Discrete Comput Geom 22:377-402 (1999)

Geometry

© 1999 Springer-Verlag New York Inc.

Finding the Shortest Watchman Route in a Simple Polygon

S. Carlssort,H. Jonssor,and B. J. Nilssoh

1Department of Computer Science, Lalghiversity of Technology,
971 87 Lule, Sweden
{Svante.Carlsson,Hakan.Jonsg@sm.luth.se

2Department of Computer Science, Lund University,
Box 118, 221 00 Lund, Sweden
Bengt.Nilsson.Ith.se

Abstract. We present the first polynomial time algorithm that finds the shortest route in

a simple polygon such that all points of the polygon are visible from the route. This route
is called the shortest watchman route, and we do not assume any restrictions on the route
or on the simple polygon. Our algorithm runs in worst c@@®) time, but it is adaptive,
making it run faster on polygons with a simple structure.

1. Introduction

It has been known for a long time [1], [11] that the so-called art gallery problem is NP-
hard. This is the problem of finding the smallest set of guards within a simple polygon
such that each point of the polygon is visible from at least one guard. At the same time
there are many examples of optimization problems and in particular shortest route prob-
lems (for instance, the Traveling Salesperson Problem) that are NP-hard. The combined
problem, to find the shortest closed curve (watchman route) inside a simple polygon such
that each point of the polygon is visible to at least one point on the curve, seems to be at
least as hard as the two above. Therefore, it was quite surprising when Chin and Ntafos
claimed that it was possible to find the shortest watchman route that is forced to pass a
given point on the boundary of the polygon in polynomial time [6]. Using variants of the
original algorithm the running times were subsequently improved by Tan etal. [17], [18].
An error thatin some special instances lead to exponential running times in all previously
presented algorithms was discovered by Hammar and Nilsson [8] and a possible solution
was suggested. However, their proposed solution only reduces the types of instances that
have exponential behavior. Recently, Tan et al. [19] presented a correct algorithm based
on the original techniques in conjunction with dynamic programming, thus removing
the exponential behavior in all instances. This algorithm runs in worst@as® time.

378 S. Carlsson, H. Jonsson, and B. J. Nilsson

In some practical applications, for instance, if we would like to patrol a building with a
robot that has to enter the building through a door, this restriction is of minor importance.
In other cases, as, for instance, in illumination problems, the restriction of forcing the
route through a specific point can be devastating since the route can be arbitrarily longer
than the shortest watchman route without any restrictions. Despite the importance of the
problem and a number of attempts to solve it the problem has stayed open until now.

In this paper we make some important observations to solve the general problem of
finding the shortest watchman route in a simple polygon. We reduce the problem to a
polynomial number of shortest watchman route problems with a fixed boundary point,
and solve these using an existing algorithm. This, together with a sweep technique that
we call “sliding,” enables us to construct the shortest watchman route in worsb¢a%e
time. In many polygons though, the algorithm will run faster. The presented algorithm
is a modified and corrected version of a result presented at ISAAC '93 [2].

2. Definitions and Preliminary Results

Let P be a simple polygon having edges. We assume a representatioR a$ a list of

the coordinates of the vertices as they are encountered during a counterclockwise scan
of the boundary oP. This representation implies an orientation on the edgésanfd,

hence, we can say that the interior of the polygon is (locally) to the left of an edge.

A pointp in P is said toseea pointq in P if the line segment between the two points
is contained irfP. We also say that the two points afigibleto/from each other. Auard
setfor P is a set of points irP such that for each poingtin P there is a pointj in the
guard set that segs

A watchman routes a closed curv&Vin P such thatWis a guard set foP. If we
specify a pointd on the boundary oP and force the watchman route to pass through
this point, we talk about fixed watchman routwith the pointd being thedoor of the
route. If no such point is specified, the route is calldtbating watchman routdn the
following, when we talk about a watchman route we mean a floating watchman route
unless otherwise specified.

Since our aim is to compute the shortest watchman route, we need to be able to
measure length. Our measure of distance is the standard Euclidean distance function and
the distance between two poimsandq is denoted|p, q||. The length of a segment is
the distance between the two end points of the segment. A chain is a curve consisting of
consecutive segments that are not collinear. The length of a EhaienotedengthC),
is the sum of the lengths of the segment£of

The shortest watchman route, whether floating or fixed, consists of line segments such
that no two consecutive segments are collinear, i.e., it is a closed chain. Similarly as for
polygons, we represent a watchman route by a list of the vertices as they are encountered
during a counterclockwise scan of the route.

Consider the example polygon in Fig. 1. The shortest watchman route is a tour with
(some) turning points on (some of) the extensions of the polygon edges that are adjacent
to reflex vertices. The reason for this is that the tour needs to see everything behind each
polygon edge. Hence, the extensions of polygon edges are important to know and this
leads us to the following definitions.

Finding the Shortest Watchman Route in a Simple Polygon 379

Fig. 1. An example polygon with its shortest watchman route.

We define autto be a directed line segmentkhwith the following properties. The
end points of a cut must coincide with the boundaryPaind part of the cut’s interior
must lie in the interior of the polygon. Hence a polygon edge is not a cut. A cut separates
P into two subpolygons. If a cut is represented by the segneend {ve say that the cut
is directed fronp to g and we calp thestart pointof the cut. We say that a point lies to
the right/left of a cut if the point lies locally to the righkeft in the subpolygon separated
by the cut.

Consider a reflex vertex of a polygon. The two edges connecting at the vertex can
each be extended insideuntil the extensions reach a boundary point. These extended
segments are given the same direction as the edge they are collinear to. We call the cuts
thus constructe@xtension cutsNow, it is easy to see that all guard sets must have a
point to the left of (or on) each extension cut, since otherwise the edge collinear to the
cut will not be seen by the guard set; see Fig. 1.

To illustrate the next concept, we assume that one point of a shortest watchman route
is known to us. Let this point be denotedIt turns out that not all extension cuts are
interesting to maintain, but only the ones that have the ggiand thus, the main part
of the watchman route, to the right, since those are the ones where visibility is blocked
by the associated polygon edges; see Fig. 1. We therefore make the following further
separation between types of extension cuts.

Given a poinp of a polygon, we say that an extension cig forward with respect to
pif plies to the left of the cut. Otherwisec is backward with respect to;see Fig. 2(a).

An extension cut dominatesanother extension cuat if all points in P to the left of
c are also to the left of’; see Fig. 2(b).

We say that an extension cut is assential cutf it is not dominated by any other
extension cut; see Fig. 2(b). We state the following lemma without proof.

Lemma 2.1. A closed curve is a watchman route if and only if the curve has at least
one point to the left ofor on) each essential cut

We can view the essential cuts as having a cyclic ordering specified by the start
points of the cuts as they are encountered during a counterclockwise scan of the polygon
boundary. In this way each cut has a predecessor and a successor. The set of essential
cuts of the polygor will henceforth be denote@.

