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AAbbssttrraacctt..  The perceivable regularity of some Roman villas can 
be understood in the context of a grid-based design. In this 
paper we try to clarify the requirements under which we may 
consider that a villa has an outline based on a grid and we 
quantify the accuracy of the correspondence between a villa’s 
plan and a given grid. We follow this approach with some 
Roman villas in Portugal and use the grids as tools for the 
analysis and the reconstruction of their plans. 
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11  IInnttrroodduuccttiioonn  
When studying Roman villas, we often find that their overall layout exhibits a 

perceivable degree of regularity, which becomes even more evident when we superimpose 
a grid on the plan of a villa. We also observe that the measures of individual rooms 
usually do not yield integer numbers of Roman feet, or of any others ancient units of 
length, because the thickness of the walls occupies part of the standard areas provided by 
the regular division of the space. 

Generally, given a grid, we accept that a wall is in accordance with the grid if its 
direction corresponds to one direction of the grid, and there is a line that either goes 
through the inside of the wall, or along one of its faces. This wall-by-wall study requires a 
careful translation into a global analysis of the villa. Therefore, our first goal is to suggest 
a method to measure the accuracy with which a particular villa fits into a grid-based 
structure. 

The process of looking for a grid that describes the regularity of a villa is a good 
method of analysis, revealing different sections of the plans – for example, only one 
section fits a given grid while the others are irregular or fit another grid, or there are 
portions of the plan whose correspondence to a grid is much more accurate than the rest 
– and enhancing particular strategies in the definition of the original plan, such as 
stretching, shrinking or distorting shapes. After having accepted a grid-based design, and 
established a grid with a given tolerance, that grid is a basic tool for the reconstruction of 
the villa’s plan. 

11..11  AA  nnoonn--iiddeeaall  ggrriidd  

Given a villa, we ask if there was the previous definition of a grid, on the terrain, 
when it was laid out. This could be due either to the existence of a grid-based project or 
to a practical procedure, as from a layout whose measures were not totally determined. 

When we look for proportions, or other mathematical ideas, in a given building, we 
must be aware that rigorous mathematical content is garbled by the several steps between 
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1.2 Description of the present article 

2 Accuracy and grids 

2.1 Marking the rhythm of the grid 

the initial idea to its material achievement. In particular, the plotting of a grid on the 
ground is subject to errors and deviations of measurements, features that we must take 
into account when analysing the remains in the search for a grid pattern that structures 
the building. One way of dealing with the accuracy of the implementation of a 
conceptual tool, such as a grid, is to quantify the tolerance we expect in the actual 
measurements, given the ideal ones. 

Identifying a conceptual intention from material vestiges always involves a degree of 
tolerance, even if this is not taken explicitly. Faced with the regular remains of a Roman 
villa, we can accept that they match a grid-based design within a certain tolerance, and 
reject the same hypothesis in the context of a narrower admission of variation. This is 
particularly relevant when several cases are to be compared in order to draw conclusions. 

Our analysis rests on the value of a tolerance, which we denote by , for the 
measurements in the layout of the grid on the terrain. A tolerance of , or 100  per cent, 
means that the bias in measuring the ideal length d, and marking it on the ground, can 
reach up to d . For example, =1/100=0.01 if we work with 1% of tolerance. This 
overall tolerance is naturally reflected in the linear dimensions of the building, but also in 
its angles, i.e., parallelism and perpendicularity between lines. With regard to a grid, the 
equally spaced parallel lines turn out to form acute angles, perpendicularity is slightly 
distorted, and the characteristic periodicity of measures also suffer some deviations. We 
describe the variations of these observable dimensions that are due to inaccuracies, and 
express them as a function of the tolerance : to describe how inaccuracy in the 
definition of the grid affects a length, a set of ideally equal lengths, and the angles formed 
by two directions that were intended to be either the same or perpendicular. 

With this tool, the acceptance of a deviation from the ideal grid is framed within a 
certain tolerance, allowing the comparison between cases, and the determination of the 
required tolerance in order to accept the grid-based design for a particular building. 
Moreover, the control of the maximum effects of inaccuracy in the measurements, 
provides a method for distinguishing between inaccuracy and other factors that can cause 
deviations. For example: to decide whether two nonparallel walls forming a small angle 
were or were not, intended to be parallel (see Pisões villa in section 3.1); to justify, in the 
context of a grid-based design villa, the deviation of a small set of walls, or rooms (see the 
villa in Quinta das Longas, in section 3.2). 

