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Abstract. A geometric graphis a graph drawn in the plane so that the vertices are rep-
resented by points in general position, the edges are represented by straight line segments
connecting the corresponding points.

Improving a result of Pach and T¨orőcsik, we show that a geometric graph onn vertices
with no k + 1 pairwise disjoint edges has at mostk3(n+ 1) edges. On the other hand, we
construct geometric graphs withn vertices and approximately32(k− 1)n edges, containing
nok+ 1 pairwise disjoint edges.

We also improve both the lower and upper bounds of Goddard, Katchalski, and Kleitman
on the maximum number of edges in a geometric graph with no four pairwise disjoint edges.

1. Introduction

A geometric graph Gis a graph drawn in the plane by (possibly crossing) straight line
segments, i.e., it is defined as a pairG = (V, E), whereV is a set of points in general
position in the plane andE is a set of closed segments whose endpoints belong toV .

The following problem was raised by Avital and Hanani [AH], Kupitz [K], Erd˝os,
and Perles. Determine the smallest numberek(n) such that any geometric graph with
n vertices andm > ek(n) edges containsk + 1 pairwise disjoint edges. By a result
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of Hopf and Pannwitz [HP] and Erd˝os,e1(n) = n. Alon and Erdős [AE] showed that
e2(n) ≤ 6n− 5 which was improved by Goddard et al. [GKK] toe2(n) ≤ 3n. The best
known lower bound,e2(n) ≥ 2.5n− 4, is due to Perles (see [PA] and [MP]). It has also
been known that 3.5n− 6 ≤ e3(n) ≤ 10n and thatek(n) ≤ ckn(logn)k−3 (k ≥ 4), see
[GKK]. For any fixedk, Pach and T¨orőcsik [PT] were first to prove thatek(n) is linear in
n; their bound wasek(n) ≤ k4n. It follows from a result of Kupitz [K] thatek(n) ≥ kn.
In this paper we further improve both the upper and lower bounds for generalk.

Theorem 1. For k ≤ n/2,

3
2(k− 1)n− 2k2 ≤ ek(n) ≤ k3(n+ 1).

We also improve the above mentioned bounds one3(n).

Theorem 2. For any n≥ 6,

4n− 9≤ e3(n) ≤ 8.5n.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Throughout the paper,
we do not make any notational distinction between an edge and the segment representing
it.

Very recently, using similar methods, T´oth has further improved the upper bound in
Theorem 1 toek ≤ 29k2n [T]. Two related problems were studied in [LMPT] and [V].
In [V] it was shown that the number of edges in a geometric graph with nok pairwise
crossing edges is at mostckn logn. In [LMPT] it was proved that among anyk5 convex
sets in the plane, one can findk of them which are either pairwise disjoint or pairwise
intersecting (in particular, this also holds for line segments).

2. The General Case

2.1. The Upper Bound

Our proof, as the proof of Pach and T¨orőcsik [PT], is based on Dilworth’s theorem [D].

Dilworth’s Theorem. Let P be a partially ordered set containing no chain(totally
ordered subset) of size k+1.Then P can be covered by k antichains(subsets of pairwise
incomparable elements).

Let G = (V, E) be a geometric graph onn vertices, containing nok + 1 pairwise
disjoint edges. For a vertexv, let x(v) andy(v) denote itsx- andy-coordinate, respec-
tively. We can assume without loss of generality that no two vertices have the same
x-coordinate.

An edgee is said tolie belowan edgee′, if no vertical line crossing bothe ande′

crossese strictly abovee′. Finally, letπ(e) denote the orthogonal projection ofe to the
x-axis.
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Fig. 1. The relations≺i .

Define four binary relations≺i (i = 1, . . . ,4) on the edge setE as follows (see
also [PT] and [PA]). Lete = v1v2 ande′ = v′1v

′
2 be two disjoint edges ofG, where

x(v1) < x(v2) andx(v′1) < x(v′2). Then (see Fig. 1)

e≺1 e′, if x(v1) < x(v′1), x(v2) < x(v′2), ande lies belowe′,
e≺2 e′, if x(v1) > x(v′1), x(v2) > x(v′2), ande lies belowe′,
e≺3 e′, if x(v1) < x(v′1), x(v2) > x(v′2), ande lies belowe′,
e≺4 e′, if x(v1) > x(v′1), x(v2) < x(v′2), ande lies belowe′.

