Erratum

Erratum to: Simultaneous Abel equations

HOJJAT FARZADFARD AND B. KHANI ROBATI

Erratum to: Aequat. Math. 83 (2012), 283–294 DOI 10.1007/s00010-011-0109-7

In the original publication, Theorem 8 was published with some errors in the proof of part (a) \Rightarrow (b). The statement "By Theorem 6, ϕ is monotone and surjective. We assume that ϕ is increasing" must be deleted as Theorem 6 cannot be applicable here since it has an assumption that " λ is extendable to a monotone isomorphism" which is to be concluded here. Moreover, in the proof that " λ is strictly increasing", Theorem 6 again was used which is incorrect. This error could be corrected as follows:

- λ is a group homomorphism: This is clear from the definition of λ .
- λ is strictly monotone: Since for each pair f, g of the elements of G one has f < g if and only if $f^{-1} \circ g > i$, and since $\lambda(f^{-1} \circ g) = \lambda(g) \lambda(f)$, it suffices to show that either

for all
$$f \in G$$
 if $f > i$, then $\lambda(f) > 0$;

or

for all
$$f \in G$$
 if $f > i$, then $\lambda(f) < 0$.

Suppose there exists $f \in G$ such that f > i and $\lambda(f) > 0$. Put $\psi := \phi - \phi(a)$ where a is as above. Then ψ is a continuous solution of system (1) and $\psi(a) = 0$. Put $p := \inf \psi([a, f(a)])$. There exists a positive integer N such that $p + N\lambda(f) > 0$.

🕲 Birkhäuser

The online version of the original article can be found under doi:10.1007/s00010-011-0109-7.

Let $g \in G$ and g > i. Since $\lim_{n\to\infty} g^n(a) = \sup I$, there exists $k \in \mathbb{N}$ such that $g^k(a) \ge f^N(a)$. On the other hand $I = \bigcup_{m \in \mathbb{Z}} [f^m(a), f^{m+1}(a)]$; hence $g^k(a) \in [f^n(a), f^{n+1}(a)]$ for some integer $n \ge N$. Thus $g^k(a) = f^n(x)$ for some $x \in [a, f(a)]$. We now have

$$k\lambda(g) = \psi(a) + \lambda(g^k) = \psi(g^k(a)) = \psi(f^n(x))$$
$$= \psi(x) + n\lambda(f) \ge p + N\lambda(f) > 0.$$

Thus $\lambda(g) > 0$. This shows that λ is strictly increasing. If there was $f \in G$ such that f > i and $\lambda(f) < 0$ one would similarly show that λ was strictly decreasing.

Hojjat Farzadfard and B. Khani Robati Shiraz University Shiraz Islamic Republic of Iran e-mail: hfarzadfard@shirazu.ac.ir