
Discrete Comput Geom 22:377–402 (1999) Discrete & Computational

Geometry
© 1999 Springer-Verlag New York Inc.

Finding the Shortest Watchman Route in a Simple Polygon

S. Carlsson,1 H. Jonsson,1 and B. J. Nilsson2

1Department of Computer Science, Lule˚a University of Technology,
971 87 Luleå, Sweden
{Svante.Carlsson,Hakan.Jonsson}@sm.luth.se

2Department of Computer Science, Lund University,
Box 118, 221 00 Lund, Sweden
Bengt.Nilsson.lth.se

Abstract. We present the first polynomial time algorithm that finds the shortest route in
a simple polygon such that all points of the polygon are visible from the route. This route
is called the shortest watchman route, and we do not assume any restrictions on the route
or on the simple polygon. Our algorithm runs in worst caseO(n6) time, but it is adaptive,
making it run faster on polygons with a simple structure.

1. Introduction

It has been known for a long time [1], [11] that the so-called art gallery problem is NP-
hard. This is the problem of finding the smallest set of guards within a simple polygon
such that each point of the polygon is visible from at least one guard. At the same time
there are many examples of optimization problems and in particular shortest route prob-
lems (for instance, the Traveling Salesperson Problem) that are NP-hard. The combined
problem, to find the shortest closed curve (watchman route) inside a simple polygon such
that each point of the polygon is visible to at least one point on the curve, seems to be at
least as hard as the two above. Therefore, it was quite surprising when Chin and Ntafos
claimed that it was possible to find the shortest watchman route that is forced to pass a
given point on the boundary of the polygon in polynomial time [6]. Using variants of the
original algorithm the running times were subsequently improved by Tan et al. [17], [18].
An error that in some special instances lead to exponential running times in all previously
presented algorithms was discovered by Hammar and Nilsson [8] and a possible solution
was suggested. However, their proposed solution only reduces the types of instances that
have exponential behavior. Recently, Tan et al. [19] presented a correct algorithm based
on the original techniques in conjunction with dynamic programming, thus removing
the exponential behavior in all instances. This algorithm runs in worst caseO(n4) time.

378 S. Carlsson, H. Jonsson, and B. J. Nilsson

In some practical applications, for instance, if we would like to patrol a building with a
robot that has to enter the building through a door, this restriction is of minor importance.
In other cases, as, for instance, in illumination problems, the restriction of forcing the
route through a specific point can be devastating since the route can be arbitrarily longer
than the shortest watchman route without any restrictions. Despite the importance of the
problem and a number of attempts to solve it the problem has stayed open until now.

In this paper we make some important observations to solve the general problem of
finding the shortest watchman route in a simple polygon. We reduce the problem to a
polynomial number of shortest watchman route problems with a fixed boundary point,
and solve these using an existing algorithm. This, together with a sweep technique that
we call “sliding,” enables us to construct the shortest watchman route in worst caseO(n6)

time. In many polygons though, the algorithm will run faster. The presented algorithm
is a modified and corrected version of a result presented at ISAAC ’93 [2].

2. Definitions and Preliminary Results

Let P be a simple polygon havingn edges. We assume a representation ofP as a list of
the coordinates of the vertices as they are encountered during a counterclockwise scan
of the boundary ofP. This representation implies an orientation on the edges ofP and,
hence, we can say that the interior of the polygon is (locally) to the left of an edge.

A point p in P is said toseea pointq in P if the line segment between the two points
is contained inP. We also say that the two points arevisibleto/from each other. Aguard
set for P is a set of points inP such that for each pointp in P there is a pointq in the
guard set that seesp.

A watchman routeis a closed curveW in P such thatW is a guard set forP. If we
specify a pointd on the boundary ofP and force the watchman route to pass through
this point, we talk about afixed watchman routewith the pointd being thedoor of the
route. If no such point is specified, the route is called afloating watchman route. In the
following, when we talk about a watchman route we mean a floating watchman route
unless otherwise specified.

Since our aim is to compute the shortest watchman route, we need to be able to
measure length. Our measure of distance is the standard Euclidean distance function and
the distance between two pointsp andq is denoted‖p,q‖. The length of a segment is
the distance between the two end points of the segment. A chain is a curve consisting of
consecutive segments that are not collinear. The length of a chainC, denotedlength(C),
is the sum of the lengths of the segments ofC.

The shortest watchman route, whether floating or fixed, consists of line segments such
that no two consecutive segments are collinear, i.e., it is a closed chain. Similarly as for
polygons, we represent a watchman route by a list of the vertices as they are encountered
during a counterclockwise scan of the route.

Consider the example polygon in Fig. 1. The shortest watchman route is a tour with
(some) turning points on (some of) the extensions of the polygon edges that are adjacent
to reflex vertices. The reason for this is that the tour needs to see everything behind each
polygon edge. Hence, the extensions of polygon edges are important to know and this
leads us to the following definitions.

Finding the Shortest Watchman Route in a Simple Polygon 379

Fig. 1. An example polygon with its shortest watchman route.

We define acut to be a directed line segment inP with the following properties. The
end points of a cut must coincide with the boundary ofP and part of the cut’s interior
must lie in the interior of the polygon. Hence a polygon edge is not a cut. A cut separates
P into two subpolygons. If a cut is represented by the segment [p,q] we say that the cut
is directed fromp to q and we callp thestart pointof the cut. We say that a point lies to
the right/left of a cut if the point lies locally to the right/left in the subpolygon separated
by the cut.

Consider a reflex vertex of a polygon. The two edges connecting at the vertex can
each be extended insideP until the extensions reach a boundary point. These extended
segments are given the same direction as the edge they are collinear to. We call the cuts
thus constructedextension cuts. Now, it is easy to see that all guard sets must have a
point to the left of (or on) each extension cut, since otherwise the edge collinear to the
cut will not be seen by the guard set; see Fig. 1.

To illustrate the next concept, we assume that one point of a shortest watchman route
is known to us. Let this point be denotedp. It turns out that not all extension cuts are
interesting to maintain, but only the ones that have the pointp, and thus, the main part
of the watchman route, to the right, since those are the ones where visibility is blocked
by the associated polygon edges; see Fig. 1. We therefore make the following further
separation between types of extension cuts.

Given a pointp of a polygon, we say that an extension cutc is forward with respect to
p if p lies to the left of the cutc. Otherwisec is backward with respect to p; see Fig. 2(a).

An extension cutc dominatesanother extension cutc′ if all points in P to the left of
c are also to the left ofc′; see Fig. 2(b).

We say that an extension cut is anessential cutif it is not dominated by any other
extension cut; see Fig. 2(b). We state the following lemma without proof.

Lemma 2.1. A closed curve is a watchman route if and only if the curve has at least
one point to the left of(or on) each essential cut.

We can view the essential cuts as having a cyclic ordering specified by the start
points of the cuts as they are encountered during a counterclockwise scan of the polygon
boundary. In this way each cut has a predecessor and a successor. The set of essential
cuts of the polygonP will henceforth be denotedC.

380 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 2. Illustrating the definitions of extension cut, domination, and essential cut.

