
Aequat. Math. 87 (2014), 247–284
c© The Author(s) 2013. This article is published
with open access at Springerlink.com
0001-9054/14/030247-38
published online December 29, 2013
DOI 10.1007/s00010-013-0232-8 Aequationes Mathematicae

A new approach to the description of one-parameter
groups of formal power series in one indeterminate

Wojciech Jab�loński and Ludwig Reich

Abstract. The aim of the paper is to describe one-parameter groups of formal power series,
that is to find a general form of all homomorphisms ΘG : G → Γ, ΘG(t) =

∑∞
k=1 ck(t)Xk,

c1 : G → K \ {0}, ck : G → K for k ≥ 2, from a commutative group (G, +) into the
group (Γ, ◦) of invertible formal power series with coefficients in K ∈ {R, C}. Considering
one-parameter groups of formal power series and one-parameter groups of truncated formal
power series, we give explicit formulas for the coefficient functions ck with more details in
the case where either c1 = 1 or c1 takes infinitely many values. Here we give the results
much more simply than they were presented in Jab�loński and Reich (Abh. Math. Sem. Univ.
Hamburg 75:179–201, 2005; Result Math 47:61–68, 2005; Publ Math Debrecen 73(1–2):25–
47, 2008). Also the case im c1 = Em (here Em stands for the group of all complex roots
of order m of 1), not considered in Jab�loński and Reich (Abh. Math. Sem. Univ. Hamburg
75:179–201, 2005; Result Math 47:61–68, 2005; Publ Math Debrecen 73(1–2):25–47, 2008),
will be discussed.
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1. Introduction

Let Γ denote the group of all invertible formal power series in one indeterminate
with substitution ◦ as a binary operation. By a one-parameter group of formal
power series (FPS) we mean any homomorphism ΘG from a group (G,+) into
(Γ, ◦), i.e. any function ΘG : G → Γ satisfying

ΘG(t1 + t2)(X) = (ΘG(t1) ◦ ΘG(t2))(X) for t1, t2 ∈ G.

Analogously, we may define a one-parameter group of s-truncated FPS as
a homomorphism Θs

G : G → Γs into the group Γs of all invertible s-truncated
FPS in one indeterminate.

Let Ft(X) = F (t,X) := ΘG(t)(X) and F
[s]
t (X) = F [s](t,X) := Θs

G(t)(X).
If ΘG : G → Γ and Θs

G : G → Γs are, a one-parameter group of FPS and
a one-parameter group of s-truncated FPS, respectively, we will also say that
the families (Ft(X))t∈G and (F [s]

t (X))t∈G are a one-parameter group of FPS
and a one-parameter group of s-truncated FPS. In this case the families
(Ft(X))t∈G and (F [s]

t (X))t∈G satisfy the well known translation equation
{

F (t1 + t2,X) = F (t1, F (t2,X)) for t1, t2 ∈ G,

F (0,X) = X,
(1)

in the ring of FPS, and
{

F [s](t1 + t2,X) = F [s](t1, F [s](t2,X)) mod Xs+1 for t1, t2 ∈ G,

F [s](0,X) = X,
(2)

in the ring of s-truncated FPS. Both of them may be written (with F [∞] := F )
in a unified way as

{
F

[s]
t1+t2 = F

[s]
t1 ◦ F

[s]
t2 for t1, t2 ∈ G,

F
[s]
0 = id.

(3)

It appears that the form of both one-parameter groups ΘG and Θs
G strongly

depend on the function c1. We will see that c1 must be an exponential function,
i.e. a homomorphism of (G,+) into (K \ {0}, ·). By the first isomorphism
theorem we know that G/ ker c1

∼= im c1. There appear the following cases:

case 1. c1 = 1, which means that ker c1 = G; then ΘG and Θs
G have a rather

simple structure;
case 2. c1 �= 1, but G/ ker c1

∼= im c1 is a finite subgroup of (K \ {0}, ·); then
im c1 = Em with some integer m ≥ 2, where Em denotes the set of all
roots of 1 of order m, and the general structure of such one-parameter
groups is much more complicated;

case 3. G/ ker c1
∼= im c1 is an infinite subgroup of (K\{0}, ·), then the general

form of ΘG and Θs
G is also simple.



Vol. 87 (2014) A new approach to the description of one-parameter groups 249

In order to solve our problem we use algebraic methods jointly with some
tools from differential equations and functional equations. We begin with prop-
erties of the operation of substitution in the groups Γ and Γs, which are crucial
for our method. Then we find (Theorem 1) regular one-parameter groups of
formal power series, i.e. groups with coefficients being C∞–functions in the
real case and entire when K = C.

Case 1 and case 3 were already investigated in [6,7,9] using connections
with the differential groups L1

s (s ∈ N) and L1
∞. These differential groups will

not appear in the present paper. However we will come back to our previous
results in cases 1 and 3 since we are now able to give new and simple proofs
(see e.g. Theorems 4 and 5). The new idea consists in constructing a particular
solution of inhomogeneous functional equations like (33) and (38) using the
polynomials obtained in the representations of regular solutions of the transla-
tion equation and then adding the simple general solution of the corresponding
homogeneous equation, like the Cauchy equation or (35). Our proofs for results
such as Theorems 4 and 5 in our previous publications were considerably longer
since we had to transfer certain results on differential groups to the groups of
invertible formal power series and back.

Case 3 and a subcase of case 2 were already treated in [8] where the stan-
dard form of the solution was given whenever it can be applied. Here we give
a description of the solutions in this subcase of case 2 using a sequence of
polynomials for the representation of the solution (see Corollary 6), but the
proof differs in some details (see the functional equation (48)).

Completely new in the present paper is Sect. 10. We give a solution in the
following subcase of case 2, namely where we assume that Θ(G) is infinite and
the set {lt0 ∈ G : 0 ≤ l ≤ m − 1} is a subgroup of G and t0 ∈ G is such that
c1(t0) is a primitive mth root of 1 (Theorem 6).

As an application of our results we deal with the embedding problems
(Sect. 11), which have so far been only studied related to homomorphisms
from the group (C,+) into Γ.

At the end of the introduction we would like to mention that our results
contain the description of all one-parameter groups Θ : G → Γs for such
groups G as (R,+), (C,+), (R∗, ·) and (C∗, ·).

It seems that our methods of combining functional equations, differential
equations and algebraic methods will not give a satisfactory solution of our
problem (i.e. construction of one-parameter groups of FPS) in the remaining
subcase. A possible approach to cover also this last open case could come from
a theory of families of commuting invertible FPS.

The description of such one-parameter groups uses some sequences of poly-
nomials. Using properties of these sequences (Lemmas 4 and 5), we describe
the general form of one-parameter groups in cases 1. and 3 for both FPS and
s-truncated FPS. Finally, we consider the second case. In the subcase when
one-parameter groups are finite, we give the explicit form of the coefficient
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functions of these groups. Also a subcase where c1(G)is finite and Θ(G) is
infinite is considered.

2. The ring of formal power series

K[[X]] will denote the ring of all formal power series (FPS)
∑∞

k=0 ckXk with
coefficients ck ∈ K, where K ∈ {R, C} is the field of real or complex numbers.
For a formal power series f(X) =

∑∞
k=0 ckXk with ci �= 0 for some i ∈ N∪{0}

(N stands here for the set of all positive integers) we define

ord f(X) = min{i ∈ N ∪ {0} : ci �= 0 },

assuming additionally ord (
∑∞

k=0 0Xk) = ∞.
The set Γ = {f(X) ∈ K[[X]] : ord f(X) = 1 } with the sub-

stitution ◦ as a binary operation is a group. Moreover, the set Γ1 ={∑∞
k=1 ckXk ∈ Γ : c1 = 1

}
is a subgroup of Γ. A very good reference for this

topic is [2].
In the sequel we will need the notion of the ring of truncated formal power

series. It is known that for a fixed s ∈ N the set

Is = Xs+1
K[[X]] = {f(X) ∈ K[[X]] : ord f(X) ≥ s + 1 }

is an ideal in the ring K[[X]]. We may then define a congruence modulo Xs+1

as follows: we say that f1(X), f2(X) ∈ K[[X]] are congruent modulo Xs+1

(which will be written as (f1(X) ≡ f2(X) mod Xs+1) provided (f1−f2)(X) =
f1(X) − f2(X) ∈ Is. This means that Xs+1 is a divisor of the difference
(f1 − f2)(X).

We consider the quotient ring K[[X]]/Is of all cosets [f(X)]s = f(X) + Is.
With every coset f(X) + Is, where f(X) =

∑∞
k=0 ckXk ∈ K[[X]], we may

associate an s-truncation of a formal power series f(X) defined by

f [s](X) :=
s∑

k=0

ckXk ∈ K[[X]]s ⊂ K[X] ⊂ K[[X]].

In the set K[[X]]s (which may be treated as a set of all polynomials of degree
at most s) we introduce, in a natural way, an addition of truncated formal
power series. It appears that a multiplication and a substitution must be
defined in a specific way so that K[[X]]s should be closed under them. Let
for f(X), g(X) ∈ K[[X]]s,

(fg)(X) := (fg)[s](X),

and, in the case when ord g(X) ≥ 1,

(f ◦ g)(X) := (f ◦ g)[s](X).

Then (K[[X]]s,+, ·) is a ring which is isomorphic to K[[X]]/Is. Moreover, the
set Γs := {f(X) ∈ K[[X]]s : ord f(X) = 1 } is a group under substitution.
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We will also need the notion of a semicanonical form of a formal power
series in Γ and Γs. Namely, for a fixed integer m ≥ 1, let Nm be the set
of all f(X) ∈ Γ such that f(X) =

∑∞
k=0 ckm+1X

km+1, whereas N s
m stands

for the set of all f(X) ∈ Γs such that f(X) =
∑r

k=0 ckm+1X
km+1, where

rm + 1 ≤ s < (r + 1)m + 1.
To unify our considerations for both FPS and s-truncated FPS we put

Γ∞ := Γ and N ∞
m := Nm. It is known that if ρ ∈ Em is a primitive root of 1 of

order m and Lρ(X) = ρX then for both s being a positive integer and s = ∞
we have

N s
m = {f(X) ∈ Γs : (f ◦ Lρ)(X) = (Lρ ◦ f)(X) } .

Thus N s
m is a subgroup of Γs.

3. Properties of the group operations in Γs

We give here a crucial formula describing the operation of substitution ◦ in
the group Γ∞. Because of the construction of Γs the same formula is also valid
in Γs. Let |k, l| denote the set of all integers n such that k ≤ n ≤ l, and
let |k,∞| be the set of all integers n ≥ k. We assume that

∑
t∈∅ at = 0 and∏

t∈∅ at = 1. For a fixed integer r ≥ 1, let Nr = {lr + 1 : l ∈ N ∪ {0} }. In
particular N1 = N.

Let
∑∞

k=1 akXk,
∑∞

k=1 bkXk ∈ Γ∞. It is known (cf. [6]) that if

∞∑

k=1

ak

( ∞∑

l=1

blX
l

)k

=
∞∑

n=1

dnXn,

then

dn =
n∑

k=1

ak

∑

un∈Un,k

Bun

n∏

j=1

b
uj

j for n ∈ N, (4)

where

Un,k :=

⎧
⎨

⎩
un := (u1, . . . , un) ∈ |0, k|n :

n∑

j=1

uj = k,
n∑

j=1

juj = n

⎫
⎬

⎭
,

Bun :=
k!

n∏

j=1

uj !
.

Note that Bun
is a multinomial coefficient. As examples of (4) we quote

d1 = a1b1, d2 = a1b2 + a2b
2
1, d3 = a1b3 + 2a2b1b2 + a3b

3
1. (5)

Now, for the convenience of the reader we collect several properties of for-
mulas (4). Although these properties are similar to those of the binary opera-
tion in the Lie group L1

s (cf. [6, Theorem 2]), for the completeness of the paper,
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we give their proofs here. We mention in the paper, when such a detailed
property is needed in a proof, and the reader may postpone the study of these
properties until they really appear. Let for an integer p ≥ 0

Up
n,k :=

{
un ∈ Un,k : ∀j∈|2,p+1|,j≤n−1 uj = 0

}
.

