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Abstract. In this note the kissing numbers of octahedra, rhombic dodecahedra and elon-
gated octahedra are determined. In high dimensions, an exponential lower bound for the
kissing numbers of superballs is achieved.

Introduction

Let K be ann-dimensional convex body. As usual, we denote thetranslative kissing
numberand thelattice kissing numberof K by N(K ) andN∗(K ), respectively. In other
words,N(K ) is the maximal number of nonoverlapping translates ofK which can be
brought into contact withK , andN∗(K ) is the similar number when the translates are
taken from a lattice packing ofK .

To determine the values ofN(K ) and N∗(K ) for a convex bodyK are important
and difficult problems in the study of packings. These numbers, especially for balls,
have been studied by many well-known mathematicians such as Newton, Minkowski,
Hadwiger, van der Waerden, Shannon, Leech, Gruber, Hlawka, Kabatjanski, Leven˘stein,
Odlyzko, Rankin, Rogers, Sloane, Watson, Wyner and many others. For details refer to
[1]–[3] and [11].

In this note we determine the kissing numbers ofoctahedra, rhombic dodecahedraand
elongated octahedra. In fact, besides balls and cylinders, they are the only convex bodies
whose kissing numbers are exactly known. In Section 4 then-dimensionalsuperballs
are considered.

∗ The work of the second author was supported by a research fellowship of The Royal Society.
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Let δC be theMinkowski-metricin Rn given by a centrally symmetric convex body
C. In other words, denote byC(z) the boundary point ofC at directionz,

δC(x, y) =

‖x− y‖
‖C(x− y)‖ if x 6= y,

0 if x = y,

where‖ · ‖ indicates theEuclidean norm(see [5]). To determine the kissing numbers
of octahedra, rhombic dodecahedra and elongated octahedra, the following lemma is
frequently demanded.

Lemma 1 [10]. If the boundary∂(C) of C can be divided into m subsets X1, X2,
. . . , Xm such thatδC(x, y) < 1 whenever bothx and y belong to the same subset,
then N(C) ≤ m. More precisely, if Z = {z1, z2, . . . , zl } is a set of points such that
C+ {2Z} ∪ {o} forms a kissing configuration of C, then any subset Xi contains at most
one point of Z.

For convenience, we denote by(xy · · · z) an open (relatively)polygonal arc, by
(xy · · · z] a half open and half closed one, and by [xy · · · z] a closed one.

1. Octahedra

Theorem 1. Let O be an octahedron, then N(O) = N∗(O) = 18.

Proof. For convenience, we take

O = {x ∈ R3 : |x1| + |x2| + |x3| ≤ 1},

and let3 be the lattice generated bya = (1,1,0), b = (1,−1,0) andc = (1,0,1). It
is easy to see thatO+3 is a lattice packing with density23, in which every octahedron
touches 18 others. So that

N∗(O) ≥ 18. (1)

Let x1,1, x2,2, . . . , x6,6 be the six vertices ofO indicated by Fig. 1, letxi, j be the
midpoint ofxi,i xj, j , and letxi ′, j,k, xi, j ′,k andxi, j,k′ be points indicated by Fig. 2, where
‖uxi,i ‖ = 1

4‖xi,i xj, j ‖. Writing

Yi, j = rint(( 1
2xi, j + 1

2 O) ∩ ∂(O)),

where rint(X) indicates the relative interior ofX, and defining

Xi,i = Yi,i , i = 1,2, . . . ,6,

X1,2 = Y1,2 ∪ {x1,2′,6, x1,2′,5}, X1,4 = Y1,4 ∪ {x1′,4,6, x1′,4,5},

X1,5 = Y1,5 ∪ {x1′,2,5, x1,2,5′ }, X1,6 = Y1,6 ∪ {x1′,2,6, x1,2,6′ },
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Fig. 1

X2,3 = Y2,3 ∪ {x2,3′,6, x2,3′,5}, X2,5 = Y2,5 ∪ {x2′,3,5, x2,3,5′ },

X2,6 = Y2,6 ∪ {x2′,3,6, x2,3,6′ }, X3,4 = Y3,4 ∪ {x3,4′,6, x3,4′,5},

X3,5 = Y3,5 ∪ {x3′,4,5, x3,4,5′ }, X3,6 = Y3,6 ∪ {x3′,4,6, x3,4,6′ },

X4,5 = Y4,5 ∪ {x1,4′,5, x1,4,5′ }, X4,6 = Y4,6 ∪ {x1,4′,6, x1,4,6′ }.