Consider an essential cut. The cut is intersected by at mostk − 1 other essential
cuts,k being the total number of essential cuts inC, and hence, each essential cut is
subdivided into at mostk segments spanning between the cut intersection points. We
call these segments thefragmentsof a cut. As before we can define the dominance
relation between a fragmentf and a cutc. We say thatf dominatesc if f lies to the left
of (or on)c. Hence, a fragment of a cut dominates its cut.

We can now formulate the shortest watchman route problem as: “Compute the shortest
closed curve that intersects all essential cuts.” The rest of this presentation is devoted to
showing how to obtain such a curve.

3. Overview of the Fixed Case

All suggested algorithms for the fixed shortest watchman route problem start by con-
structing an initial watchman route through the doord, i.e., a closed curve that intersects
all backward essential cuts with respect tod. This follows from Lemma 2.1 sinced is,
by definition, to the left of the forward essential cuts with respect tod, and, hence, these
cuts do not have to be considered.

The algorithms then progress by applying a sequence ofadjustmentsto the initial
route. In order to explain these adjustments, it is important to know what kind of inter-
sections a watchman route can make with the backward essential cuts with respect tod.
A watchman route makes areflection contactwith a cutc if the intersection of the route
andc is one point and all other points of the route lie to the right ofc; see Fig. 3(a).
A reflection contact isperfect if the incoming angle equals the outgoing angle of the
reflection. A watchman route makes acrossing contactwith c, if each intersection is one
point and the contact is not a reflection contact; see Fig. 3(b). Finally, the route makes a
tangential contactwith c if the intersection is a line segment and all other points of the
route lie to the right ofc; see Fig. 3(c).

Consider the essential cuts where a watchman route makes reflection contact. We call
these cuts theactive cutsand the fragments that contain the intersection points are the
active fragments. Two conditions are imposed on the set of active fragments in order to
ensure the correctness of the algorithms and for ease of computation.

Finding the Shortest Watchman Route in a Simple Polygon 381

Fig. 3. The three different types of possible contacts made by a shortest watchman route.

Completeness. The set of active fragments dominate all essential cuts ofP.

Independence. An essential cut is dominated by exactly one active fragment.

Now the following lemma can be shown.

Lemma 3.1. The completeness condition must hold for the active fragments of a short-
est watchman route.

Proof. If there is some essential cut not dominated by an active fragment, the edge of
P corresponding to the essential cut is not seen by the watchman route.

Furthermore, the following two lemmas provide a way to construct the shortest fixed
watchman route given an initial watchman route.

Lemma 3.2[6]. There is a shortest watchman route that visits the active cuts in the
order that they appear as the boundary of the polygon is traversed.

Lemma 3.3[6]. A shortest watchman route either makes perfect reflections on the
active cuts or it reflects at fragment end points of the active cuts.

Both lemmas also hold for the shortest floating watchman route. Thus, a shortest route
that visits all the essential cuts and obeys the properties of the two lemmas will be a
shortest route overall.

The problem thus becomes that of adjusting the initial route so that all the reflection
contacts are perfect, or no more reflection contacts can be made perfect.

Given a set of active cuts, how is the shortest fixed watchman route with reflection
contacts at these cuts computed? The approach taken is byunfolding the polygonP,
which is a process that produces a polygonal shape that we call anhourglass, such that
the shortest path fromd to its image in the hourglass corresponds to the shortest fixed
watchman route throughd that reflects on the active cuts. The process is carefully ex-
plained by Chin and Ntafos [6]. The hourglass is constructed fromP by cutting off the
parts ofP that lie to the left of the active cuts. To do this, we assume that the active
cuts are given in the order as their start points are traversed in counterclockwise order

382 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 4. Illustrating the unfolding procedure.

along the boundary ofP. Now we take each active cut in the ordering and remove the
part ofP to the left of the cut. This involves computing the intersection point with the
previous active cut in the ordering and, if it exists, introduce a new vertex at this in-
tersection point. The process takes constant time for each active cut and, hence, linear
time in total. In this way we get a new polygonP′ with the active cuts on the boundary.
The polygonP′ is triangulated using Chazelle’s algorithm [4] and unfolded using the
active cuts as mirrors (see Fig. 4) in the following way: from the pointd follow the
boundary in clockwise fashion until the first active cut is reached. Construct a poly-
gon from the triangles of the triangulation that are adjacent to the traversed part of the

Finding the Shortest Watchman Route in a Simple Polygon 383

boundary. Now follow the polygon boundary from the first active cut to the second ac-
tive cut and construct a polygon consisting of the triangles adjacent to this section of the
boundary. Attach this polygon to the previously constructed polygon using the active cut
as a mirror. Continue the process as in Fig. 4 until the starting pointd is reached. The
constructed polygon is the hourglass ofP. The shortest path in the hourglass fromd to
its image point is computed [7], [13]. Finally, the route is folded back to give the shortest
fixed watchman route inP. The time complexity is linear, sinceP′ can be triangulated in
linear time and the shortest path can be computed in linear time in a triangulated polygon
[7], [13].

Recently, it has been shown how to compute the shortest fixed watchman route in
O(n|C|F) time andO(n|C|) storage, where|C| is the number of essential cuts andF is
the number of fragments, using an incremental algorithm in conjunction with dynamic
programming.

Since we will use this result, we claim it as a theorem.

Theorem 1[19]. There is an algorithm that, given a boundary point d in a simple
polygon of n edges, the backward essential cuts with respect to d, and their subdivision
into fragments, computes the shortest fixed watchman route through d in O(n|C|F) time
and O(n|C|) storage, where|C| is the number of essential cuts and F is the number of
fragments.

In Section 4.2 we show that the time to compute the set of essential cuts isO(n logn),
and that the fragments can be computed in timeO(n logn + F). This, together with
Theorem 1, implies that the shortest fixed watchman route through a given boundary
point can be computed inO(n4) time, sinceF = O(n2).

We denote the time and storage complexities to compute a shortest fixed watchman
route byT(n, |C|, F) andS(n, |C|, F) repectively. Hence, by Theorem 1,T(n, |C|, F) =
O(n|C|F) andS(n, |C|, F) = O(n|C|).

The adjusting technique that we have described in this section is used extensively in
the following, where we show how to eliminate the door restriction.

4. The Algorithm

4.1. Presentation

We present a polynomial time algorithm to compute a shortest floating watchman route
in a simple polygon. The idea of the algorithm is to precompute the shortest fixed
watchman routes making reflections at the fragment end points. Thus, we are left with
only a restricted case to handle, the case when the shortest watchman routes makes
only perfect reflections in the interior of fragments. To solve the problem in this case,
we apply a process we callsliding that makes a discrete simulation of the continuous
motion performed by a reflection point of a watchman route as the reflection point moves
between the two end points of an active fragment.

To simplify our presentation, we assume that the input polygon is not star-shaped.
In a star-shaped polygon, the problem of computing the shortest watchman route has a

384 S. Carlsson, H. Jonsson, and B. J. Nilsson

linear time solution—compute the kernel of the polygon [12], and select any point of
the kernel as the resulting route.