Clearly Up2
n,k ⊂ Up1

n,k ⊂ U0
n,k = Un,k for 0 ≤ p1 ≤ p2. Moreover, we put

U1,1
n,k = Un,k, and, for p ≥ 1, p + 1 = qm with some integers m ≥ 2, q ≥ 1, we

define

Um,q
n,k :=

{
un ∈ Un,k : ∀j∈|2,qm|∪(|qm+2,n|\Nm) uj = 0

}
.

Then Um,q
n,k ⊂ Up

n,k. We begin with properties of the sets Un,k, Up
n,k and Um,q

n,k .

Lemma 1. (cf. [1,4,5]) Let n ∈ |2,∞| be arbitrarily fixed. Then
(i) Un,1 = {(0, . . . , 0, 1)} and Un,n = {(n, 0, . . . , 0)};
(ii) Bun

= 1 for un ∈ Un,1 ∪ Un,n;
(iii) if n ≥ 3, k ∈ |2, n − 1| and un ∈ Un,k, then uj = 0 for every j ∈

|n − k + 2, n| and there exists j ∈ |2, n − k + 1| with uj ≥ 1;
(iv) if p ≥ 1 is an integer, n ≥ p + 3 and k ∈ |n − p, n − 1|, then Up

n,k = ∅;
(v) if m ≥ 2, q ≥ 1 and n ∈ N\Nm, then for each k ∈ |qm+1, n−qm|∩Nm

we have Um,q
n,k = ∅.

Proof. The properties (i)–(ii) are simple consequences of the conditions defin-
ing the set Un,k.

(iii) If for k ∈ |2, n−1| and un ∈ Un,k we had ul �= 0 for some l ∈ |n−k+2, n|,
then, by the conditions defining Un,k we would obtain

n − k =
n∑

j=1

juj −
n∑

j=1

uj =
n∑

j=2

(j − 1)uj ≥ (l − 1)ul ≥ n − k + 1,

which leads to a contradiction. Further, suppose that uj = 0 for all j ∈ |2, n −
k + 1|. Since also uj = 0 for j ∈ |n − k + 2, n|, then k =

∑n
i=1 ui = u1 =∑n

i=1 iui = n, which is impossible, so there exists j ∈ |2, n−k+1| with uj ≥ 1.
(iv) Let p ≥ 1 be an integer, n ≥ p + 3, k ∈ |n − p, n − 1|. Suppose that

Up
n,k �= ∅. By (iii), for un ∈ Up

n,k there exists then j ∈ |2, n − k + 1| ⊂ |2, p + 1|
such that uj ≥ 1, which leads to a contradiction with un ∈ Up

n,k. Hence
Up

n,k = ∅.
(v) Let n ∈ N \ Nm, k ∈ |p + 2, n − p − 1| ∩ Nm and fix un ∈ Um,q

n,k . For
every j ∈ |2, n − k + 1| \ Nm we have uj = 0. Then n − k =

∑n
j=2(j − 1)uj =

∑
j∈|2,n−k+1|∩Nm

(j − 1)uj , which gives

n = k +
∑

j∈|2,n−k+1|∩Nm

(j − 1)uj ∈ Nm.

This contradiction finishes the proof. �
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When studying one-parameter groups of FPS we will frequently use the
following special form of (4).

Corollary 1. (cf. [5, Lemma 2]) Let p ∈ |0,∞| and assume in (4) that aj =
bj = 0 for j ∈ |2, p + 1|. Then dn = 0 for n ∈ |2, p + 1| and

dn = a1bn +
n−p−1∑

k=p+2

ak

∑

un∈Up
n,k

Bun
bu1
1

n−k+1∏

j=p+2

b
uj

j + anbn
1 for n ∈ |p + 2,∞|.

(6)

Proof. For every n ≥ 2, by Lemma 1 (i)–(iii), we have

dn = a1bn +
n−1∑

k=2

ak

∑

un∈Un,k

Bun
bu1
1

n−k+1∏

j=2

b
uj

j + anbn
1 .

Hence, for n ∈ |2, p + 1| we have dn = 0 and dp+2 = a1bp+2 + ap+2b
p+2
1 , which

gives (6) for n = p + 2. Now, let n ≥ p + 3. We have

dn = a1bn +
n−1∑

k=p+2

ak

∑

un∈Un,k

Bun
bu1
1

n−k+1∏

j=2

b
uj

j + anbn
1 .

Note that for every k ∈ |p + 2, n − 1| we have

∑

un∈Un,k

Bun
bu1
1

n−k+1∏

j=2

b
uj

j =
∑

un∈Up
n,k

Bun
bu1
1

n−k+1∏

j=p+2

b
uj

j . (7)

In the case when p ≥ 1, for k ∈ |n − p, n − 1|, because of Lemma 1 (iv) we get
Up

n,k = ∅. Then from (7) we obtain (6), which finishes the proof. �

The following very detailed properties of (4) will be useful in the construc-
tion of a one-parameter group of FPS.

Corollary 2. Let p ≥ 1, p + 1 = qm with integers m ≥ 2 and q ≥ 1. If
aj = bj = 0 for j ∈ |2, p + 1| and bj = 0 for j ∈ |p + 3,∞| \ Nm, then for
n ∈ |p + 2,∞|

dn = a1bn +
n−p−1∑

k=p+2

ak

∑

un∈Um,q
n,k

Bun
bu1
1

∏

j∈|p+2,n−k+1|∩Nm

b
uj

j + anbn
1 . (8)

Proof. Since bi = 0 for i ∈ |p + 3,∞| \ Nm,
∑

un∈Up
n,k\Um,q

n,k
Bun

bu1
1

∏n−k+1
j=p+2 b

uj

j

= 0 for every k ∈ |p + 2, n − p − 1|. Hence (6) gives (8). �

Corollary 3. Let p ≥ 1, p + 1 = qm with integers m ≥ 2, q ≥ 1, and let
aj = bj = 0 for j ∈ |2, p + 1| ∪ (|p + 3,∞| \ Nm). Then
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(i) for n ∈ |p + 3,∞| \ Nm

n−p−1∑

k=p+2

ak

∑

un∈Um,q
n,k

Bunbu1
1

∏

j∈|p+2,n−k+1|∩Nm

b
uj

j = 0, (9)

hence dn = 0,
(ii) for n = rm + 1 ∈ |p + 2,∞| ∩ Nm

drm+1 = a1brm+1 +
r−q∑

k=q

akm+1

∑

urm+1∈Um,q
rm+1,km+1

Bun
bu1
1

r−k∏

j=q

b
ujm+1
jm+1

+ arm+1b
rm+1
1 . (10)

Proof. (i) If n ∈ |p + 3,∞| \ Nm, then for k ∈ |p + 2, n − p − 1| \ Nm we have
ak = 0, and for k ∈ |p + 2, n − p − 1| ∩ Nm, by Lemma 1 (v), Um,q

n,k = ∅.
This implies (9), and, in consequence, (8) gives dn = 0.

(ii) (10) is a simple consequence of the assumptions and (8). �

Further properties of (4) will be useful in the proof of some properties of
sequences of the polynomials (Lp+2

n ) and (Pn) which appear in the description
of one-parameters groups of FPS. To simplify the notation we put

(

α, . . . , β,
k
x, γ, . . . , δ

)

in order to identify x as the kth element of the sequence (α, . . . , β, x, γ, . . . , δ).

Lemma 2. Let p ≥ 0, n ∈ |p + 3,∞|. Then

Up
n+p+1,n =

{(

n − 1, 0, . . . , 0,
p+2

1 , 0, . . . , 0
)}

,

Up
n+p+1,p+2 =

{(
p + 1, 0, . . . , 0,

n
1, 0, . . . , 0

)}

∪{
un+p+1 ∈ Up

n+p+1,p+2 : ∀j∈|n,n+p+1| uj = 0
}

.

For un+p+1 =
(
p + 1, 0, . . . , 0,

n
1, 0, . . . , 0

)
∈ Up

n+p+1,p+2 we have Bun+p+1 =

p + 2, and, for un+p+1 =
(

n − 1, 0, . . . , 0,
p+2

1 , 0, . . . , 0
)

∈ Up
n+p+1,n,

Bun+p+1 = n.

Proof. Let un+p+1 = (u1, . . . , un+p+1) ∈ Up
n+p+1,n ⊂ Un+p+1,n. Then, by the

description of Un,k we get p+1 = n+p+1−n =
∑n+p+1

j=2 (j−1)uj , which, jointly
with uj = 0 for j ∈ |2, p+1|, gives up+2 = 1 and uj = 0 for j ∈ |p+3, n+p+1|.
Thus u1 = n − 1.
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Next, let un+p+1 = (u1, . . . , un+p+1) ∈ Up
n+p+1,p+2. Then

n − 1 = n + p + 1 − (p + 2) =
n+p+1∑

j=2

(j − 1)uj .

If un = 1, then uj = 0 for every j ∈ |2, n + p + 1| \ {n}, hence u1 = p + 1.
Otherwise, un = 0 and, by Lemma 1 (iv), we also get uj = 0 for j ∈ |n + p +
1 − (p + 2) + 2, n + p + 1| = |n + 1, n + p + 1|, which finishes the proof of the
decomposition of the set Up

n+p+1,p+2.
The last statement follows from the equality defining Bun+p+1 . �

Now, let for n ∈ |p + 3,∞|,

Ûp
n+p+1,p+2 =

{
un+p+1 ∈ Up

n+p+1,p+2 : ∀j∈|n,n+p+1| uj = 0
}

,

Ûp
n+p+1,k = Up

n+p+1,k for k ∈ |p + 3, n − p − 1|.

Then, for each k ∈ |p + 2, n − p − 1| and every un+p+1 ∈ Ûp
n+p+1,k we have

uj = 0 for j ∈ |n, n + p + 1|. From Corollary 1 and Lemma 2 we obtain

Corollary 4. Let p ≥ 0. If aj = bj = 0 for all j ∈ |2, p+1|, then for n ∈ |p+2,∞|
with r = n + p + 1 we have

dr = a1br + (p + 2)ap+2b
p+1
1 bn +

n−1∑

k=p+2

ak

∑

ur∈Ûp
r,k

Bur
bu1
1

r−k+1∏

j=p+2

b
uj

j

+nanbn−1
1 bp+2 + arb

r
1

and
∑n−1

k=p+2 ak

∑
ur∈Ûp

r,k
Bur

bu1
1

∏r−k+1
j=p+2 b

uj

j does not contain ak, bk for k ∈
|n, r|.

4. One-parameter groups of formal power series

Let F (t,X) =
∑∞

k=1 ck(t)Xk, where c1 : G → K \ {0}, ck : G → K for
k ∈ |2,∞|, be a one-parameter group of FPS. Then, from (1) we get

∞∑

n=1

cn(t1 + t2)Xn =
∞∑

l=1

cl(t1)

⎛

⎝
∞∑

j=1

cj(t2)Xj

⎞

⎠

l

for t1, t2 ∈ G.

Hence, on account of (5) and Corollary 1 with p = 0, by comparing coefficients,
we obtain the infinite system of functional equations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(t1 + t2) = c1(t1)c1(t2)
c2(t1 + t2) = c1(t1)c2(t2) + c2(t1)c1(t2)2

...
cn(t1 + t2) = c1(t1)cn(t2)

+
n−1∑

k=2

ck(t1)
∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t2)uj + cn(t1)c1(t2)n

...

(11)

for t1, t2 ∈ G.
In the same way, with F [s](t,X) =

∑s
k=1 ck(t)Xk being a one-parameter

group of s-truncated FPS, where c1 : G → K \ {0}, ck : G → K for k ∈ |2, s|,
we obtain from (2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(t1 + t2) = c1(t1)c1(t2)
c2(t1 + t2) = c1(t1)c2(t2) + c2(t1)c1(t2)2

...
cs(t1 + t2) = c1(t1)cs(t2)

+
s−1∑

k=2

ck(t1)
∑

us∈Us,k

Bus

s−k+1∏

j=1

cj(t2)uj + cs(t1)c1(t2)s

(12)

for t1, t2 ∈ G. Note that in both cases c1 must be a generalized exponential
function.