The method described above quantifies the maximum errors in the layout of a 
construction as a percentage of the measures. This is a robust way of dealing with the 
deviations from an ideal plotting, particularly if the actual procedures of the constructors 
for the definition of the lengths are partially unknown. Although other statistical 
measurements may change, the maximum deviations from the intended length, in the 
context of a given tolerance, are the same either for an additive process or for the 
definition of total lengths followed by a subdivision. Analogously, the use of different 
gauges during the process do not influence the maximum deviations as a percentage of 
the lengths (see the end of section 2.1 for some considerations on this subject). 

For the analysis, a given ideal grid is translated into a “blur” containing the ideal grid 
and whose thickness depends on the considered tolerance . Is this “smudged” grid that 
we superimpose on the remains to look for a correspondence. If we accept this 
correspondence we are accepting the existence of a grid-based design under the 
hypothesis that the original constructors had established the grid with an accuracy 
quantified by . 
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11..22  DDeessccrriippttiioonn  ooff  tthhee  pprreesseenntt  aarrttiiccllee  

In section 2 we make the calculations for the dependence on the tolerance of the 
marked lengths (section 2.1), of the determination of perpendicular directions (section 
2.2) and of the overall relations between the elements that characterise a grid: equal 
lengths, parallelism and perpendicularity (section 2.3). We conclude this section with a 
summary, shown in tables 4 and 5, both for the general case, as functions of , and for 
the particular values of 0.5% and 0.6%. The detailed calculations are performed in 
Appendices 1, 2 and 3, to lighten the pathway to the main conclusions of section 2. The 
appendices present step-by-step calculations, and will be useful for those who attempt to 
adapt our approach to analysis of different features. 

In section 3 we follow the several phases of analysis when searching for the existence 
of a grid-based design in a villa. We separate the analysis in two main steps, according to 
the inner nature of a grid – its orientation (section 3.1), and the size of its basic cell, i.e., 
the standard area that is defined by the repetitive drawing of equally spaced lines along 
two perpendicular directions (section 3.2). We present examples of Roman villas in 
Portugal that fit within a grid-based design, for a square grid measuring 5 Roman feet. 

22  AAccccuurraaccyy  aanndd  ggrriiddss  
What was the accuracy in the plotting of a building in Roman times? Mark Wilson 

Jones warns that in Roman architecture the “standards of accuracy differ enormously 
from building to building, and even within the same one” [2000: 71].  Within this wide 
range, Jones claims that “normally, however, tolerances may be expected of up to 0.5 per 
cent for medium-to-large distances, and perhaps a bit more where the materials are brick 
and concrete as opposed to good quality stone” [2000: 72]. 

It is necessary to take various factors into consideration, especially when far away 
from Rome: the different regions of the Roman world, different periods, types of 
buildings or sections of buildings (public/private, cult/domestic, representational/ 
utilitarian), since all these characteristics play a hierarchical role that will be reflected in 
the relative accuracies in different sections, and on the actual shape of the remains. 

For a grid-based design, we expect to find a bias in the plotting of the grid that rules 
the plan. 

We consider either square or rectangular grids, and focus on two main features that 
depend on the accuracy of measures: 

 the definition of the lengths, in particular the plotting of equally spaced marks 
along a line, and 

 the determination, given a line, of its perpendicular direction. 

22..11  MMaarrkkiinngg  tthhee  rrhhyytthhmm  ooff  tthhee  ggrriidd  

Suppose we are plotting a grid-based design building. The definition, on the ground, 
of the basic grid starts with a line having equally spaced points (fig. 1). 

 

Fig. 1. The ideal length d defines equally spaced points along the horizontal direction 
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2.2 Determining perpendicular directions After drawing the first line with a point we call the origin (point with abscissa zero in 
fig. 2), we intend to mark n points along a given direction (the horizontal direction in 
figs. 1 to 3), equally spaced the distance d. However, the plotting of these initial 
markings will be affected by inaccuracies. The actual marks p0, p1, p2, 
... , pn are spaced, respectively, the approximated values d1, d2, ... , dn. 

