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AAbbssttrraacctt..  Michele Emmer discusses the relations between 
soap films, arts, mathematics, visual arts, architecture 
with very recent examples. 

It’s because I don’t do anything, I chatter a lot, you see, it’s already a 
month that I’ve got into the habit of talking a lot, sitting for days on end 
in a corner with my brain chasing after fancies. It is perhaps something 
serious? No, it’s nothing serious. They are soap bubbles, pure chimeras 
that attract my imagination. 

Fedor Dostoevsky, Crime and Punishment 

IInnttrroodduuccttiioonn  
The connections between architecture and mathematics have always been very deep 

and rich. Minimal surfaces, including those expressed by soap film and their use as 
models for geometry and architecture, constitute a specific aspect of the relations between 
architecture and mathematics, one that started to be developed in the twentieth century 
and has continued into the twenty-first. It started only in the twentieth because the 
geometry of soap films was developed only in the second half of the previous century by 
the Belgian physicist Joseph Plateau. In reality the theory of minimal surfaces actually 
began in the seventeenth century and some properties like the isoperimetric one were 
even known to the Greek mathematicians thousands of years ago. However, only with 
Plateau’s experimental works did the theory of the minimal surfaces develop, allowing the 
application of its results in different areas of knowledge, not only in mathematics, but 
also in architecture. 

This article presents a few examples of the connections between mathematics and 
architecture through minimal surfaces, starting from the architecture of recent years, 
furnishing for every example the mathematical details that partially motivated their 
applications in architecture. For a complete history of the relationships between minimal 
surfaces, architecture, geometry, mathematics, art and design see the volume Bolle di 
sapone tra arte e matematica [Emmer 2009]. 

AA  ffiirrsstt  eexxaammppllee::  WWaalllliisseerr  22000099  

In a recent paper the architect Tobias Walliser described his interest in mathematics 
for architecture, including the use of new digital technologies: 

In my article “Other geometries in architecture: bubbles, knots and minimal 
surfaces” [Walliser 2011], I described the fascination of using mathematical 
models as source of inspiration for architectural design. Key is not so much the 
complete understanding of the underlying mathematical formulae but the 
imagination to transfer these concepts into architectural models... Through the 
advance of digital design methods in architecture, not only new tools become 
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The Costa-Hoffmann-Meeks surface 1982 

available but also a new understanding of the design process is under way. This in 
turn will led to new definitions and a new understanding of form and matter. The 
current transformation process has the potential to unite the use of computational 
techniques in architecture which are applied for discrete parts of the design and 
construction process at present [Walliser 2009]. 

Walliser was describing one of his latest projects, a Water Hotel based on Costa- 
Hoffman-Meeks surface. 

We were approached by a client to develop a master plan for a huge leisure theme 
park to become a new tourist destination on the Pacific ocean in Mexico. While 
the main parts of the master plan were meant to be located on a volcanic hill, the 
most striking element was a hotel entirely located in the ocean... 
Digital experiments were done in a less scientific but highly intuitive way which 
allowed us to use the idea of dropping a volume into water as a design tool... 
maximizing daylight and views for the lower and upper levels. The interpretation 
of the Costa-Hoffman-Meeks minimal surface as insertion of multiple directional 
holes connecting the top to the water and the water at the bottom to the sky 
provided a single gesture combining all aspects.  
The external shape defined additionally as the minimal surface does not provide 
any building volume or enclosed volume. Our first proposal was to locate the 
minimal surface within a spherical volume as the object with optimized ratio of 
contained volume and surface. For visual reasons the volume was stretched to 
obtain a shape more in line with the water drop idea... 
Experimental testing of different configurations for the outer articulation and the 
space programme allocation lead to the definition of a minimal surface branching 
into three tubes which became a tripod stability system for the twenty-floor high 
hotel tower. A parametrical model was used to design the continuation of the 
different volumes. Changing parameters allowed for the existing of different 
articulations, silhouettes and relationships. A protocol of connections in the 
background functions as a programmed design tool which is used to produce a 
wide variety of variations [Walliser 2009]. 

