A Note on Jacobsthal Quaternions

Anetta Szynal-Liana* and Iwona Włoch

Abstract

In this paper we introduce the Jacobsthal quaternions and the Jacobsthal-Lucas quaternions and give some of their properties. We derive the relations between Jacobsthal quaternions and Jacobsthal-Lucas quaternions and we give the matrix representation of these quaternions. Keywords. Jacobsthal numbers, Jacobsthal-Lucas numbers, quaternions, recurrence relations.

1. Introduction

Let \mathbb{H} be the set of quaternions q of the form

$$
\begin{equation*}
q=a+b i+c j+d k \tag{1}
\end{equation*}
$$

where $a, b, c, d \in \mathbb{R}$.
If $q_{1}=a_{1}+b_{1} i+c_{1} j+d_{1} k$ and $q_{2}=a_{2}+b_{2} i+c_{2} j+d_{2} k$ are any two quaternions then equality, addition, substraction and multiplication by scalar are defined.

Equality: $q_{1}=q_{2}$ only if $a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}, d_{1}=d_{2}$, addition: $q_{1}+q_{2}=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i+\left(c_{1}+c_{2}\right) j+\left(d_{1}+d_{2}\right) k$, substraction: $q_{1}-q_{2}=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) i+\left(c_{1}-c_{2}\right) j+\left(d_{1}-d_{2}\right) k$, multiplication by scalar $s \in \mathbb{R}: s q_{1}=s a_{1}+s b_{1} i+s c_{1} j+s d_{1} k$.
The quaternion multiplication is defined using the rule

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=i j k=-1 \tag{2}
\end{equation*}
$$

Note that (2) implies

$$
\begin{equation*}
i j=-j i=k, j k=-k j=i, k i=-i k=j . \tag{3}
\end{equation*}
$$

The conjugate of a quaternion is defined by

$$
\begin{equation*}
q^{*}=(a+b i+c j+d k)^{*}=a-b i-c j-d k . \tag{4}
\end{equation*}
$$

The norm of a quaternion is defined by

$$
\begin{equation*}
N(q)=a^{2}+b^{2}+c^{2}+d^{2} . \tag{5}
\end{equation*}
$$

For the basics on quaternions theory, see [10].

[^0]Numbers of the Fibonacci type are defined by the second-order linear recurrence relation of the form $a_{n}=b_{1} a_{n-1}+b_{2} a_{n-2}$, where $b_{i} \in \mathbb{N}, i=1,2$. For special $b_{i}, i=1,2$ we obtain the recurrence equation which defines the Fibonacci numbers and the like. Among numbers of the Fibonacci type we list the well-known as follows

- $L_{n}=L_{n-1}+L_{n-2}$, for $n \geq 2$ with $L_{0}=2, L_{1}=1$-the Lucas numbers,
- $P_{n}=2 P_{n-1}+P_{n-2}$, for $n \geq 2$ with $P_{0}=0, P_{1}=1$ - the Pell numbers,
- $Q_{n}=2 Q_{n-1}+Q_{n-2}$, for $n \geq 2$ with $Q_{0}=2, Q_{1}=2$ - the Pell-Lucas numbers,
- $J_{n}=J_{n-1}+2 J_{n-2}$, for $n \geq 2$ with $J_{0}=0, J_{1}=1$-the Jacobsthal numbers,
- $j_{n}=j_{n-1}+2 j_{n-2}$, for $n \geq 2$ with $j_{0}=2, j_{1}=1$-the Jacobsthal-Lucas numbers.
These numbers have many applications in distinct areas of mathematics also in quaternions theory.

In 1963 Horadam [4] introduced nth Fibonacci and Lucas quaternions. Many interesting properties of Fibonacci and Lucas quaternions can be found in $[3,7]$. Nurkan and Gシ̈en in [8] defined dual Fibonacci quaternions and dual Lucas quaternions. In [2] Halici investigated complex Fibonacci quaternions. In [6] Horadam mentioned the possibility of introducing Pell quaternions and generalized Pell quaternions. Interesting results of Pell quaternions, PellLucas quaternions obtained recently can be find in $[1,9]$.

In this paper we introduce and study the Jacobsthal quaternions and Jacobsthal-Lucas quaternions. We describe their properties also using a matrix representations.

