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Abstract. A geometric graphis a graph drawn in the plane so that the vertices are rep-
resented by points in general position, the edges are represented by straight line segments
connecting the corresponding points.

Improving a result of Pach andifdcsik, we show that a geometric graphrowertices
with nok + 1 pairwise disjoint edges has at m&$tn + 1) edges. On the other hand, we
construct geometric graphs withvertices and approximategz(k — 1)n edges, containing
nok + 1 pairwise disjoint edges.

We also improve both the lower and upper bounds of Goddard, Katchalski, and Kleitman
on the maximum number of edges in a geometric graph with no four pairwise disjoint edges.

1. Introduction

A geometric graph Gs a graph drawn in the plane by (possibly crossing) straight line

segments, i.e., it is defined as a pa@i= (V, E), whereV is a set of points in general

position in the plane an# is a set of closed segments whose endpoints belokg to
The following problem was raised by Avital and Hanani [AH], Kupitz [K], Bs]”

and Perles. Determine the smallest numign) such that any geometric graph with

n vertices andn > e«(n) edges containk + 1 pairwise disjoint edges. By a result
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of Hopf and Pannwitz [HP] and Eod;e;(n) = n. Alon and Erd$ [AE] showed that

e (n) < 6n — 5 which was improved by Goddard et al. [GKK] ég(n) < 3n. The best
known lower bounde,(n) > 2.5n — 4, is due to Perles (see [PA] and [MP]). It has also
been known that.8n — 6 < e3(n) < 10n and thate.(n) < cn(logn)*—3 (k > 4), see
[GKK]. For any fixedk, Pach and ®i6csik [PT] were first to prove thak(n) is linear in

n; their bound wasy (n) < k*n. It follows from a result of Kupitz [K] thag(n) > kn.

In this paper we further improve both the upper and lower bounds for gdaeral

Theorem 1. Fork <n/2,

3k —Dn—2k* < &(n) <k’(n+1).
We also improve the above mentioned boundgin).

Theorem 2. For any n> 6,
4n — 9 < e3(n) < 85n.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Throughout the paper,
we do not make any notational distinction between an edge and the segment representing
it.

Very recently, using similar methodspf has further improved the upper bound in
Theorem 1 tag, < 2°%?n [T]. Two related problems were studied in [LMPT] and [V].

In [V] it was shown that the number of edges in a geometric graph witk pairwise
crossing edges is at masin logn. In [LMPT] it was proved that among arky convex
sets in the plane, one can fikdbf them which are either pairwise disjoint or pairwise
intersecting (in particular, this also holds for line segments).

2. The General Case
2.1. The Upper Bound
Our proof, as the proof of Pach andr6c¢sik [PT], is based on Dilworth’s theorem [D].

Dilworth’s Theorem. Let P be a partially ordered set containing no chdtotally
ordered subsgbf size k- 1. Then P can be covered by k anticha{eabsets of pairwise
incomparable elements

Let G = (V, E) be a geometric graph amvertices, containing n& + 1 pairwise
disjoint edges. For a vertax let x(v) andy(v) denote itsx- andy-coordinate, respec-
tively. We can assume without loss of generality that no two vertices have the same
x-coordinate.

An edgee is said tolie belowan edgeg, if no vertical line crossing botk andé€
crosse strictly abovee'. Finally, letrr (e) denote the orthogonal projection efo the
X-axis.
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Fig. 1. The relations<;.
Define four binary relations; (i = 1,...,4) on the edge seE as follows (see

also [PT] and [PA]). Lete = viv, and€ = vjv, be two disjoint edges o, where
X(v1) < X(v2) andx(vy) < X(v5). Then (see Fig. 1)

e<,¥€, if  X(v1) < X(vy), X(v2) < x(vy), andelies belowe,
e<o€, if  X(vp) > X)), X(v2) > Xx(vy), andelies belowe,
e<szé€, if  X(vp) < x(@), X(v2) > Xx(vy), andelies belowe,
e<y€, if  X(vp) > X)), X(v2) < x(vy), andelies belowe.

Obviously, each of the relationg is a partial ordering, and any pair of disjoint edges
in G is comparable by at least one of them.

SinceG does not contailit + 1 disjoint edges(E, <;) does not contain a chain of
lengthk + 1. Therefore, by Dilworth’s theorenk, can be covered bly antichains with
respect to<;. Let E; be the largest of these antichains, thks| > |E|/k. Applying
Dilworth’s theorem on(Ej, <2), we similarly get an antichain (with respect @)

E, C E; of size|Ey| > |E1|/k > |E|/K?. In the rest of the proof we estimate the size
of E, from above.

SinceE; is an antichain with respect to; and<», w(e)Nn (€¢) # W foranye, € € E,.
Therefore[\..g, 7(€) # @, so there is a vertical lineéwhich intersects all edges .