So the key idea for the project was the use of a mathematical surface, the Costa-
Hoffman- Meeks surface discovered by the three mathematicians in 1982. And why use 
mathematical ideas for an architectural project? Here is Tobias Walliser’s answer: 

The constantly evolving new computational design possibilities come along with 
the difficulty that software possibilities take over the design decisions and are 
applied without critical reflection. Therefore a strong conceptual framework for 
the design is needed to develop coherent architectural designs. A great potential 
lies in the combination of intuitive ideas and vague formal explorations in 
combination with mathematically defined relationships and rule-based 
interdependencies. Mathematics can play a role in both parts, as overall 
conceptual inspiration for the generation of ideas and as tool for the geometrical 
relationships of elements. The Costa-Hoffman-Meeks surface proved to be a great 
inspiration for the design a highly functional and very emotional new icon for the 
Mexican coast (fig. 1).  
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Fig. 1. © LAVA & Tobias Walliser 

Elegant, simple, bold and rich in experience, this building will be a tribute to the 
meaningful adoption of mathematical models in architecture which is only 
possible using advanced computational methods in an intuitive way. And this is 
what architecture is all about: defining a process to incorporate exact data and 
rules to create spatial experiences [Walliser 2011 (italics mine)]. 

It is interesting to note that in the last 20 years important results have been obtained 
for minimal surfaces using computer graphics. In fact, I wrote in a paper in 1993: 

Thanks to this new tool it was possible not only to obtain a visualization of the 
minimal surfaces already known, but also to generate images of minimal surfaces 
that cannot be obtained with soapy water, and even more interesting, to see new 
surfaces whose shapes were previously unknown. It was thus possible to solve 
open problems in the theory of minimal surfaces. And one of the main exemplars 
is just the Costa-Hoffmann and Meeks surface [Emmer 1993]. 

TThhee  CCoossttaa--HHooffffmmaannnn--MMeeeekkss  ssuurrffaaccee  11998822  

Until 1982, only three complete, embedded minimal surfaces of finite topology were 
known (complete meaning more or less no boundaries and embedded meaning that the 
surfaces do not fold back and intersect themselves). The three known surfaces were the 
plane, the catenoid and the helicoid, all of them very often used in architecture in 
different periods. 

 All these three minimal surfaces are of genus zero by the point of view of topology. 
They are all equivalent to a sphere. Now if we insert a handle on a sphere, we obtain a 
surface of genus one. For example a torus (doughnut) is a surface of this type. So the only 
known complete embedded minimal surfaces with finite topology were all of genus zero. 
The conjecture of many mathematicians was that these were the only possible examples, 
no surfaces could have genus more than one.  

In 1982 the Brazilian mathematician Celso Costa published an example of a surface 
that was minimal, suggesting that this surface was an example of genus one. David A. 
Hoffman and William H. Meeks III, by considering the equations obtained by Costa, 
using James T. Hoffman’s graphic programming were able to see the surface on their 
video terminal and convince themselves that the surface was free of self intersections and 
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therefore embedded. Then Hoffman and Meeks were able to obtain a formal 
mathematical proof of the topological property of the surface.  

So the mathematical problem was solved. It was the first important example of the 
solution of a non-trivial open problem in mathematics in which the use of computer 
graphics was essential. 

 

Fig. 2. The Costa-Hoffman-Meeks Surface 

Apart from their obvious interest for mathematics, the computer generated images 
obtained by Costa, Meeks and Hoffman were so beautiful that an exhibition based on 
them was organized in 1986 by the National Academy of Sciences with the title “Getting 
to the surface”. The exhibition also moved to Europe and included the new series of 
discovered surfaces (Hoffman and Meeks discovered a family of minimal surfaces with all 
possible genus greater than one). 

So the images of these surfaces became popular. As Walliser pointed out, the problem 
for the architect is not the complete understanding of the underlying mathematical 
formulae but the imagination to transfer these concepts into architectural models. And 
the models were beautiful and stimulating! 

