
DI DACTICS

Remarks on the Surface Area and Equality Conditions
in Regular Forms Part IV: Pyramidal Forms

Ahmed A. Elkhateeb • Esraa A. Elkhateeb

Published online: 9 September 2014

� Kim Williams Books, Turin 2014

Abstract Following the same methodology and rules that were applied in the

previous Parts I–III of this work, Part IV presents the mathematical remarks on the

right regular pyramidal forms, either complete or truncated (a frustum of pyramid).

The first remark examines the effects of h and b on S. The second remark calculates

the minimum total surface area (SMin) in two cases, case of constant h (variable b)

and case of variable h (constant b). The third remark calculates walls ratio RW and

the critical walls ratio RWo. The last remark calculates the numerical equality

between S and V. In conclusion, the importance of the findings of the entire work

(Parts I–IV) in advanced building analysis is highlighted and discussed.

Keywords Acoustics � Pyramids � Pyramidal forms � Surface area �
Walls ratio � Building analysis � Minimum total surface area �
Numerical equality

Introduction

Pyramidal forms are some of the oldest forms that humans have ever known.

Historically, pyramids were constructed in different compositions (complete,

truncated and stepped) in many places of ancient world, such as Egypt, Mexico and

Latin America. The step pyramid of Djoser (Zoser, in the Saqqara necropolis) may

be the first of this type (built around 2800 BC). In the realm of modern architecture,
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the pyramidal form still attracts architects. There are several examples for modern

pyramidal buildings in different places around the world, for example the Unknown

Soldier Memorial in Cairo, by Sami Rafi (1973), Louvre pyramid in Paris, by I.

M. Pei (1989) and Luxor Hotel, Las Vegas, by Veldon Simpson (1993).

This Part IV applies the same methodology and assumptions that were

established in the previous Parts I–III (Elkhateeb 2014a, b; Elkhateeb and Elkhateeb

2014) of this work to investigate the case of the right regular pyramid (either

complete or truncated) so as to answer the following questions:

• How do the angles h and b affect S?

• When does S become minimum (SMin)?

• What is the ratio between walls total surface area SW and S (SW/S = RW)?

• When S equals V?

Notations

In this work, the following terms mean:

Ar Base area, area of the lower base (truncated pyramid) (m2)

Ars Area of one side face of the pyramid (m2)

ArU Area of the upper base (truncated pyramid) (m2)

bo The critical dihedral angle, the angle at which S of a complete right regular

pyramid becomes minimum

h The altitude of the triangle (m)

hs Slant height (m)

HR The altitude of the pyramid (m)

HRo The critical room height, the height that fulfills (S - V) equality (m)

n Number of sides

Per Perimeter (m)

S Room total surface area (m2)

SMin The minimum total surface area (m2)

SW Walls total surface area (m2)

r Radius (m)

ro The critical radius, the radius that fulfills (Per - Ar) equality (m)

RW Walls ratio, SW/S (ratio)

RWo The critical walls ratio, the ratio between walls total surface area and total

surface area when S is minimum (SMin) (ratio)

V Room volume (m3)

xo The critical ratio, the ratio between HR and r when S is minimum (SMin) (ratio)

The other terms will be illustrated in figures according to each case as required.

Right Regular Pyramid

A right regular pyramid is a pyramid that has its apex aligned directly above the

center of its regular base. This base can be any regular polygon (a multi-sided

shape) from the equilateral triangle (n = 3) to the circle (n = ?) in which:
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• All sides are congruent.

• All angles are congruent (thus, the angle w is constant and equal to 360/n).

Through this part, it is assumed that V, h and b are the independent variables

whereas Ar, Per, and S are the dependent ones. Figure 1 illustrates the different

variables: h, w, h, r, L, b, HR and hs in a right regular pyramid.