The pseudocode of the algorithm that computes a shortest floating watchman route
is presented above. The rest of this presentation is devoted to proving the correctness of
the algorithm, and analyzing its complexity. In Step 1 of the pseudocode, we compute
the setC of essential cuts. This part of the algorithm is described in Section 4.2. The
description of how to perform Step 2.1 is presented in Section 4.3, and we show how to
do the sliding process of Step 3.1 in Section 4.4. In Section 4.5 we prove the correctness
and analyze the running time of the algorithm.

Algorithm Shortest-Floating-Watchman-Route

Input: A simple polygonP of n edges
Output: A shortest floating watchman routeW

1 Compute the setC of essential cuts and the subdivision into
fragments

2 for each fragment end pointd do
2.1 Compute the shortest watchman routeWd forced to

reflect ond
endfor

3 for each fragmentf and each end pointd of f do
3.1 Apply a sliding process onf from d to the other end point,

and compute the shortest watchman routes forced to reflect
on an interior point off

endfor
4 Return the shortest of the computed watchman routes
End Shortest-Floating-Watchman-Route

4.2. Computing the Essential Cuts

To compute the setC of essential cuts, we begin by computing all the extension cuts of the
polygon. To do this, we use a ray shooting data structure as presented by Guibas et al. [7]
or Hershberger and Suri [10]. The ray shooting operations can be performed inO(logn)
time each, with the initial preprocessing step taking linear time. At every reflex ver-
tex of the polygon, we perform two ray shooting operations, one in the direction of
each of the two adjacent edges toward the interior of the polygon. In this way we
specify the two extension cuts associated to every reflex vertex. The total time used
is O(n logn).

Next we determine one essential cut. LetE denote the set of extension cuts. Between
two cuts it is easy to check in constant time whether one cut dominates another, if
we maintain information on where the cut end points lie on the boundary ofP. Since
the dominance property is transitive, we can, in linear time, find one essential cut by
performing pairwise comparisons, always keeping the cut that is not dominated. Letc1

be the essential cut we get through this process.

Finding the Shortest Watchman Route in a Simple Polygon 385

Now we sort the setE so that the extension cuts appear in the same order as their start
points occur in a counterclockwise traversal of the boundary, beginning at the start point
of c1.

To compute the essential cuts, we traverse the ordered setE and perform the following
steps:

Let current := c1 and setC := {c1}
for i := 2 to |E | do

if currentdoes not dominateci then
C := C ∪ {ci }
current := ci

endif
endfor

Lemma 4.1. The setC contains the essential cuts once the loop has terminated.

Proof. To see that all the essential cuts are inC, when the loop terminates, note that an
extension cutc is inserted inC unless we can determine some essential cut that dominates
c. Hence, it only remains to prove that the setC contains only the essential cuts.

First, note that if a cutcj ∈ E dominates a cutci ∈ E , according to the index ordering
of E determined previously, thenj < i . If this is not the case, there are points to the left
of cj that are not to the left ofci , e.g., the boundary points between the start points ofci

andcj .
Now, assume that there is a nonessential cutci in C, wherei is the index of the sorted

order inE . The cutci is dominated by some essential cutcj ∈ C ⊆ E , with j < i .
Consider the subsequencecj , . . . , ci of cuts inE . When the dominance test is applied to
the cutci , the variablecurrent= ck, with j ≤ k ≤ i − 1. We claim that, in this case,
the cutci is also dominated byck. To see this, observe that, sinceci is dominated bycj ,
the cutck must intersectcj , otherwiseck is dominated bycj . However, this means that
ck dominatesci , and, in turn, it means that when the loop considersci , the cutci will not
be included inC; see Fig. 5.

We conclude that the total time consumption for the computation of the essential cuts
is O(n logn). In addition, our shortest watchman route algorithm also requires the sub-
division of the essential cuts into fragments, i.e., the line segments between consecutive
intersection points of pairs of essential cuts. These can be computed, and ordered along
each essential cut, in timeO(n logn+ F), whereF denotes the number of fragments,
using an intricate plane sweep algorithm developed by Chazelle and Edelsbrunner [5].

Fig. 5. Dominated cuts are removed from the setC.

386 S. Carlsson, H. Jonsson, and B. J. Nilsson

4.3. Shortest Watchman Routes for the Fragment End Points

Consider a shortest watchman route in the polygonP. The route will make at least one
reflection contact with some essential cutc, since we assume thatP is not starshaped.
Furthermore, the reflection contact can be one of two types. The first case is that the
route reflects at a fragment end point ofc, i.e., the intersection point ofc with some other
essential cut, or an end point of the cutc. The second case arises when the route reflects
in the interior of a fragment, in which case the reflection will be perfect by Lemma 3.3.

In this section we determine how to compute the shortest watchman routes forced to
have reflection contacts at the fragment end points. The case when the shortest watchman
route only has perfect reflections in the interior of active fragments will be taken care of
in the next section.

Let C = {c1, . . . , ck} be the essential cuts ordered on their start point cyclically
around the boundary ofP. We assume thatd, the fragment end point through which we
are computing the shortest watchman route, is the intersection betweenci andcj , with
1≤ i < j ≤ k.

Let Cd be the backward essential cuts with respect tod, i.e., the cuts ofC havingd to
the right according to their associated direction. The setCd can be established inO(|C|)
time by testing each cut inC against the pointd. Let lPc denote the part ofP lying to the
left, or on, the cutc.

Since we assume that a reflection is made atd, at least one ofci andcj must be active.
Consider the case whenci is active. In this case the shortest watchman route throughd
cannot make reflection contact with the parts of other cuts inCd that lie to the left ofci ,
since this would imply that the shortest watchman route crossesci . Hence, we only need
to concern ourselves with the part ofP lying to the right ofci . Similar arguments can be
applied ifcj is active or bothci andcj are active.

We construct three new polygonsPi
d = P\lPci ,P

j
d = P\lPcj , andPi, j

d = P\(lPci ∪lPcj),

and three sets of backward essential cuts inPi
d, P j

d , andPi, j
d , denotedC i

d, C j
d , andC i, j

d ,
respectively. We have

C i
d = {c∩ Pi

d | c ∈ Cd\{ci }},
C j

d = {c∩ P j
d | c ∈ Cd\{ci }}, and

C i, j
d = {c∩ Pi, j

d | c ∈ Cd\{ci , cj }};
see Fig. 6.

Constructing the polygonsPi
d, P j

d , andPi, j
d takesO(n) time and constructing the sets

C i
d, C j

d , andC i, j
d takesO(|C|) time using straightforward techniques. The pointd lies on

the boundary of each of the three polygons, and the setsC i
d, C j

d , andC i, j
d can be viewed

as the sets of backward essential cuts with respect tod in the polygons. Thus, we can
use Theorem 1 of Section 3 and compute the shortest fixed watchman route through
d, inside each ofPi

d, P j
d , andPi, j

d . The only problem here is that somec in Cd may be
such thatc ∩ Pi, j

d = ∅, in which case the shortest fixed watchman route inPi, j
d does

not correspond to a watchman route inP, sincec is not visited. However, this can be
detected when the setC i, j

d is constructed and, hence, we do not have to compute the route
in Pi, j

d .