380 S. Carlsson, H. Jonsson, and B. J. Nilsson

{ backward extension cut
{ with respect to p

c|c
The extension cuts ¢ dominates ¢’
¢ is essential
(a) (b)

Fig. 2. lllustrating the definitions of extension cut, domination, and essential cut.

Consider an essential cut. The cut is intersected by at kestl other essential
cuts,k being the total number of essential cutsCinand hence, each essential cut is
subdivided into at mosgt segments spanning between the cut intersection points. We
call these segments tHeagmentsof a cut. As before we can define the dominance
relation between a fragmeiffitand a cut. We say thatf dominate< if f lies to the left
of (or on)c. Hence, a fragment of a cut dominates its cut.

We can now formulate the shortest watchman route problem as: “Compute the shortest
closed curve that intersects all essential cuts.” The rest of this presentation is devoted to
showing how to obtain such a curve.

3. Overview of the Fixed Case

All suggested algorithms for the fixed shortest watchman route problem start by con-
structing an initial watchman route through the ddpre., a closed curve that intersects

all backward essential cuts with respectitarhis follows from Lemma 2.1 sincg is,

by definition, to the left of the forward essential cuts with respedt tnd, hence, these
cuts do not have to be considered.

The algorithms then progress by applying a sequenapfstmentgo the initial
route. In order to explain these adjustments, it is important to know what kind of inter-
sections a watchman route can make with the backward essential cuts with respect to
A watchman route makesraflection contacwith a cutc if the intersection of the route
andc is one point and all other points of the route lie to the rightp$ee Fig. 3(a).

A reflection contact iperfectif the incoming angle equals the outgoing angle of the
reflection. A watchman route makest@ssing contacwith c, if each intersection is one
point and the contact is not a reflection contact; see Fig. 3(b). Finally, the route makes a
tangential contactvith c if the intersection is a line segment and all other points of the
route lie to the right ot; see Fig. 3(c).

Consider the essential cuts where a watchman route makes reflection contact. We call
these cuts thactive cutsand the fragments that contain the intersection points are the
active fragmentsTwo conditions are imposed on the set of active fragments in order to
ensure the correctness of the algorithms and for ease of computation.

Finding the Shortest Watchman Route in a Simple Polygon 381

(a) (b) ()

Fig. 3. The three different types of possible contacts made by a shortest watchman route.

Completeness. The set of active fragments dominate all essential cuis of
Independence. An essential cut is dominated by exactly one active fragment.

Now the following lemma can be shown.

Lemma 3.1. The completeness condition must hold for the active fragments of a short-
est watchman route

Proof. If there is some essential cut not dominated by an active fragment, the edge of
P corresponding to the essential cut is not seen by the watchman route. O

Furthermore, the following two lemmas provide a way to construct the shortest fixed
watchman route given an initial watchman route.

Lemma 3.2[6]. There is a shortest watchman route that visits the active cuts in the
order that they appear as the boundary of the polygon is traversed

Lemma 3.3[6]. A shortest watchman route either makes perfect reflections on the
active cuts or it reflects at fragment end points of the active. cuts

Both lemmas also hold for the shortest floating watchman route. Thus, a shortest route
that visits all the essential cuts and obeys the properties of the two lemmas will be a
shortest route overall.

The problem thus becomes that of adjusting the initial route so that all the reflection
contacts are perfect, or no more reflection contacts can be made perfect.

Given a set of active cuts, how is the shortest fixed watchman route with reflection
contacts at these cuts computed? The approach takenusfbidingthe polygonP,
which is a process that produces a polygonal shape that we datiaglass such that
the shortest path frord to its image in the hourglass corresponds to the shortest fixed
watchman route througth that reflects on the active cuts. The process is carefully ex-
plained by Chin and Ntafos [6]. The hourglass is constructed fedg cutting off the
parts ofP that lie to the left of the active cuts. To do this, we assume that the active
cuts are given in the order as their start points are traversed in counterclockwise order

382 S. Carlsson, H. Jonsson, and B. J. Nilsson

P’ triangulated

TS

The hourglass
and the shortest path

P’ and the folded route

Fig. 4. lllustrating the unfolding procedure.

along the boundary d?. Now we take each active cut in the ordering and remove the
part of P to the left of the cut. This involves computing the intersection point with the
previous active cut in the ordering and, if it exists, introduce a new vertex at this in-
tersection point. The process takes constant time for each active cut and, hence, linear
time in total. In this way we get a new polyg®with the active cuts on the boundary.

The polygonP’ is triangulated using Chazelle’s algorithm [4] and unfolded using the
active cuts as mirrors (see Fig. 4) in the following way: from the pdirfibllow the
boundary in clockwise fashion until the first active cut is reached. Construct a poly-
gon from the triangles of the triangulation that are adjacent to the traversed part of the

Finding the Shortest Watchman Route in a Simple Polygon 383

boundary. Now follow the polygon boundary from the first active cut to the second ac-
tive cut and construct a polygon consisting of the triangles adjacent to this section of the
boundary. Attach this polygon to the previously constructed polygon using the active cut
as a mirror. Continue the process as in Fig. 4 until the starting poimreached. The
constructed polygon is the hourglassRofThe shortest path in the hourglass frdrto
its image point is computed [7], [13]. Finally, the route is folded back to give the shortest
fixed watchman route iR. The time complexity is linear, sind& can be triangulated in
linear time and the shortest path can be computed in linear time in a triangulated polygon
[71, [13].

Recently, it has been shown how to compute the shortest fixed watchman route in
O(n|C|F) time andO(n|C|) storage, wher¢’| is the number of essential cuts aRds
the number of fragments, using an incremental algorithm in conjunction with dynamic
programming.

Since we will use this result, we claim it as a theorem.

Theorem 1[19]. There is an algorithm thatgiven a boundary point d in a simple
polygon of n edgeshe backward essential cuts with respect f@dd their subdivision
into fragmentscomputes the shortest fixed watchman route through d(m@F) time

and O(n|C|) storage where|C| is the number of essential cuts and F is the number of
fragments

In Section 4.2 we show that the time to compute the set of essential ddtmisgn),

and that the fragments can be computed in tid@ logn + F). This, together with
Theorem 1, implies that the shortest fixed watchman route through a given boundary
point can be computed i®(n*) time, sinceF = O(n?).

We denote the time and storage complexities to compute a shortest fixed watchman
route byT (n, |C|, F) andS(n, |C|, F) repectively. Hence, by TheoremT(n, |C|, F) =
O(n|C|F) andS(n, |C|, F) = O(n|C)).

The adjusting technique that we have described in this section is used extensively in
the following, where we show how to eliminate the door restriction.

4. The Algorithm
4.1. Presentation

We present a polynomial time algorithm to compute a shortest floating watchman route
in a simple polygon. The idea of the algorithm is to precompute the shortest fixed
watchman routes making reflections at the fragment end points. Thus, we are left with
only a restricted case to handle, the case when the shortest watchman routes makes
only perfect reflections in the interior of fragments. To solve the problem in this case,
we apply a process we calliding that makes a discrete simulation of the continuous
motion performed by a reflection point of a watchman route as the reflection point moves
between the two end points of an active fragment.