The Mathematical Relationships of Right Regular Pyramids

In Part III of this work, the main mathematical functions between h, L, h, r, Per and

Ar have been driven. These functions are also applied in this part as long as the base

of the pyramid is regular as defined and assumed. While this section will not repeat

those functions of Part III, it will derive additional mathematical functions among r,

S, b and V (see Fig. 1). These new functions will be utilized later to determine SMin

and calculate the equality conditions.

A right regular pyramid can be fully identified when its volume V, number of

sides n (thus h) and the dihedral angle b are known. Given these variables, it can be

proved that (see Part III):

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V

n sin hcos2htanb
3

s

: ð1Þ

This equation yields the radius of a circle that contains the regular base of a

pyramid knowing n, V and b. In addition, it also relates r to the dihedral angle b for

a given V. Given r, both HR and Ar can be calculated as:

HR ¼ r cos h tan b ð2Þ

and (Gieck and Gieck 2006)

Ar ¼ 3V

HR

: ð3Þ

From Eq. 3, HR can be also calculated as:

HR ¼
3V

nr2sinhcosh
: ð4Þ

In such pyramid, there are two possibilities for modifying its dimensions

assuming that V is constant:

• In the first, b and Ar are variables whereas n (thus h) is constant.

• In the second, b is constant whereas n and Ar (i.e., r) are variables.

As can be concluded from the previous options, Ar is always variable as long as

both V and b were determined. From the first principles, the slant height hS can be

calculated as:

hS ¼
HR

sin b
: ð5Þ

The area of one face of this pyramid ArS can be calculated from:
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ArS ¼
LHR

2sinb
: ð6Þ

The total surface area of a right regular pyramid can be calculated as:

S ¼ nrHR sin h
sin b

þ nr2sinhcosh: ð7Þ

By substitution for HR according to Eq. 4, Eq. 7 can be rewritten as:

S ¼ 3V

rcoshsinb
þ nr2sinhcosh: ð8Þ

If r is replaced by its equivalent value according to Eq. 1, Eq. 8 can be rewritten

as:

S ¼ 3V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V
n sin h cos2 h tan b

3

q
� �

� cos h sin b
þ 3V

n sin h cos2 h tan b

� �2
3

�n sin h cos h: ð9Þ

Given that n = 180/h, Eq. 9 will be:

S ¼ 3V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V
ð180=hÞ sin h cos2 h tan b

3

q

� �

� cos h sin b

þ 3V

ð180=hÞ sin h cos2 h tan b

� �2
3

� 180

h

� �

sin h cos h: ð10Þ

Remark 1: Effects of h and b on S

The effect of h on S in the right regular pyramid can be concluded from Eq. 7 when

b is constant (Fig. 2). This effect resembles the case of the regular multi-sided right

prisms (see Part III). In summary, S is an increasing function of h (thus a decreasing

function of n). This means that S of a right regular triangular pyramid (n = 3) is

Fig. 1 Right regular pyramids, the different variables: a left a regular multi-sided base; b right a
pyramidal form. Image: author
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larger than a right cone (n = ?) provided that both have the same V (Elkhateeb

2014b).

Similarly, the effect of b on S can be also concluded from Eq. 7 when h is

constant. Figure 3 illustrates this case graphically. It is clear from this figure that the

function is similar to the case of the regular right prisms (see for example Part III)

where the function changes its direction at a certain angle. This angle will be called

bo (see ‘‘Case I: Variable b and Constant h’’). bo splits the function into two main

zones:

• Zone [a]: where 0� \b\ bo. In this zone S is a decreasing function of b.

• Zone [b]: where bo \ b\ 90�. In this zone S is an increasing function of b.

Remark 2: The Minimum Total Surface Area, SMin

Following the same approach that was applied previously in the earlier parts of this

work and as mentioned in ‘‘The Mathematical Relationships of Right Regular

Pyramids’’, two cases will be considered:

Fig. 2 Effect of h on S according to Eq. 7 (different values of b)
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Fig. 3 Effect of b on S according to Eq. 7 (case of n = 3)
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• Case of variable b and constant h;

• Case of constant b and variable h.