It can be verified that

∂(O) =
⋃

Xi, j ,

andδO(x, y) < 1 whenever bothx andy belong to the sameXi, j (to verify δC(x, y) < 1
for two pointsx andy it is convenient to find a pointz such that bothz+ 2(x− z) and
z+2(y−z) belong to the interior ofC, say int(C)). Therefore, by Lemma 1 one obtains

N(O) ≤ 18. (2)

Consequently, (1) and (2) together yield

N(O) = N∗(O) = 18.

Theorem 1 is proved.

Fig. 2



236 D. G. Larman and C. Zong

Fig. 3

2. Rhombic Dodecahedra

Theorem 2. Let P1 be a rhombic dodecahedron(see Fig. 3), then

N(P1) = N∗(P1) = 18.

In addition, the kissing configuration, in which N(P1) = 18can be attained, is unique.

Proof. Letyi,i = 1
2xi,i and denote the midpoint ofxi,i xj, j by xi, j . First, it is easy to see

that(y1,1+ 1
2 P1)∩ ∂(P1) and(y2,2+ 1

2 P1)∩ ∂(P1) together can be divided into six parts
X21, X22, . . . , X26 such that

δP1(x, y) < 1

whenever bothx andy belong to the same part.
Writing

Yi = rint((yi,i + 1
2 P1) ∩ ∂(P1))

and defining

X2 = Y2 ∪ (x2,1x2,7x2,17x2,12),

X3 = Y3 ∪ (x3,7x3,2x3,12) ∪ (x3,12x3,13x3,14),

X4 = Y4 ∪ (x4,1x4,3x4,13x4,14),

X5 = Y5 ∪ (x5,3x5,4x5,14) ∪ (x5,14x5,15x5,16),

X6 = Y6 ∪ (x6,1x6,5x6,15x6,16),

X7 = Y7 ∪ (x7,5x7,6x7,16) ∪ (x7,16x7,17x7,12),

X12 = Y12∪ (x12,16x12,17x12,7) ∪ (x12,7x12,2x12,3),

X13 = Y13∪ (x13,11x13,12x13,2x13,3),

X14 = Y14∪ (x14,12x14,13x14,3) ∪ (x14,3x14,4x14,5),

X15 = Y15∪ (x15,11x15,14x15,4x15,5),

X16 = Y16∪ (x16,14x16,15x16,5) ∪ (x16,5x16,6x16,7),

X17 = Y17∪ (x17,11x17,16x17,6x17,7),
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it can be verified that

δP1(x, y) < 1, x, y ∈ Xi

and

∂(P1) =
26⋃

i=1

Xi

(there are intervals among the indices). So, by Lemma 1 we haveN(P1) ≤ 18. On the
other hand, by suitable construction we getN∗(P1) ≥ 18 and therefore

N(P1) = N∗(P1) = 18.

Now, we proceed to show the uniqueness. LetZ = {z1, z2, . . . , z18} be a set of
points such thatP1 + {o} ∪ {2Z} is a kissing configuration. By Lemma 1, without loss
of generality, one hasz1 = x1,2, z2 = x1,4 andz3 = x1,6, or z1 = x1,3, z2 = x1,5

andz3 = x1,7. Similarly, z16 = x11,12, z17 = x11,14 andz18 = x11,16, or z16 = x11,13,
z17 = x11,15 andz18 = x11,17. Then, by considering four possibilities, finally we get

Z = {x1,2, x1,4, x1,6, x3,3, x5,5, x7,7, x2,13, x3,14, x4,15,

x5,16, x6,17, x7,12, x12,12, x14,14, x16,16, x11,13, x11,15, x11,17},
which implies the uniqueness. Theorem 2 is proved.