For convenience initial Jacobsthal numbers and Jacobsthal-Lucas numbers are presented in the following table.

n	0	1	2	3	4	5	6	7	8	9
10										
J_{n}	0	1	1	3	5	11	21	43	85	171
j_{n}	2	1	5	7	17	31	65	127	257	511

For Jacobsthal numbers and Jacobsthal-Lucas numbers many identities are given, see [5]. In this paper we need some of them.

$$
\begin{gather*}
j_{n+1}+j_{n}=3\left(J_{n+1}+J_{n}\right)=3 \cdot 2^{n} \tag{6}\\
j_{n+1}-j_{n}=3\left(J_{n+1}-J_{n}\right)+4(-1)^{n+1}=2^{n}+2(-1)^{n+1} \tag{7}\\
j_{n+r}+j_{n-r}=3\left(J_{n+r}+J_{n-r}\right)+4(-1)^{n-r}=2^{n-r}\left(2^{2 r}+1\right)+2(-1)^{n-r}(8) \tag{8}\\
j_{n+r}-j_{n-r}=3\left(J_{n+r}-J_{n-r}\right)=2^{n-r}\left(2^{2 r}-1\right) \tag{9}\\
J_{n}+j_{n}=2 J_{n+1}, \tag{10}\\
3 J_{n}+j_{n}=2^{n+1}, \tag{11}\\
j_{n} J_{n}=J_{2 n}, \tag{12}
\end{gather*}
$$

$$
\begin{gather*}
J_{m} j_{n}+J_{n} j_{m}=2 J_{m+n} \tag{13}\\
J_{m} j_{n}-J_{n} j_{m}=(-1)^{n} 2^{n+1} J_{m-n} \tag{14}\\
J_{n}=\frac{1}{3}\left(2^{n}-(-1)^{n}\right) \tag{15}\\
j_{n}=2^{n}-(-1)^{n} . \tag{16}
\end{gather*}
$$

The formulas (15) and (16) are named as the Binet formula for Jacobsthal numbers and Jacobsthal-Lucas numbers, respectively.

2. The Jacobsthal and Jacobsthal-Lucas Quaternions

The nth Jacobsthal quaternion $J Q_{n}$ and the nth Jacobsthal-Lucas quaternion $J L Q_{n}$ are defined as

$$
\begin{align*}
& J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3} \tag{17}\\
& J L Q_{n}=j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3} \tag{18}
\end{align*}
$$

respectively.
Theorem 1. Let $n \geq 1, r \geq 1$ be integer. Then

$$
\begin{gather*}
J Q_{n+1}+J Q_{n}=2^{n}(1+2 i+4 j+8 k), \tag{19}\\
J Q_{n+1}-J Q_{n}=\frac{1}{3}\left[2^{n}(1+2 i+4 j+8 k)+2(-1)^{n}(1-i+j-k)\right] \tag{20}\\
J Q_{n+r}+J Q_{n-r}=\frac{1}{3}\left[2^{n-r}\left(2^{2 r}+1\right)(1+2 i+4 j+8 k)\right. \\
\left.-2(-1)^{n-r}(1-i+j-k)\right] \tag{21}\\
J Q_{n+r}-J Q_{n-r}=\frac{1}{3} \cdot 2^{n-r}\left(2^{2 r}-1\right)(1+2 i+4 j+8 k), \tag{22}\\
N\left(J Q_{n}\right)=\frac{1}{9}\left[85 \cdot 2^{2 n}+10 \cdot 2^{n}(-1)^{n}+4\right] . \tag{23}
\end{gather*}
$$