Case I: Variable b and Constant h

In this case, among the different right regular pyramids that have the same h and V,

SMin occurs when the first derivative of Eq. 9 equals zero

ds

db
¼ 1

3

32=3V2ð1þ tan2bÞ
V

nsin hcos 2h tan b

� �4=3

cos 3hsinhsinbtan2b
� 32=3Vcos b

V
nsinhcos 2htanb

� �1=3

coshsin2b

� 2

3

32=3V 1þ tan2bð Þ
V

nsinhcos 2htan b

� �1=3

cos htan2b
¼ 0: ð11Þ

The solution of Eq. 11 yields the value of bo, the dihedral angle at which S

reaches its minimum value. As can be seen, this last equation is very complex to

solve analytically in order to get the value of bo. Possible solutions for such problem

are numerical calculations or graphical representation for the function dS/db. In our

case, the program Maple� for symbolic calculations was utilized to get the value of

bo. The calculations lead to:

bo ¼ arctanð2
ffiffiffi

2
p
Þ; i:e: bo ¼ 70:528779

�
: ð12Þ

Thus, a right regular pyramid that has a dihedral angle equal to bo possesses the

minimum total surface area among others that have the same h and V. In the right

regular pyramids, the critical ratio xo can be calculated as:

xo ¼ 2
ffiffiffi

2
p

cosh: ð13Þ
It can be concluded from Eq. 13 that xo also depends on h and is an increasing

function of h (thus a decreasing function of n). Table 1 lists the values of xo for the

most common right regular pyramids according to their bases. xo can be utilized as

an alternate way to calculate SMin for a right regular pyramid when its V, h and b are

known by applying Eq. 1 to calculate r, then Eq. 13 to get HR. The other variables

can be calculated using the appropriate formulas (see ‘‘The Mathematical

Relationships of Right Regular Pyramids’’ here and Part III (Elkhateeb 2014b).

Similar to the cases of triangular and quadratic right prisms, the two relationships

(HR–S) and (Ar–S) depend on bo, which divides the functions into two zones (see

Figs. 4, 5):

• Zone [a]: where b\ bo. In this zone, S is a decreasing function of HR (see

Fig. 4) and an increasing function of Ar (see Fig. 5). Note that the location of

Table 1 Values of xo for the common right regular pyramids according to their bases

ho 60 45 36 30 22.5 0

Shape of base Triangle Square Pentagon Hexagon Octagon Circle

xo 1.4142 2.00 2.288 2.449 2.613 2.828
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the zones is reversed in Fig. 5, thus any increase in pyramid height will decrease

its total surface area.

• Zone [b]: where b[bo. In this zone, S is an increasing function of HR and a

decreasing function of Ar. This means that an increase in HR will increase S.

Case II: Constant b and Variable h

In this case, among the different right regular pyramids that have the same b and V,

SMin occurs when the first derivative of Eq. 10 equals zero. Thus,
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Fig. 4 The relationship of HR to S (case of triangle, n = 3)
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Fig. 5 The relationship of Ar to S (case of pentagon, n = 5)
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ds

dh
¼ � 1

3

32=3V2 1
180sinhcos2htanb� h

180sin2hcoshtan b
þ 2h

180cos3htan b

� �

Vh
180sinhcos2htanb

� �4=3

coshsinb

þ 32=3Vsin h

Vh
180sinhcos2htanb

� �1=3

cos2hsin b

þ 2

3

32=3 � 180Vcoshsin h 1
180sin hcos2htanb� h

180sin2hcos htan b
þ 2h

180cos3htanb

� �

Vh
180sinhcos2htanb

� �4=3

h

� 1

h2

3Vh
180sinhcos2htanb

� �2=3

180sin hcoshþ 180

h
3Vh

180sinhcos2htanb

� �

� cos2h� sin 2h
� �

¼ 0: ð14Þ
Again, due to the complexity of this last equation, the program Maple� for

symbolic calculations was utilized to get the value of h at which S becomes

minimum. The calculations indicate that SMin occurs when h ? 0.