 

Fig. 2. The ideal marks 0, d, 2d, … , 6d are well defined points at a distance d, while the actual 
ones 0, p1, p2, … , p6 depend on the measures d1, d2, … , d6 affected by a random error, and are, 

thus, somewhere at the represented intervals. In this example the inaccuracy is up to 2.5% 

For a given tolerance , the markings on the ground have the following properties 
(we refer to Appendix 1 for a step-by-step explanation): 

A. The distance between two consecutive marks is larger than d(1 ) and smaller 
than d(1+ ), i.e., varies in a range of 2 d. 

B. The distance between a given mark pi and the origin is larger than id(1 ) and 
smaller than id(1+ ), i.e., varies in a range of 2i . 

 

Fig. 3. Given the mark pi-1, the next mark is pi in the interval 
[pi-1+d d, pi-1+d+ d],, represented in bold 

Suppose the constructors change the gauge during this process. For example, after 
measuring two times the length d, they begin to use a new gauge with length 2d. Shall we 
define tolerance in a different way in order to capture this other possible procedure? In 
fact, as far as the maximum deviations are concerned, given the tolerance , everything 
remains. Since the maximum inaccuracy for the new gauge is 2d , the defined lengths 
would correspond to the even markings in fig. 2. After using the 2d gauge, the workers 
could define the intermediate odd markings, a procedure where property A holds. 
Similarly, if the first gauge is the total length, nd, its maximum error is nd  and the 
subsequent divisions follow the properties described above, with regard to maximum 
deviations. That is one major advantage of quantifying the maximum errors by way of a 
percentage of the measures. Thus, the percentages will establish the same maximum 
deviations whether the lengths are marked by additive processes or if a large length is 
divided into smaller parts. 
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22..22  DDeetteerrmmiinniinngg  ppeerrppeennddiiccuullaarr  ddiirreeccttiioonnss  

In this section, we are going to consider a given accuracy and ask how it affects the 
perpendicularity of the lines defining a grid. The translation of this accuracy to the angles 
amplitudes, must rest on the procedures that the Romans followed in the definition of 
right angles. 

Some known constructions of the right angle are based on particular right triangles: 

A. Pythagorean triangles, i.e., right triangles with integer side lengths, in particular 
the 3-4-5 triangle; 

B. the isosceles right triangle, whose hypotenuse corresponds to the diagonal of a 
square defined by the catheti [Schneider 2002]. 

As an example of procedure A, consider the description by Vitruvius:  

If we take three rules, one three feet, the second four feet, and the third five feet 
in length, and join these rules together with their tips touching each other so as to 
make a triangular figure, they will form a right angle [1960: IX, Introduction, p. 
253]. 

The right angle is of course that formed by the 3-foot and 4-foot rods. Vitruvius 
describes the important quality of this device:  

… a right angle can be formed without the contrivances of the artisan. Thus, the 
result which carpenters reach very laboriously, but scarcely to exactness, with their 
squares, can be demonstrated to perfection [1960, IX, Introduction, p. 252-253]. 

Instead of three rods, or ropes, a procedure that prevailed until now, we can use a 
circular rope with 12 equally spaced knots, to which is given a triangular shape with sides 
3, 4 and 5. Other right triangles with integer side lengths were known since Babylonian 
times [Kline 1972: 10]. However, we have found no reference concerning their use in 
Roman building procedures. 

Given a line segment with, say, 10 feet, we can draw a perpendicular line if we know 
how to measure a 10 2 feet line segment, the diagonal of the square with sides 10 feet 
long. Thus, procedure B depends on the approximations of the ratio 1: 2 or, 
analogously, the ratio of side and diagonal of a square. 

Faventius, a third century commentator on Vitruvius, describes a way of establishing 
a right angle based on the approximate ratio 12:17 of side and diagonal of a square:  

Since the principle of the square was a clever discovery and useful for all purposes 
– since, indeed, nothing can be done very practically without it, this is how you 
will prepare one. Take three scales, two of them each 2 foot long, the third 2 foot 
10 inches. They are all to be of one uniform width, and are to be joined at the 
ends to give the shape of a triangle. Your square will thus be made to professional 
standards [Plommer 1973: 81]. 

Since one inch is 1/12 of the foot, Faventius suggests the ratio 

17
12

34
24

1024
24

12
102

2  

for side and diagonal of the square. 