3. Elongated Octahedra

Theorem 3. Let P2 be an elongated octahedron(see Fig. 4), then

N(P2) ≤ 18.

More precisely, let

‖x8,8x18,18‖ = (1− α)‖x1,1x11,11‖
with a suitable numberα. It is easy to see that0< α < 1

2.

1. When0< α ≤ 1
6, N(P2) = N∗(P2) = 18.

2. When1
6 < α ≤ 1

4, N(P2) = 18and16≤ N∗(P2) ≤ 18.

Proof. Let xi, j be the midpoint ofxi,i xj, j . Writing yi,i = 1
2xi,i and

Yi = rint((yi,i + 1
2 P2) ∩ ∂(P2)),

and then defining

X1 = Y1 ∪ (x1,3x1,2x1,9x1,8x1,7),

X2 = Y2 ∪ (x2,8x2,9] ∪ {x2,12},
X12 = Y12∪ [x12,19x12,18x12,11x12,14),
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Fig. 4

X11 = Y11∪ (x11,13x11,14x11,15x11,16x11,17),

X16 = Y16∪ (x16,14x16,15] ∪ {x16,6},
X6 = Y6 ∪ [x6,5x6,4x6,1x6,8),

X18 = Y18∪ [x18,17x18,16x18,11x18,12),

X8 = Y8 ∪ [x8,7x8,6) ∪ {x8,18},
X14 = Y14∪ [x14,13x14,12) ∪ {x14,4},
X4 = Y4 ∪ [x4,3x4,2x4,1x4,6),

X7 = Y7 ∪ [x7,6x7,1],

X17 = Y17∪ [x17,16x17,11) ∪ {x17,7},
X13 = Y13∪ [x13,12x13,11],

X3 = Y3 ∪ [x3,2x3,1) ∪ {x3,13},
X9 = Y9 ∪ [x9,8x9,1) ∪ {x9,19},

X19 = Y19∪ [x19,18x19,11),

X5 = Y5 ∪ [x5,4x5,1) ∪ {x5,15},
X15 = Y15∪ [x15,14x15,11),

it can be verified that

δP2(x, y) < 1, x, y ∈ Xi

and

∂(P2) =
19⋃

i=1

Xi

(10 is not among the indices). Then it follows from Lemma 1 that

N(P2) ≤ 18.

On the other hand, by simple constructions one can get

N(P2) ≥ N∗(P2) ≥ 18
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in the first case, and

N(P2) ≥ 18 and N∗(P2) ≥ 16

in the second case (the parameterα plays important roles in the constructions). Thus,
Theorem 3 follows.

Remark 1. It seems thatN∗(P2) = 16 in the second case. If so, we will get another
class of convex bodies such thatN(K ) 6= N∗(K ) (see [7]).

Remark 2. Let P be an octahedron, a rhombic dodecahedron or an elongated octahe-
dron of the first case of Theorem 3, the lattice kissing number ofP cannot be realized by
its densest lattice packing. Similar phenomenon occurs at tetrahedron (see [8] and [9]).

4. n-Dimensional Superballs

Let α ≥ 1 and denote byBα the superballx = (x1, x2, . . . , xn) ∈ Rn :

(
n∑

k=1

|xk|α
)1/α

≤ 1

 .
It is easy to see thatB1 is a cross-polytope,B2 is a ball,B∞ is a cube and the Minkowski-
metric given byBα can be represented as

δBα (x, y) =
(

n∑
k=1

|xk − yk|α
)1/α

. (3)

Now we introduce a general lemma.

Lemma 2. The translative kissing number of C is the maximal number of pointsxi ∈
∂(C) such that

δC(xi , xj ) ≥ 1, i 6= j .