AA  sseeccoonndd  eexxaammppllee::  tthhee  WWaatteerrccuubbee  22000044  

A few years before this project, Walliser had involved in another project together with 
his colleague Chris Bosse, also based on the geometry of soap films and soap bubbles. For 
both Bosse and Walliser “Learning from nature” was important, and they were thinking 
in particular of the work of the famous German architect Frei Otto.  

In his paper “Bubble-ism. Architecture of foam” Bosse wrote: 

If the architect has an understanding of the disciplines of Engineering, and if the 
engineer has an understanding of design, they have a perfect base for 
collaboration. Frei Otto, who is an architect, but always worked at the interface 
with engineering, found inspiration in self-organisation and naturally evolving 
systems in nature. 
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Looking at his work the question of architecture or engineering doesn’t even arise. 
It is both. The buildings have beautiful structures, inspired by nature, and are 
beautiful in their own right, they create beautiful spaces and atmospheres [2008]. 

In the section “Learning from Nature”, he adds: 

In the series of pavilions that we have now built around the world (THE MOET 
marquee just won the IDEA awards in Melbourne), we use the principle of 
Minimal surfaces in Nature. With a minimum of material we fill an enormous 
space, making use of the self organizational properties of membrane structures. 
Frei Otto used these principles, dipping wires into soap-films to create the shape 
for the Munich 1972 Olympic roof, a floating cloud hovering above the 
landscape. We can now create minimal surfaces that wouldn’t have been possible 
without computation that are extremely efficient and look incredibly sexy. Light 
animates these structures and fills them with life. 

At the beginning of 2002 Bosse was part of a high-rise competition:  

We had the idea to break up the concept of an extruded tower with an applied 
façade by creating a tower that was façade and structure at the same time. We 
looked at skeletons, spider webs, corals and foam. With a bunch of imagery we 
went into a workshop with Charles Walker of the Advanced Geometry Group at 
Arup in London. We came up with the idea of packing of Spheres in space. 
A box filled with spheres would assume the state of densest packing when you 
shake it. 
This would be a somehow stable system. If you slice through that, you get a slice 
of structure, that looks organic and random, but it is highly efficient and 
structural. 
We remembered that Frei Otto, (who was my mentor at the Institute of 
Lightweight Structures at Stuttgart University) had done experiments with soap 
bubbles and foam. (In the sixties the German architect Frei Otto started to 
experiment with soap films. He had in mind to use the models of minimal 
surfaces to produce a complete new structure to be used in architecture. He 
created the so called Tensile Structures all based on soap film models. His most 
famous project is the tent for the Olympic Stadium in Munich for the Olympic 
Games of 1964). 
The Highrise Project unfortunately terminated, but we received a copy of Frei 
Otto’s book [Otto 1969] from Charles Walker, which showed circles 
transforming into 3-dimensional foam. 
So when 1 year later I moved on to Sydney, and we started the competition, we 
could come back onto this thought, and it was a perfect match with the idea of 
water in a building form. 
However it took another 3 months before we got our heads around to actually do 
it, and finally Tristram Carfrae and his team at ARUP found the 3-dimensional 
geometry of foam through research, on the website of the Irish Institute of Foam 
Physics at Dublin’s Trinity University. 

It was the project for the Watercube for the Olympic Gems in Beijing 2008. This is how 
it was described by the Jury of the Mostra Internazionale di Architettura, Biennale di 
Venezia 2004 : 
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The Lord Kelvin conjecture and the geometry of soap films 

The special award for the most accomplished work in the section Atmosphere is 
awarded to the Australian architecture firm PTW Architects, CSCEC + Design 
and Arup for the project National Swimming Centre, Beijing Olympic Green, 
China. The project demonstrates in a stunning way, how the deliberate morphing 
of molecular science, architecture and phenomenology can create an airy and 
misty atmosphere for a personal experience of water leisure. 
The entire structure of the Watercube is based on a unique lightweight-
construction, developed by PTW with ARUP, and derived from the structure of 
water in the state of aggregation of foam. 