Approximations for the ratio 1: 2 existed in Mesopotamia and Egypt, long before 
Rome [Kline 1972], and the successive approximations of 5:7=1:1.4, 12:17=1:1.41(6), 
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2.3 The overall grid construction 

Step 1

Step 2

29:41 1:1.4138, … , were known in Roman times [Fowler 1999, in particular the 
passage from Theon of Smyrna, pp. 56-57]. A direct reference to their use by Roman 
constructors is found in the description of Faventius. 

The right angles so obtained are affected by errors that depend on the accuracy of the 
measurements. We now describe how the errors on the sides of a right triangle affect the 
accuracy of the definition of its right angle. 

Consider a general right triangle with sides a, b and c, where c is the hypothenuse 
(fig. 4). The drawing of such a triangle will be affected by the accuracy we can achieve in 
the lengths of the sides. The drawn triangle a1b1c1 differs from the ideal one; in 
particular, to the ideal right angle corresponds an angle measuring +90°. For the 
purposes of our study, it is important to relate the bias  with the tolerance in the 
measuring of the sides a, b and c. 

Let  be the overall tolerance in the determination of the lengths. To the intended 
length a corresponds a real length, say a1, that is bigger than a a and smaller than a+ a 
or, formally, 

1,11 aaa . 

An analogous interval of possible values exists for each length, also defined up to an 
error that depends on . 

  

Fig. 4. The ideal right triangle abc and another triangle a1b1c1, whose corresponding sides differ 
slightly, having the angle +90° opposed to side c1. In this example we have >0 

The inaccuracy in the definition of the lengths a, b and c causes a bias  from the 
right angle. We show in Appendix 2 that method A, based on the 3-4-5 Pythagorean 
triangle, leads to a variation in the angle that is expected to be 90° in the interval 
[ m, m], where 

1802 22

ab
ba

 

is a good approximation for m, for small values of ; see table 1.  

tolerance measuring sides deviation 
0.5% [-1.2°–1.2°] 

1% [-2.4°–2.4°] 
Table 1. The range of deviation from the right angle, as a function of the tolerance in the 

measurements, when it is defined by way of the 3-4-5 triangle 

For the second method, and using 5:7 as the approximation to the ratio1: 2, we have 
the range of deviations from the right angle described in table 2. 
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tolerance measuring sides deviation 

0% 1.1° 

0.5% [ 2.3°,0.0°] 

1% [ 3.4°,1.1°] 
Table 2. The range of deviation from the right angle, as a function of the tolerance in the 

measurements, when it is defined by way of the triangle whose side and diagonal have the ratio 5:7 

If the ratio 1: 2 is approximated by 12:17, we obtain the values in table 3. 

tolerance measuring sides deviation 

0% 0.2° 

0.5% [ 0.9°,1.3°] 

1% [ 2.1°,2.5°] 
Table 3. The range of deviation from the right angle, as a function of the tolerance in the 

measurements, when it is defined by way of the triangle whose side and diagonal have the ratio 
12:17 

22..33  TThhee  oovveerraallll  ggrriidd  ccoonnssttrruuccttiioonn  

Now we present an estimate for some of the expected deviations in the plotting of a 
grid on the terrain. In fig. 5 we describe a possible way of marking a grid. Then we 
describe the several steps as well as the deviations that can occur. 

 

Fig. 5. Marking, step by step, a grid on the terrain 

SStteepp  11. Definition of a main direction. In this article we suppose that there are no 
errors in the drawing of this straight line. However, when we want to compare the 
orientation of a building with the cardinal points, we must consider a possible error of 
orientation in this first step. 

SStteepp  22. Marking the length of the first line, along with its subdivisions. In this step 
we consider the deviations described in section 2.1. Thus, in the context of a tolerance , 
any marking with intended length d will, at most, suffer a deviation of d. Larger 
deviations should be justified. Recall that the maximum deviations that we are taking 
into account do not change for different procedures, whether an additive process, the 
change of the gauge during the process, or the marking of a total length followed by 
subdivisions. 
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Step 5

Step 6

Step 7

3 Analysis with examples 

3.1 Orientation 

SStteepp  33. In this step we consider the determination of right angles and suppose that at 
least two lines must be plotted which are perpendicular to the first line. The maximum 
deviation from the right angle, m, treated in section 2.2, implies that the two lines 
drawn in this step can form an angle up to 2 m (fig. 6). Recall that  

1802
12
25

m  

if the right angle is determined via the 3-4-5 Pythagorian triangle. If an approximate 
isosceles right triangle is used, with side and diagonal ratio 12:17, then 

180141
288
289

m . 