Considering at the same time both s ∈ N and s = ∞, we will generally
distinguish two cases, c1 = 1 and c1 �= 1 (in fact, the second one will be
divided into subcases later on). In the first case we have clearly the trivial
solution c1 = 1 and cn = 0 for n ∈ |2, s|. So, in the case c1 = 1, passing
over the trivial case, without loss of generality we may assume that there is a
nonnegative integer p with p + 2 ≤ s such that cj = 0 for j ∈ |2, p + 1| and
cp+2 �= 0. Then, by Corollary 1, the systems (11) and (12) may be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cp+2(t1 + t2) = cp+2(t1) + cp+2(t2),
cn(t1 + t2) = cn(t1)

+
n−p−1∑

k=p+2

ck(t1)
∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

cj(t2)uj + cn(t2), n ∈ |p + 3, s|,
(13)

for t1, t2 ∈ G. In the second case we consider the system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1(t1 + t2) = c1(t1)c1(t2)
c2(t1 + t2) = c1(t1)c2(t2) + c2(t1)c1(t2)2

cn(t1 + t2) = c1(t1)cn(t2)+
n−1∑

k=2

ck(t1)
∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t2)uj + cn(t1)c1(t2)n, n ∈ |3, s|
(14)

for t1, t2 ∈ G.

5. The regular one-parameter groups of formal power series

We describe the regular one-parameter groups of FPS, i.e we give the general
regular solution of the systems (13) and (14) for s = ∞. We recall the proofs
of these results (see [6,7,9]) not only for the convenience of the reader. We
prove these results in a more precise form, with some essential additional
consequences, which allow us to give a simple proof of Theorem 2.

In this section we assume that c1 : K → K \ {0}, ck : K → K for k ≥ 2
are C∞-functions when K = R, or entire functions in the complex case. By
the differentiation of each equation of (11) with respect to t1, and putting
t1 = 0, jointly with the boundary condition c1(0) = 1 and cn(0) = 0 for each
n ≥ p+2 (cf. the translation equation (1)), we obtain the system of differential
equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c′
1(t) = c′

1(0)c1(t), c1(0) = 1,
c′
2(t) = c′

1(0)c2(t) + c′
2(0)c1(t)2, c2(0) = 0,

c′
n(t) = c′

1(0)cn(t)+
n−1∑

k=2

c′
k(0)

∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t)uj + c′
n(0)c1(t)n, cn(0) = 0, n ≥ 3.

(15)

Let us distinguish two cases:
c1) c′

1(0) = 0,
c2) c′

1(0) �= 0.
In the first case, from the first differential equation of (15) we obtain c1 = 1.
Then, if for some integer p ≥ 0 we have c′

i(0) = 0 for i ∈ |2, p + 1|, and
c′
p+2(0) �= 0, then from (15) we get ci = 0 for every i ∈ |2, p+1|, and cp+2 �= 0.

Hence from (15), for the sequence (hn)n≥p+2, where hk := c′
k(0) for k ≥ p + 2,

hp+2 �= 0, we get
⎧
⎪⎪⎨

⎪⎪⎩

c′
p+2(t) = hp+2, cp+2(0) = 0,

c′
n(t) = hn +

n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

cj(t)uj , cn(0) = 0, n ≥ p + 3. (16)

In the second case, for (λn)n≥2, where λ1 := c′
1(0) and (k − 1)λ1λk := c′

k(0)
for k ≥ 2, we obtain
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c′
1(t) = λ1c1(t), c1(0) = 1,

c′
2(t) = λ1c2(t) + λ1λ2c1(t)2, c2(0) = 0,

c′
n(t) = λ1cn(t) + (n − 1)λ1λnc1(t)n+

n−1∑

k=2

(k − 1)λ1λk

∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t)uj , cn(0) = 0, n ≥ 3.

(17)

Theorem 1. (cf. [6, Theorem 4] and [9, Theorem 6]) Fix an integer p ≥ 0.
There exist sequences of polynomials (Lp

n)n≥p+2 and (Pn)n≥2 given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lp
p+2(X) = 0;

Lp
n(X; (hl)l∈|p+2,n−p−1|) =

n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

X∫

0

⎛

⎝
n−k+1∏

j=p+2

(
hjv + Lp

j (v; (hl)l∈|p+2,j−p−1|)
)uj

⎞

⎠ dv, n ≥ p + 3,

(18)

and by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P2(X) = 0; R2(X;λ2) = λ2X − λ2

Pn(X; (λl)l∈|2,n−1|) =
n−1∑

k=2

(k − 1)λk

∑

un∈Un,k

Bun

×
X∫

1

vk−2
n−k+1∏

j=2

(
Rj(v; (λl)l∈|2,j|)

)uj
dv, n ≥ 3,

Rn(X; (λl)l∈|2,n|) = λn(Xn−1 − 1) + Pn(X; (λl)l∈|2,n−1|),

(19)

such that

(i) for every sequence (hn)n≥p+2 there exists a unique solution of the system
of differential equations (15) given by

cn(t) = hnt + Lp
n(t; (hk)k∈|p+2,n−p−1|), t ∈ K, n ≥ p + 2; (20)

(ii) for every sequence (λn)n≥1 with λ1 �= 0, there exists a unique solution
of the system of differential equations (16) given by

c1(t) = eλ1t, t ∈ K,
cn(t)=λn

(
enλ1t−eλ1t

)
+eλ1tPn

(
eλ1t; (λk)k∈|2,n−1|

)
, t ∈ K, n≥2.

(21)

Proof. In the first case we have cp+2(t) = hp+2t = hp+2t + Lp
p+2(t) with

Lp
p+2 = 0. Assume that for some n ≥ p + 3 there exist polynomials Lp

j for
j ∈ |p + 2, n − 1| such that

cj(t) = hjt + Lp
j (t; (hl)l∈|p+2,j−p−1|), t ∈ K
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for every j ∈ |2, n − 1|, and let us consider the differential equation

c′
n(t) = hn +

n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

cj(t)uj

= hn +
n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

(
hjt + Lp

j (t; (hl)l∈|p+2,j−p−1|)
)uj

(22)

with the boundary condition cn(0) = 0. Since the right hand side of (22) is
a polynomial in t, this differential equation has a unique solution given by

cn(t) = hnt

+
n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

t∫

0

⎛

⎝
n−k+1∏

j=p+2

(
hjv+Lp

j (v; (hl)l∈|p+2,j−p−1|)
)uj

⎞

⎠ dv.

Hence

Lp
n(X; (hl)l∈|p+2,n−p−1|)

=
n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

X∫

0

⎛

⎝
n−k+1∏

j=p+2

(
hjv + Lp

j (v; (hl)l∈|p+2,j−p−1|)
)uj

⎞

⎠ dv.

Thus by (18) we can define the sequence of polynomials (Lp
n)n≥p+2 such that

the solution of (16) is given by (20).
Now, let λ1 = c′

1(0) �= 0. Then c1(t) = eλ1t and

c2(t) = λ2(e2λ1t − eλ1t) = λ2(c2
1(t) − c1(t)) + c1(t)P2(c1(t))

with P2(X) = 0. Assume that for some n ∈ N, n ≥ 3 there are polynomials
(Pj)j∈|2,n−1| such that

cj = λj(c
j
1 − c1) + c1Pj(c1; (λl)l∈|2,j−1|) = c1Rj(c1; (λl)l∈|2,j|)

for every j ∈ |2, n − 1|, and let us consider the differential equation

c′
n(t) = λ1cn(t)+(n−1)λ1λnc1(t)n+

n−1∑

k=2

(k − 1)λ1λk

∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t)uj

(23)
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with the boundary condition cn(0) = 0. We have

n−k+1∏

j=1

cj(t)uj = c1(t)u1

n−k+1∏

j=2

(
c1(t)Rj(c1(t); (λl)l∈|2,j|)

)uj

= c1(t)
∑n−k+1

j=1 uj

n−k+1∏

j=2

Rj(c1(t); (λl)l∈|2,j|)uj

= c1(t)
∑n

j=1 uj

n−k+1∏

j=2

Rj(c1(t); (λl)l∈|2,j|)uj

= c1(t)k
n−k+1∏

j=2

Rj(c1(t); (λl)l∈|2,j|)uj .

Then, from (23), with c1(t) = eλ1t we get

c′
n(t) = λ1cn(t) + (n − 1)λ1λnenλ1t (24)

+
n−1∑

k=2

(k − 1)λ1λk

∑

un∈Un,k

Bun
ekλ1t

n−k+1∏

j=2

Rj(eλ1t; (λl)l∈|2,j|)uj .

The linear differential equation (24) with the boundary condition cn(0) = 0
has exactly one solution (cf. [3, p. 104]) of the form

cn(t) = eλ1t

t∫

0

e−λ1v(n − 1)λ1λne(n−1)λ1vdv

+ eλ1t

t∫

0

e−λ1v
n−1∑

k=2

(k − 1)λ1λk

∑

un∈Un,k

Bunekλ1v

×
n−k+1∏

j=2

Rj(eλ1v; (λl)l∈|2,j|)uj dv

= eλ1t

eλ1t
∫

1

(n − 1)λnwn−2dw

+ eλ1t
n−1∑

k=2

(k−1)λk

∑

un∈Un,k

Bun

eλ1t
∫

1

wk−2
n−k+1∏

j=2

Rj(w; (λl)l∈|2,j|)uj dw.

Thus

cn(t) = λn(enλ1t − eλ1t) + eλ1tPn(eλ1t; (λj)j∈|2,n−1|),
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where

Pn(X; (λj)j∈|2,n−1|)

=
n−1∑

k=2

(k − 1)λk

∑

un∈Un,k

Bun

X∫

1

wk−2
n−k+1∏

j=2

(
Rj(w; (λl)l∈|2,j|)

)uj
dw.

We have thus proved that there is a sequence of polynomials (Pn)n≥2 defined
by (19) such that the unique solution of (17) is given by (21). �

Now we will show that the solutions ck of the systems of differential equa-
tions (16) and (17) satisfy the system of equations (11), which means that
F (t,X) =

∑∞
k=1 ck(t)Xk with ck given in Theorem 1 are the regular one-

parameter groups of formal power series. In the following we use the standard
notation (s ∈ N or s = ∞). If F (t,X) =

∑s
k=1 ck(t)Xk, then

∂F

∂X
(t,X) :=

s∑

k=1

kck(t)Xk−1,

and, in the case when G = K and the coefficient functions ck are differentiable,

∂F

∂t
(t,X) :=

s∑

k=1

c′
k(t)Xk.

For G = K the following theorem describes the general regular solution of the
translation equation (1) in the ring of FPS. Theorem 2 may be derived from
some results in [12,13], but here we give the simple proof based on some ideas
from [14].

Theorem 2. (i) If a family (F (t,X))t∈K is a regular one-parameter group of
FPS, then there exists a formal power series H(X) ∈ K[[X]] such that

⎧
⎨

⎩

∂F

∂t
(t,X) = H(F (t,X)), for t ∈ K,

F (0,X) = X.
(25)

(ii) For each H(X) ∈ K[[X]], ord H ≥ 1, the family (F (t,X))t∈K defined by
(25) is a regular one-parameter group of formal power series.

(iii) The series H is uniquely determined by (F (t,X))t∈K. It is given by the
formula H(X) := ∂F

∂t (0,X), in particular, ordH ≥ 1.

