1987)
[7] Kuhn, N.: A note on t-convex functions. General Inequal. 4, 269–276 (1984)



948 A. Olbryś AEM
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