Proof. (19) Let $J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}$ and $J Q_{n+1}=J_{n+1}+$ $i J_{n+2}+j J_{n+3}+k J_{n+4}$. Then $J Q_{n+1}+J Q_{n}=\left(J_{n+1}+J_{n}\right)+i\left(J_{n+2}+J_{n+1}\right)+$ $j\left(J_{n+3}+J_{n+2}\right)+k\left(J_{n+4}+J_{n+3}\right)$. Using (6) we obtain that $J Q_{n+1}+J Q_{n}=$ $2^{n}+i \cdot 2^{n+1}+j \cdot 2^{n+2}+k \cdot 2^{n+3}=2^{n}(1+2 i+4 j+8 k)$. Analogously we can prove formulas (20), (21), (22). To prove (23) we use the definition of the norm of a quaternion and we obtain that

$$
N\left(J Q_{n}\right)=\sum_{s=0}^{3} J_{n+s}^{2}
$$

Moreover by the Binet formula (15) we have

$$
\begin{aligned}
N\left(J Q_{n}\right)= & \frac{1}{9}\left[\left(2^{n}-(-1)^{n}\right)^{2}+\left(2^{n+1}-(-1)^{n+1}\right)^{2}\right. \\
& \left.+\left(2^{n+2}-(-1)^{n+2}\right)^{2}+\left(2^{n+3}-(-1)^{n+3}\right)^{2}\right] \\
= & \frac{1}{9}\left[2^{2 n}-2 \cdot 2^{n}(-1)^{n}+(-1)^{2 n}+4 \cdot 2^{2 n}+4 \cdot 2^{n}(-1)^{n}\right. \\
& +(-1)^{2 n}+16 \cdot 2^{2 n}-8 \cdot 2^{n}(-1)^{n}+(-1)^{2 n} \\
& \left.+64 \cdot 2^{2 n}+16 \cdot 2^{n}(-1)^{n}+(-1)^{2 n}\right] \\
= & \frac{1}{9}\left[85 \cdot 2^{2 n}+10 \cdot 2^{n}(-1)^{n}+4\right],
\end{aligned}
$$

which ends the proof.

In the same way, using (6)-(11) and (16) one can easily prove Theorems 2 and 3.

Theorem 2. Let $n \geq 1, r \geq 1$ be integer. Then

$$
\begin{equation*}
J L Q_{n+1}+J L Q_{n}=3 \cdot 2^{n}(1+2 i+4 j+8 k) \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
J L Q_{n+1}-J L Q_{n}=2^{n}(1+2 i+4 j+8 k)+2(-1)^{n}(1-i+j-k) \tag{25}
\end{equation*}
$$

$J L Q_{n+r}+J L Q_{n-r}=2^{n-r}\left(2^{2 r}+1\right)(1+2 i+4 j+8 k)-2(-1)^{n-r}(1-i+j-k)$,
$J L Q_{n+r}-J L Q_{n-r}=2^{n-r}\left(2^{2 r}-1\right)(1+2 i+4 j+8 k)$,

$$
N\left(J L Q_{n}\right)=85 \cdot 2^{2 n}-10 \cdot 2^{n}(-1)^{n}+4
$$

Theorem 3. Let $n \geq 1$ be integer. Then

$$
\begin{gather*}
J Q_{n}+J L Q_{n}=2 \cdot J Q_{n+1} \tag{29}\\
3 \cdot J Q_{n}+J L Q_{n}=2^{n+1}(1+2 i+4 j+8 k) . \tag{30}
\end{gather*}
$$

Theorem 4. Let $n \geq 1$ be integer. Then

$$
\begin{align*}
J L Q_{n} \cdot J Q_{n}= & \frac{1}{3}\left(-83 \cdot 2^{2 n}+2\right) \\
& +i\left(\frac{2}{3}\left(2^{2 n+1}+1\right)+(-1)^{n+2} \cdot 2^{n+3}\right) \\
& +j\left(\frac{2}{3}\left(2^{2 n+2}-1\right)-(-1)^{n+1} \cdot 2^{n+2}\right) \\
& +k\left(\frac{2}{3}\left(2^{2 n+3}+1\right)+(-1)^{n+1} \cdot 2^{n+2}\right) \tag{31}
\end{align*}
$$

and

$$
\begin{align*}
J Q_{n} \cdot J L Q_{n}= & \frac{1}{3}\left(-83 \cdot 2^{2 n}+2\right) \\
& +i\left(\frac{2}{3}\left(2^{2 n+1}+1\right)-(-1)^{n+2} \cdot 2^{n+3}\right) \\
& +j\left(\frac{2}{3}\left(2^{2 n+2}-1\right)+(-1)^{n+1} \cdot 2^{n+2}\right) \\
& +k\left(\frac{2}{3}\left(2^{2 n+3}+1\right)-(-1)^{n+1} \cdot 2^{n+2}\right) . \tag{32}
\end{align*}
$$