Proof. First let us assume that (F (t,X))t∈K is a regular one-parameter group
of FPS (i.e. F (t,X) is a solution of the translation equation (1)). By dif-
ferentiation of (1) with respect to t1 and putting t1 = 0 we get (25) with
H(X) = ∂F

∂t (0,X), which is nothing else but (15).
Conversely, let us consider the system of differential equations (25) (which

is equivalent to (16) whenever c′
1(0) = 0, and to (17) if c′

1(0) �= 0). We know
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that for a fixed H(X) ∈ K[[X]] with ordH ≥ 1, the system (25) always has
a unique solution. We will show that it is given by (cf. also [12])

F (t,X) = etH(X) ∂
∂X X :=

∞∑

k=0

tk
(
H(X) ∂

∂X

)k

k!
X for t ∈ K, (26)

where ∂
∂X denotes the operator of derivation with respect to X. Indeed, it is

easy to see that the function F (t,X) given by (26) is a regular solution of the
translation equation (1) and F (0,X) = X. Thus, by differentiation of (1) with
respect to t1 and taking t1 = 0 we get

∂F

∂t
(t,X) =

∂F

∂t
(0, F (t,X)). (27)

Moreover, since
∂F

∂t
(t,X) =

∂

∂t

(
etH(X) ∂

∂X X
)

=
∂

∂t

( ∞∑

k=0

(
tk(H(X) ∂

∂X

)k

k!
X

)

=
∞∑

k=1

tk−1
(
H(X) ∂

∂X

)k

(k − 1)!
X,

∂F
∂t (0,X) = H(X), and then, by (27) we obtain (25). Thus every solution of
the system of differential equations (25), with arbitrarily fixed H(X) ∈ K[[X]]
such that ordH(X) ≥ 1, is a solution of the translation equation (1).

The proof of (iii) is obvious. �

As a simple consequence of Theorem 1 and Theorem 2 we obtain

Theorem 3. There exist sequences of polynomials (Lp
n)n≥p+2 with some inte-

ger p ≥ 0, and (Pn)n≥2, given by (18) and (19), respectively, such that the
coefficient functions of every regular nontrivial one-parameter group of FPS
F (t,X) =

∑∞
k=1 ck(t)Xk are given by (20) provided c′

1(0) = 0, c′
i(0) = 0 for

i ∈ |2, p + 1|, c′
p+1(0) �= 0, and by (21) if c′

1(0) �= 0, where (hn)n≥p+2 and
(λn)n≥1 with hp+2 �= 0, λ1 �= 0 are arbitrary sequences of constants.

6. Properties of the sequences (Ln) and (Pn)

Now we collect some properties of the polynomials (Lp
n) and (Pn) used for

describing regular solutions of (11). First we quote without proof an interesting
property of (Lp

n) which can be derived from the construction of the regular
one-parameter groups of FPS.

Fact 1. For every integer p ≥ 0 and for every sequence of constants (hn)n≥2

with hk = 0 for k ∈ |2, p + 1| we have

L0
n(X; (hl)l∈|2,n−1|) = Lp

n(X; (hl)l∈|p+2,n−p−1|) for every n ≥ 2.
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For every n ≥ p + 2 we denote

L
p

n(X; (hl)l∈|p+3,n−p−1|) := Lp
n(X; (hl)l∈|p+2,n−p−1|) (28)

with hp+2 = 1. We prove now crucial properties of the polynomials L
p

n and
Pn, which allow us to construct the general solution of systems (13) and (14).
We begin with a well-known result from polynomial algebra.

Lemma 3. Let A ⊂ K be infinite. If P (X,Y ) ∈ K[X,Y ] and P (a, b) = 0 for
every (a, b) ∈ A × A. Then P (X,Y ) = 0.

Now we prove

Lemma 4. For every n ≥ p+3 the polynomials L
p

n given by (18) with hp+2 = 1
satisfy, for an arbitrary sequence of constants (hn)n≥p+3, the equalities

hn(X + Y ) + L
p

n(X + Y ; (hl)l∈|p+3,n−p−1|)

= hnX + L
p

n(X; (hl)l∈|p+3,n−p−1|) + hnY + L
p

n(Y ; (hl)l∈|p+3,n−p−1|)

+
n−p−1∑

k=p+2

Kp
k(X; (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

Kp
j (Y ; (hl)l∈|p+3,j|)uj

(29)

and

(p + 2)X
(
hnY + L

p

n(Y ; (hl)l∈|p+3,n−p−1|)
)

+ nY
(
hnX + L

p

n(X; (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(X; (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (Y ; (hl)l∈|p+3,j|)uj

= (p + 2)Y
(
hnX + L

p

n(X; (hl)l∈|p+3,n−p−1|)
)

+ nX
(
hnY + L

p

n(Y ; (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(Y ; (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (X; (hl)l∈|p+3,j|)uj

(30)

in the ring K[X,Y ], where Kp
p+2(X) = X, and

Kp
n(X; (hl)l∈|p+3,n|) = hnX + L

p

n(X; (hl)l∈|p+3,n−p−1|) for n ≥ p + 3.

Proof. By Theorem 3, the family F (t,X) = X +
∑∞

j=p+2 cj(t)Xj with func-
tions cj : K → K for j ∈ |p + 2,∞| given by

cp+2(t) = t, t ∈ K,

cn(t) = hnt + L
p

n(t; (hl)l∈|p+3,n−p−1|), t ∈ K, n ∈ |p + 3,∞|,
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where (hn)n≥p+3 is an arbitrary sequence of constants (hp+2 = 1), is a regular
one-parameter group of FPS with F (t,X) ≡ X mod X2. This means that the
functions cn for n ≥ p + 2 satisfy the system of equations (13). Then, for each
n ≥ p + 3 we have

hn(t1 + t2) + L
p

n(t1 + t2; (hl)l∈|p+3,n−p−1|) = cn(t1 + t2)

= cn(t1) + cn(t2) +
n−p−1∑

k=p+2

ck(t1)
∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

cj(t2)uj

= hnt1 + L
p

n(t1; (hl)l∈|p+3,n−p−1|) + hnt2 + L
p

n(t2, (hl)l∈|p+3,n−p−1|)

+
n−p−1∑

k=p+2

Kp
k(t1; (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

Kp
j (t2; (hl)l∈|p+3,j|)uj

for every t1, t2 ∈ K. This jointly with Lemma 3 implies (29). Moreover, for
every n ≥ p + 3 with r = n + p + 1, on account of Corollary 4, we have

cr(t1 + t2) = cr(t1) + (p + 2)t1
(
hnt2 + L

p

n(t2; (hl)l∈|p+3,n−p−1|)
)

+ cr(t2) + nt2

(
hnt1 + L

p

n(t1; (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(t1; (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (t2; (hl)l∈|p+3,j|)uj

for t1, t2 ∈ K. Since (K,+) is an abelian group, we get by interchanging t1
and t2

(p + 2)t1
(
hnt2 + L

p

n(t2; (hl)l∈|p+3,n−p−1|)
)

+

+nt2

(
hnt1 + L

p

n(t1; (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(t1; (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (t2; (hl)l∈|p+3,j|)uj

= (p + 2)t2
(
hnt1 + L

p

n(t1; (hl)l∈|p+3,n−p−1|)
)

+nt1

(
hnt2 + L

p

n(t2; (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(t2; (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (t1; (hl)l∈|p+3,j|)uj

which together with Lemma 3 gives (30). �
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Lemma 5. Given an arbitrary sequence of constants (λn)n≥2, the polynomials
Pn defined by (19) satisfy for every n ≥ 3

λn ((XY )n − XY ) + XY Pn

(
XY ; (λl)l∈|2,n−1|

)

= X
(
λn (Y n − Y ) + Y Pn

(
Y ; (λl)l∈|2,n−1|

))

+Y n
(
λn (Xn − X) + XPn

(
X; (λl)l∈|2,n−1|

))

+
n−1∑

k=2

XRk(X; (λl)l∈|2,k|)
∑

un∈Un,k

BunY k
n−k+1∏

j=2

(
Rj(Y ; (λl)l∈|2,j|)

)uj
,

(31)

where R1(X) = X and

Rn(X; (λl)l∈|2,n|) = λn(Xn−1 − 1) + Pn(X; (λl)l∈|2,n−1|) for n ∈ |2,∞|.
Proof. By Theorem 3 we have that the family F (t,X) = etX +

∑∞
k=1 ck(t)Xk

with functions ck : K → K for k ∈ |2,∞| given by

ck(t) = λk

(
ekt − et

)
+ etPk

(
et; (λl)l∈|2,k−1|

)
, t ∈ K,

and an arbitrary sequence (λn)n≥2, is the regular one-parameter group of
FPS with F (t,X) ≡ etX mod X2. Hence the system of equations (14) with
c1(t) = et for t ∈ K is satisfied. Thus, for every n ≥ 2 we have

λn

(
en(t1+t2) − et1+t2

)
+ et1+t2Pn

(
et1+t2 ;λ2, . . . , λn−1

)
= cn(t1 + t2)

= c1(t1)cn(t2) + cn(t1)c1(t2)n +
n−1∑

k=2

ck(t1)
∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t2)uj

= et1
(
λn

(
ent2 − et2

)
+ et2Pn

(
et2 ; (λl)l∈|2,n−1|

))

+ent2
(
λn

(
ent1 − et1

)
+ et1Pn

(
et1 ; (λl)l∈|2,n−1|

))

+
n−1∑

k=2

et1Rk(et1 ;λ2, . . . , λk)
∑

un∈Un,k

Bun
ekt2

n−k+1∏

j=2

(
Rj(et2 ;λ2, . . . , λj)

)uj

for t1, t2 ∈ K. Since the function K � t → et ∈ K takes infinitely many values,
Lemma 3 implies (31). �

7. One-parameter groups in cases 1. and 3.

Let (G,+) be a commutative group, and let s be a positive integer or s = ∞
(by |∞,∞| we will mean ∅). We know that if F [s](t,X) = X +

∑s
j=2 cj(t)Xj

is a solution of the translation equation with c1 = 1, then we find p ≥ 0 such
that p+2 ≤ s, ck = 0 for k ∈ |2, p+1| and cp+2 : G → K is a nonzero additive
function. Then the functions ck : G → K for k ∈ |p + 2, s| satisfy the system
of equations (13). We prove
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Theorem 4. Let the sequence of polynomials (L
p

n)n≥p+2 be given by (28) and
(18). For every one-parameter group Θ(t)(X) = X +

∑s
k=p+2 ck(t)Xk of FPS

with cp+2 �= 0, there exist a nonzero additive function a : G → K, a sequence
of additive functions (an)n∈|s−p,s|, an : G → K, and a sequence of constants
(hn)n∈|p+3,s−p−1| such that the coefficient functions (ck)k∈|p+2,s| are given by

cp+2(t)=a(t), t ∈ G

cn(t)= hna(t) + L
p

n(a(t); (hj)j∈|p+3,n−p−1|), t∈ G,n∈ |p + 3, s − p − 1|, (32)

cn(t) = an(t) + L
p

n(a(t); (hj)j∈|p+3,n−p−1|)), t ∈ G,n ∈ |s − p, s|.
Conversely, for an arbitrary additive function a : G → K, for each

sequence (hn)n∈|p+3,s−p−1| and for every sequence of additive functions
(an)n∈|s−p,s|, an : G → K, a function Θ(t)(X) = X +

∑s
k=p+2 ck(t)Xk defined

by (32) is a one-parameter group of FPS.

Proof. At first we prove that the functions cn for n ∈ |p + 2, s| given by (32)
satisfy the system of equations (13). It is easy to see that the function cp+2

satisfy the first equation of the system (13). So let us fix n ∈ |p + 3, s − p − 1|.
Then, using (29), for arbitrary t1, t2 ∈ G we get

cn(t1 + t2) = hna(t1 + t2) + L
p
n(a(t1 + t2); (hl)l∈|p+3,n−p−1|)

= hn(a(t1) + a(t2)) + L
p
n(a(t1) + a(t2); (hl)l∈|p+3,n−p−1|)

= hna(t1) + L
p
n(a(t1); (hl)l∈|p+3,n−p−1|)

+hna(t2) + L
p
n(a(t2); (hl)l∈|p+3,n−p−1|)

+

n−p−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun

×
n−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)

uj

= cn(t1) + cn(t2) +

n−p−1∑

k=p+2

ck(t1)
∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

cj(t2)
uj .