Finding the Shortest Watchman Route in a Simple Polygon 387

Fig. 6. Illustrating the polygonsPi
d, P j

d , andPi, j
d , and the setsCi

d, C j
d , andCi, j

d .

Selecting the shortest of the valid routes gives us the shortest watchman route reflect-
ing atd in O(T(n, |C|, F)) time. Repeating for each fragment end point, we have the
following lemma.

Lemma 4.2. The set of shortest fixed watchman routes, each forced to reflect at an end
point of a fragment, can be computed in O(F ·T(n, |C|, F)) time, where F is the number
of fragments of the essential cuts.

4.4. The Sliding Process

The sliding process we apply in Step 3.1 of the pseudocode is the main step of our algo-
rithm. The technique we use is similar to the one used by Melissaratos and Souvaine [14].
However, since our problem is more complicated we present the technique in detail. This
section is divided into three parts. In the first part we introduce some notation and show
some initial results on the key points at which structural changes occur in the sliding
process. In the second part we discuss the necessary adjustments that have to be made
as the sliding reaches a key point and we describe how to compute the key points in the
third part.

The Event Points
We begin by reviewing some of the notation introduced in Section 3. Letf be the
fragment of some essential cut on which we perform the sliding process, i.e., a fragment

388 S. Carlsson, H. Jonsson, and B. J. Nilsson

adjacent tod. We denote byWp, the shortest watchman route passing through the pointp
of f . The routeWp corresponds to a shortest pathSp in some hourglass that we denote by
Hd. An hourglass is a two-manifold with the same properties as a triangulated polygon,
and is obtained by the unfolding procedure described in Section 3. Denote the unfolded
image of f in Hd by f̄ and correspondingly the image of a pointp on f by p̄ on f̄ .
Hence,Sp is the shortest path fromp to p̄ in Hd. An hourglass is completely specified
by the set of active cuts, and, hence, there is a direct correspondence betweenHd and
the current set of active cuts. Note also that there is a direct correspondence betweenWp

in P andSp in Hd, and, therefore, we refer toWp andSp interchangeably. Initially, we
have the routeWd passing through an end pointd of f and it corresponds to the shortest
pathSd in Hd.

Let p= d, and suppose we move the pointp slightly toward the other end pointd′ of
f . We are interested in the structural changes that occur toWp as the sliding proceeds in
Hd. At certain key points, called theevent points, we have to update the route because
its structure changes. Since the sliding pointp is not fixed, we have to be able to look
ahead alongf to compute the next event point. Therefore, we have to ensure that the
fragment f is part of the boundary ofHd, but this follows, since we assume that the
routeWp reflects onf , and, hence, thatf is active and part of the boundary ofHd.

The next lemma describes the structure of the watchman routes that we compute.

Lemma 4.3. The shortest path Sp in Hd makes turns at vertices that correspond to
active fragment end points inP or to vertices ofP.

Proof. Follows directly from Lemma 3.3, since perfect reflections ofWp in P translate
to straight line segments ofSp in Hd.

We define the event points formally.

Definition 4.1. An event pointis a pointpon f such that one of the following properties
holds:

1. The interior of either the first or last segment ofSp intersects a vertex ofHd.
2. The first and the last segments ofSp have the same angle tof . This corresponds

to perfect reflection in the interior off .

Refer to Fig. 7 for an illustration of the different types of event points. We refer to the
event point types by their corresponding number as above.

The shortest watchman route either reflects on a fragment end point or at an event
point in the interior of an active fragment. This is shown in the next lemma.

Lemma 4.4. Between two consecutive event points on a fragment f, the path Sp makes
turns at the same vertices ofHd, and the length of Sp either increases or decreases
monotonically.

Proof. Letq andr be two consecutive event points onf . We first prove that, for every
point p betweenq andr , the shortest pathSp makes turns at the same points. Assume

Finding the Shortest Watchman Route in a Simple Polygon 389

Fig. 7. The event points of the sliding process.

the contrary, that the turning points are not the same. Letp andp′ be two points lying
betweenq andr such thatp is reached beforep′ as the sliding proceeds fromq to r . Since
subpaths of shortest paths are also shortest paths, the two pathsSp andSp′ either do not
intersect or they have one common subpath, the common subpath possibly degenerating
to a single point of intersection. Now, if the two paths have a different turning point,
then, evidently, this point cannot lie on the common subpath. Hence, it lies either before
or after the common subpath. These cases are symmetric, so we assume that a different
turning point lies before the common subpath.

To simplify the argument, we assume thatp andp′ have been selected close enough
so thatSp andSp′ only have one different turning point.

If Sp makes a turn at some pointv, but Sp′ does not, then extend the second link of
Sp until it hits f at the pointp′′; see Fig. 8(a). The pathSp′ cannot intersect the segment
[p′′, v], because that would imply thatv lies after the common subpath. This in turn
means thatp′′ lies betweenp andp′, but this is a contradiction, since, by Definition 4.1,
p′′ is a Type 1 event point.

If Sp′ makes a turn at some pointv, but Sp does not, then extend the second link of
Sp′ until it hits f at the pointp′′; see Fig. 8(b). The pathSp cannot intersect the segment
[p′′, v], by the argument stated above. Again,p′′ must lie betweenp andp′, and this leads
to a contradiction, sincep′′ is a Type 1 event point.

Thus, we have proved thatSp andSp′ differ only by their first and last segments, and
sincep andp′ were chosen arbitrarily betweenq andr , this also holds forSq andSr .

Fig. 8. Illustrating Lemma 4.4.

390 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 9. Illustrating Lemma 4.4.

To prove that the length ofSp changes monotonically asp slides fromq to r , we
define the function

Lq(p) = length(Sp)− length(Sq),

where we viewLq(p) as a one parameter function, withp betweenq and r on f . If
we denote the shortest path between any two pointsu andu′ in Hd by SP(u,u′), we
have thatlength(Sq) = ‖q, v‖+ length(SP(v, v′))+‖v′, q̄‖ andlength(Sp) = ‖p, v‖+
length(SP(v, v′)) + ‖v′, p̄‖, whereSP(v, v′) is the common subpath ofSq andSp, and
the two pointsq̄ and p̄ are the images ofq andp on the imagef̄ of f in Hd; see Fig. 9.
Hence,

Lq(p) = ‖p, v‖ + ‖v′, p̄‖ − ‖q, v‖ − ‖v′, q̄‖.
If we define the two angle functionsα(p) andβ(p) as the angle between [p, v] and f ,
and the angle between [p̄, v′] and f ′, it is easy to show that

Lq(p) = ‖q, v‖ sinα(q)

sinα(p)
+ ‖v

′, q̄‖ sinβ(q)

sinβ(p)
− ‖q, v‖ − ‖v′, q̄‖.

We differentiate with respect toα(p) and set to zero to obtain the local optimum, yielding

α(p) = π − β(p).
Since the sum ofα(p) andβ(p) isπ , the local optimum occurs when the segments [p, v]
and [v′, p̄] in Hd correspond to segments inPmaking a perfect reflection onf . However,
these points are defined as the Type 2 event points, and, hence, the functionLq(p) is
monotone between two consecutive event points.

We can actually make the following stronger statement

Corollary 4.5. Between any pair of consecutive Type1 event points there is at most
one event point of Type2.