To simplify our presentation, we assume that the input polygon is not star-shaped.
In a star-shaped polygon, the problem of computing the shortest watchman route has a

384 S. Carlsson, H. Jonsson, and B. J. Nilsson

linear time solution—compute the kernel of the polygon [12], and select any point of
the kernel as the resulting route.

The pseudocode of the algorithm that computes a shortest floating watchman route
is presented above. The rest of this presentation is devoted to proving the correctness of
the algorithm, and analyzing its complexity. In Step 1 of the pseudocode, we compute
the setC of essential cuts. This part of the algorithm is described in Section 4.2. The
description of how to perform Step 2.1 is presented in Section 4.3, and we show how to
do the sliding process of Step 3.1 in Section 4.4. In Section 4.5 we prove the correctness
and analyze the running time of the algorithm.

Algorithm Shortest-Floating-Watchman-Route

Input A simple polygonP of n edges
Output A shortest floating watchman rout#
1 Compute the set of essential cuts and the subdivision into
fragments
2 for each fragment end poidtdo
2.1 Compute the shortest watchman roWdg forced to
reflect ond
endfor
3 for each fragmenf and each end point of f do
3.1 Apply a sliding process offi from d to the other end point,

and compute the shortest watchman routes forced to reflect
on an interior point off

endfor
4 Return the shortest of the computed watchman routes
End Shortest-Floating-Watchman-Route

4.2. Computing the Essential Cuts

To compute the s&tof essential cuts, we begin by computing all the extension cuts of the
polygon. To do this, we use a ray shooting data structure as presented by Guibas et al. [7]
or Hershberger and Suri [10]. The ray shooting operations can be perforr@tbimn)

time each, with the initial preprocessing step taking linear time. At every reflex ver-
tex of the polygon, we perform two ray shooting operations, one in the direction of
each of the two adjacent edges toward the interior of the polygon. In this way we
specify the two extension cuts associated to every reflex vertex. The total time used
is O(nlogn).

Next we determine one essential cut. Eedenote the set of extension cuts. Between
two cuts it is easy to check in constant time whether one cut dominates another, if
we maintain information on where the cut end points lie on the boundaPy 8fnce
the dominance property is transitive, we can, in linear time, find one essential cut by
performing pairwise comparisons, always keeping the cut that is not dominated. Let
be the essential cut we get through this process.

Finding the Shortest Watchman Route in a Simple Polygon 385

Now we sort the sef so that the extension cuts appear in the same order as their start
points occur in a counterclockwise traversal of the boundary, beginning at the start point
of c;.

To compute the essential cuts, we traverse the orderédset perform the following
steps:

Letcurrent:=c; and set := {c;}
fori :=2to|£| do
if currentdoes not dominatg then

C.=CuU{cg}
current:=g¢;
endif
endfor

Lemma4.1. The seC contains the essential cuts once the loop has terminated

Proof. To see that all the essential cuts ar€ javhen the loop terminates, note that an
extension cut is inserted irC unless we can determine some essential cut that dominates
c. Hence, it only remains to prove that the Satontains only the essential cuts.

First, note that if a cut; € £ dominates a cut; € £, according to the index ordering
of £ determined previously, then< i. If this is not the case, there are points to the left
of ¢; that are not to the left af;, e.g., the boundary points between the start points of
andg;.

Now, assume that there is a nonessentiatcint C, wherei is the index of the sorted
order in&. The cutc; is dominated by some essential ayte C C &, with j < i.
Consider the subsequenge. . ., ¢; of cuts in€. When the dominance test is applied to
the cutc;, the variablecurrent = ¢y, with j < k <i — 1. We claim that, in this case,
the cutg is also dominated by. To see this, observe that, singdés dominated by;,
the cutc, must intersect;, otherwisecy is dominated by;. However, this means that
¢k dominateg;, and, in turn, it means that when the loop consiadgrthe cutc; will not
be included irC; see Fig. 5. |

We conclude that the total time consumption for the computation of the essential cuts
is O(nlogn). In addition, our shortest watchman route algorithm also requires the sub-
division of the essential cuts into fragments, i.e., the line segments between consecutive
intersection points of pairs of essential cuts. These can be computed, and ordered along
each essential cut, in tim@(nlogn + F), whereF denotes the number of fragments,
using an intricate plane sweep algorithm developed by Chazelle and Edelsbrunner [5].

NE
Ci

Ck

Fig. 5. Dominated cuts are removed from the Set

386 S. Carlsson, H. Jonsson, and B. J. Nilsson
4.3. Shortest Watchman Routes for the Fragment End Points

Consider a shortest watchman route in the polyBofhe route will make at least one
reflection contact with some essential cusince we assume thRtis not starshaped.
Furthermore, the reflection contact can be one of two types. The first case is that the
route reflects at a fragment end pointof.e., the intersection point afwith some other
essential cut, or an end point of the cufhe second case arises when the route reflects
in the interior of a fragment, in which case the reflection will be perfect by Lemma 3.3.

In this section we determine how to compute the shortest watchman routes forced to
have reflection contacts at the fragment end points. The case when the shortest watchman
route only has perfect reflections in the interior of active fragments will be taken care of
in the next section.

LetC = {c,...,C} be the essential cuts ordered on their start point cyclically
around the boundary &. We assume that, the fragment end point through which we
are computing the shortest watchman route, is the intersection betwvaadc;, with
1<i<j=<k

LetCq be the backward essential cuts with respedt, tioe., the cuts of havingd to
the right according to their associated direction. Th&getan be established @ (|C|)
time by testing each cut i@l against the poind. LetIP. denote the part d? lying to the
left, or on, the cut.

Since we assume that a reflection is mads, at least one of; andc; must be active.
Consider the case whenis active. In this case the shortest watchman route through
cannot make reflection contact with the parts of other cug ithat lie to the left of;,
since this would imply that the shortest watchman route cragsklence, we only need
to concern ourselves with the part®fying to the right ofc;. Similar arguments can be
applied ifc; is active or bottt; andc; are active.

We construct three new polygoR$ = P\IP; , P} = P\IP;,andP;’ = P\(IP; UIP;),
and three sets of backward essential cutBlinP,, andP}’, denoted’};, C}, andCy’,
respectively. We have

Cy = {cNPy|ceCa\cl,
{cNP) | ceCy\lG}). and

S
ol
I

cil = NP | cecy\la. gk

see Fig. 6.

