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Abstract. There exist precisely 914, 58, and 46 equivariant types of tile-transitive tilings
of three-dimensional euclidean space by topological cubes, octahedra, and tetrahedra, that
fall into 11, 3, and 9 topological families, respectively. Representatives are described for all
topological families. A general method for obtaining results of this kind is introduced.

1. Introduction

Of the five regular platonic solids, only the cube tiles euclidean space, and it does so
in precisely one way (requiring, as we shall, that tilings be face-to-face). What is the
situation if we consider tile-transitive tilings bytopologically platonicsolids, i.e., by
topological polyhedra that are homeomorphic to one of the platonic solids, but possibly
less symmetric?

We discuss this question in a series of two papers. In this, the first paper, we state that
there exist precisely 914, 58, and 46 equivariant types of tile-transitive tilings of euclidean
space by topological cubes, octahedra, and tetrahedra, in 11, 3, and 9 topological families,
respectively. In a second paper we will discuss the dodecahedron and icosahedron.

In Section 2 we recall some basic definitions. This is followed by a presentation
of the classification results in Section 3. We give a detailed description of each of the
topological families in Figs. 1–23, including straight-edge representatives for 22 of the 23
families. (It can be shown that the topological type CT8 does not possess a representative
with straight edges.) Moreover, we determine precisely which convex tetrahedra give
rise to tile-transitive tilings. Finally, in Section 4 we introduce a general method for
obtaining results of this kind, the main step of which was recently developed by the first
author [De].

∗ The second author was supported in part by the Deutsche Forschungsgemeinschaft.
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This work generalizes earlier methods and confirms previous results obtained in a
number of special cases [DHM],[MP1],[M], [P], [MP2].

The enumeration presented here is just a first example of the results obtainable by
our approach. Our method is by no means restricted to platonic solids, i.e., in principle
it can be used for any type of three-dimensional topological polyhedron, and it is not
restricted to tile-transitive tilings, i.e., it can be easily adapted to enumerate tilings with
more than one class of tiles, as we will discuss in a forthcoming paper.

Finally, note that results of this kind have applications in structural chemistry. For
example, by dualization, representatives of each of the nine topological types of tile-
transitive tilings by tetrahedra give rise to a vertex-transitive tiling with tetrahedral ver-
tices. Interpreting each vertex as a 4-valent “T-atom” and each edge as a “T-O-T-bond,”
these tilings correspond to zeolite structures [Sm].

2. Definitions

LetX be a simply connected manifold. A system(T , 0), consisting of a tilingT of X
and a group of homeomorphisms0 of X with 0(T ) := {γT | γ ∈ 0, T ∈ T } = T , is
called an (equivariant) tiling. We call(T , 0) tile-transitiveif 0 acts transitively onT ,
andfundamentalif any P ∈ T is a fundamental domain for0.

Two such tilings(T , 0) and(T ′, 0′) belong to the sametopological family, are of the
sametopological type, or aretopologically equivalent, if there exists a homeomorphism
ϕ: X → X with ϕ(T ) = T ′. They areequivariantly equivalentif, additionally,0′ =
ϕ0ϕ−1 holds, and we say that(T ′, 0′) is obtained from(T , 0) by symmetry breaking
if we have0′ ≤ ϕ0ϕ−1. A tiling (T , 0) that cannot be obtained from some other tiling
by symmetry breaking is calledmaximal.

In this paper we considerthree-dimensional euclidean equivariant tilings(T , 0),
whereT is a face-to-face tiling of euclidean spaceE3, and0 is a crystallographic space
group, i.e., a discrete group of isometries with compact fundamental domain.

For such tilings, the following useful and nontrivial statement can be proved (see
Section 4.2 below): Two maximal tilings are equivariantly equivalent if and only if they
are topologically equivalent. Hence, each equivariant type of maximal tiling represents
a topological family.