Finally, fix n ∈ |s − p, s|. Then using (29) with hn = 0 we obtain

L
p
n(a(t1 + t2); (hl)l∈|p+3,n−p−1|)

= L
p
n(a(t1) + a(t2); (hl)l∈|p+3,n−p−1|)

= L
p
n(a(t1); (hl)l∈|p+3,n−p−1|) + L

p
n(a(t2); (hl)l∈|p+3,n−p−1|)

+

n−p−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun

×
n−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)

uj .
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Consequently, with an arbitrary additive function an : G → K we get

cn(t1 + t2) = an(t1 + t2) + L
p

n(a(t1 + t2); (hl)l∈|p+3,n−p−1|)

= an(t1) + an(t2) + L
p

n(a(t1) + a(t2); (hl)l∈|p+3,n−p−1|)

= an(t1) + L
p

n(a(t1); (hl)l∈|p+3,n−p−1|)

+an(t2) + L
p

n(a(t2); (hl)l∈|p+3,n−p−1|)

+
n−p−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun

×
n−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)uj

= cn(t1) + cn(t2) +
n−p−1∑

k=p+2

ck(t1)
∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

cj(t2)uj ,

which proves that the functions cn, n ∈ |p+2, s|, defined by (32) satisfy the sys-
tem of equations (13) with arbitrary constants (hn)n∈|p+3,s−p−1| and arbitrary
additive functions an : G → K for n ∈ |s − p, s|.

Now we are going to show that functions defined by (32) are the only
solutions of (13). Here we use an approach much simpler than the one applied
in [6,7]. Note that from (13) jointly with cp+2 �= 0 it follows that cp+2 is
a nonzero additive function. So let 0 �= cp+2 = a : G → K be an additive
function.

Put hp+2 = 1 and L
p

p+2(X) = 0. Assume that for some n ∈ |p+3, s−p−1|

cj(t) = hja(t) + L
p

j (a(t); (hl)l∈|p+3,j−p−1|), t ∈ G, j ∈ |p + 2, n − 1|.
Let us consider the equation with a function cn on the left hand side of it,
that is

cn(t1 + t2) = cn(t1) + cn(t2)

+
n−p−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun
(33)

×
n−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)uj

for t1, t2 ∈ K, which is, in fact, an inhomogeneous Cauchy equation for cn

provided a and (hl)l∈|p+3,n−p−1| are given. Hence the general solution of (33)
is a sum of a particular solution of this equation and an additive function.
Moreover, for every t1, t2 ∈ G, on account of (29) with hn = 0, we have
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L
p

n(a(t1 + t2); (hl)l∈|p+3,n−p−1|) = L
p

n(a(t1) + a(t2); (hl)l∈|p+3,n−p−1|)

= L
p

n(a(t1); (hl)l∈|p+3,n−p−1|) + L
p

n(a(t′); (hl)l∈|p+3,n−p−1|)

+
n−p−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

un∈Up
n,k

Bun

n−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)uj

which proves that L
p

n(a(t); (hl)l∈|p+3,n−p−1|) is a solution of (33). Thus every
solution of (33) must be of the form

cn(t) = an(t) + L
p

n(a(t); (hl)l∈|p+3,n−p−1|) t ∈ G (34)

with an additive function an : K → K. We will show that an = hna for
n ∈ |p + 3, s − p − 1|. Let us consider the equation of the system (13) with
the function cn+p+1 on the left hand side of it. By (34) and Corollary 4 with
r = n + p + 1 it can be written as

cr(t1 + t2)

= cr(t1) + (p + 2)a(t1)
(
an(t2) + L

p

n(a(t2); (hl)l∈|p+3,n−p−1|)
)

+ cr(t2) + na(t2)
(
an(t1) + L

p

n(a(t1); (hl)l∈|p+3,n−p−1|)
)

+
n−p−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)uj

for t1, t2 ∈ K. Since (G,+) is an abelian group, by interchanging t1 and t2 in
the above equality we get

(p + 2)a(t1)
(
an(t2) + L

p

n(a(t2); (hl)l∈|p+3,n−p−1|)
)

+na(t2)
(
an(t1) + L

p

n(a(t1); (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(a(t1); (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (a(t2); (hl)l∈|p+3,j|)uj

= cr(t1 + t2) = cr(t2 + t1)

= (p + 2)a(t2)
(
an(t1) + L

p

n(a(t1); (hl)l∈|p+3,n−p−1|)
)

+na(t1)
(
an(t2) + L

p

n(a(t2); (hl)l∈|p+3,n−p−1|)
)

+
n−1∑

k=p+2

Kp
k(a(t2); (hl)l∈|p+3,k|)

∑

ur∈Ûp
r,k

Bur

r−k+1∏

j=p+2

Kp
j (a(t1); (hl)l∈|p+3,j|)uj .
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From the last relation, using (30) with hn = 0 we get

(p + 2)a(t1)an(t2) + na(t2)an(t1) = (p + 2)a(t2)an(t1) + na(t1)an(t2)

for t1, t2 ∈ G. Since n ≥ p + 3, we have

a(t1)an(t2) = a(t2)an(t1) for t1, t2 ∈ G.

Fix t1 ∈ G with a(t1) = cp+2(t1) �= 0. Then with hn := an(t1)
a(t1)

∈ K we get
an = hna, and consequently, from (14) we obtain

cn(t) = hna(t) + L
p

n(a(t); (hl)l∈|p+3,n−p−1|) for t ∈ G.

Now, fix n ∈ |s − p, s| (clearly then s < ∞) and assume that

cp+2(t) = a(t),

cj(t) = hja(t) + L
p

j (a(t); (hl)l∈|p+3,n−p−1|), j ∈ |p + 3, s − p − 1|,
cj(t) = aj(t) + L

p

j (a(t); (hl)l∈|p+3,n−p−1|), j ∈ |s − p, n − 1|.
Let us consider once more Eq. (33). The same way as before we show that
then cn must be of the form (34). Since in this case n+ p + 1 > s, this finishes
the proof. �

Assume now that s is a positive integer or s = ∞ and F [s](t,X) =∑s
i=1 ci(t)Xi is a solution of the translation equation ((1) if s = ∞ and (2) in

the case when s is finite) with c1 �= 1. Then the functions ci satisfy the system
of equations (14) and c1 is a generalized exponential function. We are going to
consider firstly the already mentioned subcase where c1 takes infinitely many
values. In what follows, we will need

Lemma 6. Assume that (G,+) is a commutative group, k ≥ 2 is a positive
integer and let f : G → K \ {0} be an exponential function such that f(y0)k −
f(y0) �= 0 for some y0 ∈ G. If a function g : G → K satisfies the equation

g(x + y) = f(x)g(y) + f(y)kg(x) for x, y ∈ G, (35)

where k ≥ 2 is an integer, then there exists a constant p ∈ K such that

g(x) = p
(
f(x)k − f(x)

)
for x ∈ G. (36)

Proof. From the symmetry of the left hand side of (35), we get for every
x, y ∈ G

f(x)g(y) + f(y)kg(x) = g(x + y) = g(y + x) = f(y)g(x) + f(x)kg(y),

or, equivalently, g(x)
(
f(y)k − f(y)

)
= g(y)

(
f(x)k − f(x)

)
. Put y = y0. Then,

with p = g(y0)
f(y0)k−f(y0)

we obtain (36). �
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Theorem 5. Let (G,+) be a commutative group which admits a generalized
exponential function from G into K \ {0} with infinite image. There exists
a sequence of polynomials (Pn)n≥2 defined by (19) such that for every one-
parameter group Θ(t)(X) =

∑s
k=1 ck(t)Xk of FPS with a generalized expo-

nential function c1 taking infinitely many values, there exists a sequence of
constants (λn)n∈|2,s| such that for every n ∈ |2, s|

cn(t) = λn (c1(t)n − c1(t)) + c1(t)Pn

(
c1(t); (λl)l∈|2,n−1|

)
for t ∈ G.

(37)

Conversely, for each exponential function c1 and for each sequence (λn)n∈|2,s|,
the function Θ(t)(X) =

∑s
k=1 ck(t)Xk is a one-parameter group of FPS.

Proof. The proof of Theorem 5 is based in the same ideas as the proof of
Theorem 4 and it is easier than the one given in [9]. We show first that with
an arbitrary exponential function c1 the functions (cn)n∈|2,s| defined by (37)
satisfy the system of equations (14). Indeed, fix n ≥ 2, a sequence (λn)n∈|2,s|
and t1, t2 ∈ G. Using Lemma 5 we get

cn(t1 + t2)
= λn (c1(t1 + t2)n − c1(t1 + t2)) + c1(t1 + t2)Pn

(
c1(t1 + t2); (λl)l∈|2,n−1|

)

= λn ((c1(t1)c1(t2))n − c1(t1)c1(t2))
+c1(t1)c1(t2)Pn

(
c1(t1)c1(t2); (λl)l∈|2,n−1|

)

= c1(t1)
(
λn (c1(t2)n − c1(t2)) + c1(t2)Pn

(
c1(t2); (λl)l∈|2,n−1|

))

+c1(t2)n
(
λn (c1(t1)n − c1(t1)) + c1(t1)Pn

(
c1(t1); (λl)l∈|2,n−1|

))

+
n−1∑

k=2

c1(t1)Rk(c1(t1); (λl)l∈|2,k|)
∑

un∈Un,k

Bun
c1(t2)k

×
n−k+1∏

j=2

Rj(c1(t2); (λl)l∈|2,j|)uj

= c1(t1)cn(t2) + cn(t1)c1(t2)n +
n−1∑

k=2

ck(t1)
∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t2)uj .

Now we are going to prove that the functions defined by (37) are the unique
ones satisfying the system of equations (14). From (14) it follows that c1 is an
exponential function and assume that it takes infinitely many values. Then,
by Lemma 6,

c2(t) = λ2(c1(t)2 − c1(t)) = λ2(c1(t)2 − c1(t)) + c1(t)P2(c1(t)) for t ∈ G,

where P2(X) = 0. Assume now that for some n ∈ |3, s| we have

cj(t) = λn

(
c1(t)j − c1(t)

)
+ c1(t)Pj

(
c1(t); (λl)l∈|2,j−1|

)
, t ∈ G, j ∈ |2, n − 1|,
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and consider the equation of the system (14) with the function cn on the left
hand side, i.e.

cn(t1 + t2) = c1(t1)cn(t2) + cn(t1)c1(t2)n

+
n−1∑

k=2

c1(t1)Rk(c1(t1); (λl)l∈|2,k|)
∑

un∈Un,k

Bun (38)

×c1(t2)k
n−k+1∏

j=1

Rj(c1(t2); (λl)l∈|2,j|)uj

for t1, t2 ∈ G. Note that if the functions c1
n, c2

n : G → K satisfy (38), then the
difference f = c2

n − c1
n satisfies the equation

f(t1 + t2) = c1(t1)f(t2) + c1(t2)nf(t1) for t1, t2 ∈ G.

Thus, on account of Lemma 6, every solution of (38) is a sum of a particular
solution of (38) and a function f(t) = λn(c1(t)n − c1(t)). Moreover, from
Lemma 5 with λn = 0 we obtain

c1(t1 + t2)Pn

(
c1(t1 + t2); (λl)l∈|2,n−1|

)

= c1(t1)c1(t2)Pn

(
c1(t1)c1(t2); (λl)l∈|2,n−1|

)

= c1(t1)c1(t2)Pn

(
c1(t2); (λl)l∈|2,n−1|

)

+c1(t2)nc1(t1)Pn

(
c1(t1); (λl)l∈|2,n−1|

)

+
n−1∑

k=2

c1(t1)Rk(c1(t1); (λl)l∈|2,k|)
∑

un∈Un,k

Bun

×c1(t2)k
n−k+1∏

j=1

Rj(c1(t2); (λl)l∈|2,j|)uj .