Thus, among the different right regular pyramids, a cone has the minimum total

surface area. This conclusion completely agrees with the numerical solution

presented in Fig. 2 and discussed in ‘‘Remark 1: Effects of h and b on S’’.

Remark 3: Walls Ratio RW

In right regular pyramids, RW can be mathematically defined as:

RW ¼
n� ArS

Ar þ n� ArS

: ð15Þ

By substitution for ArS according to Eq. 6 and Ar (see Part III), Eq. 15 can be

rewritten as:

RW ¼
HR

HR þ rcoshsinb
: ð16Þ

If HR is replaced by its equivalent value according to Eq. 2, then Eq. 16 will be:

RW ¼
tanb

tanbþ sinb
: ð17Þ

According to Eq. 17, RW depends completely on b regardless the values of V and

h. For example, RW = 0.586 for b = 45o. Figure 6 represents the relationship b–

RW, it is clear that RW is an increasing function of b. According to Eq. 17, it can be

concluded that RWo = 0.75.

Remark 4: Case of Numerical Equality

In Part III (Elkhateeb 2014b), the numerical equality between Ar and Per was

calculated. As the same condition applies here, it is not repeated again. Thus, this
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section considers only the numerical equality between S and V in right regular

pyramids.

Equality of S and V

According to Part III, Eqs. 2 and 7, this numerical equality occurs when:

nrHRsinh
sin b

þ nr2sinhcosh ¼ 1

3
HRnr2sinhcosh: ð18Þ

By applying the principles of algebra, Eq. 18 will be:

HRo ¼
3r cos hsinb

r cos hsinb� 3
: ð19Þ

Thus, in right regular pyramids with given h, b and Ar, the numerical equality

between S and V occurs only if Eq. 19 has been satisfied. This can be calculated in

the following sequence:

• Determine h (or n), b and Ar;

• Apply Eq. 4 (Part III) to get r;

• Substitute in Eq. 19 to get the critical room height HRo (see ‘‘Notations’’) that

fulfills this equality.

The relationship Ar–HRo resembles the previous cases studied in this work. The

minus sign ð�Þ in the denominator of Eq. 19 indicates the limit under which this

equality will never exist. Mathematically, this equality will never exist if:

r cos hsinb� 3: ð20Þ
In the special case where n ? ? (i.e., a cone), h ? 0. As cos 0 = 1, thus,

Eq. 19 will be:

HRo ¼
3rsinb

rsinb� 3
: ð21Þ

RWo= 0.75 

o=
 7

0.
52

87
79

o

Fig. 6 The ratio RW as a function of b
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Truncated Right Regular Pyramid

The truncated right regular pyramid is a portion of a right regular pyramid included

between two parallel bases. In such a pyramid:

• The slant height hS is the altitude of a side face.

• The lateral edges are equal, and the side faces are equal isosceles trapezoids.

• The two bases are similar parallel regular polygons.

In addition to the variables V, h and b which identified the complete right regular

pyramid, the height HR (see Fig. 7) must be also identified in case of a frustum of a

pyramid. Thus, in the following section, it is assumed that V, h, b and HR are the

independent variables whereas Ar, Per, and S are the dependent ones. Figure 7

illustrates the variables: h, b, r, rU, L, LU, HR, d and hS.

The Mathematical Relationships of Truncated Right Regular Pyramids

Beside the main mathematical relationships previously listed in Part III and ‘‘The

Mathematical Relationships of Right Regular Pyramids’’ of this part, this section

lists additional mathematical formulas regarding the truncated right regular

pyramid. From the first principles, it can be concluded that:

d ¼ HR

tan b
ð22Þ

Fig. 7 Truncated right regular pyramid, different variables, see also Fig. 1 for the other variables
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and

hU ¼ h� d: ð23Þ
By replacing h, hU and d with their equivalent values (see Part III, Elkhateeb

2014b), then Eq. 23 will be:

rU ¼ r � HR

coshtanb
: ð24Þ

From the first principles again, the total surface area S of a truncated right regular

pyramid can be calculated as:

S ¼ nhS

Lþ LU

2

� �

þ Ar þ ArU ð25Þ

and the volume of such pyramid can be calculated from

V ¼ 1

3
HR Ar þ ArU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ar:ArU

p

� �

ð26Þ

(Gieck and Gieck 2006).