Moreover, all tilings considered arepolyhedralin the sense that each tile is a topo-
logical polyhedron, i.e., a topological ball whose surface is tiled by a finite set of two-
dimensional faces with the usual properties. In particular, by a topological cube we mean
a topological polyhedron whose edge skeleton is isomorphic to the edge skeleton of a
regular cube, etc.

3. The Classification

In this section we present our results. First we state the three main theorems.

Theorem 3.1. There exist precisely11 topological types and914equivariant types of
tile-transitive tilings of three-dimensional euclidean space by topological cubes. The
topological types are described in Figs. 1–11.
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Theorem 3.2. There exist precisely3 topological types and58 equivariant types of
tile-transitive tilings of three-dimensional euclidean space by topological octahedra.
The topological types are described in Figs. 12–14.

Theorem 3.3. There exist precisely9 topological types and46 equivariant types of
tile-transitive tilings of three-dimensional euclidean space by topological tetrahedra.
The topological types are described in Figs. 15–23.

Details of the classification into topological families are given in Figs. 1–23.
In each figure, we depict a patch of tiles from a straight-edge representative(T , 0) of

the given topological family (except CT8). Tiles are shrunk slightly. Each such picture
is accompanied by a diagram that gives a precise description of the tiling(T , 0).

First we note that each such diagram gives a description of a tileT and its stabilizer
group0T := {γ ∈ 0 | γ (T) = T}. To be precise, each diagram is based on the Schlegel
diagram representing the combinatorial or topological structure of a tileT ∈ T . A gray
polygon, if present, represents a fundamental domain for0T . If no such gray polygon is
present, then0T consists of the identity only and the fundamental domain consists of the
whole tileT . (As we are considering tile-transitive tilings, a fundamental domain for0T

corresponds to a fundamental domain for0.) Each such gray polygon contains a small
circle ◦ which specifies a flag of the tile, i.e., a triple(v,e, f ) consisting of a vertexv,
an edgee, and a facef , with v ⊂ e⊂ f . Additional circles indicate the0T -orbit of ◦
and thus unambiguously define the action of0T on T .

Second, further abstract generators for the symmetry group0 can be obtained from
the diagram as follows. The generators are given by adjacency transformations defined
by admissible face pairings. Two faces form an admissible pair, if they are both marked
by the same capital letterA, B,C, . . . and precisely one carries a plus sign, the other
one a minus sign, e.g.,A+ and A−. Note that the position of the letter is important,
as it corresponds to a flag (as above), and the pairing is understood to map letter onto
letter (i.e., flag onto flag). A face that does not contain a letter is paired with itself by the
identity pairing.

Moreover, a set of defining relations for the group0 can be obtained in a straightfor-
ward manner, similar to the method described on p. 160 of [V].

Below each diagram we state:Group: the crystallographic name of the symmetry
group [Hah],Stab.: the stabilizer group of a tileT in orbifold notation [C] (see Table 1),

Table 1. Conway’s orbifold notation (i) and standard crystallographic notation
(ii) for the crystallographic point-groups.

(i) (ii) (i) (ii) (i) (ii) (i) (ii)

1 1 2× 4̄ 432 432 ∗322 6̄2m
1∗ m 322 32 44 4 ∗33 3m
1× 1̄ 33 3 4∗ 4/m ∗332 4̄3m
22 2 332 23 622 622 ∗422 4/mmm
222 222 3∗ 3/m 66 6 ∗432 m3̄m
2∗ 2/m 3∗2 m3̄ 6∗ 6/m ∗44 4mm
2∗2 4̄2m 3× 3̄ ∗22 mm2 ∗622 6/mmm
2∗3 3̄m 422 422 ∗222 mmm ∗66 6mm
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Group: 221.Pm3̄m Stab.:∗432 Types: 786
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗432 46 0,0,0
b → a 1,0,0
c → a 1,1,0
d → a 0,1,0
e → a 0,0,1
f → a 1,0,1
g → a 1,1,1
h → a 0,1,1