This means that c1(t)Pn

(
c1(t); (λl)l∈|2,n−1|

)
is a solution of (38). Thus

cn(t) = λn(c1(t)n − c1(t)) + c1(t)Pn

(
c1(t); (λl)l∈|2,n−1|

)
, t ∈ G,

which completes the proof. �

8. One-parameter groups in case 2.

We describe the one-parameter groups Θs : G → Γs, Θs(t)(X) =∑s
k=1 ck(t)Xk where s is a positive integer or s = ∞ and c1 : G → K \ {0}

c1 �= 1 is a generalized exponential function taking finitely many values and
ck : G → K for k ∈ |2, s|. The proposed construction depends strictly on
the form of an exponential function c1. Note, that if (G,+) is a commutative
group and if c1 : G → K \ {0} is a generalized exponential function such that
im c1 = Em with an integer m ≥ 2, then for a fixed t0 ∈ G such that c1(t0) is
a primitive root of 1 of order m, we have then G/ ker c1 = {lt0 + ker c1 : 0 ≤
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l ≤ m − 1}, mt0 ∈ ker c1 and every t ∈ G may be uniquely written as lt0 + t′

with some 0 ≤ l ≤ m − 1 and t′ ∈ ker c1.
We prove

Proposition 1. Let s be a positive integer or s = ∞. If Θs : G → Γs,
Θs(t)(X) =

∑s
k=1 ck(t)Xk is a one-parameter group of FPS, then Θs|ker c1 =

Θs : ker c1 → Γs
1, Θs(t)(X) = X +

∑s
k=2 ck(t)Xk is a one-parameter group of

FPS, and there exists t0 ∈ G and a FPS P (X) = Θs(t0)(X) =
∑s

k=1 dkXk

(d1 = c1(t0) is a primitive root of 1 of order m) such that

(
P ◦ Θs(t)

)
(X) =

(
Θs(t) ◦ P

)
(X) for t ∈ ker c1, (39)

Pm(X) = Θs(mt0)(X), (40)

Θs(lt0 + t′)(X) =
(
P l ◦ Θs(t′)

)
(X) 0 ≤ l ≤ m − 1, t′ ∈ ker c1. (41)

Conversely, for every one-parameter group of FPS Θs : ker c1 → Γs,
Θs(t)(X) = X +

∑s
k=2 ck(t)Xk, and for arbitrary P (X) =

∑s
k=1 dkXk

with d1 being a primitive root of 1 of order m, such that conditions (39)-
(40) are satisfied, formula (41) properly defines a function Θs : G → Γs,
Θs(t)(X) =

∑s
k=1 ck(t)Xk and Θs is a one-parameter group of FPS with

im c1 = Em.

Proof. If Θs : G → Γs,Θs(t)(X) =
∑s

k=1 ck(t)Xk is a one-parameter group of
FPS, then, clearly, Θs|ker c1 = Θs : ker c1 → Γs,Θs(t)(X) = X+

∑s
k=2 ck(t)Xk

is a one-parameter group of FPS. Put P (X) = Θs(t0)(X). Then mt0 ∈ ker c1,

Pm(X) = Θs(t0)m(X) = Θs(mt0)(X) = Θs(mt0)(X),

and, since G is a commutative group,

(
P ◦ Θs(t)

)
(X) = (Θs(t0) ◦ Θs(t)) = Θs(t0 + t)(X)

= Θs(t + t0)(X) = (Θs(t) ◦ Θs(t0)) (X) =
(
Θs(t) ◦ P

)
(X)

for every t ∈ ker c1. Finally,

Θs(lt0 + t′)(X) = (Θs(lt0) ◦ Θs(t′)) (X)

=
(
Θs(t0)l ◦ Θs(t′)

)
(X) =

(
P l ◦ Θs(t′)

)
(X)

for every 0 ≤ l ≤ m − 1, and t′ ∈ ker c1.
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Now, let us fix a one-parameter group of FPS Θs : ker c1 → Γs
1, Θs(t)(X) =

X +
∑s

k=2 ck(t)Xk, and a FPS P (X) =
∑s

k=1 dkXk, where d1 is a primitive
root of 1 of the order m, satisfying conditions (39)-(40). Then formula (41)
properly defines a function Θs : G → Γs. We show that Θs is then a one-
parameter group of FPS. From (39) it follows that

(
Pn ◦ Θs(t)

)
(X) =

(
Θs(t) ◦ Pn

)
(X) for t ∈ ker c1, (42)

for every positive integer n. Then for l1t0 + t1, l2t0 + t2 ∈ G, where 0 ≤ l1, l2 ≤
m − 1 and t1, t2 ∈ ker c1, using (42) we get

((
P l1 ◦ Θs(t1)

) ◦ (
P l2 ◦ Θs(t2)

))
(X) =

(
P l1+l2 ◦ Θs(t1 + t2)

)
(X)

=
(
P l1+l2−[ l1+l2

m ]m+[ l1+l2
m ]m ◦ Θs(t1 + t2)

)
(X)

=
(

P l1+l2−[ l1+l2
m ]m ◦ Θs

([
l1 + l2

m

]

mt0 + t1 + t2

))

(X)

= Θs

((

l1 + l2 −
[
l1 + l2

m

]

m

)

t0 +
[
l1 + l2

m

]

mt0 + t1 + t2

)

(X)

= Θs ((l1t0 + t1) + (l2t0 + t2)) (X),

which finishes the proof. �
Proposition 1 proved above gives us only a characterization of the solution

of the considered problem in the last case. But in some subcases we are able
to give also explicit formulas for one-parameter groups of FPS (i.e. explicit
solutions of the system of equations (14)). Note that always ker Θs ⊂ ker c1.
We give the mentioned formulas in the case when ker Θs = ker c1.

Assume once more that im c1 = Em with some m ≥ 2. Then, on account of
the first isomorphism theorem (cf. [10, p. 16]), we have G/ ker c1

∼= Em, and
further, since we assumed ker Θs = ker c1,

Em
∼= G/ ker c1 = G/ ker Θs

∼= im Θs.

This means that im Θs is a finite subgroup of (Γs, ◦). From Proposition 1 we
deduce then

Corollary 5. Under the assumptions of Proposition 1, if Θs : G →
Γs,Θs(t)(X) =

∑s
k=1 ck(t)Xk is a one-parameter group of FPS with ker Θs =

ker c1, then there exists a FPS P (X) = Θs(t0)(X) =
∑s

k=1 dkXk (with
d1 = c1(t0) being a primitive root of 1 of order m) such that

Pm(X) = X, (43)

Θs(lt0 + t′)(X) = P l(X) 0 ≤ l ≤ m − 1, t′ ∈ ker c1. (44)

Conversely, for every FPS P (X) =
∑s

k=1 bkXk with d1 being a primitive
root of 1 of order m, such that the condition (43) is fulfilled, formula (44)
properly defines a function Θs : G → Γs, Θs(t)(X) =

∑s
k=1 ck(t)Xk and Θs

is a one-parameter group of FPS with im c1 = Em.
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Proof. It is enough to notice only that the finiteness of im Θs in Proposition
1 implies Θs(t)(X) = X for t ∈ ker c1. �

In this case every one-parameter group of FPS Θs : G → Γs must be of
the form Θs = Θ̃s ◦κ, where κ : G → Em is the canonical homomorphism and
Θ̃s : Em → Γs, Θ̃s(z)(X) =

∑s
k=1 c̃k(z)Xk is a one-parameter group of FPS

which means that functions c̃1 : Em → Em with im c̃1 = Em, and c̃k : Em → K

satisfy the system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c̃1(z1z2) = c̃1(z1)c̃1(z2)

c̃2(z1z2) = c̃1(z1)c̃2(z2) + c̃2(z1)c̃1(z2)2

c̃n(z1z2) = c̃1(z1)c̃n(z2) + c̃n(z1)c̃1(z2)n

+
n−1∑

k=2

c̃k(z1)
∑

un∈Un,k

Bun

n−k+1∏

j=1

c̃j(z2)uj , n ∈ |3, s|

(45)

for z1, z2 ∈ Em. We prove

Proposition 2. Let c̃1 : Em → Em be a multiplicative function such that im c̃1 =
Em. There exists a sequence of polynomials (Pn)n≥2 defined by (19) such that
for every solution (c̃n)n∈|1,s| of the system of functional equations (45) there
exist a sequence of constants (λn)n∈|2,s| such that for every n ∈ |2, s|

c̃n(z) = λn (c̃1(z)n − c̃1(z)) + c̃1(z)Pn

(
c̃1(z); (λl)l∈|2,n−1|

)
, z ∈ Em. (46)

Conversely, for each multiplicative function c̃1 : Em → Em and for each
sequence (λn)n∈|2,s| the sequence (c̃n)n∈|2,s| defined by (46) is a solution of
the system (45).

Proof. By Theorem 5 we know that c̃n defined by (46) for n ∈ |2, s| satisfy the
system of equations (45).

Now, let us consider the second equation of the system (21). Since m ≥ 2,
from Lemma 6 we have

c̃2 = λ2(c̃2
1 − c̃1) = λ2(c̃2

1 − c̃1) + c̃1P2(c̃1)

with P2(X) = 0 and some λ2 ∈ K. Then, analogously as in the proof of
Theorem 5, assume that for some n ∈ |3, s| we have

c̃j(z) = λn

(
c̃1(z)j − c̃1(z)

)
+ c̃1(z)Pj

(
c̃1(z); (λl)l∈|2,j−1|

)
, z ∈ Em,

for every j ∈ |2, n − 1|, and consider the equation of the system (45) with the
function c̃n on the left hand side, i.e.

c̃n(z1z2) =c̃1(z1)c̃n(z2) + c̃n(z1)c̃1(z2)n

+
n−1∑

k=2

c̃k(z1)
∑

un∈Un,k

Bun

n−k+1∏

j=1

c̃j(z2)uj , z1, z2 ∈ Em.
(47)
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The procedure of finding the solution of (47) is almost the same as in Theo-
rem 5 (cf. the solution of Eq. (38)). Note that every solution of Eq. (47) is the
sum of a particular solution of this equation (i.e. c̃1(z)Pn

(
c̃1(z); (λl)l∈|2,n−1|

)
),

and a solution of the equation

f(z1z2) = c1(z1)f(z2) + c1(z2)nf(z1) for z1, z2 ∈ Em. (48)

Let us consider two cases
1. n �≡ 1 mod m,
2. n ≡ 1 mod m.
In the first case, as in the proof of Theorem 5 (then one can easily find z0 ∈ Em

such that c̃1(z0)n − c̃1(z0) �= 0) we show that

c̃n(z) = λn (c̃1(z)n − c̃1(z)) + c̃1(z)Pn

(
c̃1(z); (λl)l∈|2,n−1|

)
, z ∈ Em.

Now we will show that also in the second case the same formula holds, even
if it has in some sense a different meaning. Note that for n ≡ 1 mod m, since
im c̃1 = Em, we have c̃1(z)n = c̃1(z) for z ∈ Em. Thus, from (48) we obtain

f(z1z2) = c̃1(z1) f(z2) + c̃1(z2)f(z1) for z1, z2 ∈ Em. (49)

It is easy to see that if a function f : Em → K satisfies (49), then l : Em → K,
l(z) = f(z)

c̃1(z) for z ∈ Em, is a generalized logarithmic function, and since Em is
finite, l = 0. Hence f = 0. Thus each solution of Eq. (47) in the second case
must be of the form

c̃n(z) = c̃1(z)Pn

(
c̃1(z); (λl)l∈|2,n−1|

)

= λn(c̃1(z)n − c̃1(z)) + c̃1(t)Pn

(
c̃1(t); (λl)l∈|2,n−1|

)
,

which finishes the proof. �

Corollary 6. Let (G,+) be a commutative group and let a sequence of poly-
nomials (Pn)n∈|2,s| be given by (19). Every one-parameter group Θ(t)(X) =
∑s

k=1 ck(t)Xk of FPS such that im c1 = Em and ker Θs = ker c1 is given
by (37), where (λn)n∈|2,s| is an arbitrary sequence of constants.