 

Fig. 3. Water Cube, design by C. Bosse, J. Bilmon & M. Butler, © PTW ARUP CSCEC 

Behind the totally randomized appearance hides a strict geometry as can be found 
in natural systems like crystals, cells and molecular structures – the most efficient 
subdivision of 3-dimensional space with equally sized cells.) 
By applying this novel material and technology the transparency and the 
appearing randomness is transposed into the inner and outer skins of ETFE 
cushions. EFTE, ethylene tetrafluoroethylene, is a transparent plastic which 
absorbs solar radiation and reduces thermal loss. This is the first time EFTE has 
been used in China and it is the world’s largest and most complex EFTE building 
ever constructed.  
Unlike traditional stadium structures with gigantic columns and beams, cables 
and backspans, to which a facade system is applied, in the Watercube design, the 
architectural space, structure and facade are one and the same element. 
The structure of the National Swimming Centre is based on the most efficient 
subdivision of three-dimensional space. This pattern is extremely common in 
nature being the fundamental arrangement of organic cells, the crystalline 
structure found in minerals, and the natural formation for soap bubbles. 

In the poster displayed at the Biennale in Venice 2004 there were pictures of foams, 
of soap films, of radiolaria, and quotations from the famous book by D’Arcy Thompson, 
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On Growth and Form [1942]. A full chapter in the book of Thompson is dedicated to 
the geometry of soap bubbles and soap films, showing the connections of this geometry 
to the shapes of some skeletons of the radiolaria, microscopic animals that are part of 
marine plankton.  

“The peculiar beauty of soap bubbles, the resulting forms, are so pure and so simple 
that we come to look on them as a mathematical abstraction”, wrote Thompson.  

Since the publication of the book by Thompson some of the images of radiolaria have 
been always linked to the geometry of soap films. These images have influenced many 
designers, artists and architects, in particular for projects of submarine architecture in the 
late 1980s (for more details and the connections with art, see [Emmer 2009]). 

It is interesting to note that o December 9, 1992, the French physicist Pierre-Gilles 
de Gennes, professor at Collège de France in Paris, after being awarded the Nobel Prize 
for physics concluded his conference in Stockholm with a poem on soap bubbles, adding 
that no conclusion seemed more appropriate. The poem appears as a  closure to an 
engraving of 1758 by Daullé from François Boucher’s lost painting La souffleuse de 
savon. De Gennes did not want to allude to the allegorical meanings that soap bubbles 
have had for many centuries: symbol of vanity, fragility of human ambition and of 
human life itself. Soap bubbles and soap films were one of the subjects of his talk, which 
was entirely devoted to the Soft Matter. Bubbles that “are the delight of our children,” he 
wrote. A reproduction of the engraving was included in the article [de Gennes 1992]. 

 

Fig. 4 . La Souffleuse de savon, etching by F. Boucher (1758); see [Emmer 2009] 

TThhee  LLoorrdd  KKeellvviinn  ccoonnjjeeccttuurree  aanndd  tthhee  ggeeoommeettrryy  ooff  ssooaapp  ffiillmmss  

 In the late nineteenth century, Lord Kelvin posed a problem: “If we try and 
subdivide three-dimensional space into multiple compartments, each of equal volume, 
what shape would they be when the subdividing surfaces are of minimum area?” This is 
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an interesting problem, not only as a theoretical exercise, but also because such shapes are 
prevalent in nature [Thomson 1887]. 

The study of soap bubbles is probably a good place to start when considering Lord 
Kelvin’s challenge. Antoine Ferdinand Plateau (1801-1883) began his scientific career in 
the field of astronomy. In 1829 during an experiment he exposed his eyes too long to 
sunlight, causing irreversible damage to his sight. From 1843 he was completely blind. 
He took an interest in the nature of forces in molecular fluids, to discover the forms that 
generate soap films contained in metal wires immersed into soapy water. In 1873 he 
published the result of fifteen years of research in a two-volume work: Statique 
expérimentale et théorique des liquides soumis aux seules forces moléculaires [Plateau 
1873]. 