Let G_)z =(V, E;) be a directed geometric graph obtained frofm E,) by replacing
each edge = viv, in E; by the two oriented edgesivs and v,v1. For two edges

e = vov1, & = V10, forming a path inG,, we say thak, is azag of g, if the following
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all 5 maximal zigzag paths in 5’;

Fig. 2. Maximal zigzag paths.

two conditions hold:

() 7(e1) N7 (&) has positive length,
(i) foranyz e (w(e1)Nm(e))\{m(v1)}, the vertical line throughintersects, below
e1, and it intersects no other edge going froprbetweere; ande,.

Observe that each edge@ has at most one zag. We call an oriented pa#h - - - &
in G, azigzag pathif e .1 is the zag o, foreach = 1,...,r — 1 (see Fig. 2).
Lemma 3. Every zigzag path iﬁg has at mosgk edges
Lemma 4. C_5>2 has at most - 1 maximal zigzag paths

Lemmas 3 and 4 immediately give Theorem 1: every edgﬁ)giris contained in a
maximal zigzag path; therefore, by Lemmas 3 and 4,

2l < 2k(n+ 1),

and, consequently,

|E| < K|E2| = KE5/2 < K3+ ).
It remains to prove Lemmas 3 and 4.

Proof of Lemm&. LetP = ee,---¢e be azigzag path if?z, and lete = v;_1v; for
i =1,...,r. We need the following claim.

Claim. One of the two sequences

S = X(vo), X(v2), ..., S = X(vy), X(v3), . ..

is decreasingand the other one is increasing
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Proof of the Claim Suppose the claimis false. Then there is an indmich that either
X(vi—1) < X(vit1) andx(vi) < X(viy2), Or X(vi—1) > X(viy1) andX(vi) > X(viy2).
Consequentlyg > <2 6§ ore > <1 ¢ (see Fig. 3 for all four possible cases), which is
a contradiction with the definition d£,. The claim is proved. O

The length ofP is at most R since otherwisey, €3, . . ., ex.1 would bek + 1 disjoint
edges according to the Claim (see Fig. 4). O

Proof of Lemmat. Letv € V be a vertex lying to the right of, and letP;, P, be two

different zigzag paths if?z ending inv. If the slope of the last edge & is, say, smaller

than the slope of the last edgefy, then the last edge ¢, has a zag and, consequently,

P1 can be extended to a longer zigzag path. It follows that at most one maximal zigzag
path ends irv, and this is similarly true for any vertex not lying énSimilarly, at most

two zigzag paths end in any vertexon ¢ (one coming ta from the left, the other one
from the right). The lemma now follows from the assumption that no pair of vertices lies
on a vertical line. O

2.2. The Lower Bound
For simplicity, suppose thétis even andh is odd. Sez = (n—k+1)/2. Let P be a set
of zpointspy, ..., p; placed equidistantly in this order from left to right on a horizontal

line p.LetQ = {qy, ..., g} be atranslation oP such thaty always corresponds g
and p1p.q.0; is a square. Leq be the line containing), and letr be the line parallel

€1

€2k+1 €2k+1

Fig. 4. ey es, ..., ex.1 are disjoint.
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Fig. 5. The edges oE; andE; (fork =4, n =15 z=6).

to p andq, halfway between them. Léf; be the set of all segments (edges); with
—k/2<i+j—(z+1 <k/2(seeFig.5).

The segments dE; intersect the ling in k + 1 pointsr_g 2, r —i/241, . . . , fk/2 such
thatr; always lies on the segmenpsr; withi + j — (z+ 1) = t. Let Rbe the set of the
centers of the segmentg,; (t = —k/2, —k/2+1,...,k/2 — 2), and letE;, be the
set of all edges (segments) joining verticedoivith vertices ofP U Q (see Fig. 5).

We now show that the geometric gra@h= (P U QU R, E; U E») gives the lower
bound in Theorem 1.

First, observe thab hasz + z + (k — 1) = n vertices and

M—K+DK+1) —4L+2+---+k/2)

|E1l + |E2| = 3 +(n—k+1k-1)
3k 1 k(k + 2)

edges. It remains to show th& contains ndk + 1 pairwise disjoint edges. Suppose
that D is a set of disjoint edges i®. If [D N E;] < 1,then|D| < IR+ 1 = k.
Otherwise, let the leftmost edge DfN E4, e, intersect in a pointrg, and the rightmost
one,ey, in a pointr;. Since there are + k/2 vertices ofR to the left ofe;, D contains
at mosts + k/2 edges to the left o&. Similarly, D contains at mosk/2 — t edges
to the right ofe,. Since there aré — s — 2 vertices ofP U Q betweene; ande,, D
contains at most — s — 2 edges betweeeg, ande,. Altogether,D contains at most
(s+k/2)+ (k/2—t) + (t —s—2) + 2 =k edges. O

3. The Case&k =3
3.1. The Upper Bound

We use the following result.
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Lemma 5[GKK]. If a geometric graph G of n vertices does not contain four pairwise
disjoint edges and there is a line which intersects every edge of G and contains no vertex
of G, then G has at mosin edges

Lemma 5 is not stated in [GKK] explicitly. However, its proof (relatively long case-
analysis) is readily contained in the proof of Theorem 2 in [GKK].