Constructlng the polygori?tj Pd , andP('j J takesO(n) time and constructing the sets
Cd, Cd, andC takesO(|C|) time using straightforward techniques. The paities on
the boundary of each of the three polygons, and the&et§), andCy’ can be viewed
as the sets of backward essential cuts with respedtitothe polygons. Thus, we can
use Theorem 1 of Section 3 and compute the shortest fixed watchman route through
d, inside each oP}, Pl andP(',' The only problem here is that sornén Cy may be
such thatc N P(',J =), in which case the shortest fixed watchman routé’dlh does
not correspond to a watchman routeRnsincec is not visited. However, this can be
detected when the s€}’ is constructed and, hence, we do not have to compute the route
in Py’

Finding the Shortest Watchman Route in a Simple Polygon 387

L -3

Y, f
*

i
Pd

-

Fig. 6. lllustrating the polygonﬁ’(‘j, P(j, andPé’j , and the setgij, Cé, andCi,’j.

Selecting the shortest of the valid routes gives us the shortest watchman route reflect-
ing atd in O(T (n, |C|, F)) time. Repeating for each fragment end point, we have the
following lemma.

Lemma 4.2. The set of shortest fixed watchman rougssch forced to reflect at an end
point of a fragmentcan be computedin @ - T (n, |C|, F)) time where F is the number
of fragments of the essential cuts

4.4. The Sliding Process

The sliding process we apply in Step 3.1 of the pseudocode is the main step of our algo-
rithm. The technique we use is similar to the one used by Melissaratos and Souvaine [14].
However, since our problem is more complicated we present the technique in detail. This
section is divided into three parts. In the first part we introduce some notation and show
some initial results on the key points at which structural changes occur in the sliding
process. In the second part we discuss the necessary adjustments that have to be made
as the sliding reaches a key point and we describe how to compute the key points in the
third part.

The Event Points
We begin by reviewing some of the notation introduced in Section 3.fLéee the
fragment of some essential cut on which we perform the sliding process, i.e., a fragment

388 S. Carlsson, H. Jonsson, and B. J. Nilsson

adjacent tal. We denote by}, the shortest watchman route passing through the point
of f. The routeW, corresponds to a shortest p&}in some hourglass that we denote by
Hg. An hourglass is a two-manifold with the same properties as a triangulated polygon,
and is obtained by the unfolding procedure described in Section 3. Denote the unfolded
image of f in Hq by f and correspondingly the image of a ponon f by p on f.
Hence,S, is the shortest path fromto p in Hy. An hourglass is completely specified
by the set of active cuts, and, hence, there is a direct correspondence bEiyvaed
the current set of active cuts. Note also that there is a direct correspondence bagween
in PandS§, in Hy, and, therefore, we refer 8} and S, interchangeably. Initially, we
have the rout&\} passing through an end poohbf f and it corresponds to the shortest
pathS; in Hg.

Letp = d, and suppose we move the pgirglightly toward the other end poidt of
f. We are interested in the structural changes that ocdiy s the sliding proceeds in
Hg. At certain key points, called thevent pointswe have to update the route because
its structure changes. Since the sliding pgin$ not fixed, we have to be able to look
ahead alongf to compute the next event point. Therefore, we have to ensure that the
fragmentf is part of the boundary dfl4, but this follows, since we assume that the
routeW, reflects onf, and, hence, that is active and part of the boundary id;.

The next lemma describes the structure of the watchman routes that we compute.

Lemma 4.3. The shortest path,9n Hy makes turns at vertices that correspond to
active fragment end points idor to vertices ofP.

Proof. Follows directly from Lemma 3.3, since perfect reflection$\pin P translate
to straight line segments &, in Hq. O

We define the event points formally.

Definition 4.1. Aneventpoints a poinfpon f such that one of the following properties
holds:

1. The interior of either the first or last segmentSyfintersects a vertex dfy.
2. The first and the last segmentsSfhave the same angle ta This corresponds
to perfect reflection in the interior of.

Refer to Fig. 7 for an illustration of the different types of event points. We refer to the
event point types by their corresponding number as above.

The shortest watchman route either reflects on a fragment end point or at an event
point in the interior of an active fragment. This is shown in the next lemma.

Lemma 4.4. Between two consecutive event points on a fragmetiefpath $makes
turns at the same vertices é14, and the length of Seither increases or decreases
monotonically

Proof. Letqgandr be two consecutive event points énWe first prove that, for every
point p betweeng andr, the shortest patl§, makes turns at the same points. Assume

Finding the Shortest Watchman Route in a Simple Polygon 389

Type 1

Fig. 7. The event points of the sliding process.

the contrary, that the turning points are not the sameplaetdp’ be two points lying
betweerg andr such thap is reached beforg as the sliding proceeds frogtor . Since
subpaths of shortest paths are also shortest paths, the twoJathdS, either do not
intersect or they have one common subpath, the common subpath possibly degenerating
to a single point of intersection. Now, if the two paths have a different turning point,
then, evidently, this point cannot lie on the common subpath. Hence, it lies either before
or after the common subpath. These cases are symmetric, so we assume that a different
turning point lies before the common subpath.

To simplify the argument, we assume tipedndp’ have been selected close enough
so thatS, and Sy only have one different turning point.

If S makes a turn at some point but Sy does not, then extend the second link of
S until it hits f at the poini”; see Fig. 8(a). The patBy cannot intersect the segment
[p”, v], because that would imply that lies after the common subpath. This in turn
means thap” lies betweem andp’, but this is a contradiction, since, by Definition 4.1,
p” is a Type 1 event point.

If § makes a turn at some point but S, does not, then extend the second link of
Sy untilit hits f at the poinp”; see Fig. 8(b). The pat§, cannot intersect the segment
[p”, v], by the argument stated above. Agafimust lie betweep andp’, and this leads
to a contradiction, sincg’ is a Type 1 event point.

Thus, we have proved th& and S, differ only by their first and last segments, and
sincep andp’ were chosen arbitrarily betwegrandr, this also holds fog; andS.

Fig. 8. lllustrating Lemma 4.4.

390 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 9. lllustrating Lemma 4.4.

To prove that the length o, changes monotonically gsslides fromg to r, we
define the function

Lq(p) = lengthS)) — length(&),
where we viewLq(p) as a one parameter function, wighbetweeng andr on f. If
we denote the shortest path between any two pairaedu’ in Hg by SRu, u’), we
have thatength;) = I|g, v|| + lengthSRw, v') + [|v', §|| andlength'S,) = [Ip, vl| +
length(SRAw, v')) + [Iv/, pll, whereSRv, v') is the common subpath & andS,, and
the two pointgj and p are the images af andp on the imagef of f in Hq; see Fig. 9.
Hence,

Lq(= lIp, vl + IV, pIl = lIg, vl = V", GlI.
If we define the two angle functions(p) and8(p) as the angle betweep,[v] and f,
and the angle betweem[v'] and f’, it is easy to show that

g, vl sine(q) | [Iv', Gl sinB(Q)
sina(p) sinB(p)

Lq(p) = = lla, vl = [Iv", 4lI-

We differentiate with respect ta(p) and set to zero to obtain the local optimum, yielding

a(p) =7m — B(p).