Plateau himself introduced the general principle that is the basis of his work. The idea 
is to draw a closed contour with the only condition that it contains a limited portion of 
the surface and that it is compatible with the surface itself; if then a wire identical to the 
previous contour is constructed, plunged entirely in the soapy liquid and then pulled out, 
a set of soapy films is generated representing the portion of area under consideration. 
Plateau could not help noting that these surfaces are obtained ‘almost by magic’. 

And here is the great discovery of Plateau, incredible at first sight: however high the 
number of soap films that come into contact with each other, there can be only two types 
of configurations. To be precise, the three experimental rules that Plateau discovered 
about soap films are: 

1. a system of bubbles or a system of soap films attached to a supporting metallic 
wire consists of surfaces flat or curved that intersect with each other along lines 
with very regular curvature; 

2. surfaces can meet only in two ways: either three surfaces meet along a line or six 
surfaces that give rise to four curves that meet in a vertex; 

3. the angles of intersection of three surfaces along a line or of the curves generated 
by six surfaces in a vertex are always equal in the first case to 120°, in the second 
to 109° 28´. 

 

Fig. 5. Soap Films by Michele Emmer. The two rules of Plateau. © M. Emmer 

Another question remained still open: were the laws discovered experimentally by 
Plateau for the geometry of soap films correct or not? 
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In this work we provide a complete classification of the local structure of 
singularities in the three-dimensional space, and the results are that the singular 
set of the minimal set consists of fairly regular curves along which meet three 
films of the surface with angles equal of 120° and isolated points where meet four 
of these curves giving rise to six films also with equal angles.  
The results apply to many real surfaces that are generated by surface tension, as to 
any aggregate of soap films, and so provide a proof of experimental results 
obtained from Plateau over a hundred years ago. 

Thus begins one of the best known work of mathematics of the last century. Written 
by Jean E. Taylor, entitled “The Structure of Singularities in Soap Bubble-and-Like 
Soap-Film-Like Minimal Surfaces” [Taylor 1976]. So Plateau was right. Fred Almgren 
and Jean Taylor wrote another well-known article that was published in Scientific 
American [1976]. 

In 1979 I realized the film Soap Bubbles, in the series Art and Mathematics, starring 
Fred Almgren and Jean Taylor [Emmer 1979]. The film was made at Princeton 
University, using real models with soapy water, while in the film on minimal surfaces 
produced by A. Arnez, K. Polthier, M. Steffens and C. Teitzel at University of Bonn and 
at Technical University of Berlin in 1995 all models are made with computerized 
animation [Arnez et al. 1999].  

A few years before the experimental results of Plateau, the German mathematicians 
Schwarz found the solution to what would later be called “The Plateau problem” for a 
non-planar quadrilateral. One century later, the architect Frei Otto used this solution for 
his architectural projects of tents. 

 

Fig. 6. Schwarz solution; see [Emmer 2009] 

In 1887, Lord Kelvin proposed a solution to his own problem based on a fourteen-
sided figure made of eight regular hexagons and six squares. This figure can be 
constructed by cutting off the corners of a regular octahedron. 

However, the corner angle of a square is 90° and a hexagon, 120°. Both of which are 
some distance away from Plateau’s observed ideal of 109.47°. A regular pentagon has a 
corner angle of 108°, but dodecahedra (twelve-sided figures made from regular 
pentagons) cannot be joined together to tile space – they leave gaps between them.  
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It was supposed for some time that figures comprising some combination of 
pentagons and hexagons would be more efficient than Kelvin’s Foam. But it was not 
until 1993 that two Irish professors, Denis Weaire and Robert Phelan, constructed foam 
of two different cells, one of fourteen sides (two hexagons and twelve pentagons) and one 
of twelve sides (all pentagons) that used less surface area than Kelvin’s foam. 