Proof. A careful examination of the functionLq(p) defined forp in the interval between
two consecutive Type 1 event points shows that it can have at most one local optimum,
thus proving the result.

Finding the Shortest Watchman Route in a Simple Polygon 391

Fig. 10. The fragments adjacent tod are f +ci
, f +cj

, f −ci
, and f −cj

.

Adjusting the Route
Now, the question is what type of changes are to be made whenp reaches an event point
on f .

Consider the intersection pointd between two essential cutsci andcj . The pointd is
either the end point of four fragments ofci andcj or the end point of one fragmentci lying
on the boundary ofP. In the previous section we showed how to compute the shortest
watchman route reflecting at each fragment end point, so we assume that this route and
the corresponding hourglassHd together with the current set of active fragments are
given.

We perform the sliding process at most four times starting atd, once for each active
fragment adjacent tod, and in the direction of the opposite fragment end point. We
denote the four fragments ofci andcj by f +ci

, f +cj
, f −ci

, and f −cj
; see Fig. 10. From the

previous section we know that there are three different cases to handle: if bothci andcj

are active, then we slide once along each fragmentf +ci
, f +cj

, f −ci
, and f −cj

; see Fig. 11(a).
If only ci is active, then we slide alongf +ci

and f −ci
; see Fig. 11(b). The third case occurs

when onlycj is active, and we slide alongf +cj
and f −cj

.

Fig. 11. The different cases of sliding depending on the initial routeWd.

392 S. Carlsson, H. Jonsson, and B. J. Nilsson

As the sliding of a pointp proceeds along one of the fragmentsf we encounter event
points in sequence. Each event point requires some update of the pathSp. For the Type 1
event points, there are two possible updates. Either the first or the last segment ofSp is
leaving a vertex or fragment end pointv at the event point, in which case the two edges
of Sp adjacent tov are collinear and can be merged into one first or last segment ofSp.
The other case occurs when the path reaches a vertex or fragment end pointv at the event
point. In this case the edge [p,u] of Sp intersectingv is split into one first or last edge
[p, v] and one second or penultimate edge [v,u] of Sp.

The Type 2 event points do not induce any change in the path, and, hence, no updates
are necessary. These points give local optima of the route length and are therefore
interesting to maintain.

Computing the Event Points
To be able to perform the adjustments correctly, we need to compute the set of event
points on a fragmentf efficiently. This is done by first computing an ordered list of the
Type 1 event points and then as the sliding process moves through the points in the list
compute a potential Type 2 event point. The actual next event point is always the one
closest to the sliding pointp. As soon as one of the event point is reached byp, the proper
changes and updates are performed and we compute a new potential next event point of
Type 2.

Type1Event Points. Before the sliding onf starts, we do some preprocessing to obtain
the list of Type 1 event points. Letd be the end point off where the sliding process
starts. Letd̄ be the image ofd on f̄ in Hd. Furthermore, letd′ be the other end point of
f and letd̄′ be the image ofd′ on f̄ . We compute the shortest path trees rooted atd, d′,
d̄, andd̄′ in Hd [7]. Denote these bySPT d, SPT d′ , SPT d̄, andSPT d̄′ , respectively.

In each of the trees we compute the nearest common ancestor [9] with respect to the
oppositefragment end points inHd. ForSPT d andSPT d′ these are the image pointsd̄
andd̄′, whereas forSPT d̄ andSPT d̄′ they are the fragment end pointsd andd′. Consider
for example the shortest path treeSPT d̄. Here we compute the nearest common ancestor
v to d andd′; see Fig. 12(a). Thus, we have a path in the tree fromd to v and a path from
d′ to v. Extend each link of these two paths and compute the intersection points with
f ; see Fig. 12(b). These intersection points are given in order alongf and are inserted
in a list. We perform the same construction with respect to the other shortest path trees,
except that forSPT d andSPT d′ , we get intersection points on̄f . These have image
points on f that can be easily computed and inserted in corresponding lists. Now we
have four ordered lists of points onf that can be merged together into one ordered list
L1 of points. Note that the pointsd andd′ belong toL1.

We assume from now on that for each pointp inL1 we have the following information
stored in association top, image(p) is the image point̄p on f̄ , a flagflag(p) that tells
which shortest path tree generated the pointp, the two pointsu(p)andu′(p)corresponding
to the end points of the shortest path tree edge that generatedp if flag(p) is SPT d̄ or
SPT d̄′ , or p̄ if flag(p) is SPT d or SPT d′ , the ordering is such thatu(p) is the middle
point of the three; see Fig. 12(b). Furthermore, we assume thatnext(p) andprev(p) give
the next and previous point inL1 according to the order fromd tod′. In addition, we have

Finding the Shortest Watchman Route in a Simple Polygon 393

Fig. 12. Illustrating the computation of Type 1 event points fromSPT d̄.

a status field associated to every vertex ofHd. For a vertexv in Hd, the fieldstatus(v)
can either have the valueT or U depending on whetherv is touched or untouched by
the current shortest pathSp.

In most cases the listL1 will contain the complete set of Type 1 event points, however,
in a few cases we might have missed some of them. Our next objective is therefore
twofold: find a compact representation of the routeSp, for each pointp in L1, and
identify when we have missed Type 1 event points and compute these.

The compact representation of the routes consists of the complete shortest pathSd and
Sd′ and, for every other pointp in L1, the second and penultimate points ofSp, denoted
first(p) andlast(p), so that [p, first(p)] and [last(p), p̄] are the first and last links ofSp.
We also maintain the length ofSp, length(p) = length(Sp).

Consider the case whenSd andSd′ in Hd have a nondegenerate subpath in common,
by which we mean a common subpath that starts and ends at vertices ofHd. In this case
this subpath is going to be a part of each pathSp, for every pointp on f . Let v andv′

denote the end points of this subpath, withv lying beforev′ asSp is traversed fromp
on f to the image point̄p on f̄ . This means that an event point is an intersection point
between an extension of an edge of the shortest path fromv to d or fromv to d′ with the
segmentf , or the image onf of an intersection point between an extension of an edge
of the shortest path fromv′ to d̄ or from v′ to d̄′ with the segmentf̄ . However, these
points are all included in the listL1 as can be seen from the construction ofL1, sincev
andv′ will be the nearest common ancestors ofd andd′ in SPT d̄ andSPT d̄′ andd̄ and
d̄′ in SPT d andSPT d′ respectively.

The compact representation ofSp can now be easily computed for the points inL1 in
sequence fromd to d′, if we assume that all the vertices ofHd have their status fields
set toU except for the vertices alongSd which have their status fields set toT : if flag(p)
equalsSPT d̄ or SPT d̄′ , then ifstatus(u(p)) = T , we have thatSp is leaving the vertex

394 S. Carlsson, H. Jonsson, and B. J. Nilsson

u(p) and setfirst(p) := u′(p), last(p) := last(prev(p)), status(u(p)) := U , and

length(p) := length(prev(p))−‖u(p),u′(p)‖−‖prev(p), first(prev(p))‖
−‖image(prev(p)), last(prev(p))‖+‖p, first(p)‖+‖image(p), last(p)‖.

