
Discrete Comput Geom 19:197–227 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

Finite Packings of Spheres∗

U. Betke1 and M. Henk2

1Fachbereich 6, Universit¨at Siegen,
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Abstract. We show that the sausage conjecture of L´aszló Fejes T´oth on finite sphere
packings is true in dimension 42 and above.

1. Introduction

Throughout this paperEd denotes thed-dimensional Euclidean space equipped with the
Euclidean norm| · | and the scalar product〈·, ·〉. Bd denotes thed-dimensional unit ball
with boundarySd−1 and convP(lin P) denotes the convex (linear) hull of a setP ⊂ Ed.
The interior of P is denoted by intP and the volume ofP with respect to the affine
hull of P is denoted byV(P). The spherical volume is denoted byV?(·). Further, let
κd = V(Bd).

C ⊂ Ed is called apacking arrangementor simply apacking(of spheres), if for
every pairx, y ∈ C, x 6= y, we have int(x + Bd) ∩ int(y + Bd) = ∅ or equivalently
|x − y| ≥ 2. Finally, #Sdenotes the cardinality of a finite setS.

For infinite packings of spheres (and more generally convex bodies) there is an old
and well-known concept of the density of such packings which has led to an extensive
theory (see, e.g., [GL], [CS], and [FK]). As usual we denote byδ(d) the density of a
densest infinite packing of spheres inEd.

∗ Part of this paper was written while the first author was visiting the Technical University of Berlin. His
stay in Berlin and the work of the second author was supported by the Gerhard Hess Forschungsf¨orderpreis of
the German Science Association awarded to G¨unter M. Ziegler (Zi 475/1-1). The paper contains some material
of the Habilitationsschrift by the second author.
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In contrast to this, the theory of finite packings of spheres is much younger. First
results for finite packings have been obtained by Rogers [R1] for general convex planar
bodies and by Groemer [Gro] for circles. They measured the size of a packingC by
V(convC)and some additional summands measuring the size of the boundary of convC.
Defining the density of a finite packing as the quotient of its size and its cardinality their
results showed that by taking limits with respect to the cardinality one obtains the density
of the densest infinite packing. For a more detailed survey of finite packings inE2 and
finite packing in general, see [GW].

The following observation by L. Fejes T´oth [F] indicated that for higher dimensions
the theory for finite packings and infinite packings should be quite different: For a finite
packingC ⊂ Ed, he defined its densityδ(C) by

δ(C) = #C · κd

V(convC + Bd)
.

This immediately leads to the definition of the maximal densityδ(d, n) of packings of
n-spheres inEd by

δ(d, n) = max{δ(C) : C ⊂ Ed is packing with #C = n}.
For d = 2, from Groemer’s result quoted above, we have

lim
n→∞ δ(2, n) = δ(2).

Now L. Fejes Tóth [F] called the packing

Sd
n = {2iu : u ∈ Sd−1, i = 1, . . . ,n}

asausage arrangementin Ed and observed

δ(Sd
n ) < δ(d)

for all n, provided that the dimensiond is at least 5. Further, he conjectured:

Sausage Conjecture. For n ∈ N and d≥ 5,

δ(d, n) = δ(Sd
n ).

Thus L. Fejes T´oth’s observation poses two problems: The first one is to prove or
disprove the sausage conjecture. The second, slightly less obvious one, is to find a
common approach to the density of finite and infinite packings. To begin with, the first
problem was studied by various authors, though the results were rather weak in that
eithern had to be small compared tod or strong additional assumptions for the packing
C had to be made. For a survey on these results, see again [GW].

In fact, it turned out that the recent study of the second problem was fruitful as well
for the solution of the first problem. A certain solution for the second problem was given
by Betkeet al. in [BHW1]. There aparametric densityδρ(C) of a packingC and a
positive parameterρ was introduced by

δρ(C) = #C · κd

V(convC + ρBd)
,
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such that Fejes T´oth’s definition corresponds to the special parameterρ = 1. Conse-
quently, a maximal parametric finite packing density was defined by

δρ(d, n) = max{δρ(C) : C ⊂ Ed is packing with #C = n}.