 

Fig. 7. Solution of Weaire and Phelan 

The Weaire-Phelan foam remains today the optimal subdivision of three-dimensional 
space and was used as the basis of the structure for the Beijing National Swimming 
Centre. 

It was recently proved by the mathematician Frank Morgan [2008] that there is a 
absolute minimum to this problem that is the best solution. But it is not known if the 
best solution is the one of Weaire and Phelan. The mathematician John Sullivan has 
produced very interesting models using computer graphics of both the Lord Kelvin and 
Weaire and Phelan solution.  

 

Fig. 8. The solution of Weaire and Phelan, by John Sullivan © J. Sullivan 
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Fig. 9. Photograph of the experimentally produced Weaire-Phelan foam. The sample contains 
approximately 1,500 bubbles, arranged into 6 layers. Many fine details are observed confirming the 

absence of defects 

The solutions proposed by Lord Kelvin and by Weaire and Phelan were not produced 
physically. They were abstract models, drawings or computer generated images, like the 
one of John Sullivan.  

In November 2011 the abstract geometrical model became a real physical model 
made of soap films. Ruggero Gabbrielli, an Italian scientist from the University of 
Trento, went to Trinity College to cooperate with the team of Weaire and Phelan. He 
had in mind a physical solution of the Lord Kelvin problem. The team coordinated by 
Gabbrielli was able to produce the experiment. With the help of Kenneth Brakke, the 
creator in the 1970s of the free software Surface Evolver, an interactive program for the 
modeling of liquid surfaces shaped by various forces and constraints [Brakke 2009] the 
team realized a complex structure that represented physically the abstract solution of 
Weaire and Phelan. It was possible to produce a picture of the structure obtained of soap 
films. “Wonderful!” said Weiare, today Emeritus professor, “We will call it an Italian 
Job”. The paper with the picture was published in the same magazine in which Lord 
Kelvin had proposed the problem, more than a century before, the Philosophical 
Magazine [Gabbrielli et al. 2012]. 

The first scientist to investigate soap bubbles and soap films was Isaac Newton in 
Opticks [2007], the first edition of which was published in 1704, to describe in detail the 
phenomena that are observed on the surface of the soap films. In volume II, Newton 
describes his observations on soap bubbles. In particular he observes that if a soap bubble 
is formed with some water made more viscous using soap, it is very easy to observe that 
after a while a great variety of colors will appear on its surface. Newton noted that in this 
way colors were disposed according to a very regular order, like many concentric rings 
beginning from the highest part of the soap bubble. He also observed that as the soap 
film became thinner due to the continuous diminution of the contained water, such rings 
slowly dilated and finally covered the whole film, moving down to the low part of the 
bubble and then disappeared.  
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Soap bubbles attracted many artists starting in the sixteenth century. It is very likely 
that playing with soap bubbles was a very popular children’s game at that time. And it is 
also natural that scientists became interested in the phenomena surrounding the 
formation of soap bubbles and the colors on their surfaces. 

AA  sshhoorrtt  ccoonncclluussiioonn  

In 1890 Boys completed his book Soap Bubbles [1959], in which he summarized his 
own experience in explaining to a large public the geometry of soap bubbles and soap 
films:  

I do not suppose that there is anyone who has not occasionally blown a common 
soap bubble, and while admiring the perfection of its form, and the marvelous 
brilliancy of its colour, wondered how such a magnificent object can be easily 
produced.  
I hope that none of you are yet tired of playing with bubbles, because as I hope 
we shall see, there is more in a common bubble that those who have only played 
with them generally imagine. 

As foreseen by Lord Kelvin, artists, architects, mathematicians, physicists and 
biologists among others continued to study color and shape in soap films throughout the 
centuries. The story of soap bubbles in mathematics, science, architecture and art is a 
never-ending story. 

 

Fig. 10. Anonymous, Netherlands, seventeenth century, private collection 
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