Since the sum af (p) andg(p) is 7, the local optimum occurs when the segmepta]|
and p’, p]in Hq correspond to segmentsimaking a perfect reflection oh. However,
these points are defined as the Type 2 event points, and, hence, the fulgris
monotone between two consecutive event points. O

We can actually make the following stronger statement

Corollary 4.5. Between any pair of consecutive Typevent points there is at most
one event point of Type

Proof. A careful examination of the functiofy (p) defined fopin the interval between
two consecutive Type 1 event points shows that it can have at most one local optimum,
thus proving the result. |

Finding the Shortest Watchman Route in a Simple Polygon 391

f& 1 5 &

fa & fa &

Fig. 10. The fragments adjacent tbare fg", f+ fo, andfg .

Adjusting the Route
Now, the question is what type of changes are to be made whesrches an event point
on f.

Consider the intersection poidtbetween two essential cutsandc;. The pointd is
either the end point of four fragments®fandc; or the end point of one fragmentlying
on the boundary of. In the previous section we showed how to compute the shortest
watchman route reflecting at each fragment end point, so we assume that this route and
the corresponding hourglasty together with the current set of active fragments are
given.

We perform the sliding process at most four times startirdy ance for each active
fragment adjacent td, and in the direction of the opposite fragment end point. We
denote the four fragments of andc; by f¢" f* fo, and fc ; see Fig. 10. From the
previous section we know that there are three d|fferent cases to handle: & lzottic;
are active, then we slide once along each fragrrig‘ntf +, f¢, and f —; see Fig. 11(a).

If only ¢; is active, then we slide alonfy" and f;; see F|g 11(b) The third case occurs
when onlyg; is active, and we slide along+ and fe

fo, FES FA

fx AR 7

5 A £
(b)

Fig. 11. The different cases of sliding depending on the initial roMge

392 S. Carlsson, H. Jonsson, and B. J. Nilsson

As the sliding of a poinp proceeds along one of the fragmeifitare encounter event
points in sequence. Each event point requires some update of th§,patr the Type 1
event points, there are two possible updates. Either the first or the last segrigig of
leaving a vertex or fragment end pointt the event point, in which case the two edges
of S, adjacent ta are collinear and can be merged into one first or last segmesit of
The other case occurs when the path reaches a vertex or fragment endgicie event
point. In this case the edgp,[u] of S, intersectingy is split into one first or last edge
[p, v] and one second or penultimate edgel]] of S,.

The Type 2 event points do not induce any change in the path, and, hence, no updates
are necessary. These points give local optima of the route length and are therefore
interesting to maintain.

Computing the Event Points

To be able to perform the adjustments correctly, we need to compute the set of event
points on a fragment efficiently. This is done by first computing an ordered list of the
Type 1 event points and then as the sliding process moves through the points in the list
compute a potential Type 2 event point. The actual next event point is always the one
closest to the sliding poift As soon as one of the event point is reacheg,lige proper
changes and updates are performed and we compute a new potential next event point of
Type 2.

Typel Event Points Before the sliding orf starts, we do some preprocessing to obtain
the list of Type 1 event points. Let be the end point off where the sliding process
starts. Let be the image ofl on f in Hq. Furthermore, letl’ be the other end point of

f and letd’ be the image of’ on f. We compute the shortest path trees rootet df,

d, andd’ in Hq [7]. Denote these b§P Ty, SPTy, SPT4, andSPTy, respectively.

In each of the trees we compute the nearest common ancestor [9] with respect to the
oppositefragment end points iRly. ForSPT4 andSPTy these are the image poirds
andd’, whereas foSP 75 andSP T they are the fragment end pointandd’. Consider
for example the shortest path tt8®7 ;. Here we compute the nearest common ancestor
vtodandd’; see Fig. 12(a). Thus, we have a path in the tree fldow and a path from
d’ to v. Extend each link of these two paths and compute the intersection points with
f; see Fig. 12(b). These intersection points are given in order alcsxgd are inserted
in a list. We perform the same construction with respect to the other shortest path trees,
except that folSP74 andSP74, we get intersection points oh. These have image
points onf that can be easily computed and inserted in corresponding lists. Now we
have four ordered lists of points dinthat can be merged together into one ordered list
L, of points. Note that the pointbandd’ belong to.Z;.

We assume from now on that for each pgiim £; we have the following information
stored in association tp, imagep) is the image poinp on f, a flagflag(p) that tells
which shortest path tree generated the paitite two pointsi(p) andu’ (p) corresponding
to the end points of the shortest path tree edge that gengratethg(p) is SP74 or
SPTg, or pif flag(p) is SP74 or SP7y, the ordering is such thai(p) is the middle
point of the three; see Fig. 12(b). Furthermore, we assumaéx&p) andprev(p) give
the next and previous point ify according to the order fromhto d’. In addition, we have

Finding the Shortest Watchman Route in a Simple Polygon 393

-
< -

..

Fig. 12. lllustrating the computation of Type 1 event points fréi®7 ;.

a status field associated to every vertexgf For a vertex in Hgy, the fieldstatugv)
can either have the valuk or U depending on whethar is touched or untouched by
the current shortest pat,.

In most cases the ligh; will contain the complete set of Type 1 event points, however,
in a few cases we might have missed some of them. Our next objective is therefore
twofold: find a compact representation of the ro@g for each pointp in £, and
identify when we have missed Type 1 event points and compute these.

The compact representation of the routes consists of the complete shorte3taadh
Sr and, for every other poirgin £4, the second and penultimate pointsSf denoted
first(p) andlast(p), so that p, first(p)] and [last(p), p] are the first and last links d,.

We also maintain the length &, length(p) = length(S,).

Consider the case whe®y andSy in Hq have a nondegenerate subpath in common,
by which we mean a common subpath that starts and ends at vertidgslafthis case
this subpath is going to be a part of each p&fhfor every pointp on f. Letv andv’
denote the end points of this subpath, witlying beforev’ as§; is traversed fronp
on f to the image poinp on f. This means that an event point is an intersection point
between an extension of an edge of the shortest pathidrand or fromv to d’ with the
segmentf, or the image orf of an intersection point between an extension of an edge
of the shortest path frony to d or from v’ to d’ with the segment . However, these
points are all included in the ligt; as can be seen from the constructionCef sincev
andv’ will be the nearest common ancestorsl@ndd’ in SPT43 andSP7g andd and
d’ in SPTy andSPTy respectively.

The compact representation 8f can now be easily computed for the pointinin
sequence frond to d’, if we assume that all the vertices ldf; have their status fields
set toU except for the vertices alorgy which have their status fields setToif flag(p)
equalsSPT; or SPTg, then ifstatugu(p)) = T, we have tha, is leaving the vertex

394 S. Carlsson, H. Jonsson, and B. J. Nilsson
u(p) and sefirst(p) := u'(p), last(p) := last(preu(p)), statugu(p)) := U, and

lengthip) := length(prev(p)) —[lu(p), u’(p) | — llprevp), first(prev(p)) ||
— |limagé&prev(p)), last(preM(p)) || +1Ip, first(p) || + [limage&p), last(p) ||.