Then it was shown that limn→∞ δρ(d, n) = δ(d) for all ρ ≥ 2, and thatδρ(d, n) = δ(Sd
n )

provided thatρ < 2/
√

3 andd is greater than some constant depending onρ. In [BHW2]
this was improved in that 2/

√
3 could be replaced by

√
2. It was further shown that

δρ(d, n) = δ(Sd
n ) if δρ1(d, n) = δ(Sd

n ) andρ ≤ ρ1. This proved that asymptotically
(with respect tod) a stronger result than the sausage conjecture holds and it is most
interesting to prove the sausage conjecture in low dimensions. A first step in verifying
the sausage conjecture was done in [BHW1]: The sausage conjecture holds for alld ≥
13,387.

Here we optimize the methods developed in [BHW1] and [BHW2] for the special
parameter 1 and introduce some new ideas for the study of this special parameter to
prove:

Theorem. The sausage conjecture holds for all dimensions d≥ 42.

As the proof of the theorem is somewhat intricate we proceed as follows: In the second
section we first introduce some quantities to measure the size of a packing. After this
we state a number of results for these quantities from which we derive our theorem. We
close the section by a discussion of the limits of our approach.

In the last three sections we prove the results stated in Section 2. More specifically,
in Sections 3 and 4 we study sections of the Dirichlet–Voronoi cell of a fixed point of
the packing with certain planes, while in the last section we examine the case that the
local deviation of the packing from a sausage is not too large.

2. Proof of the Theorem

In this section we give a proof of the theorem based on several lemmas that will be
proved in the next sections. First, observe that, forn ∈ N,

V(convSd
n + Bd) = 2(n− 1)κd−1+ κd.

So in order to prove the sausage conjecture we have to show that for each packing
C = {x1, . . . , xn} one has

V(convC + Bd) ≥ 2(n− 1)κd−1+ κd. (2.1)

To this end we use a local approach, i.e., for a packing setC = {x1, . . . , xn} we
consider the associated Dirichlet–Voronoi cells (DV-cells, for short)Hi (C), 1≤ i ≤ n,
given by

Hi (C) = {x ∈ Ed : |x − xi | ≤ |x − x j |, 1≤ j ≤ n}
= {x ∈ Ed : 2〈x, x j − xi 〉 ≤ |x j |2− |xi |2, 1≤ j ≤ n}



200 U. Betke and M. Henk

and the parts of convC + Bd belonging toHi (C):

D(Hi (C)) = Hi (C) ∩ (convC + Bd). (2.2)

Obviously, we have

V(convC + Bd) =
n∑

i=1

V(D(Hi (C))).

For a sausage, we haveV(D(Hi (Sd
n ))) = 2κd−1, i = 2, . . . ,n−1, andV(D(H1(Sd

n ))) =
V(D(Hn(Sd

n ))) = κd−1+ κd/2. Thus it suffices to prove

V(D(Hi (C))) ≥
{

2κd−1 for n− 2 sets,
κd−1+ κd/2 for the remaining 2 sets.

(2.3)

Hence for the proof of (2.3) we have to identify at most two points ofC which can be
compared to the ends of the sausage. This is done with the help of the following angle
ϕi associated to the pointxi .

Definition 2.1. For i = 1, . . . ,n, let y j,i = (x j − xi )/|x j − xi |, 1 ≤ j ≤ n, j 6= i ,
and

ϕi = max{arccos(|〈yk,i , yl ,i 〉|) : 1≤ k, l ≤ n},
where arccos(·) is chosen in [0, π/2].