On the other hand, ifstatus(u(p)) = U , we have thatSp is hitting the vertexu(p) and
therefore we setfirst(p) := u(p), last(p) := last(prev(p)), status(u(p)) := T , and

length(p) := length(prev(p))− ‖prev(p), first(prev(p))‖
− ‖image(prev(p)), last(prev(p))‖ + ‖p, first(p)‖ + ‖u(p),u′(p)‖
+ ‖image(p), last(p)‖.

The case whenflag(p) equalsSPT d or SPT d′ is handled in the same way with respect
to the image ofp. The following lemma shows that we have considered all cases.

Lemma 4.6. If Sd and Sd′ have a nondegenerate subpath in common, then the listL1

contains all the Type1 event points.

Proof. Let r be a Type 1 event point. By definition, the pathSr has either a first or last
link that intersects a vertex ofHd. Assume first that it holds for the first link and let the
vertex beu. The common subpath ofSd andSd′ must also be a subpath ofSr , and, hence,
the end vertexv closest tor of this subpath also belongs toSr . Sincev is the nearest
common ancestor ofd andd′ in bothSPT d̄ andSPT d̄′ , the two trees also contain the
path fromv to u. Hence,r is the intersection betweenf and the extension of the last
shortest path tree edge on the path fromv to u. SinceL1 contains all these intersection
points, the pointr belongs toL1.

If it is the last link of Sr that intersects a vertex ofHd, then we argue in a similar
manner to show that the image pointr̄ of r on f̄ is the intersection point of̄f and an
extension of a shortest path edge inSPT d andSPT d′ , thusr belongs toL1.

WhenSd andSd′ do not have a nondegenerate subpath in common, there may exist
pointsp on f such thatSp are straight line segments inHd, and, hence, the pathsSp do
not touch any of the vertices ofHd.

We can check for this possibility by comparing the nearest common ancestor ofd and
d′ in SPT d̄ and the nearest common ancestor ofd andd′ in SPT d̄′ . If they are equal,
thenSd andSd′ have a common nondegenerate subpath and, by Lemma 4.6, the listL1

contains all the Type 1 event points.
If Sd andSd′ do not have a common subpath, then we have to differentiate between

two subcases.

(i) Even number of active fragments. If Wd in P corresponding toSd in Hd has an even
number of reflection points on active fragments, i.e., there is an even number of active
fragments, the two pointsp and p̄ will slide in the same general direction; see Fig. 13. In
this case we traverse the current listL1 while maintaining the compact representation of
the shortest pathSp for each event pointp inL1 in the same way as was shown previously.

Finding the Shortest Watchman Route in a Simple Polygon 395

Fig. 13. Illustrating the computation of the compact representation of the shortest paths with an even number
of active fragments.

Furthermore, we maintain a counterturns(p) on the number of turns thatSp makes. The
counterturns(p) is either increased by one or decreased by one depending on whether
Sp hits a vertex or leaves a vertex atp.

In this case we may run into the following problems: consider a pointp in L1 with
flag(p) equalingSPT d̄ or SPT d̄′ . It may be that neitheru(p) nor u′(p) is equal to
first(prev(p)) or thatu(p) does equalfirst(prev(p)) but the segment [p,u′(p)] is not part
of Sp; see Fig. 13(a) for an example. The problem here is thatSp consists of links generated
by saySPT d̄ whereas the pointp is an intersection point generated by the extension of
a link from SPT d̄′ , that is the other shortest path tree. This has to be recognized and
handled by our algorithm, and it is solved in the following way.

Assume thatflag(p) equalsSPT d̄ or SPT d̄′ , then if status(u′(p)) = T , we can
establish the compact representation ofSp as previously shown. On the other hand, if
status(u′(p)) = U , thenSp does not pass through the vertexu′(p), and, hence, the point
p cannot be a proper event point. In this case we compute the compact representation for
Sp by settingfirst(p) := first(prev(p)), last(p) := last(prev(p)), and compute the length
of Sp accordingly. Ifflag(p) equalsSPT d or SPT d′ , we have the same situation with
respect to the imagēp and we can handle this case in a similar way.

WhenSp makes only one turn, i.e.,turns(p) = 1, for somep in L1, then the two links
of the path may merge into one and our aim is to find the point onf where this happens.
It is a pointp+ ε, for some value ofε, where the path is a straight line segment. Let
v = u(p) denote the turning point in the pathSp and letα be the anglepv p̄. Similarly we
denote the image ofp+ε on f̄ by p̄+ε. Thus, we can express the angle(p+ε)v(p̄+ε)
as a one parameter functionα(ε) of ε; see Fig. 13(b). Furthermore, we have that the
scalar product of the two vectorsv(p+ ε) andv(p̄+ ε) equals

v(p+ ε)× v(p̄+ ε) = cosα(ε)‖v,p+ ε‖ · ‖v, p̄+ ε‖
and we are interested in the value ofε whenα(ε) = π . To get this value we simply solve
the equation

v(p+ ε)× v(p̄+ ε)+ ‖v,p+ ε‖ · ‖v, p̄+ ε‖ = 0.

396 S. Carlsson, H. Jonsson, and B. J. Nilsson

Setp′ := p+ ε and check ifp′ lies betweenp andq on f , whereq is the point in
L1 after p asL1 is traversed fromd to d′ such thatflag(q) = SPT d̄; see Fig. 13(c).
If p′ lies betweenp and q on f , then p′ is inserted as a Type 1 event point in its
proper place betweenp andq in L1, the possible points inL1 betweenp andp′ are
updated with the compact representation of their corresponding paths (each of them
pass through the single vertexv), first(p′) := p̄′ and length(p′) := ‖p′, p̄′‖. Oth-
erwisep′ is discarded since the line segment [p′, p̄′] crosses the exterior ofHd; see
Fig. 13(d).

If p′ does not lie betweenp andq, then there is some pointp′′ betweenp′ andq on
f whereSp′′ hits some vertex and goes from being a straight line segment to having an
increasing number of turns. To getp′′ we simply start with the pathSp = Sd′ , traverse
L1 backward fromd′ to d, maintain a counter on the number of turns thatSp makes, and
perform similar operations as previously shown.

(ii) Odd number of active fragments. If there is an odd number of active fragments that
Wd corresponding toSd in Hd reflect on, then the pointsp and p̄ will slide in opposite
directions. This means thatSd and Sd′ will always intersect inHd, i.e., they have a
common subpath. However, the subpath may be degenerate in the sense that it is an
intersection point in the interior ofHd that does not correspond to a vertex ofHd; see
Fig. 14(a). In this case we scan for missing Type 1 event points and construct the compact
representations of the shortest paths in essentially the same way as when we have an
even number of active fragments.

We traverse the listL1 from d to d′ maintaining a compact representation of the
shortest pathSp, for each event pointp in L1, and a counter on the number of turns that
Sp makes asL1 is traversed. The compact representation of the paths is computed as
before.

Fig. 14. Illustrating the computation of the compact representation of the shortest paths with an odd number
of active fragments.