 

 

Fig. 6. Lines r and s form, with the initial line, an angle close to the right angle, with a maximum 
deviation of m. The maximum angle between r and s is, therefore, 2 m and happens in the two 

cases depicted in this figure 

SStteepp  44. In this step, as in step 2, the maximum deviation is a function of the tolerance 
and does not depend on the particular procedures of the constructors. The errors in the 
markings of the two lines can cause one of them to be larger than the other. If the total 
length is intended to be d then the maximum difference between the lengths of the two 
lines, occur when one of them measures d(1 ) and the other measures d(1+ ). 
Therefore, the difference between the lengths of the two lines is smaller than 2d . 
However, if we measure the distances between the first wall and the end of each one of 
the walls defined in this step, they can differ even more, see fig. 7. These distances, 
measured in a direction perpendicular to the first wall, can vary up to 
d[(1+ ) (1 )cos( m)], which, for small values of  is approximately 2d . 

 

 

 

Fig. 7. In steps 4 and 5, deviations in the measurements of lengths and angles affect the distances 
and thus lead to the existence of an angle m where parallel lines were intended 
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SStteepp  55. The new lines drawn in this step depend, both in length and direction, on the 
previous marks. If the line at the top measures c, then the maximum and minimum 
possible lengths of the line at the bottom are c ± 2d(1+ )sin( m), and correspond to the 
cases depicted in fig. 6, with lines r and s measuring d(1+ ). The maximum angle 
between the line at the top and that at the bottom is m, which, for small values of  is  

1802km , 

where k is the ratio between the lengths d and c (fig. 7 and Appendix 3). Unless the 
length d is larger than 4c, this angle will be smaller than the one calculated in step 3, the 
maximum angle between two lines that were intended to be parallel. The maximum 
angle between the lines at the bottom and at left, intended to be perpendicular lines, is 
90°+ m+ m, which is larger than m, calculated in step 3. 

SStteepp  66. In this step some errors can possibly be cancelled but we do not deal with this 
hypothesis since our approach quantifies the maximum deviations from the intended 
ideal grid. 

SStteepp  77. In this step we consider that no errors are added to the construction. 

After this analysis, we summarise the largest possible deviations for each of the 
observable dimensions in the next tables. 

 length 
d 

difference between 
two lengths d 

right angle 
deviation 

angle between 
parallel lines 

 d  2d  m+ m 2 m 

0.005 0.005  0.01d 1.8° 2.4° 

0.006 0.006  0.012d 2.1° 2.9° 

Table 4. Maximum deviations for each of the observable dimensions, calculating right angles with 
the 3-4-5 Pythagorean triangle 

 length 
d 

difference between 
two lengths d 

right angle 
deviation 

angle between 
parallel lines 

 d  2d  m+ m 2 m 

0.005 0.005  0.01d 1.9° 2.7° 

0.006 0.006  0.012d 2.3° 3.2° 

Table 5. Maximum deviations for each of the observable dimensions, calculating right angles with 
the approximate isosceles right triangle with catheti and hypothenuse ratio 12:17 

33  AAnnaallyyssiiss  wwiitthh  eexxaammpplleess  

Now we consider the process of analysing the remains of a Roman villa, looking for 
the possibility of a grid-based design. 

33..11  OOrriieennttaattiioonn  

The first decision has to do with the orientation of the orthogonal grid. We look for 
some correspondence with a grid whenever a villa exhibits a certain regular pattern with 
the walls mainly along two orthogonal directions. Sometimes a villa is divided into 
sections that clearly correspond to different orthogonal grids. This is the case of the 
Roman villa of Pisões, located near Beja, Portugal – a richly decorated villa that was 
inhabited from the first and until the fourth centuries. In Fig. 8 two sections, with clearly 
distinct orientations, are indicated. 
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3.2 Measure of the grid 

 

Fig. 8. Two sections with distinct orientations of the walls 

However, if the difference between two directions is very small we must try to 
understand, based on available data on the construction (dating of the ruins, several 
phases of construction), if this follows from an accidental deviation or if it can be 
justified by two different directions. 