If Ar and ArU are replaced by their equivalent values (see Part III, Elkhateeb

2014b), then Eq. 26 will be:

V ¼ 1

3
nHRsinhcos h r2 þ r2

U þ r � rU

� �

: ð27Þ

By substitution for rU according to Eq. 24, Eq. 27 will be:

V ¼ 1

3
HRsinhcosh r2 þ r � HR

coshtanb

� �2

þr: r � HR

coshtanb

� �

" #

: ð28Þ

This leads to a quadratic equation with one unknown, that is, r:

3r2 � 3rHR

coshtanb
þ H2

R

cos2htan2b

� �

� 3V

nHRsinhcosh

� �	 


¼ 0: ð29Þ

This last equation yields r for a truncated right regular pyramid given its

independent variables V, h, b and HR. Given r, the other variables of such pyramid

can be calculated. As a quadratic equation, its three constants a, b and c can be

calculated as:

a ¼ 3; ð30Þ

b ¼ � 3HR

coshtan b
; ð31Þ

c ¼ H2
R

cos2htan2b
� 3V

nHRsinhcosh
: ð32Þ

In such a pyramid, there are three possibilities for modifying its dimensions,

assuming that V is constant:

1. b and Ar are variables whereas n (thus h) is constant.

2. b is constant whereas n and Ar (i.e., r) are variables.
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3. HR is variable whereas both b and h are constants.

Again, in all cases Ar is variable as long as V, b and HR were determined.

Remark 1: Effects of h, b and HR on S

In a right regular truncated pyramid that has a given V, the numerical solutions for

Eqs. 25 and 29 indicate that:

• S is an increasing function of h when HR and b are constants. Thus SMin occurs

when h ? 0 (i.e., a cone). Figure 8 represents h–S relationship for different

cases of b.

• S is a decreasing function of b when HR and h are constants. Thus SMin occurs

when b ? 90 (i.e., a prism). Figure 9 represents b–S relationship for different

cases of (n).

• S is a decreasing function of HR when h and b are constants, thus SMin occurs

when HR is maximum. Figure 10 represents HR–S relationship for different

cases of h and b.

Fig. 8 The relationship of h to S, different cases of b

Fig. 9 The relationship of b to S, different cases of (n)
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Remark 2: Walls Ratio RW

In a right regular truncated pyramid, RW can be mathematically calculated as:

RW ¼
nhS

LþLU

2

� �

nhS
LþLU

2

� �

þ Ar þ ArU

: ð33Þ

Given the equivalent values of hS, L, LU and Ar (see Part III), Eq. 33 can be

rewritten as:

RW ¼
HRsin hðr þ rUÞ

HRsin h r þ rUð Þ þ coshsinhsinbðr2 þ r2
UÞ
: ð34Þ

If HR was replaced by its equivalent value according to Eqs. 22 and 23, then

Eq. 34 will be:

RW ¼
r2 � r2

U

ðr2 � r2
UÞ þ cosbðr2 þ r2

UÞ
: ð35Þ

Similar to the case of the complete pyramid, Eq. 35 says that RW is independent

on both V and h, but it is a function of r, rU and b. It is clear that RWo will never

exist as long as the three functions (h–S, b–S and HR–S) remain constant in

direction.

Remark 3: Case of Numerical Equality

As mentioned above, the condition for the numerical equality between Ar and Per is

the same as the case of regular multi-sided right prisms. Thus, the following section

considers only the case of numerical equality between S and V.