Finding the Shortest Watchman Route in a Simple Polygon 397

When Sp makes exactly one turn, for somep in L1, then we might, once again,
have the case that for one pointp+ ε the pathSp+ε becomes a straight line segment
from p + ε to its image point onf̄ . Such a point can be computed by solving the
equation

v(p+ ε)× v(p̄− ε)+ ‖v,p+ ε‖ · ‖v, p̄− ε‖ = 0,

for ε, wherev is the single turning point ofSp and p̄− ε should be considered as the
image point ofp+ ε since sliding on the two fragmentsf and f̄ is done in opposite
directions.

Setp′ := p+ ε and check ifp′ lies betweenp andq on f , whereq is the point inL1

afterpasL1 is traversed fromd tod′; see Fig. 14(b). Ifp′ lies betweenpandq on f , then
p′ is inserted as a Type 1 event point betweenp andq in L1, otherwisep′ is discarded
and the sliding process is continued.

If p′ does not lie betweenp andq, then there is some pointp′′ betweenp′ andq on
f whereSp′′ hits some vertex and goes from being a straight line segment to having an
increasing number of turns. To getp′′ we simply start with the pathSp = Sd′ , traverse
L1 backward fromd′ to d, maintain a counter on the number of turns thatSp makes, and
perform the same operations as previously shown. We have the following lemma.

Lemma 4.7. If Sd and Sd′ do not have a nondegenerate subpath in common, then the
list L1 including the end points of the interval on f where Sp is a straight line segment
contains all the Type1 event points.

Proof. Letr be a Type 1 event point. Ifr is an intersection betweenf and the extension
of some shortest path tree edge ofSPT d̄ or SPT d̄′ , or the image of an intersection
betweenf̄ and the extension of some shortest path tree edge ofSPT d orSPT d′ , thenr
belongs toL1 by the proof of Lemma 4.6. Our objective is now to show that if this is not
the case, thenr is one of the end points of the interval onf whereSp is a straight line
segment. By definition, the pathSr has either a first or last link that intersects a vertex
of Hd. Assume first that this holds for the first link and let the vertex beu. Sincer is
not an intersection point betweenf and the extension of some shortest path tree edge of
SPT d̄ or SPT d̄′ , this means thatSr cannot pass through any other vertex ofHd except
u and thereforeSr must be a straight line segment, proving our claim.

If it is the last link ofSr that intersects a vertex ofHd, then the situation is exactly the
same as before, whereby the result follows.

Type2 Event Points. The listL2 of Type 2 event points is computed in the following
way. The hourglassHd is a triangulated two-manifold embedded in the plane. Hence,
Hd can be copied withf as the image by taking each triangle inHd on the way from
f̄ to f and placing it beforef ; see Fig. 15. This process gives us a new two-manifold
H+d consisting of two versions ofHd, the original one and a new one denotedH′d. Each
vertexv of Hd corresponds to an image vertex inH′d denotedbelow(v).

Now we run through the listL1 from d to d′ and for each pointp in L1 we com-
pute the intersection between the segment [first(p),below(last(p))] and f to get a point

398 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 15. Illustrating the computation of the Type 2 event points.

r . If r lies betweenp and next(p), then r is inserted inL2 and the length ofSr is
computed by

length(r) := length(p)−‖p, first(p)‖−‖image(p), last(p)‖+‖first(p),below(last(p))‖,

otherwise, the pointr is discarded.

Lemma 4.8. The listL2 contains all the Type2 event points.

Proof. By definition, the Type 2 event points are the pointsr on f where the first and
last links have the same angle tof and f̄ . By Corollary 4.5 there can be at most one
event point of Type 2 between any pair of consecutive Type 1 event points. Since the
described process checks for intersection points onf having the same angles for all pairs
of consecutive Type 1 event points, the claim follows.

Finally, we run through the two listsL1 andL2 and establish the pointp for which
length(p) is smallest, compute the pathSp, and return it as the result of the sliding
process.

Complexity of the Sliding Process. Next, we prove that the sliding process on a fragment
f can be performed in linear time.

Lemma 4.9. The number of event points on a fragment f is O(n) and they can be
computed in linear time.

Finding the Shortest Watchman Route in a Simple Polygon 399

Proof. We count the number of event points for each type separately.

1. The number of Type 1 event points isO(n), since the number of points where
Sp intersects vertices ofHd is at most linear. That they can be computed in linear
time follows from the discussion above, since the setL1 can be computed from
the shortest path trees in linear time and each of the four shortest path trees can be
constructed in linear time. Updating thefirst(p) and last(p) fields takes constant
time per event point.

2. The number of Type 2 event points is at most as large as the number of Type 1
event points. This is because between two consecutive event points of Type 1, there
can be at most one Type 2 event point by Corollary 4.5, i.e., there is at most one
local optimum in that interval. Thus, the Type 2 event points contribute at most
a factor 2 to the total number of event points. Computing the setL2 of Type 2
event points is done by first computing the two-manifoldH+d , which can be done
in linear time, and then testing for Type 2 event points in each interval between
consecutive Type 1 event points, which takes constant time per interval.

Thus, the sum over all the event point types and the computation time is as stated, which
concludes the proof.

4.5. Correctness and Analysis

During the sliding process on a fragmentf , we maintain the shortest pathSp in Hd, and
Sp corresponds to the shortest watchman routeWp in P reflecting on the same active cuts
asWd.

To prove the correctness of our algorithm we use the following lemma.

Lemma 4.10. There is a fragment end point d such that the shortest watchman route
W reflects on the same active cuts as Wd.

Proof. The proof divides into two cases. The first case arises whenW intersects a
fragment end point, in which case the lemma obviously holds.

The second case occurs whenW does not intersect any fragment end point. This
means, by Lemma 3.3, thatWmakes perfect reflections at all its active cuts. Letp be
one of the reflection points ofWand let f be the active fragment containingp. Let Hp

be the hourglass obtained by unfolding the polygon with respect to the active cuts ofW
and letSp be the shortest path inHp corresponding toW. Now, imagine that the pointp
moves in one direction alongf and that the shortest path changes accordingly until the
path touches a fragment end point. Letp′ be the point onf where this occurs, i.e.,Sp′

intersects some fragment end point but for any pointq in the interval betweenp andp′

the pathSq does not intersect any fragment end point. Letd be the fragment end point
intersected bySp′ . Our objective is to prove thatWandWd, the shortest watchman route
throughd, have the same set of active cuts.

Let H+p be the two-manifold obtained by placing a second copy ofHp, denoted
H ′p, below Hp and, for each boundary pointq in Hp, let below(q) denote the image
of q in H′p; see Fig. 16. LetSP(d,below(d)) be the shortest path fromd to below(d)

400 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 16. Illustrating the proof of Lemma 4.10.

in H+p . Let SP(p̄,below(p)) be the shortest path from̄p to below(p), i.e., Sp in Hp

together with its copy inH′p. SinceSP(p̄,below(p)) does not have a turning point atp
on f , the pathSP(d,below(d)) must crossf at a point betweenp andp′ on f , and,
hence,SP(d,below(d)) does not intersect any fragment end point inH+p , i.e., the path
SP(d,below(d)) corresponds to some watchman route that passes throughd and makes
perfect reflections on all its active cuts; see Fig. 16 for an illustration. Denote this route
by W′d .