Proof. We know that if im c1 = Em and ker Θs = ker c1 then Θs = Θ̃s ◦ κ,
where κ : G → Em is the canonical homomorphism and Θ̃s : Em → Γs,
Θ̃s(z)(X) =

∑s
k=1 c̃k(z)Xk is a one-parameter group of FPS. Thus cn = c̃n ◦κ

for every n ∈ |1, s|. On account of Proposition 2, cn = c̃n ◦ κ for n ∈ |1, s|, so
for every t ∈ G we have

cn(t) = (c̃n ◦ κ)(t)
= λn ((c̃1 ◦ κ)(t)n − (c̃1 ◦ κ)(t)) + (c̃1 ◦ κ)(t)Pn

(
(c̃1 ◦ κ)(t); (λl)l∈|2,n−1|

)

= λn(c1(t)n − c1(t)) + c1(t)Pn

(
c1(t); (λl)l∈|2,n−1|

)
.

This finishes the proof. �
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9. Iterative roots of unit in Γs

Using results of the previous section we describe iterative roots of X in rings
of FPS and truncated FPS. Let s be a positive integer or s = ∞. It is easy to
see that for a fixed positive integer m ≥ 2, a power series P (X) =

∑s
j=1 djX

j

is an iterative root of X of order m if and only if ΘEm
: Em → Γs,

ΘEm

(
e

2lπi
m

)
= P l(X) for l ∈ {0, 1, . . . ,m − 1}

is a one-parameter group of truncated FPS. Thus the iterative roots of X in
the ring of FPS lie in an image of one-parameter groups of formal power series
ΘEm

(t)(X) =
∑s

k=1 ck(t)Xk, t ∈ Em.
First, note that c1 �= 1. Indeed, if c1 = 1, then for (G,+) = (Em, ·), every

homomorphism a : G → K on a finite group is the zero function (every logarith-
mic function a : Em → K is the zero function), so (cf. (46)) ΘEm

(t)(X) = X
for every t ∈ G.

Finally, to describe all iterative roots it is enough to take c1 = idEm
, since

in the case c1 �= 1 all functions ck with k ∈ |2, s| are polynomials in c1 and for
every homomorphism c1 : Em → Em we have im c1 ⊂ im idEm

. In [8] we proved
a description of one-parameter groups of FPS using simultaneous conjugation,
namely

Lemma 7. (cf. [8, Theorem 5]) Let c1 : Em → K \ {0}, c1 �= 1 be a general-
ized exponential function. Every one-parameter group of FPS F [s](t,X)t∈Em

,
F [s](t,X) =

∑s
k=1 ck(t)Xk with ck : Em → K for k ∈ |2, s|, is given by

F [s](t,X) = U−1(c1(t)U(x)) for every t ∈ Em,

where U(X) ∈ Γs
1 is an arbitrary invertible formal power series with respect

to ◦. Thus every (primitive) root P (X) of X in Γs is given by

P (X) = U−1
(
e

2l0πi
m U(X)

)
,

where 0 ≤ l0 ≤ m−1 (and gcd(l0,m) = 1 if P (X) has order m in the group Γs).

10. One-parameter groups with infinite image

Using Proposition 1 we are able to give now a description of the one-parameter
groups of FPS in the case im c1 = Em under an additional assumption on G.
We use in our description semicanonical forms (for the definition of N s

m see
the Sect. 2). We begin with

Lemma 8. Assume that Θ̃s : G → Γs
1, Θ̃s(t)(X) = X +

∑s
k=p+2 c̃k(t)Xk,

c̃p+2 �= 0, is a one-parameter group of FPS (which means that (c̃k)k∈|p+2,s|
are given by (32)) and fix an integer m ≥ 2. Then im Θ̃s ⊂ N s

m if and only if
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p ≥ 1, p+2 = qm+1 with an integer q ≥ 1, hn = 0 for n ∈ |qm+2, s−qm|\Nm

and an = 0 for n ∈ |s − (qm − 1), s| \ Nm. In this case we have with additive
functions a, akm+1 : G → K

c̃qm+1(t) = a(t), t ∈ G

c̃km+1(t) = hkm+1a(t)

+ L̃m,q
km+1(a(t), (hjm+1)j∈|q+1,k−q|), t ∈ G, k ∈ |q + 1, r − q|,

c̃km+1(t) = akm+1(t)

+ L̃m,q
km+1(a(t), (hjp+1)j∈|q+1,k−q|), t ∈ G, k ∈ |r − q, r|,

(50)

with hqm+1 = 1 and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃m,q
qm+1(X) = 0,

L̃m,q
km+1(X; (hjm+1)j∈|q+1,k−q|) =

k−q∑

l=q

hlm+1

∑

ukm+1∈Um,q
km+1,lm+1

Bukm+1

×
X∫

0

⎛

⎝
k−l∏

j=q

(
hjm+1s + L̃m,q

jm+1(s; (hnm+1)n∈|q+1,j−q|)
)ujp+1

⎞

⎠ ds.

(51)

Proof. Let Θ̃s : G → Γs
1, Θ̃s(t)(X) = X +

∑s
k=p+2 c̃k(t)Xk, c̃p+2 �= 0, be

a one-parameter group of FPS. From Theorem 4 we derive that there exist
a nonzero additive function a : G → K, a sequence of additive functions
(an)n∈|s−p,s|, an : G → K, and a sequence of constants (hn)n∈|p+3,s−p−1| such
that the coefficient functions (c̃k)k∈|p+2,s| are given by (32), i.e.

c̃p+2(t) = a(t), t ∈ G

c̃n(t) = hna(t) + L
p

n(a(t); (hj)j∈|p+3,n−p−1|), t∈ G,n∈ |p + 3, s − p − 1|, (52)

c̃n(t) = an(t) + L
p

n(a(t); (hj)j∈|p+3,n−p−1|)), t ∈ G,n ∈ |s − p, s|,
where the polynomials (L

p

n)n∈|p+3,s| are defined by (28) and (18). From the
definition of N s

m we derive that im Θs ⊂ N s
m only if p ≥ 1 and p + 2 = qm + 1

with some positive integer q.
First we show that if hn = 0 for n ∈ |p + 3, s − p − 1| \ Nm and an = 0

for n ∈ |s − p, s| \ Nm, then c̃n = 0 for n ∈ |p + 3, s| \ Nm. Since k = p + 2 >

2 = (p + 3) − p − 1, by (18) we obtain L
p

p+3(X) = 0. Moreover, p + 3 /∈ Nm

implies hp+3 = 0. Hence c̃p+3 = hp+3a + Lp
p+3(a) = 0. Assume that for some

n ∈ |p + 4, s − p − 1| \ Nm,

c̃k = hka + L
p

k(a; (hj)j∈|p+3,k−p−1|) = 0 for k ∈ |p + 3, n − 1| \ Nm.

We prove that c̃n = hna+L
p

n(a; (hl)l∈|p+3,n−p−1|) = 0. Indeed, with hp+2 = 1,
on account of (52) and the definition of L

p

n we have
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c̃n(t) = hna(t) + L
p

n(a(t); (hj)j∈|p+3,n−p−1|)

= hna(t) +
n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

×
a(t)∫

0

⎛

⎝
n−k+1∏

j=p+2

(
hjs + L

p

j (s; (hl)l∈|p+3,j−p−1|)
)uj

⎞

⎠ ds.

Since hk = 0 for k ∈ |p + 2, n − p − 1| \ Nm and c̃k = hka +
L

p

k(a; (hj)j∈|p+3,k−p−1|) = 0 for k ∈ |p + 3, n − 1| \ Nm, by Corollaries 2
and 3 (i) we get

c̃n = hna + L
p

n(a; (hl)l∈|p+3,n−p−1|) = 0.

Finally, assume that

c̃k = hka + L
p

k(a; (hj)j∈|p+3,k−p−1|) = 0for k ∈ |p + 3, s − p − 1| \ Nm,

c̃k = ak + L
p

k(a; (hj)j∈|p+3,k−p−1|) = 0for k ∈ |s − p, n − 1| \ Nm,

with some n ∈ |s − p, s| \ Nm. In the same way as above we can show that
c̃n = an + L

p

n(a; (hj)j∈|p+3,n−p−1|) = 0.
Conversely, let p + 2 = qm + 1 with q ∈ N and

c̃k =hka + L
p

k(a; (hj)j ∈ |p+3,k−p−1|) = 0 for k ∈ |p + 3, s − p − 1|\Nm,

c̃k =ak + L
p

k(a; (hj)j∈|p+3,k−p−1|) = 0 for k ∈ |s − p, s| \ Nm.
(53)

We show that hn = 0 for n ∈ |p+3, s−p−1|\Nm and an = 0 for n ∈ |s−p, s|\
Nm. Indeed, since p + 3 /∈ Nm and L

p

p+3(X) = 0, 0 = cp+3 = hp+3a + L
p

p+3(a)
implies hp+3 = 0. Assume next that for some n ∈ |p + 4, s − p − 1| \ Nm,

hk = 0 for every k ∈ |p + 3, n − 1| \ Nm. (54)

We show that hn = 0. From the definition of L
p

n and our assumptions (53)
and (54), on account of Corollaries 2 and 3 (i) we have (hp+2 = 1)

L
p
n(a(t); (hl)l∈|p+3,n−p−1|)

=

n−p−1∑

k=p+2

hk

∑

un∈Up
n,k

Bun

a(t)∫

0

⎛

⎝
n−k+1∏

j=p+2

(
hjs + L

p
j (s; (hr)r∈|p+3,j−p−1|)

)uj

⎞

⎠ ds

=

n−p−1∑

k=p+2

hk

∑

un∈Uq,m
n,k

Bun

a(t)∫

0

⎛

⎝
n−k+1∏

j=p+2

(
hjs + L

p
j (s; (hr)r∈|p+3,j−p−1|)

)uj

⎞

⎠ ds

= 0.
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Consequently, by (53)

0 = c̃n = hna(t) + L
p

n(a(t); (hl)l∈|p+3,n−p−1|) = hna(t),

which with a �= 0 implies hn = 0.
Next, let

hk = 0 for k ∈ |p + 3, s − p − 1| \ Nm,

ak = 0 for k ∈ |s − p, n − 1| \ Nm,

with some n ∈ |s − p, s| \ Nm. In the same way as above we show that

0 = cn = an + L
p

n(a; (hj)j∈|p+3,n−p−1|) = an.

Finally, let p + 2 = qm + 1 with q ∈ N and assume that Θ̃s : G → Γs
1,

Θ̃s(t)(X) = X +
∑s

k=p+2 c̃k(t)Xk, c̃p+2 �= 0, be a one-parameter group of FPS
satisfying im Θ̃s ⊂ N s

m where the sequence of functions (c̃k)k∈|p+2,s| is given
by (52) with

hn = 0 for n ∈ |qm + 2, s − qm| \ Nm,

an = 0 for n ∈ |s − (qm − 1), s| \ Nm.
(55)

Then we obtain (50) with polynomials L̃m,q
km+1 defined as follows. By our

assumption we have p = qm − 1. Put

L̃m,q
qm+1(X) := L

p

p+2(X) = X.

Further, from the definition of the sequence of polynomials (L
p

n)n∈|p+2,s|
and (55), using Corollary 3 (ii) we define

L̃m,q
km+1(X; (hjm+1)j∈|q+1,k−q|) = Lqm−1

km+1(X; (hj)j∈|qm+1,(k−q)m+1|)

=
(k−q)m+1∑

l=qm+1

hl

∑

ukm+1∈Uqm−1
km+1,l

Bukm+1

×
X∫

0

⎛

⎝
km+1−l+1∏

j=qm+1

(
hjs + Lp

j (s; (hr)r∈|qm+1,j−qm|)
)uj

⎞

⎠ ds

=
k−q∑

l=q

hlm+1

∑

ukm+1∈Um,q
km+1,lm+1

Bukm+1

×
X∫

0

⎛

⎝
k−l∏

j=q

(
hjm+1s + Lm,q

jm+1(s; (hnm+1)n∈|q+1,j−q|)
)ujp+1

⎞

⎠ ds,

which finishes the proof. �
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We are able now to give a description of the one-parameter groups of FPS
in the case im c1 = Em under the additional assumption on the group G. We
prove

Theorem 6. Let s be either a positive integer or s = ∞ and let Θs : G →
Γs,Θs(t)(X) =

∑s
k=1 ck(t)Xk be a one-parameter group of FPS. Assume that

(G,+) is a commutative group and c1 : G → K\{0} is a generalized exponential
function such that im c1 = Em with an integer m ≥ 2. Moreover, let t0 ∈ G be
such that c1(t0) is a primitive root of 1 of order m and {lt0 : 0 ≤ l ≤ m − 1}
is a subgroup of (G,+) (then mt0 = 0 ∈ ker c1, every t ∈ G may be uniquely
written as lt0 + t′ with some 0 ≤ l ≤ m − 1, t′ ∈ ker c1 and G/ ker c1 =
{lt0 + ker c1 : 0 ≤ l ≤ m − 1} ∼= {lt0 : 0 ≤ l ≤ m − 1}).