Fig. 1. CT1.
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Group: 227.Fd3̄m Stab.: 2∗3 Types: 18
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗332 34 0,0,0
b ∗332 34 + 64 −1,1,1
c → b 0,2,0
d → b 1,1,−1
e → b 1,−1,1
f → b 0,0,2
g → a 1,1,1
h → b 2,0,0

Fig. 2. CT2.
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Group: 191.P6/mmmStab.:∗222 Types: 60
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗322 32 + 43 0,0,0
b → a −1,−1,−1
c ∗622 46 + 62 −1,−2,0
d → c 0,−1,1
e → c 1,0,−1
f → c 0,−1,−2
g → a 0,−2,−1
h → a 1,−1,0

Fig. 3. CT3.
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Group: 191.P6/mmmStab.:∗22 Types: 31
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗322 32 + 43 0,0,0
b → a 1,1,1
c ∗222 46 3,1,−1
d → c 2,0,−2
e → c 0,−2,2
f → c 1,−1,3
g ∗622 46 + 62 5,−3,1
h → g 4,−4,0

Fig. 4. CT4.
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Group: 229.Im3̄m Stab.: 1∗ Types: 5
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗422 42 + 44 1,−1,1
b ∗432 46 + 68 1,0,1
c 2∗3 46 + 62 1,1,1
d ∗22 32 + 41 + 42 0,0,0
e → d 1,−1,2
f → c 1,0,2
g → d 1,1,2
h 2∗2 34 0,0,2

Fig. 5. CT5.
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Group: 141.I 41/amdStab.: 1∗ Types: 5
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗22 32 + 42 + 52 0,1,2
b 2∗2 34 0,0,2
c → a 0,−1,2
d 2∗2 44 + 54 0,0,0
e → d −1,1,2
f → a −1,0,2
g → f −1,−1,2
h → d −1,0,0

Fig. 6. CT6.
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Group: 137.P42/nmcStab.: 1∗ Types: 5
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗22 32 + 42 + 52 1,1,1
b 2∗2 34 0,0,2
c → a −1,−1,1
d 2∗2 44 + 54 0,0,0
e → d 2,0,0
f → a 1,−1,1
g → d 0,−2,0
h → a 1,−1,−1

Fig. 7. CT7.
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Group: 142.I 41/acd Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 222 34 + 44 + 64 + 84 −
b → a −
c → a −
d → a −
e → a −
f → a −
g → a −
h 2x 34 −

Fig. 8. CT8.
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Group: 142.I 41/acd Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 2x 34 0,0,0
b 22 32 + 42 + 52 1,0,1
c 222 44 + 54 2,0,0
d → b 1,0,−1
e → b 0,1,1
f → c 1,1,2
g → b 2,1,1
h → c 1,1,0

Fig. 9. CT9.
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Group: 230.I a3̄d Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 22 32 + 43 0,0,0
b 322 46 + 62 + 63 1,−1,1
c 222 34 + 62 3,−3,0
d → b 1,−1,−1
e → c 1,0,1
f → b 2,0,2
g → a 4,−2,0
h → a 3,−1,−1

Fig. 10. CT10.
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Group: 230.I a3̄d Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 322 36 + 62 + 83 0,0,0
b 222 34 + 42 + 82 2,0,2
c 22 34 5,−5,0
d → b 0,−2,−2
e → c 3,0,1
f → b 4,0,4
g → a 8,−4,0
h → a 8,−2,−2

Fig. 11. CT11.
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Group: 221.Pm3̄m Stab.:∗422 Types: 43
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗432 38 1,−1,1
b ∗432 38 + 46 0,0,0
c → b 0,−2,0
d → a 1,−1,−1
e → b 2,−2,0
f → b 2,0,0

Fig. 12. OT1.
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Group: 194.P63/mmcStab.:∗22 Types: 12
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗322 32 + 36 + 46 −1,1,−3
b → a −1,3,1
c 2∗3 38 0,0,0
d → a −3,−1,1
e → c −2,−2,−2
f → a −5,−1,−3