This lemma follows directly from the fact that

(int(C)+ x) ∩ (int(C)+ y) = ∅
if and only if

δC(x, y) ≥ 2.

By this lemma, a lower bound forN(Bα) can be achieved in a combinatorical way.

Lemma 3. Let m ≤ n be a positive integer and let X be a set of pointsxi =
(x1

i , x2
i , . . . , xn

i ) with xk
i = 0 or ±1,

∑n
k=1 |xk

i | = m and

n∑
k=1

|xk
i − xk

j |α ≥ m, i 6= j . (4)
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Then

N(Bα) ≥ card{X}.

Proof. Taking

Y =
{

yi = 1

m1/α
xi : xi ∈ X

}
,

we have (
n∑

k=1

|yk
i |α
)1/α

=
(

1

m

n∑
k=1

|xk
i |α
)1/α

=
(

1

m

n∑
k=1

|xk
i |
)1/α

= 1,

which impliesyi ∈ ∂(Bα). On the other hands, by (3) and (4),

δBα (yi , yj ) =
(

n∑
k=1

1

m
|xk

i − xk
j |α
)1/α

≥ 1, i 6= j .

Therefore, by Lemma 2,

N(Bα) ≥ card{Y} = card{X},

which proves Lemma 3.

Let f (n,m, α) be the maximal possible card{X}, whereX is defined in Lemma 3,
and write

f (n, α) = max
1≤m≤n

{ f (n,m, α)}. (5)

Then

N(Bα) ≥ f (n, α). (6)

To get a lower bound forf (n, α), we have

Lemma 4.

f (n, α) ≥ ( 9
8)
(1−o(1))n ≥ 3(0.1072−o(1))n.

Proof. Sinceα ≥ 1, it is easy to see that

n∑
k=1

|xk
i − xk

j |α ≥
n∑

k=1

|xk
i − xk

j |

holds for any two pointsxi andxj with integer coordinates. Therefore, it can be deduced
that

f (n,m, α) ≥ f (n,m,1)
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and

f (n, α) ≥ f (n,1). (7)

Writing

Y =
{
(x1, x2, . . . , xn) : xk = 0 or ± 1,

n∑
k=1

|xk| = m

}
,

we have

card{Y} =
(

n

m

)
2m. (8)

For any pointxi ∈ Y, by easy computation, there are at most

g(n,m,1) =
(

m

h(m)

)(
n− h(m)

m− h(m)

)
2m−h(m) (9)

pointsxj ∈ Y such that
n∑

k=1

|xk
j − xk

i | < m,

whereh(m) = [m/2]+ 1. Hence, by (8) and (9),(
n

m

)
2m − f (n,m,1)g(n,m,1) ≤ 0

and therefore

f (n,m,1) ≥
(n

m

)
2m

g(n,m,1)
= 2h(m)

(
n

m

)(
m

h(m)

)−1(n− h(m)

m− h(m)

)−1

.

Writing n/m= l , by Stirling Formulaand detailed computation, we have

f
(
n,

n

l
,1
)
≥ (21−3/2l (2l − 1)1/2l−1l )(1−o(1))n.

By basic analysis, it can be shown that the function

f (x) = 21−3/2x(2x − 1)1/2x−1x

attains its maximum9
8 at x = 9

2. Therefore, by (5) and (7),

f (n, α) ≥ ( 9
8)
(1−o(1))n ≥ 3(0.1072−o(1))n.

Lemma 4 is proved.

It is well known that

N∗(K ) ≤ N(K ) ≤ 3n − 1

for everyn-dimensional convex body (see [4] and [6]). Therefore, by (6) and Lemma 4,
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we have

Theorem 4.

3(0.1072−o(1))n ≤ N(Bα) ≤ 3n.

Remark 3. According to the referee, I. Talata recently obtained an exponential lower
bound forN(K ) for generaln-dimensional convex bodiesK .
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