What should the threshold be for distinguishing between a deviation from a given 
grid and a different section of the villa, in the absence of evidence proving more than one 
phase of construction? We use tables 4 and 5 to have the magnitude of the deviations due 
to the lack of accuracy in the measures. Thus, for a tolerance of 0.5%, we see that ideally 
parallel lines can form an angle up to 2.4° or 2.7°, depending on the procedures used to 
determine right angles. We posed this question about Pisões, since there is a small angle 
between two sets of elements, depicted in fig. 9. We see that the deviation from 
parallelism is 1.3°, which is framed within a tolerance smaller than 0.5%. In fact, we can 
calculate the minimum tolerance required to accept this deviation from parallelism,  
such that 2 m=1.3°, approximately 0.2%. 
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Fig. 9. Walls that are close but not exactly parallel. Can the angle of deviation be justified by the 
accuracy of measure in the plotting, or should we look for other reasons supporting an intended 

different direction? 

After this analysis, we end up with sections of the plan that have well defined 
orientations and proceed to the next step. 

33..22  MMeeaassuurree  ooff  tthhee  ggrriidd  

Suppose we are analysing a section of a villa with walls along two orthogonal 
directions, i.e., a section where the orientation is well defined, up to the deviations that 
we accept in the context of a given tolerance. We must look for a rhythm that fits the 
regularity of the walls or, equivalently, we must try to determine the measure of a grid 
that fits the design of the remains. 

Consider the Roman villa in Quinta das Longas, a farm near the small village São 
Vicente e Ventosa, Alentejo. In fig. 10 we present the plan of the remains of the second 
Roman villa that was built in this place, inhabited from the end of the third century and 
until the beginning of the fifth century. We easily find that a square grid measuring 10 
Roman feet fits broadly some sections of the villa. Thus, we proceed to a more accurate 
analysis using grids related to this, with lengths of either 5 or 15 Roman feet. 
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Fig. 10. The Roman villa in Quinta das Longas and the identification of some agreement with a 10 
Roman foot square grid 
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There is a good agreement with a 5 Roman foot square grid (fig. 11). In this figure 
we used a dark grey colour for the walls that lie on the lines of that grid, either because 
their boundaries are provided by those lines or because there is a line passing in the 
interior of the wall along its length. These would be accepted in the context of a 0% 
tolerance in the plotting of the grid. However, for a non-zero actual tolerance, we 
consider a smudge grid, whose ideal lines are replaced by narrow stripes whose widths are 
determined by the intervals described in section 2.1. In practice, we perform the analysis 
with grids that are close to the 5 Roman foot square grid, up to a given tolerance, and the 
set of lines of all these grids, when seen altogether, define the stripes we referred. We 
concluded that a tolerance of 0.5%, which leads to grids with standard lengths in the 
interval [5 5 0.005, 5+5 0.005]=[4.975, 5.025], in Roman feet, is enough to include 
the majority of the walls. 

 

Fig. 11. The Roman villa in Quinta das Longas with a 5 Roman foot square grid. The walls in dark 
grey coincide with lines of the grid, while the ones in light grey are within a tolerance of 0.5% 

There are some walls that do not fit the 5 Roman foot square grid with tolerance 
0.5%, the ones left in blank in the figure. However, they can be framed within metrics 
that are in agreement with that grid, as we now describe. The semi-circular walls in the 
triple-apsidal triclinium and in the semi-circular recess of the north inner courtyard, have 
diameters of 15 Roman feet. Moreover, the semi-circular form that lies on the axis of 
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symmetry for each of these two divisions has a centre on that axis. Further, the axis is 
itself a line of the accepted grid. 

The walls facing east are irregular. This may be due to the constructions of the 
diagonal wall, which partially destroyed the remains. The garden bed and lake in the 
central rectangular open yard are symmetrically disposed in relation to the east-west axis 
that crosses this space. The antechamber, with two columns, of the winter triclinium at 
the southeast area, has width of 10 Roman feet, while the room next to the colonnade is 
broadly a square measuring 15 Roman feet. As we remarked in the introduction, 
following a grid leads to irregular sizes of the rooms. So, if regular sizes are intended, to 
ensure symmetry, for example, we expect that some walls are taken out the grid scheme, 
as in these last examples. However the measurements are in agreement with the overall 
approach of a regular division of space having a basic length of 5 Roman feet. 