Fig. 13. OT2.
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Group: 227.Fd3̄m Stab.:∗22 Types: 3
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗332 38 −1,−1,−1
b ∗332 34 + 312+ 64 −3,1,1
c 2∗3 38 0,0,0
d → b −1,3,−1
e → b 1,1,−3
f → c −2,0,−2

Fig. 14. OT3.
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Group: 229.Im3̄m Stab.: 2∗2 Types: 24
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗432 46 + 68 0,0,0
b → a 0,0,2
c → a −1,−1,1
d → a 1,−1,1

Fig. 15. TT1.
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Group: 225.Fm3̄m Stab.: 1∗ Types: 3
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗432 412+ 68 + 86 0,0,0
b → a 0,−2,2
c ∗432 38 + 86 0,0,2
d ∗332 34 + 64 −1,−1,1

Fig. 16. TT2.
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Group: 221.Pm3̄m Stab.: 1∗ Types: 5
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗432 412+ 68 + 86 0,0,0
b → a 2,0,0
c ∗432 46 + 68 1,1,1
d ∗422 42 + 44 1,1,0

Fig. 17. TT3.
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Group: 229.Im3̄m Stab.: 1∗ Types: 5
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗432 324+ 86 + 128 0,0,0
b → a 0,0,−4
c → a −2,2,−2
d 2∗2 34 0,1,−2

Fig. 18. TT4.
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Group: 229.Im3̄m Stab.: 22 Types: 5
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a ∗422 48 + 82 1,0,0
b → a 0,0,0
c ∗432 412+ 68 + 86 0,1,0
d → c 1,0,−1

Fig. 19. TT5.
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Group: 229.Im3̄m Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 2∗2 46 0,0,0
b ∗432 412+ 424+ 86 + 128 1,−3,1
c → b 3,−1,−1
d ∗422 48 + 82 1,1,1

Fig. 20. TT6.

a b

c

4

d

6

6 4

124

A−

A+

Group: 227.Fd3̄m Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 2∗3 46 + 62 0,0,0
b ∗332 46 + 412+ 64 + 124 1,−1,−1
c → b 1,1,−1
d ∗332 46 + 68 1,1,1

Fig. 21. TT7.
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Group: 229.Im3̄m Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 2∗3 46 + 62 0,0,0
b ∗422 44 + 48 + 82 + 84 2,−1,0
c → b 0,1,−2
d ∗432 412+ 68 + 86 0,1,0

Fig. 22. TT8.

andTypes: the number of different equivariant types contained in the topological family.
This is followed by a table in which for each vertex labeleda,b, c, . . . in the diagram (1),
we list its stabilizer group (2), itsvertex type(as defined below) (3), and coordinates (4)
that give rise to the depicted straight-edge realization. If a vertex labeledj is equivalent
to a vertex labeledi already listed, then we write→ i in column (2).

A vertex v is of vertex type pq1
1 + pq2

2 + pq3
3 + · · · if v is incident to preciselyqi

equivalent edges of degreepi (with respect to the full combinatorial automorphism
group of the vertex figure).

Comments. Types CT2, CT7, and CT9 can all be derived from the well-known tiling
by rhombic dodecahedra (see [W]) by splitting each rhombic dodecahedronD into
four congruent topological cubes, using the center ofD as a new vertex. If we fix the
spatial orientation ofD, then there are precisely two different ways to splitD. If all
dodecahedra are split in the same way, then we obtain CT2, whereas in the two other
cases each dodecahedron has precisely four neighbors that are split in the same way.
Splitting layers of dodecahedra alternately gives rise to CT7, whereas CT9 is obtained by
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Group: 166.R3̄m Stab.: 1 Types: 1
(1) (2) (3) (4)

Vertex Stab. Type Coord.
a 2∗3 46 + 62 0,0,0
b 2∗3 46 + 46 + 62 + 86 1,−1,1
c → b −1,−1,1
d → b 1,1,1