On the other hand, $tatugu(p)) = U, we have thag, is hitting the vertexu(p) and
therefore we sdfirst(p) := u(p), last(p) := last(prevp)), statugu(p)) := T, and

length(p) := length(prev(p)) — [|prev(p). first(prev(p))
— |limageprev(p)), last(prev(p)) || + lIp, first(p) || + [lu(p), u' ()l
+ |limagegp), last(p)||.

The case wheflag(p) equalsSP74 or SP7y is handled in the same way with respect
to the image op. The following lemma shows that we have considered all cases.

Lemma 4.6. If Sy and § have a nondegenerate subpath in comntben the listC;
contains all the Typé event points

Proof. Letr be a Type 1 event point. By definition, the p&hhas either a first or last
link that intersects a vertex ¢f4. Assume first that it holds for the first link and let the
vertex beu. The common subpath & andSy must also be a subpath §f, and, hence,
the end vertex closest tar of this subpath also belongs ®. Sincev is the nearest
common ancestor af andd’ in bothSP7; andSP7y, the two trees also contain the
path fromv to u. Hencey is the intersection betweef and the extension of the last
shortest path tree edge on the path froto u. Since£; contains all these intersection
points, the point belongs tal;.

If it is the last link of § that intersects a vertex éf4, then we argue in a similar
manner to show that the image poinbf r on f is the intersection point of and an
extension of a shortest path edgeSiR? 7y andSP7y, thusr belongs tol;. O

When & and Sy do not have a nondegenerate subpath in common, there may exist
pointsp on f such thatS, are straight line segments iy, and, hence, the patl® do
not touch any of the vertices &fy.

We can check for this possibility by comparing the nearest common ancestanaf
d’ in SPT7; and the nearest common ancestoda@ndd’ in SP7. If they are equal,
thenS; and Sy have a common nondegenerate subpath and, by Lemma 4.6, the list
contains all the Type 1 event points.

If § andSy do not have a common subpath, then we have to differentiate between
two subcases.

(i) Even number of active fragments W, in P corresponding t&; in Hy has an even
number of reflection points on active fragments, i.e., there is an even number of active
fragments, the two pointsand p will slide in the same general direction; see Fig. 13. In
this case we traverse the current fistwhile maintaining the compact representation of
the shortest pat§, for each event pointin £; in the same way as was shown previously.

Finding the Shortest Watchman Route in a Simple Polygon 395

(a) () (c) (d)

Fig. 13. lllustrating the computation of the compact representation of the shortest paths with an even number
of active fragments.

Furthermore, we maintain a countarns(p) on the number of turns th&, makes. The
counterturns(p) is either increased by one or decreased by one depending on whether
$ hits a vertex or leaves a vertexpat

In this case we may run into the following problems: consider a gwint£; with
flag(p) equalingSPT; or SP74. It may be that neitheu(p) nor u’(p) is equal to
first(preu(p)) or thatu(p) does equdirst(prevp)) but the segmenp] U’ (p)] is not part
of S,; see Fig. 13(a) for an example. The problem here is§hetnsists of links generated
by saySP7; whereas the poirg is an intersection point generated by the extension of
a link from SP7y, that is the other shortest path tree. This has to be recognized and
handled by our algorithm, and it is solved in the following way.

Assume thaflag(p) equalsSP74 or SP7g, then if statugu’(p)) = T, we can
establish the compact representatiorSpls previously shown. On the other hand, if
statugu’(p)) = U, then§, does not pass through the vertgxp), and, hence, the point
p cannot be a proper event point. In this case we compute the compact representation for
S by settingfirst(p) := first(prev(p)), last(p) := last(prevp)), and compute the length
of §, accordingly. Ifflag(p) equalsSP7y or SPTy, we have the same situation with
respect to the imagp and we can handle this case in a similar way.

When§, makes only one turn, i.eyrns(p) = 1, for somepin £,, then the two links
of the path may merge into one and our aim is to find the pointt arhere this happens.

It is a pointp + ¢, for some value of, where the path is a straight line segment. Let
v = u(p) denote the turning point in the pafy and let be the anglgv p. Similarly we
denote the image qf+ ¢ on f by p+ . Thus, we can express the angper £)v(p+¢)

as a one parameter functiofie) of ¢; see Fig. 13(b). Furthermore, we have that the
scalar product of the two vectovgp + ¢) andv(p + ¢) equals

v(p+e) x v(Pp+e) =cosa(e)lv,p+ef - lv, p+ el

and we are interested in the valuesafhena (¢) = 7. To get this value we simply solve
the equation

v(p+e) xv(p+e)+llv,p+ell-llv, p+ell =0.

396 S. Carlsson, H. Jonsson, and B. J. Nilsson

Setp’ := p+ ¢ and check ifpy lies betweerp andqg on f, whereq is the point in
L, afterp as £, is traversed frond to d’ such thatflag(q) = SP74; see Fig. 13(c).
If p’ lies betweenp andq on f, thenp' is inserted as a Type 1 event point in its
proper place betweep andq in £;, the possible points if; betweenp andp’ are
updated with the compact representation of their corresponding paths (each of them
pass through the single vertey, first(p’) := p’ andlengthlp’) = ||p/, p'||. Oth-
erwisep’ is discarded since the line segmept [p'] crosses the exterior dfly; see
Fig. 13(d).

If p does not lie betweep andq, then there is some poipt’ betweenp’ andq on
f whereSy hits some vertex and goes from being a straight line segment to having an
increasing number of turns. To get we simply start with the pat, = Sy, traverse
L1 backward frond’ to d, maintain a counter on the number of turns t§amakes, and
perform similar operations as previously shown.

(i) Odd number of active fragment$there is an odd number of active fragments that
W, corresponding t&, in Hy reflect on, then the pointsand p will slide in opposite
directions. This means th&; and S will always intersect inHg, i.e., they have a
common subpath. However, the subpath may be degenerate in the sense that it is an
intersection point in the interior dfiy that does not correspond to a vertextf; see
Fig. 14(a). In this case we scan for missing Type 1 event points and construct the compact
representations of the shortest paths in essentially the same way as when we have an
even number of active fragments.

We traverse the lisC; from d to d’ maintaining a compact representation of the
shortest patls,, for each event poirtin £4, and a counter on the number of turns that
S makes asC; is traversed. The compact representation of the paths is computed as
before.

(a) (b)

Fig. 14. lllustrating the computation of the compact representation of the shortest paths with an odd number
of active fragments.

Finding the Shortest Watchman Route in a Simple Polygon 397

When §, makes exactly one turn, for sonmein £1, then we might, once again,
have the case that for one pomt- ¢ the pathS,;. becomes a straight line segment
from p + ¢ to its image point onf. Such a point can be computed by solving the
equation

v(p+e) xv(p—e)+lv.p+ell- v, p—ell =0,

for ¢, wherev is the single turning point 0§, and p — ¢ should be considered as the
image point ofp + ¢ since sliding on the two fragments and f is done in opposite
directions.