The distance between the axis of two consecutive columns, in the north colonnade, is 
7.5 Roman feet. This is in agreement with a 15 Roman foot grid, which reinforces our 
conclusion that a 5 Roman foot module was intended. 

33..33  ggrriiddss  aass  ttoooollss  

The superimposition of grids on the plan of a villa’s remains constitutes a method of 
analysis in itself. Recalling the example in fig. 8, the two sections with different 
orientations correspond to two distinct phases of construction. Although in Pisões the 
two sections are easily observed, other villas can exhibit subtler vestiges of their different 
phases. In São Cucufate, Vidigueira, three Roman villas were constructed, respectively in 
the first, second and fourth centuries. The remains of Villa 2 are shown in fig. 12, and 
their correspondence with a 5 Roman foot square grid are colour coded. Dark grey walls, 
fitting the grid, are mainly in the right side of the plan, and highlight a section where the 
structure of the earlier villa is used. In fact, the pars urbana of Villa 1 has a grid-based 
design, for a 5 Roman foot square grid, a feature that is not followed in Villa 2, for the 
sections not using the previous existing walls. The grid is, thus, one more tool for the 
analysis and classification of the remains. 

 

Fig. 12. Pars urbana of Roman Villa 2 in São Cucufate, with a 5 Roman foot square grid. The walls 
in dark grey coincide with lines of the grid, the ones in light grey are within a tolerance of 1%, and 

the walls left in blank are within a larger tolerance. The correspondence with the grid is very 
accurate on the right side – a trace of the earlier villa, Villa 1, from the first century 
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Fig. 13. The reconstruction of the Roman villa in Quinta das Longas, based on the acceptance of a 
grid-based design with a 5 Roman foot square grid. The key for the reconstruction is at the top 
and, at the bottom, the comparison between the reconstruction (black lines) and the remains 
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33..44  RReeccoonnssttrruuccttiioonn  ooff  ggrriidd--bbaasseedd  ddeessiiggnn  ppllaannss  

The reconstruction of the plan of a given villa rests on the results of the analysis 
previously performed. If a grid-based design is accepted, the underlying grid is a basic 
outline for the drawing of the ideal plan. In fig. 13 we make a proposal for the plan of 
the villa in Quinta das Longas according to a plan based on a grid, and compare it, at the 
bottom, with the actual remains. At the top we present the key to the drawing. The main 
walls face lines of the grid, except for the winter triclinium, at south-east, whose walls 
have a grid line along the middle of their width. The axes of the divisions are then 
determined, and the features that are intended to have central positions – lake, apse – are 
added. We consider integer measures to define some missing shapes, like the width of 
doors, and the antechamber with two columns. The apses and the north colonnade are 
based on 15 Roman foot circumferences. 

  

AAppppeennddiixx  11  

In this appendix we refer to figs. 1 to 3 and properties A and B in section 2.1. 

The abscissae of the intended marks would form the sequence 

0 
d 

2d 
... 
nd 

as depicted in the upper part of fig. 2. 

However, instead of measuring n times the exact distance d, we will measure d1, d2, 
… , dn, where 

d1 = d + 1 
d2 = d + 2 

... 
dn = d + n 

and the random small errors i vary up to a value that is a percentage of the distance d. 
Let  be the accepted percentage of error in a measure, or tolerance. Thus the error in the 
measure of d is up to d, and ],[ ddi , for all i = 1, 2, … , n, which are intervals 

with width 2 d. 

Instead of equally spaced marks we plot the set of points 

p0 = 0 
p1 = d1 

p2 = d1 + d2 
... 

pn = d1 + d2 + … + dn 
whose properties A and B we now justify. 

Property A is a direct consequence of measuring the distance d once. The abscissae of 
two consecutive marks, pi 1 and pi, are related by pi 1+di=pi, and thus are distant 
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pi pi 1=di=d+ i , a value that belongs to the interval [d d, d+ d]=[d(1 ), d(1+ )] with 
width 2 d (see fig. 3). 