Fig. 23. TT9.
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using yet another pattern of splitting. Tilings CT3 and CT4 are based on two-dimensional
tilings. Type CT5 is obtained from TT1 by splitting each tetrahedron into four congruent
topological cubes, using original face and tile centers as new vertices. We may regard
CT6 as a (not face-to-face) tiling by triangular prisms. Type OT1 (or OT3) can be derived
from the cube tiling CT1 (or CT2, respectively) by constructing a bipyramid over each
face, using the centers of the adjacent cubes as apices. In OT2, three octahedra meet at a
common edge joining with three screw-rotated copies to form a “hexagonal skew prism.”
These are stacked into “infinite hexagonal prisms,” which fill space in a regular hexagon
pattern. To obtain TT1, each bypiramid of OT1 is split into four tetrahedra along the
line connecting the two apices. Type TT1 gives rise to TT3 by splitting each tile along
a mirror plane and to TT4 by subdividing each tile into four, using the tile center as
a new vertex. Type TT7 is obtained from TT1 by splitting each original tile into two
new tetrahedra along a twofold symmetry axis not lying on a mirror plane. Barycentric
subdivision of CT1 produces TT5, which also is a subdivision of TT3. We obtain TT6
and TT8 by considering the two possible ways of splitting tiles of TT5 into two new
tetrahedra along a twofold symmetry axis. Types TT2 and TT8 have congruent tiles, but
differ by rotations of certain quadruples of tiles byπ/2. Type TT9 can be regarded as
a decomposition of a tiling by triangular prisms, in which each prism is split into six
congruent tetrahedra.

By detailed comparison, our results confirm the classification of 298 equivariant types
of fundamentaltilings in topological family CT1 in [P]. We obtain precisely the same
classification of tile-transitive tilings of euclidean space by tetrahedra as contained in
[MP1] and [MP2]. The tilings in our classification that have the additional property of
beingface-transitivecoincide with those enumerated in [DHM] and the following four
topological families occur there: CT1∼ 1, CT2∼ 13, OT1∼ 9, and TT1∼ 10.

3.1. Which Convex Tetrahedra Tile Space?

As mentioned above, the cube is the only regular platonic solid that tiles euclidean space.
Aristotles wrongly asserted that the regular tetrahedron also does. This lead to confu-
sion in the past. Thus, the question“Which tetrahedra fill space?” has received much
mathematical attention [Se]. The classification of tile-transitive tilings by topological
tetrahedra can be used to give an answer in the tile-transitive case.

For this purpose, we consider all possible convex realizations of each of the 46
equivariant types. Using methods described in [De], one can determine the group of
linear components of the involved symmetries and thus formulate and solve a system
of linear equations for the vertex positions of a tile. Examination of the arising solution
spaces can be simplified by the following fact: If(T ′, 0′) is derived by symmetry breaking
from (T , 0), and if the dimension of the solution space for(T ′, 0′) is the same as for
(T , 0), then symmetry breaking can only be “realized” by bending edges or faces, i.e.,
by using nonconvex tiles. Application of this fact reduces the number of equivariant
types of tilings to be examined to eleven, namely, the nine maximal representatives for
each family and, in addition, two symmetry breakings of TT1.

By examination, tiling types TT1–TT8 have unique convex realizations up to sim-
ilarity. Tilings TT2 and TT8, though topologically different, have identical tiles. Type
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TT9 has a one-parameter family of realizations, which is obtained by scaling along the
vector(1,1,1), the direction of an edge of degree 6 (see Figure 23). The first of the two
symmetry breakings of TT1, which we denote by TT1′, leads to a second one-parameter
family, again by scaling, e.g., along the vector(1,1,1), the direction of an edge of de-
gree 6 (see Figure 15). The second symmetry breaking of TT1 is a symmetry breaking
of TT1′ with a solution space of one dimension higher. However, the additional degree
of freedom results from the fact that the whole tiling can be rotated around an axis of
direction(1,1,1) without changing the linear components of the symmetries, thus the
convex realizations are the same as for TT1′.