Now, Chin and Ntafos [6] prove that if a fixed watchman route is nonadjustable,
i.e., the route cannot be locally shortened, then the route is the shortest fixed watchman
route. SinceW′d is nonadjustable it therefore follows thatW′d = Wd, and, hence,Wand
Wd reflect on the same active cuts.

To get the shortest watchman route we perform sliding along all fragments allowing
reflection contact, and maintain the shortest route obtained at the event points. It follows
from Lemma 4.4 that the shortest route will pass through one of the event points since the
length of a route is either monotonically increasing or decreasing as the sliding process
proceeds between event points.

We prove the following theorem.

Theorem 2. The Shortest-Floating-Watchman-Route algorithm computes a shortest
floating watchman route in a simple polygonP of n edges in O(F(n+ T(n, |C|, F))+
n logn) time using O(S(n, |C|, F) + Fn) storage, where T(n, |C|, F) is the time and
S(n, |C|, F) is the storage used to compute the shortest fixed watchman route in a polygon
having at most n edges, |C| essential cuts, and F fragments of the essential cuts.

Finding the Shortest Watchman Route in a Simple Polygon 401

Proof. The correctness of the algorithm follows from Lemmas 4.6–4.8, 4.10, and the
discussion above. Hence, it remains to analyze the complexity of the algorithm.

Step 1 can be performed inO(n logn+ F) time andO(n+ F) storage. Step 2.1 takes
O(T(n, |C|, F)) time andO(S(n, |C|, F)) storage by definition. The loop at Step 2 is
performed at most 3F times, and, hence, this step usesO(F · T(n, |C|, F)) time and
O(S(n, |C|, F)+ Fn) storage.

To show the complexity of Step 3.1, we have from Lemma 4.9 that the number of
event points isO(n) and they can be computed in linear time and storage. Thus, the time
and storage complexities for Step 3 are bothO(Fn).

The total time for our algorithm becomesO(F(n+ T(n, |C|, F))+ n logn) and the
storage becomesO(S(n, |C|, F)+ Fn).

SinceT(n, |C|, F) = O(n|C|F)andS(n, |C|, F) = O(n|C|)by Theorem 1,|C| = O(n),
and|C| ≤ F ≤ |C|2, the worst case running time and storage requirement of our algorithm
is O(n6) andO(n3), respectively.

As a final remark, the bottleneck of our algorithm is the computation of the shortest
watchman routes reflecting at every fragment end point. It may be possible to exploit
the fact that between two fragment end points on an essential cut, the shortest route does
not change much, and, therefore, all the routes could be computed faster. However, this
approach remains to be investigated.

5. Conclusion

We have presented a polynomial time solution to the problem of computing the shortest
floating watchman route in a simple polygon. The fact that there is a polynomial time
solution for this problem settles an open question in computational geometry.

The algorithm is adaptive in the sense that the complexity depends not only of the size
of the polygon but also of the number of essential cuts and the number of fragments. The
number of fragments can be quadratic but often it will be much smaller, thus reducing
the complexity of the algorithm.

Related problems are, for instance, those of computing several watchman routes in a
polygon using different optimization criteria. Most versions of these problems turn out
to be NP-hard but there exist polynomial time algorithms for some of these problems in
certain restricted classes of polygons [3], [15], [16].

One important open question in this area is whether the problem of computing the
two watchman routes in a polygon such that the sum of the lengths of the two routes is
minimized has a polynomial time solution or not.

References

1. A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications and Algorithmic Aspects. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD, 1984.

2. S. Carlsson, H. Jonsson, B. J. Nilsson. Finding the Shortest Watchman Route in a Simple Polygon. InProc.
4th International Symposium on Algorithms and Computation, ISAAC ’93, pages 58–67. Lecture Notes in
Computer Science 762, Springer-Verlag, Berlin, 1993.

402 S. Carlsson, H. Jonsson, and B. J. Nilsson

3. S. Carlsson, B. J. Nilsson, S. Ntafos. Optimum Guard Covers andm-Watchmen Routes for Restricted
Polygons.International Journal of Computational Geometry and Applications, 3(1):85–105, 1993.

4. B. Chazelle. Triangulating a Simple Polygon in Linear Time. InProc. 31st Symposium on Foundations of
Computer Science, pages 220–230, 1990.

5. B. Chazelle, H. Edelsbrunner. An Optimal Algorithm for Intersecting Line Segments in the Plane.Journal
of the ACM, 39(1):1–54, 1992.

6. W. Chin, S. Ntafos. Shortest Watchman Routes in Simple Polygons.Discrete and Computational Geometry,
6(1):9–31, 1991.

7. L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan. Linear Time Algorithms for Visibility and
Shortest Path Problems Inside Triangulated Simple Polygons.Algorithmica, 2:209–233, 1987.

8. M. Hammar, B.J. Nilsson. Concerning the Time Bounds of Existing Shortest Watchman Route Algorithms.
In Proc. 11th International Symposium on Fundamentals in Computation Theory, FCT ’97, pages 210–221.
Lecture Notes in Computer Science 1279, Springer-Verlag, Berlin, 1997.

9. D. Harel, R.E. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors.SIAM Journal on Com-
puting, 13(2):338–355, 1984.

10. J. Hershberger, S. Suri. A Pedestrian Approach to Ray Shooting: Shoot a Ray, Take a Walk. InProc. SODA,
pages 54–63, 1993.

11. D. T. Lee, A. K. Lin. Computational Complexity of Art Gallery Problems.IEEE Transactions on Infor-
mation Theory, IT-32:276–282, 1986.

12. D. T. Lee, F. P. Preparata. An Optimal Algorithm for Finding the Kernel of a Polygon.Journal of the ACM,
26:415–421, 1979.

13. D. T. Lee, F. P. Preparata. Euclidean Shortest Paths in the Presence of Rectilinear Barriers.Networks,
14:393–410, 1984.

14. E. A. Melissaratos, D. L. Souvaine. On Solving Geometric Optimization Problems Using Shortest Paths.
In Proc. 6th ACM Symposium on Computational Geometry, pages 350–359, 1990.

15. J. S. B. Mitchell, E. L. Wynters. Watchman Routes for Multiple Guards. InProc. 3rd Canadian Conference
on Computational Geometry, pages 126–129, 1991.

16. B. J. Nilsson. Guarding Art Galleries—Methods for Mobile Guards. Ph.D. thesis, Lund University, 1995.
17. X.-H. Tan, T. Hirata. Constructing Shortest Watchman Routes by Divide and Conquer. InProc. 4th Interna-

tional Symposium on Algorithms and Computation, pages 68–77. Lecture Notes in Computer Science 762,
Springer-Verlag, Berlin, 1993.

18. X.-H. Tan, T. Hirata, Y. Inagaki. An Incremental Algorithm for Constructing Shortest Watchman Routes.
International Journal of Computational Geometry and Applications, 3:351–365, 1993.

19. X.-H. Tan, T. Hirata, Y. Inagaki. Corrigendum to “An Incremental Algorithm for Constructing Shortest
Watchman Routes”.International Journal of Computational Geometry and Applications, to appear.

Received December12, 1997,and in revised form September30, 1998.