Proof. Multiplying $J L Q_{n}$ by $J Q_{n}$ we have

$$
\begin{aligned}
J L Q_{n} \cdot J Q_{n}= & j_{n} J_{n}-j_{n+1} J_{n+1}-j_{n+2} J_{n+2}-j_{n+3} J_{n+3} \\
& +i\left(j_{n} J_{n+1}+j_{n+1} J_{n}+j_{n+2} J_{n+3}-j_{n+3} J_{n+2}\right) \\
& +j\left(j_{n} J_{n+2}+j_{n+2} J_{n}-j_{n+1} J_{n+3}+j_{n+3} J_{n+1}\right) \\
& +k\left(j_{n} J_{n+3}+j_{n+3} J_{n}+j_{n+1} J_{n+2}-j_{n+2} J_{n+1}\right) .
\end{aligned}
$$

Using identities (12), (13) and (14) we obtain

$$
\begin{aligned}
J L Q_{n} \cdot J Q_{n}= & \frac{1}{3}\left(2^{2 n}-1\right)-\frac{1}{3}\left(2^{2(n+1)}-1\right) \\
& -\frac{1}{3}\left(2^{2(n+2)}-1\right)-\frac{1}{3}\left(2^{2(n+3)}-1\right) \\
& +i\left(2 J_{2 n+1}+(-1)^{n+2} \cdot 2^{n+3} J_{1}\right) \\
& +j\left(2 J_{2 n+2}-(-1)^{n+1} \cdot 2^{n+2} J_{2}\right) \\
& +k\left(2 J_{2 n+3}+(-1)^{n+1} \cdot 2^{n+2} J_{1}\right)
\end{aligned}
$$

and finally

$$
\begin{aligned}
J L Q_{n} \cdot J Q_{n}= & \frac{1}{3} \cdot 2^{2 n}(1-4-16-64)+\frac{2}{3} \\
& +i\left(2 \cdot \frac{1}{3}\left(2^{2 n+1}-(-1)^{2 n+1}\right)+(-1)^{n+1} \cdot 2^{n+3}\right) \\
& +j\left(2 \cdot \frac{1}{3}\left(2^{2 n+2}-(-1)^{2 n+2}\right)-(-1)^{n+1} \cdot 2^{n+2}\right) \\
& +k\left(2 \cdot \frac{1}{3}\left(2^{2 n+3}-(-1)^{2 n+3}\right)+(-1)^{n+1} \cdot 2^{n+2}\right)
\end{aligned}
$$

In the same way we can prove (32).
Now we give the matrix representation of Jacobsthal and JacobsthalLucas quaternions.

Theorem 5. Let $n \geq 1$ be integer. Then

$$
\left[\begin{array}{ll}
J Q_{n} & J Q_{n-1} \\
J Q_{n+1} & J Q_{n}
\end{array}\right]=\left[\begin{array}{ll}
J Q_{1} & J Q_{0} \\
J Q_{2} & J Q_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]^{n-1} .
$$

Proof. (by induction on n) If $n=1$ then the result is obvious. Assume that

$$
\left[\begin{array}{ll}
J Q_{n} & J Q_{n-1} \\
J Q_{n+1} & J Q_{n}
\end{array}\right]=\left[\begin{array}{ll}
J Q_{1} & J Q_{0} \\
J Q_{2} & J Q_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]^{n-1} .
$$

We shall show that

$$
\left[\begin{array}{ll}
J Q_{n+1} & J Q_{n} \\
J Q_{n+2} & J Q_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
J Q_{1} & J Q_{0} \\
J Q_{2} & J Q_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]^{n}
$$