Then there exists a FPS U(X) = X +
∑s

k=2 vkXk ∈ Γs
1 such that

(
U ◦ Θs(t) ◦ U−1

)
(X) =

(
U ◦ Θs(lt0 + t′) ◦ U−1

)
(X)

= e
2(l0+l)πi

m Θ̃s(t′) (56)

= e
2(l0+l)πi

m

⎛

⎝X +
r∑

k=q

c̃km+1(t′)Xkm+1

⎞

⎠ ,

with a fixed 0 ≤ l0 ≤ m − 1, gcd(l0,m) = 1, where q ≥ 1 is an integer,
r = ∞ if s = ∞ and rm + 1 ≤ s < (r + 1)m + 1 otherwise, the functions
c̃km+1 for k ∈ |q, r| are given by (50), where (L̃m,q

km+1)k∈|q,r| is given by (51),
(hjm+1)j∈|q+1,r−q| is a sequence of constants, (ajm+1)j∈|r−q+1,r|, ajm+1 : G →
K are additive functions. Then we may write (56) equivalently as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(lt0 + t′) = e
2(l0+l)πi

m ,

cn(kt0 + t′) =

e
2(l0+l)πi

m

⎛

⎝vn +
∑

k∈|qm+1,n−1|∩Nm

c̃k(t′)
∑

un∈Un,k

Bun

n−k+1∏

j=2

v
uj

j + c̃n(t′)

⎞

⎠

−
n−1∑

k=2

vk

∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(lt0 + t′)uj − e
2(l0+l)nπi

m vn, n ∈ |2, s|,

(57)

with c̃k(t′) = 0 for k ∈ |2, qm| ∪ (|qm + 2, s| \ Nm).
Conversely, for every FPS U(X) = X +

∑s
k=2 vkXk ∈ Γs

1, and for an arbi-
trary one-parameter group of FPS Θ̃s : ker c1 → Γs

1 given by (50), where q ≥ 1
is an arbitrary integer, (L̃m,q

km+1)k∈|q,r| is given by (51), (hjm+1)j∈|q+1,r−q| is
a sequence of constants, (ajm+1)j∈|r−q+1,r|, ajm+1 : G → K are additive func-
tions, the formulas (56) or (57) properly define a function Θs : G → Γs,
Θs(t)(X) =

∑s
k=1 ck(t)Xk and Θs is a one-parameter group of FPS with

im c1 = Em.
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Proof. Let Θs : G → Γs,Θs(t)(X) =
∑s

k=1 ck(t)Xk be a one-parameter group
of FPS. On account of Proposition 1, Θs|ker c1 = Θs : ker c1 → Γs

1, Θs(t)(X) =∑s
k=1 ck(t)Xk, is a one-parameter group with c1 = 1 and P (X) = Θs(t0)(X) =∑s
k=1 dkXk (d1 = c1(t0) is a primitive root of 1 of order m) such that (39)-

(40) hold. Since mt0 = 0, we have Pm(X) = Θs(0)(X) = X and hence P (X)
is a root of X in Γs of order m. By Lemma 7, P (X) =

(
U−1 ◦ Lρ ◦ U

)
(X),

where ρ = e
2l0πi

m , Lρ(X) = ρX, 0 ≤ l0 ≤ m − 1, gcd(l0,m) = 1 and U(X) =
X +

∑s
j=2 vjX

j ∈ Γs
1. Then, from (39) we obtain

([
U−1 ◦ Lρ ◦ U

] ◦ Θs(t′)
)
(X) =

(
Θs(t) ◦ [

U−1 ◦ Lρ ◦ U
])

(X)

for every t′ ∈ ker c1, or, equivalently

e
2l0πi

m

(
U ◦ Θs(t′) ◦ U−1

)
(X) =

(
U ◦ Θs(t′) ◦ U−1

) (
e

2l0πi
m X

)
.

This implies
(
U ◦ Θs(t′) ◦ U−1

)
(X) ∈ N s

m for every t′ ∈ ker c1. Hence

(
U ◦ Θs(t′) ◦ U−1

)
(X) = Θ̃s(t′)(X) = X +

r∑

k=q

c̃km+1(t′)Xkm+1,

where q ≥ 1 is an integer and either r = ∞ if s = ∞ or rm + 1 ≤ s <

(r + 1)m + 1 provided s < ∞. From the last equality it follows that Θ̃s :
ker c1 → N s

m, Θ̃s(t′)(X) = X +
∑r

k=q c̃km+1(t′)Xkm+1 is a one-parameter
group of FPS, hence by Lemma 8, the functions c̃km+1 are given by (50), where
(L̃m,q

km+1)k∈|q,r| is given by (51), (hjm+1)j∈|q+1,r−q| is a sequence of constants,
(ajm+1)j∈|r−q+1,r|, ajm+1 : G → K are additive functions. Then, from (41) we
obtain

Θs(t)(X) = Θs(lt0 + t′)(X) =
(
P l ◦ Θs(t′)

)
(X)

=
([

U−1 ◦ Lρ ◦ U
]l ◦

[
U−1 ◦ Θ̃s(t′) ◦ U

])
(X)

=
([

U−1 ◦ Lρl ◦ U
] ◦

[
U−1 ◦ Θ̃s(t′) ◦ U

])
(X)

which proves (56). In particular,

(U ◦ Θs(lt0 + t′))(X) = e
2(l0+l)πi

m (Θ̃s(t′) ◦ U)(X),

which gives c1(lt0 + t′) = e
2(l0+l)πi

m and

cn(lt0 + t′) +
n−1∑

k=2

vk

∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(lt0 + t′)uj + e
2(l0+l)nπi

m vn

= e
2(l0+l)πi

m

⎛

⎝vn+
∑

k∈|qm+1,n−1|∩Nm

c̃k(t′)
∑

un∈Un,k

Bun

n−k+1∏

j=2

v
uj

j + c̃n(t′)

⎞

⎠ ,
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for n ∈ |2, s| with c̃k(t′) = 0 for k ∈ |2, qm| ∪ (|qm + 2, s| \ Nm). This
proves (57).

The converse is a simple conclusion from Proposition 1. Indeed, if U(X) =
X +

∑s
k=2 vkXk ∈ Γs

1 is a FPS and Θ̃s : ker c1 → Γs
1 is a one-parameter group

of FPS given by (50), then Θs : ker c1 → Γs
1,

Θs(t)(X) =
(
U−1 ◦ Θ̃s(t) ◦ U

)
(X) for t ∈ ker c1,

is a one-parameter group of FPS, P (X) =
(
U−1 ◦ Lρ ◦ U

)
(X), where ρ =

e
2l0πi

m , Lρ(X) = ρX, 0 ≤ l0 ≤ m−1, gcd(l0,m) = 1, commutes with Θs(t′) and
it is a root of X in Γs of order m (note that Θs(mt0)(X) = Θs(0)(X) = X).
This finishes the proof. �

Problem 1. Is it possible to give a similar description (cf. Theorem 6) when
{lt0 : 0 ≤ k ≤ m − 1} is not a subgroup of (G,+)?

11. Embedding a power series into a one-parameter group

We discuss now the problem of embedding a given formal power series into
a one-parameter group of formal power series. For formal power series of one
variable this was considered, among others, in [11,13]. We give here a simple
solution using the results obtained in previous sections.

Definition 1. Let s be a positive integer or s = ∞ and let (G,+) be a commu-
tative group. A formal power series Φ(X) ∈ Γs is said to be embeddable into
a one-parameter group of FPS provided there exists a one-parameter group
(F (t,X))t∈G of FPS with F (t0,X) = Φ(X) for some t0 ∈ G. If G = K then
t0 = 1 is assumed.

First we consider the case, when Φ(X) ∈ Γs
1, that is Φ(X) = X +∑s

k=2 bkXk. We will need

Lemma 9. Let (G,+) be a commutative group. If the space A(G, K) of all
additive functions a : G → K is nontrivial, then for every t0 ∈ G, for which
there exists A ∈ A(G, K) with A(t0) �= 0 and for every b ∈ K there exists
a ∈ A(G, K) with a(t0) = b.

Proof. If b = 0, then we take a = 0, otherwise a = b
A(t0)

A. �

Now we are in a position to prove

Theorem 7. If the space A(G, K) is nontrivial, then every Φ(X) = X +∑s
k=2 bkXk can be embedded into a one-parameter group of FPS with (or with-

out) any regularity condition.
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Proof. Fix Φ(X) = X +
∑s

k=2 bkXk. If Φ(X) = X, then we put F (t,X) = X
for every t ∈ G. Otherwise, let k0 ∈ |2, s| be the first positive integer for which
bk0 �= 0, that is Φ(X) = X +

∑s
k=k0

bkXk. By Lemma 9 we find t0 ∈ G and
a ∈ A(G, K) such that a(t0) = bk0 . Put ck0(t) = a(t) (cf. (32) with p+2 = k0).
We find a one-parameter group of FPS F (t,X) = X +

∑s
k=k0

ck(t)Xk such
that F (t0,X) = Φ(X). In order to finish the proof it is enough to find constants
hj for j ∈ |k0 + 1, s| such that (cf. (32))

bn = cn(t0) = hna(t0) + L
k0−2

n (a(t0); (hj)j∈|k0+1,n+1−k0|) for n ∈ |k0 + 1, s|,

(we take an = hna for n ∈ |s + 2 − k0, s|). Note that a(t0) = bk0 . It is easy to
see that we obtain via recurrence

hn = b−1
k0

(
bn − L

k0−2

n (bk0 ; (hj)j∈|k0+1,n+1−k0|)
)

for n ∈ |k0 + 1, s|.

In the case when we are interested in some kind of regularity of the one-
parameter group (F (t,X))t∈K of FPS (in the case G = K) it is enough to take
a(t) = bk0

t0
t for t ∈ K. �

Now, we consider the case Φ(X) =
∑s

k=1 bkXk with b1 /∈ E. Let E(G, K)
denote the set of all nonzero exponential functions c : G → K and let E(G) =⋃

c∈E(G,K) c(G). We prove

Theorem 8. Every Φ(X) =
∑s

k=1 bkXk ∈ Γs with b1 ∈ E(G) \ E can be
embedded into a one-parameter group of FPS with (or without) any regularity
condition.

Proof. Let c1 ∈ E(G, K) be such that c1(t0) = b1. We find a one-parameter
group of FPS F (t,X) =

∑s
k=1 ck(t)Xk such that F (t0,X) = Φ(X). This can

be done by finding constants λn for n ∈ |2, s| such that (cf. (37))

bn = cn(t0) = λn(c1(t0)n − c1(t0)) + c1(t0)Pn(c1(t0); (λl)l∈|2,n−1|)
for n ∈ |2, s|.

Similarly as before using recurrence we get that

λn = (bn
1 − b1)−1

(
bn − b1Pn(b1; (λl)l∈|2,n−1|)

)
for n ∈ |2, s|.

�
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[4] Jab�loński, W.: On some subsemigroups of the group L1

s. Rocznik Nauk.–Dydak. WSP
W Krakowie 14(189), 101–119 (1997)
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[8] Jab�loński, W., Reich, L.: On the standard form of the solution of the translation equa-

tion in rings of formal power series. Math. Panon. 18(2), 169–187 (2007)
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Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 184(8-10), 599–617 (1975)
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