Let G = (V, E) be a geometric graph without four pairwise disjoint edges. Denote
the vertices by, ..., v, from left to right, and assume that no pair of them lies on a
vertical line. For any k< i < nlet G; be the subgraph @& which contains only those
edgesy,vg of G wherea <i < B.

It follows from Lemma 5 and the assumption that, for ang 1 < n, |[E(G;)| < 7n.
Forany 1< i < n, let G, andG;" be the subgraph of induced by the vertices
v1, ..., v and byv, ..., vy, respectively. Let

| = max{i | G;” does not contain two disjoint edgjes

Since Gy, contains two disjoint edges5|",, does not. Suppose without loss of
generality thal < n/2. Then

E(G) = E(G) UE(G/,,) UE(G+1) U{vivis1 € E(G) |i <1},

Therefore,

IEQG)| <ell)+enh—1 -1 +7n+1 < 85n. O

3.2. The Lower Bound

First, letn be odd. Take the vertices of a regular— 2)-gon, and join each of them with
the furthermost four vertices. Add two vertices near the center ofrthe2)-gon, and
join each of them by an edge to all the other vertices. The resulting geometric graph on
nvertices haséh — 2)/2+ 2(n — 1) — 1 = 4n — 7 edges. It is easy to see that no four
edges are pairwise disjoint, see Fig. 6.

Forn even, we take the above geometric grapmenl vertices, and remove a vertex
and the six edges incident to it. The resulting grapmaertices hasd — 9 edges. O

4. Remarks
By a little modification, it is possible to improve the upper bound of Theorem 1 slightly.
Theorem 6. Forany k< n/2,

&(n) < 5k3n + O(K?n).

Proof. (Sketch) We use the same partial orderings, <2, <3, <4, as in the proof
of Theorem 1 (see Fig. 1). For any edgeof a geometric graplc = (V, E), let
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Fig. 6. A geometric graph with no four pairwise disjoint edges.

Rank (e) be the maximum numbexr > O such that there exig}, e, ..., < € € E,
€ <3 € <3 & <36 < --- <3 &, and let Rank(e) be the maximum numbdr > 0
such that there exish, &, ..., € E,e1 <s & <463 < --- <46 <4 €.

Lemma7. Let G = (V, E) be a geometric graph with n vertices and with ng-K.
pairwise disjoint edgesSuppose that there is a line which avoids all vertices and crosses
all edges of GThen

|E| < £k°n + O(K?n).

Proof of Lemm&. ForanyO<a,b<k-—1let
Eab = {e € E | Rank (e) = a, Rank, (e) = b} .

Clearly, E,p is an antichain with respect taz and <4. We can defineE—a:, and its
maximal zigzag paths just as in the proof of Theorem 1. It is easy to see that there are at
mostn maximal zigzag paths and every edgeEEﬁ, is contained in at least one of them

(in fact, in exactly one of them, but here we do not need that). Suppose that there is a
zigzag pathe;, &, ..., & of x = 2(k —a — b) + 1 edges. Thef®; , €, &, ..., &

arek — a — b+ 1 pairwise disjoint edges. Moreover, we can adetiges abov@ and

b edges belowe; to getk + 1 pairwise disjoint edges, contradicting our assumption.
(See Fig. 7.) Therefore, every maximal zigzag patlﬁg,b has at most & — a — b)

edges, so

|[Eapl <Nk —a—h),

k+2
|E|=Z|Ea,b|sn2(k—a—b>=( ; )n. O

0O<a,b O<a,b
a+b<k a+b<k
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/ a edges

b edges

Fig. 7. k+ 1 disjoint edges.

Return to the proof of Theorem 6. It is not hard to see that there is & limeich
avoids all vertices o6 and on one side of there arg’'n/2] vertices and at mogk/2]
pairwise disjoint edges, while on the other sidé€ tiiere argn/2| vertices and at most
|k/2| pairwise disjoint edges d&. We get the recursion

a(n) < k30 + O(K?)N + en21 (IN/21) + ez (In/2))

and Theorem 6 follows. O

If the number of edges in a geometric graph is at l€agt?), then Theorem 1

guarantees2 (n/3) pairwise disjoint edges. This is improved by the following result of
Pach [P].

Theorem 8[P]. For any c> Othere is a ¢ > 0 such that every geometric graph of n
vertices and at least éredges has at least@n pairwise disjoint edges
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