Obviously, each of the relations≺i is a partial ordering, and any pair of disjoint edges
in G is comparable by at least one of them.

SinceG does not containk + 1 disjoint edges,(E,≺1) does not contain a chain of
lengthk+ 1. Therefore, by Dilworth’s theorem,E can be covered byk antichains with
respect to≺1. Let E1 be the largest of these antichains, thus|E1| ≥ |E|/k. Applying
Dilworth’s theorem on(E1,≺2), we similarly get an antichain (with respect to≺2)
E2 ⊆ E1 of size|E2| ≥ |E1|/k ≥ |E|/k2. In the rest of the proof we estimate the size
of E2 from above.

SinceE2 is an antichain with respect to≺1 and≺2,π(e)∩π(e′) 6= ∅ for anye,e′ ∈ E2.
Therefore,

⋂
e∈E2

π(e) 6= ∅, so there is a vertical linèwhich intersects all edges inE2.

Let
−→
G2 = (V,−→E2) be a directed geometric graph obtained from(V, E2) by replacing

each edgee = v1v2 in E2 by the two oriented edges−−→v1v2 and−−→v2v1. For two edges
e1 = −−→v0v1, e2 = −−→v1v2 forming a path in

−→
G2, we say thate2 is azag of e1, if the following
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Fig. 2. Maximal zigzag paths.

two conditions hold:

(i) π(e1) ∩ π(e2) has positive length,
(ii) for any z ∈ (π(e1)∩π(e2))\{π(v1)}, the vertical line throughz intersectse2 below

e1, and it intersects no other edge going fromv1 betweene1 ande2.

Observe that each edge in
−→
G2 has at most one zag. We call an oriented pathe1e2 · · ·er

in
−→
G2 azigzag path, if ei+1 is the zag ofei , for eachi = 1, . . . , r − 1 (see Fig. 2).

Lemma 3. Every zigzag path in
−→
G2 has at most2k edges.

Lemma 4.
−→
G2 has at most n+ 1 maximal zigzag paths.

Lemmas 3 and 4 immediately give Theorem 1: every edge in
−→
G2 is contained in a

maximal zigzag path; therefore, by Lemmas 3 and 4,

|−→E2| ≤ 2k(n+ 1),

and, consequently,

|E| ≤ k2|E2| = k2|−→E2|/2≤ k3(n+ 1).

It remains to prove Lemmas 3 and 4.

Proof of Lemma3. Let P = e1e2 · · ·er be a zigzag path in
−→
G2, and letei = −−−→vi−1vi for

i = 1, . . . , r . We need the following claim.

Claim. One of the two sequences

S0 = x(v0), x(v2), . . . , S1 = x(v1), x(v3), . . .

is decreasing, and the other one is increasing.



Geometric Graphs with Few Disjoint Edges 637

Fig. 3. ei+2 ≺1 ei or ei+2 ≺2 ei .

Proof of the Claim. Suppose the claim is false. Then there is an indexi such that either
x(vi−1) < x(vi+1) andx(vi ) < x(vi+2), or x(vi−1) > x(vi+1) andx(vi ) > x(vi+2).
Consequently,ei+2 ≺2 ei or ei+2 ≺1 ei (see Fig. 3 for all four possible cases), which is
a contradiction with the definition ofE2. The claim is proved.

The length ofP is at most 2k since otherwisee1,e3, . . . ,e2k+1 would bek+ 1 disjoint
edges according to the Claim (see Fig. 4).

Proof of Lemma4. Letv ∈ V be a vertex lying to the right of̀, and letP1, P2 be two
different zigzag paths in

−→
G2 ending inv. If the slope of the last edge inP1 is, say, smaller

than the slope of the last edge inP2, then the last edge ofP1 has a zag and, consequently,
P1 can be extended to a longer zigzag path. It follows that at most one maximal zigzag
path ends inv, and this is similarly true for any vertex not lying on`. Similarly, at most
two zigzag paths end in any vertexv on ` (one coming tov from the left, the other one
from the right). The lemma now follows from the assumption that no pair of vertices lies
on a vertical line.