By simple calculation using induction's hypothesis we have

$$
\begin{gathered}
{\left[\begin{array}{ll}
J Q_{1} & J Q_{0} \\
J Q_{2} & J Q_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]^{n-1} \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
J Q_{n} & J Q_{n-1} \\
J Q_{n+1} & J Q_{n}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]} \\
\quad=\left[\begin{array}{ll}
J Q_{n}+2 \cdot J Q_{n-1} & J Q_{n} \\
J Q_{n+1}+2 \cdot J Q_{n} & J Q_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
J Q_{n+1} & J Q_{n} \\
J Q_{n+2} & J Q_{n+1}
\end{array}\right]
\end{gathered}
$$

which ends the proof.
Theorem 6. Let $n \geq 1$ be integer. Then

$$
\begin{aligned}
J Q_{n}^{2}-J Q_{n+1} \cdot J Q_{n-1} & =(7-3 i+3 j+9 k) \cdot(-2)^{n-1} \\
& =\left(J Q_{1}^{2}-J Q_{2} \cdot J Q_{0}\right) \cdot(-2)^{n-1}
\end{aligned}
$$

Proof. Let $J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}, J Q_{n+1}=J_{n+1}+i J_{n+2}+$ $j J_{n+3}+k J_{n+4}$ and $J Q_{n-1}=J_{n-1}+i J_{n}+j J_{n+1}+k J_{n+2}$. Then

$$
\begin{aligned}
J Q_{n}^{2}-J Q_{n+1} \cdot J Q_{n-1}= & J_{n}^{2}-J_{n+1}^{2}-J_{n+2}^{2}-J_{n+3}^{2}-J_{n+1} J_{n-1} \\
& +J_{n+2} J_{n}+J_{n+3} J_{n+1}+J_{n+4} J_{n+2} \\
& +i\left(J_{n+1} J_{n}-J_{n+2} J_{n-1}-J_{n+3} J_{n+2}+J_{n+4} J_{n+1}\right) \\
& +j\left(2 J_{n+2} J_{n}-J_{n+1}^{2}+J_{n+2}^{2}-J_{n+3} J_{n-1}-J_{n+4} J_{n}\right) \\
& +k\left(3 J_{n} J_{n+3}-2 J_{n+1} J_{n+2}-J_{n+4} J_{n-1}\right) .
\end{aligned}
$$

Using Binet formula (15) we obtain

$$
J Q_{n}^{2}-J Q_{n+1} \cdot J Q_{n-1}=(7-3 i+3 j+9 k) \cdot(-2)^{n-1}
$$

Moreover,

$$
J Q_{1}^{2}-J Q_{2} \cdot J Q_{0}=7-3 i+3 j+9 k
$$

which ends the proof.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] Çimen C.B., İpek A.: On Pell quaternions and Pell-Lucas quaternions. Adv. Appl. Clifford Algebras. doi:10.1007/s00006-015-0571-8
[2] Halici, S.: On complex Fibonacci quaternions. Adv. Appl. Clifford Algebras 23, 105-112 (2013)
[3] Halici, S.: On Fibonacci quaternions. Adv. Appl. Clifford Algebras 22, 321327 (2012)
[4] Horadam, A.F.: Complex Fibonacci numbers and Fibonacci quaternions. Am. Math. Month. 70, 289-291 (1963)
[5] Horadam, A.F.: Jacobsthal representation numbers. Fibonacci Quarterly 34, 40-54 (1988)
[6] Horadam, A.F.: Quaternion recurrence relations. Ulam Quarterly 2, 23-33 (1993)
[7] Iyer, M.R.: A note on Fibonacci quaternions. Fibonacci Quaterly 3, 225-229 (1969)
[8] Nurkan, S.K., Gच̈en, İA.: Dual Fibonacci quaternions. Adv. Appl. Clifford Algebras 25(2), 403-414 (2015)
[9] Szynal-Liana A., Włoch I.: The Pell quaternions and the Pell octonions. Adv. Appl. Clifford Algebras. doi:10.1007/s00006-015-0570-9
[10] Ward J. P.: Quaternions and Cayley Numbers: Algebra and Applications. Kluwer Academic Publishers, London, 1997

Anetta Szynal-Liana and Iwona Włoch
Faculty of Mathematics and Applied Physics,
Rzeszow University of Technology,
al. Powstańców Warszawy 12,
35-959 Rzeszów,
Poland
e-mail: aszynal@prz.edu.pl
Iwona Włoch
e-mail: iwloch@prz.edu.pl
Received: June 24, 2015.
Accepted: October 27, 2015.

[^0]: *Corresponding author.