In [Se] the derivation of space-filling convex tetrahedra by splitting certain classes of
triangular prisms, as worked out by Sommerville [So1], [So2], is discussed. The author
states that “all known” such tetrahedra can be obtained from Sommerville’s four families
of prisms. These, as is easy to see, lead to just two families of space-filling tetrahedra,
which in fact correspond to our types TT1 and TT1′. Moreover, it turns out that TT9 can
be obtained from TT1′, and TT2–TT7 can be obtained from TT1 by “splitting” tetrahedra
(see [Se] for a discussion of this concept).

We conclude that there exist precisely seven singular and two infinite families of
convex tetrahedra that tile space tile-transitively. All such tetrahedra can be obtained by
splitting triangular prisms. Moreover, these results imply that the collection of space-
filling convex tetrahedra discussed in [Se] is complete in the case of tile-transitive tilings.

4. The General Approach

In this section we introduce a general approach to classification problems of the kind
treated in this paper. It is not restricted to platonic solids, e.g., in principle it can be used
for any type of three-dimensional polyhedron, and it is not restricted to tile-transitive
tilings, i.e., it can be easily adapted to enumerate tilings with more than one class of tiles,
as we will show in a future paper.

4.1. Outline of the Algorithm

Given a topological polyhedron, all possible equivariant types of tile-transitive tilings of
three-dimensional euclidean space based on it can be generated in the following steps:

(A1) Enumerate all possible equivariant polyhedra of the given topological type.
(A2) For each such equivariant polyhedron, systematically enumerate all possible

identifications of pairs of faces.
(A3) For each choice of face identifications, enumerate all possible choices of degrees

for each type of edge.
(A4) For each such equivariant polyhedron with face identifications and edge degrees,

decide theexistence problem, i.e., determine whether there exists a correspond-
ing tile-transitive tiling ofE3.

(A5) Finally, if such a tiling exists, then solve therealization problem, i.e., construct
a realization of it.
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Additionally, the isomorphism problemmust be solved, i.e., ensure that only one
representative for each equivariant type is generated and, moreover, a representative for
each topological type must be determined.

4.2. Delaney Symbols

The theory ofDelaney symbols, introduced by Dress [Dr1], [Dr2], provides a suitable
combinatorial model for formulating, studying, and solving classification problems con-
cerning periodic tilings of simply connected manifolds. A number of algorithms and
programs are based on this approach, see, e.g., [Hu], [DDH], and [DH2].

Given a periodic tiling(T , 0) of a connectedd-manifold admitting a barycentric
subdivision, it was shown in [Dr1] and [Dr2] that this gives rise to achamber systemC
over the index setI := {0,1, . . . ,d}. In other words,C is a6-set, where6 := 6I :=
〈 σ0, . . . , σd | σ 2

i = 1 〉 is the free Coxeter group generated byd + 1 involutions. The
action of0 induced onC commutes with6. Thus, the quotientD := 0\C is a well-defined
6-set. With each elementD ∈ D one associates the matrixM(D) := (mi j (D))I×I , with
entries of the formmi j (D) := min{m ∈ N+ | C(σiσj )

m = C, C ∈ D}. Moreover, each
such matrix is aCoxeter matrix, i.e., we havemii (D) = 1, mi j (D) = 2 if |i − j | > 1,
andmi j (D) = mji (D) for all D ∈ D andi, j ∈ I .