2.2. The Lower Bound

For simplicity, suppose thatk is even andn is odd. Setz= (n− k+1)/2. Let P be a set
of z pointsp1, . . . , pz placed equidistantly in this order from left to right on a horizontal
line p. Let Q = {q1, . . . ,qz} be a translation ofP such thatqi always corresponds topi

and p1 pzqzq1 is a square. Letq be the line containingQ, and letr be the line parallel

Fig. 4. e1,e3, . . . ,e2k+1 are disjoint.
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Fig. 5. The edges ofE1 andE2 (for k = 4, n = 15, z= 6).

to p andq, halfway between them. LetE1 be the set of all segments (edges)pi qj with
−k/2≤ i + j − (z+ 1) ≤ k/2 (see Fig. 5).

The segments ofE1 intersect the liner in k + 1 pointsr−k/2, r−k/2+1, . . . , rk/2 such
thatrt always lies on the segmentspi qj with i + j − (z+ 1) = t . Let R be the set of the
centers of the segmentsrt r t+1 (t = −k/2,−k/2+ 1, . . . , k/2− 2), and letE2 be the
set of all edges (segments) joining vertices ofR with vertices ofP ∪ Q (see Fig. 5).

We now show that the geometric graphG = (P ∪ Q ∪ R, E1 ∪ E2) gives the lower
bound in Theorem 1.

First, observe thatG hasz+ z+ (k− 1) = n vertices and

|E1| + |E2| = (n− k+ 1)(k+ 1)− 4(1+ 2+ · · · + k/2)

2
+ (n− k+ 1)(k− 1)

= (n− k+ 1)

(
3k

2
− 1

2

)
− k(k+ 2)

4
> 3

2(k− 1)n− 2k2

edges. It remains to show thatG contains nok + 1 pairwise disjoint edges. Suppose
that D is a set of disjoint edges inG. If |D ∩ E1| ≤ 1, then|D| ≤ |R| + 1 = k.
Otherwise, let the leftmost edge ofD∩ E1, e1, intersectr in a pointrs, and the rightmost
one,e2, in a pointrt . Since there ares+ k/2 vertices ofR to the left ofe1, D contains
at mosts+ k/2 edges to the left ofe1. Similarly, D contains at mostk/2− t edges
to the right ofe2. Since there aret − s− 2 vertices ofP ∪ Q betweene1 ande2, D
contains at mostt − s− 2 edges betweene1 ande2. Altogether,D contains at most
(s+ k/2)+ (k/2− t)+ (t − s− 2)+ 2= k edges.

3. The Casek = 3

3.1. The Upper Bound

We use the following result.
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Lemma 5 [GKK]. If a geometric graph G of n vertices does not contain four pairwise
disjoint edges and there is a line which intersects every edge of G and contains no vertex
of G, then G has at most7n edges.

Lemma 5 is not stated in [GKK] explicitly. However, its proof (relatively long case-
analysis) is readily contained in the proof of Theorem 2 in [GKK].

Let G = (V, E) be a geometric graph without four pairwise disjoint edges. Denote
the vertices byv1, . . . , vn from left to right, and assume that no pair of them lies on a
vertical line. For any 1≤ i < n let Gi be the subgraph ofG which contains only those
edgesvαvβ of G whereα ≤ i < β.

It follows from Lemma 5 and the assumption that, for any 1≤ i < n, |E(Gi )| ≤ 7n.
For any 1≤ i < n, let G−i and G+i be the subgraph ofG induced by the vertices
v1, . . . , vi and byvi , . . . , vn, respectively. Let

I = max
{
i | G−i does not contain two disjoint edges

}
.

SinceG−I+1 contains two disjoint edges,G+I+2 does not. Suppose without loss of
generality thatI < n/2. Then

E(G) = E(G−I ) ∪ E(G+I+2) ∪ E(GI+1) ∪ {vi vI+1 ∈ E(G) | i ≤ I }.