Setp’ := p+ ¢ and check i’ lies betweemp andq on f, whereq is the point inl;
afterpas/, is traversed frond to d’; see Fig. 14(b). If’ lies betweem andg on f, then
p'is inserted as a Type 1 event point betwgeandq in £;, otherwisep’ is discarded
and the sliding process is continued.

If p’ does not lie betweep andq, then there is some poipt’ betweenp’ andq on
f whereSy hits some vertex and goes from being a straight line segment to having an
increasing number of turns. To get we simply start with the patl, = Sy, traverse
L1 backward frond’ to d, maintain a counter on the number of turns t§amakes, and
perform the same operations as previously shown. We have the following lemma.

Lemma4.7. If Sy and $ do not have a nondegenerate subpath in comrtten the
list £, including the end points of the interval on f whergisa straight line segment
contains all the Typé event points

Proof. Letr be a Type 1 event point. tfis an intersection betweeinand the extension
of some shortest path tree edge&#®P75 or SP7g, or the image of an intersection
betweenf and the extension of some shortest path tree ed§@df; or SPTy, thenr
belongs taZ; by the proof of Lemma 4.6. Our objective is now to show that if this is not
the case, thenis one of the end points of the interval dnwhereS, is a straight line
segment. By definition, the path has either a first or last link that intersects a vertex
of Hy. Assume first that this holds for the first link and let the vertexub&incer is
not an intersection point betwednand the extension of some shortest path tree edge of
SPT4or SPTg, this means tha® cannot pass through any other vertex-af except
u and therefores must be a straight line segment, proving our claim.

Ifitis the last link of § that intersects a vertex bfy, then the situation is exactly the
same as before, whereby the result follows. O

Type2 Event Points The list£, of Type 2 event points is computed in the following
way. The hourglashlq is a triangulated two-manifold embedded in the plane. Hence,
Hg can be copied withf as the image by taking each triangleH on the way from
f to f and placing it beforef ; see Fig. 15. This process gives us a new two-manifold
H consisting of two versions dfl4, the original one and a new one denot¢dl Each
vertexv of Hy corresponds to an image vertexHry denotedoelow(v).

Now we run through the list; from d to d’ and for each poinp in £; we com-
pute the intersection between the segmérgt{p), below(last(p))] and f to get a point

398 S. Carlsson, H. Jonsson, and B. J. Nilsson

Fig. 15. lllustrating the computation of the Type 2 event points.

r. If r lies betweernp and nexip), thenr is inserted inL, and the length of§ is
computed by

length(r) := length(p) —||p, first(p)|| — [imagep), last(p) || +/first(p), belowlast(p)) |,

otherwise, the point is discarded.

Lemma 4.8. The list£, contains all the Typ& event points

Proof. By definition, the Type 2 event points are the pointm f where the first and

last links have the same angle foand f. By Corollary 4.5 there can be at most one
event point of Type 2 between any pair of consecutive Type 1 event points. Since the
described process checks for intersection points baving the same angles for all pairs

of consecutive Type 1 event points, the claim follows. O

Finally, we run through the two list§; and £, and establish the poimtfor which
length(p) is smallest, compute the path, and return it as the result of the sliding
process.

Complexity of the Sliding ProcessNext, we prove that the sliding process on a fragment
f can be performed in linear time.

Lemma 4.9. The number of event points on a fragment f ignpand they can be
computed in linear time

Finding the Shortest Watchman Route in a Simple Polygon 399

Proof. We count the number of event points for each type separately.

1. The number of Type 1 event points@(n), since the number of points where
S intersects vertices dfl4 is at most linear. That they can be computed in linear
time follows from the discussion above, since the>an be computed from
the shortest path trees in linear time and each of the four shortest path trees can be
constructed in linear time. Updating tfiest(p) andlast(p) fields takes constant
time per event point.

2. The number of Type 2 event points is at most as large as the number of Type 1
event points. This is because between two consecutive event points of Type 1, there
can be at most one Type 2 event point by Corollary 4.5, i.e., there is at most one
local optimum in that interval. Thus, the Type 2 event points contribute at most
a factor 2 to the total number of event points. Computing theCseatf Type 2
event points is done by first computing the two-manifellgl, which can be done
in linear time, and then testing for Type 2 event points in each interval between
consecutive Type 1 event points, which takes constant time per interval.

Thus, the sum over all the event point types and the computation time is as stated, which
concludes the proof. O

4.5. Correctness and Analysis

During the sliding process on a fragmentwe maintain the shortest pagyin Hy, and
S, corresponds to the shortest watchman raMfén P reflecting on the same active cuts
asW,.

To prove the correctness of our algorithm we use the following lemma.

Lemma 4.10. There is a fragment end point d such that the shortest watchman route
W reflects on the same active cuts ag W

Proof. The proof divides into two cases. The first case arises wientersects a
fragment end point, in which case the lemma obviously holds.

The second case occurs wh@hdoes not intersect any fragment end point. This
means, by Lemma 3.3, th&l¥ makes perfect reflections at all its active cuts. pdte
one of the reflection points aVand letf be the active fragment containimpgLet H,
be the hourglass obtained by unfolding the polygon with respect to the active auts of
and letS, be the shortest path i, corresponding t&V. Now, imagine that the poimgt
moves in one direction alonfy and that the shortest path changes accordingly until the
path touches a fragment end point. Ipebe the point onf where this occurs, i.eSy
intersects some fragment end point but for any pqiit the interval betweep andp’
the pathS, does not intersect any fragment end point. tldte the fragment end point
intersected bys,. Our objective is to prove thaWandW, the shortest watchman route
throughd, have the same set of active cuts.

Let H; be the two-manifold obtained by placing a second copyef denoted
H}, belowHp and, for each boundary poiatin Hy, let below(q) denote the image
of g in H/; see Fig. 16. LeSRd, below(d)) be the shortest path froehto below(d)

400 S. Carlsson, H. Jonsson, and B. J. Nilsson

D

i\ 5P@, below(p))

not a fragment end point

H
Fig. 16. lllustrating the proof of Lemma 4.10.

in H;. Let SA(P, below(p)) be the shortest path from to belowp), i.e., S, in H,
together with its copy iH,. SinceSR(p, below(p)) does not have a turning point at

on f, the pathSRd, below(d)) must crossf at a point betweep andp’ on f, and,
hence SR, below(d)) does not intersect any fragment end poinHip, i.e., the path
SAd, below(d)) corresponds to some watchman route that passes thcbagth makes
perfect reflections on all its active cuts; see Fig. 16 for an illustration. Denote this route
by W;.