Equality of S and V

According to Eqs. 25 and 27, this numerical equality occurs when:

nhS

Lþ LU

2

� �

þ Ar þ ArU ¼
1

3
nHRosinhcosh r2 þ r2

U þ r:rU

� �

: ð36Þ

Fig. 10 The relationship of HR to S, different cases of h and b
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By replacing hS, L, LU, Ar and ArU with their equivalent values, Eq. 36 will be:

HRocoshsinb r2 þ r2
U þ r:rU

� �

� 3HRo r þ rUð Þ � 3coshsinb r2 þ r2
U

� �

¼ 0: ð37Þ
By substitution for rU according to Eq. 24, Eq. 37 can be rewritten as:

H3
Ro

sin b
cos h tan2 b

� �

� H2
Ro

3r sin b
tan b

þ 3 sin b
cos h tan2 b

� 3

cos h tan b

� �

þ HRo

6r sin b
tan b

þ 3r2 cos h sin b� 6r

� �

� 6r2 cos h sin b: ð38Þ

This last formula calculates the critical height HRo that fulfills the equality

between S and V in a right regular truncated pyramid when its three variables Ar

(i.e., r), n (i.e., h) and b are known. It is a cubic equation that can be solved

manually or utilizing one of the free software programs available on the Internet

(see for example: http://www.1728.org/cubic.htm). As a cubic equation, its four

constants a, b, c and d can be calculated as:

a ¼ sin b
cos h tan2 b

ð39Þ

b ¼ � 3r sin b
tan b

þ 3 sin b
cos h tan2 b

� 3

cos h tan b

� �

ð40Þ

c ¼ 6r sin b
tan b

þ 3r2 cos h sin b� 6r ð41Þ

d ¼ �6r2 cos h sin b: ð42Þ
Given the value of HRo, rU can be calculated by applying Eq. 24, consequently

the other parameters of such pyramid can be calculated. In this context, it is

important to mention that this equality will never exist if:

HR

cos h tan b
[ r: ð43Þ

Discussion

All is number, said Pythagoras (580–500 BC) more than twenty centuries ago. Thus,

everything finally returns to mathematics. Numbers always give a better under-

standing for the behavior of a phenomenon as it appears. They also provide a

scientific basis for predicting the ways in which things behave. The findings of this

work have important applications in different disciplines of advanced building

analysis, especially room acoustics as will be discussed in the following section. In

summary, these findings:

• point out special rooms that have a distinct characteristic in acoustics;

• clarify why rooms that have the same volume and floor area but different shapes

have different reverberation times;
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• establish a simple mathematical approach that can help both architects and

acousticians to decide early the appropriate room dimensions. These dimensions

satisfy the acoustic requirements;

• help architects and acousticians to answer two important questions:

• how does S changes in h (and/or b) and consequently how will the acoustic

environment within a room be affected?

• When deciding upon the appropriate room dimensions that have a given V, is

it better to decrease Ar and increase HR or inversely, to increase Ar and

decrease HR?

The reverberation time T (the persistence of sound in a particular space after the

original sound is produced) is a main indicator in room acoustics. In its simplest

form, T can be calculated as:

T ¼ 0:161� V
Pn

i¼1 Si � ai

ðsÞ ð44Þ

(Sabine 1993; Cox and D’Antonio 2009), where a is a physical quantity that

expresses the ability of a material to absorb the energy of sound.

Upon designing a room acoustically, its T must lay within the permissible limits

that depend on the acoustic function of this room. A short T (around 1 s) is

recommended especially in speech rooms. As can be concluded from Eq. 44, for a

given V, T is a decreasing function of S. Thus, it is recommended to increase room

total surface area so as to decrease T.

Based on the findings of this work and according to the shape, remark (1)

determines the conditions under which S will take its minimum value among the

different rooms that have the same floor area and volume but different h (and/or b).

For example, in rectangular right prisms (or rooms), a room that has h = 45�
(square plan) has the minimum total surface area, thus the maximum T among the

other rectangular rooms that have the same volume assuming that a is constant

(Elkhateeb 2012).