In this way, theDelaney symbol(D,M) associated with(T , 0) is obtained. Dress
established that any two periodic tilings (of simply connected manifolds) are equiv-
ariantly equivalent if and only if their Delaney symbols are isomorphic. Moreover, a
tiling is maximal if and only if its Delaney symbol does not have a smaller realizable
homomorphic image. In the two-dimensional case and in certain three-dimensional ge-
ometries including euclidean 3-space, it can be shown that a homomorphic image of
a realizable Delaney symbol is always realizable (see [MS] and [De]). Moreover, for
each Delaney symbol, there is a unique smallest homomorphic image. Thus, maximal
tilings correspond to smallest homomorphic images and are unique for each topologi-
cal family, which justifies our earlier claim that maximal tilings inE3 are equivariantly
equivalent if and only if they are topologically equivalent. For a detailed discussion of
the three-dimensional case, see [DHM].

4.3. Combinatorial Formulation of the Algorithm

First, we consider step (A1) of the algorithm. The tetrahedron, octahedron, cube, icosahe-
dron, and dodecahedron give rise to 11, 33, 33, 22, and 22 different equivariant polyhedra,
respectively. These can be obtained by systematic application of symmetry breaking, as
discussed, for example, in [DH1].

In (A2), assume that we are given an equivariant topological polyhedron(P, 0P), in
terms of its two-dimensional Delaney symbol(D,M), i.e., a finite, transitive6{0,1,2}-set
D with mapsm01,m12. To generate all possible face-identifications for the polyhedron,
we consider all possible definitions of the involutionσ3 onD that commute withσ0 and
σ1. (This latter requirement follows fromm03(D) = m13(D) = 2 for all D ∈ D.)
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Then, in (A3), for every edge of the polyhedron (up to symmetry) we choose the
number of incident tiles in all possible ways. In terms of Delaney symbols, this involves
generating all possible definitions of the map

m23:D→ N+.

Again, certain requirements should be taken into account. In particular, if we define

ri j (D) := min{m ∈ N+ | D(σiσj )
m = D},

then the so-calledcrystallographic restrictionfor rotational orders in a crystallographic
group impliesm23(D) = v · r23(D) for somev ∈ {1,2,3,4,6}, see, e.g., [DHM].

In (A4), for a given Delaney symbol the (euclidean) existence problemmust be
solved, i.e., decide whether the symbol does indeed correspond to some periodic tiling
of three-dimensional euclidean space. By careful application of symmetry breaking to
the Delaney symbol, this can be reduced to the task of deciding whether the topological
realization of a given three-dimensional triangulation is homeomorphic to the three-
dimensional torus [De]. In principle, this problem is algorithmically decidable using
the concept of irreducible surfaces and methods for recognition of the 3-torus and
3-sphere [Hak1], [Hak2], [R], however, an implementation of this algorithm does not
seem practical.

Recently, the first author has established [De] that in many cases this question can
be solved by application of standard methods from group theory [Sc+] combined with
simplification steps suggested by Haken [Hak3]. Although all cases considered in our
investigation were decidable in this way, our method is not guaranteed to reach a decision
and thus it is not an algorithm in the strict sense.

To solve the isomorphism problem, we define a canonical numbering of all Delaney
symbols and then ensure that for each isomorphism class we only produce the element
with the smallest number. To be precise, after every step of the algorithm we check
whether the current partially defined Delaney symbol can be rearranged to produce a
smaller number, in which case we backtrack.

Obviously, the number of possible Delaney symbols grows exponentially and it has
proven crucial to check certain necessary conditions as early as possible in stages (A2)
and (A3). One such condition is that the two-dimensional subsymbols of the partial
three-dimensional Delaney symbol must be spherical [DHM]. A second condition is
based on the concept of an orbifold graph [DH2]. For a given symmetry group, this
graph represents the singularity skeleton of the associated orbifold [T]. This (partial)
graph can be extracted from a (partial) Delaney symbol and compared with all different
graphs arising from three-dimensional euclidean space groups, see [DH2] for details.
At present our programs can deal with Delaney symbols with up to approximately 100
elements.

Finally, in (A5) a system of linear equations for the coordinates of the constituents of
the tiling can be formulated. In simple cases, the number of parameters resulting from
these necessary conditions is small and they can be easily adjusted to obtain a realization,
using simple optimization methods.
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