Now, Chin and Ntafos [6] prove that if a fixed watchman route is nonadjustable,
i.e., the route cannot be locally shortened, then the route is the shortest fixed watchman
route. Sincel\j is nonadjustable it therefore follows théff = W, and, hencewand
W, reflect on the same active cuts. O

To get the shortest watchman route we perform sliding along all fragments allowing
reflection contact, and maintain the shortest route obtained at the event points. It follows
from Lemma 4.4 that the shortest route will pass through one of the event points since the
length of a route is either monotonically increasing or decreasing as the sliding process
proceeds between event points.

We prove the following theorem.

Theorem 2. The Shortest-Floating-Watchman-Route algorithm computes a shortest
floating watchman route in a simple polygBrof n edges in QF (n+ T(n, |C|, F)) +
nlogn) time using @S(n, |C|, F) + Fn) storage where T(n, |C|, F) is the time and

S(n, |C|, F) isthe storage used to compute the shortest fixed watchman route in a polygon
having at most n edgek’| essential cutsand F fragments of the essential cuts

Finding the Shortest Watchman Route in a Simple Polygon 401

Proof. The correctness of the algorithm follows from Lemmas 4.6—-4.8, 4.10, and the
discussion above. Hence, it remains to analyze the complexity of the algorithm.

Step 1 can be performed @(nlogn+ F) time andO(n+ F) storage. Step 2.1 takes
O(T(n, |C|, F)) time andO(S(n, |C|, F)) storage by definition. The loop at Step 2 is
performed at most B times, and, hence, this step ugeéF - T(n, |C|, F)) time and
O(S(n, IC|, F) + Fn) storage.

To show the complexity of Step 3.1, we have from Lemma 4.9 that the number of
event points i$D (n) and they can be computed in linear time and storage. Thus, the time
and storage complexities for Step 3 are bottFn).

The total time for our algorithm becom&(F (n + T(n, |C|, F)) + nlogn) and the
storage becomed(S(n, |C|, F) + Fn). O

SinceT (n, |C|, F) = O(n|C|F)andS(n, |C|, F) = O(n|C]) by Theorem 1|C| = O(n),
and/C| < F < |C|?,the worst case running time and storage requirement of our algorithm
is O(n®) andO(n3), respectively.

As a final remark, the bottleneck of our algorithm is the computation of the shortest
watchman routes reflecting at every fragment end point. It may be possible to exploit
the fact that between two fragment end points on an essential cut, the shortest route does
not change much, and, therefore, all the routes could be computed faster. However, this
approach remains to be investigated.

5. Conclusion

We have presented a polynomial time solution to the problem of computing the shortest
floating watchman route in a simple polygon. The fact that there is a polynomial time
solution for this problem settles an open question in computational geometry.

The algorithm is adaptive in the sense that the complexity depends not only of the size
of the polygon but also of the number of essential cuts and the number of fragments. The
number of fragments can be quadratic but often it will be much smaller, thus reducing
the complexity of the algorithm.

Related problems are, for instance, those of computing several watchman routes in a
polygon using different optimization criteria. Most versions of these problems turn out
to be NP-hard but there exist polynomial time algorithms for some of these problems in
certain restricted classes of polygons [3], [15], [16].

One important open question in this area is whether the problem of computing the
two watchman routes in a polygon such that the sum of the lengths of the two routes is
minimized has a polynomial time solution or not.

References

1. A.Aggarwal. The Art Gallery Theorem: Its Variations, Applications and Algorithmic Aspects. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD, 1984.

2. S. Carlsson, H. Jonsson, B. J. Nilsson. Finding the Shortest Watchman Route in a Simple PoRgmn. In
4th International Symposium on Algorithms and ComputatiSBAAC 93, pages 58-67. Lecture Notes in
Computer Science 762, Springer-Verlag, Berlin, 1993.

402 S. Carlsson, H. Jonsson, and B. J. Nilsson

3.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Carlsson, B. J. Nilsson, S. Ntafos. Optimum Guard Coveraralidhtchmen Routes for Restricted
Polygonslnternational Journal of Computational Geometry and Applicati8(4):85-105, 1993.

B. Chazelle. Triangulating a Simple Polygon in Linear TimePtac. 31st Symposium on Foundations of
Computer Scieng@ages 220-230, 1990.

B. Chazelle, H. Edelsbrunner. An Optimal Algorithm for Intersecting Line Segments in the Bbaneal

of the ACM 39(1):1-54, 1992.

. W. Chin, S. Ntafos. Shortest Watchman Routes in Simple Poly§asete and Computational Geometry

6(1):9-31, 1991.

. L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan. Linear Time Algorithms for Visibility and

Shortest Path Problems Inside Triangulated Simple Polygdgerithmica 2:209-233, 1987.

. M. Hammar, B.J. Nilsson. Concerning the Time Bounds of Existing Shortest Watchman Route Algorithms.

In Proc. 11th International Symposium on Fundamentals in Computation ThEG'97, pages 210-221.
Lecture Notes in Computer Science 1279, Springer-Verlag, Berlin, 1997.

. D. Harel, R.E. Tarjan. Fast Algorithms for Finding Nearest Common Ance&btk#1 Journal on Com-

puting, 13(2):338-355, 1984.

J. Hershberger, S. Suri. A Pedestrian Approach to Ray Shooting: Shoot a Ray, Take a Walk SODA

pages 54-63, 1993.

D. T. Lee, A. K. Lin. Computational Complexity of Art Gallery ProblertsEE Transactions on Infor-
mation TheoryIT-32:276-282, 1986.

D.T. Lee, F. P. Preparata. An Optimal Algorithm for Finding the Kernel of a Polylgnmnal of the ACM
26:415-421, 1979.

D. T. Lee, F. P. Preparata. Euclidean Shortest Paths in the Presence of Rectilinear Beatiersks
14:393-410, 1984.

E. A. Melissaratos, D. L. Souvaine. On Solving Geometric Optimization Problems Using Shortest Paths.
In Proc. 6th ACM Symposium on Computational Geomgtages 350-359, 1990.

J. S. B. Mitchell, E. L. Wynters. Watchman Routes for Multiple GuardBrdr. 3rd Canadian Conference

on Computational Geometrpages 126—-129, 1991.

B. J. Nilsson. Guarding Art Galleries—Methods for Mobile Guards. Ph.D. thesis, Lund University, 1995.
X.-H. Tan, T. Hirata. Constructing Shortest Watchman Routes by Divide and Condeercldth Interna-

tional Symposium on Algorithms and Computatioages 68—77. Lecture Notes in Computer Science 762,
Springer-Verlag, Berlin, 1993.

X.-H. Tan, T. Hirata, Y. Inagaki. An Incremental Algorithm for Constructing Shortest Watchman Routes.
International Journal of Computational Geometry and Applicatj@1851-365, 1993.

X.-H. Tan, T. Hirata, Y. Inagaki. Corrigendum to “An Incremental Algorithm for Constructing Shortest
Watchman Routes'International Journal of Computational Geometry and Applicatidosappear.

Received Decembé®, 1997 and in revised form Septemb&®, 1998.