Therefore,

|E(G)| ≤ e1(I )+ e1(n− I − 1)+ 7n+ I < 8.5n.

3.2. The Lower Bound

First, letn be odd. Take the vertices of a regular(n−2)-gon, and join each of them with
the furthermost four vertices. Add two vertices near the center of the(n− 2)-gon, and
join each of them by an edge to all the other vertices. The resulting geometric graph on
n vertices has 4(n− 2)/2+ 2(n− 1)− 1= 4n− 7 edges. It is easy to see that no four
edges are pairwise disjoint, see Fig. 6.

Forn even, we take the above geometric graph onn+1 vertices, and remove a vertex
and the six edges incident to it. The resulting graph onn vertices has 4n− 9 edges.

4. Remarks

By a little modification, it is possible to improve the upper bound of Theorem 1 slightly.

Theorem 6. For any k≤ n/2,

ek(n) ≤ 4
21k3n+ O(k2n).

Proof. (Sketch) We use the same partial orderings,≺1,≺2,≺3,≺4, as in the proof
of Theorem 1 (see Fig. 1). For any edgee of a geometric graphG = (V, E), let
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Fig. 6. A geometric graph with no four pairwise disjoint edges.

Rank+3 (e) be the maximum numbera ≥ 0 such that there existe1,e2, . . . ,≺ ea ∈ E,
e ≺3 e1 ≺3 e2 ≺3 e3 ≺ · · · ≺3 ea, and let Rank−4 (e) be the maximum numberb ≥ 0
such that there existe1,e2, . . . ,eb ∈ E, e1 ≺4 e2 ≺4 e3 ≺ · · · ≺4 eb ≺4 e.

Lemma 7. Let G = (V, E) be a geometric graph with n vertices and with no k+ 1
pairwise disjoint edges. Suppose that there is a line which avoids all vertices and crosses
all edges of G. Then

|E| ≤ 1
6k3n+ O(k2n).

Proof of Lemma7. For any 0≤ a,b ≤ k− 1 let

Ea,b =
{
e∈ E | Rank+3 (e) = a,Rank−4 (e) = b

}
.

Clearly, Ea,b is an antichain with respect to≺3 and≺4. We can define
−→
Ea,b and its

maximal zigzag paths just as in the proof of Theorem 1. It is easy to see that there are at
mostn maximal zigzag paths and every edge of

−→
Ea,b is contained in at least one of them

(in fact, in exactly one of them, but here we do not need that). Suppose that there is a
zigzag path−→e1 ,

−→e2 , . . . ,
−→ex of x = 2(k− a− b)+ 1 edges. Then−→e1 ,

−→e3 ,
−→e5 , . . . ,

−→ex

arek− a− b+ 1 pairwise disjoint edges. Moreover, we can adda edges above−→e1 and
b edges below−→ex to getk + 1 pairwise disjoint edges, contradicting our assumption.
(See Fig. 7.) Therefore, every maximal zigzag path of

−→
E a,b has at most 2(k − a − b)

edges, so

|Ea,b| ≤ n(k− a− b),

|E| =
∑
0≤a,b
a+b<k

|Ea,b| ≤ n
∑
0≤a,b
a+b<k

(k− a− b) =
(

k+ 2

3

)
n.
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Fig. 7. k+ 1 disjoint edges.

Return to the proof of Theorem 6. It is not hard to see that there is a line` which
avoids all vertices ofG and on one side of̀ there aredn/2e vertices and at mostdk/2e
pairwise disjoint edges, while on the other side of` there arebn/2c vertices and at most
bk/2c pairwise disjoint edges ofG. We get the recursion

ek(n) ≤ 1
6k3n+ O(k2)n+ edk/2e(dn/2e)+ ebk/2c(bn/2c)

and Theorem 6 follows.

If the number of edges in a geometric graph is at leastÄ(n2), then Theorem 1
guaranteesÄ(n1/3) pairwise disjoint edges. This is improved by the following result of
Pach [P].

Theorem 8[P]. For any c> 0 there is a c′ > 0 such that every geometric graph of n
vertices and at least cn2 edges has at least c′

√
n pairwise disjoint edges.
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