Erratum

Erratum to: Simultaneous Abel equations

Hojjat Farzadfard and B. Khani Robati

Erratum to: Aequat. Math. 83 (2012), 283-294 DOI 10.1007/s00010-011-0109-7

In the original publication, Theorem 8 was published with some errors in the proof of part $(\mathrm{a}) \Rightarrow(\mathrm{b})$. The statement "By Theorem $6, \phi$ is monotone and surjective. We assume that ϕ is increasing" must be deleted as Theorem 6 cannot be applicable here since it has an assumption that " λ is extendable to a monotone isomorphism" which is to be concluded here. Moreover, in the proof that " λ is strictly increasing", Theorem 6 again was used which is incorrect. This error could be corrected as follows:

- λ is a group homomorphism: This is clear from the definition of λ.
- $\quad \lambda$ is strictly monotone: Since for each pair f, g of the elements of G one has $f<g$ if and only if $f^{-1} \circ g>i$, and since $\lambda\left(f^{-1} \circ g\right)=\lambda(g)-\lambda(f)$, it suffices to show that either

$$
\text { for all } f \in G \quad \text { if } f>i \text {, then } \lambda(f)>0 \text {; }
$$

or

$$
\text { for all } f \in G \quad \text { if } f>i \text {, then } \lambda(f)<0
$$

Suppose there exists $f \in G$ such that $f>i$ and $\lambda(f)>0$. Put $\psi:=$ $\phi-\phi(a)$ where a is as above. Then ψ is a continuous solution of system (1) and $\psi(a)=0$. Put $p:=\inf \psi([a, f(a)])$. There exists a positive integer N such that $p+N \lambda(f)>0$.

[^0]Let $g \in G$ and $g>i$. Since $\lim _{n \rightarrow \infty} g^{n}(a)=\sup I$, there exists $k \in \mathbb{N}$ such that $g^{k}(a) \geq f^{N}(a)$. On the other hand $I=\bigcup_{m \in \mathbb{Z}}\left[f^{m}(a), f^{m+1}(a)\right]$; hence $g^{k}(a) \in\left[f^{n}(a), f^{n+1}(a)\right]$ for some integer $n \geq N$. Thus $g^{k}(a)=f^{n}(x)$ for some $x \in[a, f(a)]$. We now have

$$
\begin{aligned}
k \lambda(g) & =\psi(a)+\lambda\left(g^{k}\right)=\psi\left(g^{k}(a)\right)=\psi\left(f^{n}(x)\right) \\
& =\psi(x)+n \lambda(f) \geq p+N \lambda(f)>0
\end{aligned}
$$

Thus $\lambda(g)>0$. This shows that λ is strictly increasing. If there was $f \in G$ such that $f>i$ and $\lambda(f)<0$ one would similarly show that λ was strictly decreasing.

Hojjat Farzadfard and B. Khani Robati
Shiraz University
Shiraz
Islamic Republic of Iran
e-mail: hfarzadfard@shirazu.ac.ir

[^0]: The online version of the original article can be found under doi:10.1007/s00010-011-0109-7.