Property B is a consequence of measuring i times the distance d. The marks ideally 
placed at the points 0, d, 2d, … , nd will be affected by an error and their actual position 
will be 

00 p  
  

11 pd   1,1 dd  

221 pdd   12,12 dd  
 …  

nn pddd ...21   1,1 ndnd  
where the intervals have the sequence of widths 

0 
2 d 
4 d 
... 

2n d 
as illustrated in fig. 2 for n = 6 and =0.0125=1.25%. 

AAppppeennddiixx  22  
PPyytthhaaggoorriiaann  ttrriiaannggllee  

Consider the ideal right triangle abc and the real triangle a1b1c1, that we construct 
when trying to achieve the first triangle, under the accuracy of  in the determination of 
lengths. Let +90° be the angle, opposite to side c1, that corresponds to the ideal right 
angle, according to fig. 4. Thus, the lengths of the sides are in the intervals 

1a   1,1 aa  

1b   1,1 bb  

1c   1,1 cc  
and the law of cosines states 

,
2

º90cos
11

2
1

2
1

2
1

ba
cba

 
for each triangle a1b1c1. The minimum angle opposite to side c1, denoted by m+90°, 
corresponds to the triangle having the minimum length of the opposite side c1, i.e., 
c(1 ) and the maximum lengths of the sides that correspond to the catheti, a( +1) and 
b( +1). According to the equation above, the value of m is given by: 
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º90cos m  112
111 222222

ba
cba

 

 

 

2

22222

12
11

ab
cba

 

 

 
,

12
11

2

222222

ab
baba

 

by the Pythagorean 
theorem 

 

2

2222

12
11

ab
ba

 

 

 
.

1
2

2

22

ab
ba

 

 

Since cos( m+90°) = sin( m), we have 

.180
1

2arcsin 2

22

ab
ba

m

 
This expression can be simplified since we are considering small values of . Under 

this condition we have the following good approximation (the Taylor polynomial of 
degree one): 

ab
ba

ab
ba 22

2

22
2

1
2arcsin

 
and thus instead of the expression for m above, we can use the following: 

.1802
22

ab
ba

m
 

Notice that the approximation is better for small values of (a2+b2)/ab, i.e., for 
triangles where the lengths a and b are similar. The best approximation therefore occurs 
for isosceles triangles and becomes worse for triangles with pointed tips. However, this is 
not relevant when we consider angle deviations in degrees up to hundredths. 

Analogously, the maximum angle opposite to side c1, denoted by m+90°, 
corresponds to the triangle with the greatest c1, c(1+ ), and the smallest lengths a1 and 
b1, respectively a(1 ) and b(1 ). Thus 

2

22

1
2º90cos

ab
ba

m
 

or, equivalently, 

180
1

2arcsin 2

22

ab
ba

m

 
which can be approximated by 
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.1802
22

ab
ba

m
 

AApppprrooxxiimmaattee  iissoosscceelleess  rriigghhtt  ttrriiaannggllee  

Consider the isosceles triangle with two sides measuring a and the third measuring c, 
such that a/c approximates 1/ 2. We follow the previous calculations to determine how 
the deviations in lengths a and c affect the approximate right angle, opposite to side c. 
The extreme values of this angle are +90° such that, for small values of , we have 

.180

4

41
2 222

2

ca

c
a
c  

This results from the extreme deviations of lengths, as described above, either 

112
111º90cos

222222

aa
caa  

1801
1
1

2
arcsin 2

2

2

2

a
c

 

or 

112
111º90cos

222222

aa
caa

 

.1801
1
1

2
arcsin 2

2

2

2

a
c

 

To conclude, we calculate the Taylor polynomial of degree one and since 01
2 2

2

a
c

, we 

use the approximation 1
2

1
2

arcsin 2

2

2 a
c

a
c

. 

AAppppeennddiixx  33  
We now calculate the angle m, described in the figure below:  

 



102 Eliana Manuel Pinho – Grid-Based Design in Roman Villas: A Method of Analysis

Let r be the length of the line at the bottom. Since 

rcos( m)=c(1 ) 2d sin( m) 
and  

rsin( m) = d(1 + ) cos( m)  d(1 ) cos( m) = 2d  cos( m), 
we have 

m

m
m dc

d
sin21

cos2tan
 

which leads to 

,180
sin21

cos2arctan
m

m
m k

k

 
where k = d/c. 

For small values of  we can use the approximation 1802km . 
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