Following the same rules, remark (2) determines the condition under which S will

be minimum among the different rooms that have the same h (and/or b) and V but

different Ar. Such a room also possesses the maximum T and should be avoided

(Elkhateeb 2012). Together, remarks (1) and (2) establish a clear methodology that

can be applied to select the optimum room dimensions from an acoustic point of view.

In any room, walls are the typical place to install the different acoustic treatments

such as absorbing and reflecting materials. Acoustically, in some applications, it is

preferable to increase walls ratio so as to insure a good acoustic performance.

Utilizing remark (3), RW can be checked easily during the analysis and design phase.

The shape factor Shf is a mathematical indicator that has a direct effect on room

acoustics (Elkhateeb 2012). This indicator can be calculated from:

Shf ¼
Per

Ar
� Disf ; ð45Þ

where Disf is the distortion factor that is the ratio between the total surface area S1

of the examined room and the total surface area S of the reference room RR (i.e.,
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Disf = S1/S). The reference room is a right prismatic room that has the identical

base, floor area and volume of the examined room (Fig. 11). The indicator Shf has

been suggested as a simple tool that can be used to compare architecturally, on

acoustic bases, between rooms that have the same floor area but different shapes. It

is preferable to choose the room that has the maximum Shf. When the perimeter of a

given shape equals its area according to remark (4), accordingly and under the

assumed conditions, Shf = 1. In this case, Shf can’t be used as a comparison tool,

and more advanced acoustic analysis will be essential.

The mean free path l (the average distance travelled by sound ray between

successive collisions) is another important acoustic indicator. Under certain

conditions l can be calculated from:

l ¼ 4V

S
ðmÞ ð46Þ

(Kuttruff 2009). According to remark (4), when S equals V, thus, l will be equal to

4 m. In this specific case, T will be equal to (0.161/a) if a is constant for all

boundaries of the room. In this last case, if a = 1 (i.e., a perfect absorber), T will be

equal to 0.161 s, regardless of the values of both S and V, as long as they are equal.

Conclusions

Applying the same methodology, assumptions and rules that were introduced in the

previous Parts I–III of this work, this final Part IV examines the case of the right

regular pyramid either complete or truncated. In complete pyramids, the first remark

examines the effects of h and b on S. In the second remark, the minimum total

surface area SMin was calculated in two cases, case of variable b and constant h, and

case of constant b and variable h. In the first case, the critical ratio xo that

corresponds to the critical dihedral angle bo (70.528779�) was calculated. Results

showed that xo depends entirely on h. The values of xo were calculated and

presented for the common right regular pyramids according to their bases. In the

second case, where h is variable, results showed that SMin occurs when h ? 0 (i.e.,

cones). In the third remark, the ratio RW was calculated. Results showed that RW is

an increasing function of b. Results also showed that RWo is constant (=0.75)

regardless the value of (n). In the last remark, the critical room height HRo that

fulfills the numerical equality between S and V was calculated. Results indicated the

limit under which this equality will never exist.

Fig. 11 The concept of reference room (RR), Disf = S1/S. a left Examined room (S1); b right RR (S)
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In a truncated pyramid, the first remark investigates the effects of three

independent variable h, b and HR on S. When h is variable (whereas HR and b are

constants), results showed that S is an increasing function of h, thus SMin occurs when

h ? 0 (i.e., a truncated cone). When b is variable (whereas HR and h are constants),

results showed that S is a decreasing function of b, thus SMin occurs when b ? 90

(i.e., a prism). When HR is variable (while h and b are constants), results showed that

S is a decreasing function of HR, thus SMin occurs when HR is maximum. In the

second remark, the calculation of RW indicated that it depends on the three variables

r, rU and b regardless the values of h and V. In the last remark, the critical room

height HRo that fulfills the numerical equality between S and V was calculated. In

this remark also, the limit under which this equality will never exist was presented.

Finally, the importance of the findings of this entire work (Parts I–IV) in room

acoustics as a branch of the advanced building analysis was presented.
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