We say that a pointxi is anendpointof the packingC if ϕi < π/3 and〈yk,i , yl ,i 〉 ≥ 0
for 1 ≤ k, l ≤ n. Observe that a packing has at most two endpoints. Otherwise, if there
were three endpoints they would form a triangle such that the sum of its angles is less
thanπ . From now on we keep the packingC and a pointxi , sayxn, fixed. Further,
we assume without loss of generalityxn = 0. For abbreviation, we writeH, D, ϕ, yk

instead ofHn(C), D(Hn(C)), ϕn, yk,n.
Unfortunately, it can happen thatϕ < π/3 and for the pointsyk, yl with arccos

(|〈yk, yl 〉|) = ϕ we have〈yk, yl 〉 ≥ 0, but the point 0 is not an endpoint. To identify in
this case points inC which correspond to the “neighbors” in the sausage we define:

Definition 2.2. Let y j1, y j2 be a pair such that

arccos(|〈y j1, y j2〉|) =
{
ϕ if ϕ ≥ π/3 or 〈yk, yl 〉 ≥ 0 for 1≤ k, l ≤ n− 1,

max
1≤k,l≤n−1

{arccos(|〈yk, yl 〉|) : 〈yk, yl 〉 ≤ 0} otherwise.

Without loss of generality lety1 = y j1, y2 = y j2, and letL = lin{y j1, y j2}.

Such a pairy1, y2 may not be uniquely determined, but in any case the definition of
ϕ and ofy1, y2 gives us:

|〈yk, yl 〉| ≥ cos(ϕ), 1≤ k, l ≤ n− 1, and

|〈y1, y2〉| = cos(ϕ), if ϕ ≥ π/3 or 〈yk, yl 〉 ≥ 0, 1≤ k, l ≤ n− 1,

〈y1, y2〉 ∈ [− cos(ϕ/2),− cos(ϕ)], otherwise. (2.4)
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Moreover, we need to measure the local deviation ofC at 0 from the planeL. To this
end, we introduce another angleα.

Definition 2.3. Let

α = α(L) = max{arccos(|yi |L|) : 1≤ i ≤ n− 1},
whereyi |L denotes the orthogonal projection ofyi onto L. Without loss of generality,
let α = arccos(|y3|L|).

Clearly, the anglesα, ϕ are not independent of each other and it is not hard to see that
(see (2.4))

cos(α) cos(ϕ/2) ≥ cos(ϕ). (2.5)

We are interested in certain polytopes depending ony1, y2, y3, and their faces. Therefore,
we set for a polytopeP

Fi (P) = {F : F is ani face ofP}.
With respect to a polytopeP ⊂ convC we dissectD with the help of the nearest point
map8: Ed → Ed which is given by (see [MS]):

8(x) = y ∈ P with |x − y| = min{|x − z| : z ∈ P}.

Definition 2.4. For a polytopeP, let

Di (P) = cl{x ∈ D : 8(x) ∈ F, F ∈ Fi (P)},
where cl denotes the closure.

ThenV(D) = ∑dim P
i=0 V(Di (P)), and in the following we consider forP the poly-

topes

P2 = conv{0, 2y1, 2y2} ∩ H and P3 = conv{0, 2y1, 2y2, 2y3} ∩ H. (2.6)

Using the setsDi (P2), Di (P3) we shall estimate the size ofV(D). To this end, we use
two different approaches depending on the size ofϕ.

A small ϕ means that “close to 0” the arrangement is “sausage-like.” The vectors
y1, y2 define the “direction” of the arrangement at 0 and we consider a slice ofD given
by sections orthogonal to this direction. Compared to a corresponding slice of a sausage
this part ofD is wider, but shorter. Nevertheless, in the Lemmata 2.1–2.6 we show that
such a “nonsausage” slice has larger volume providedϕ is not too large but the dimension
is sufficiently high. For largeϕ we use a technique due to Rogers [R2] to compute the
volume ofD. Here, it turns out that the volume is large enough compared to the slice of
a sausage, ifϕ is not too small and the dimension is sufficiently high (see Lemmas 2.7
and 2.8). Putting the results together we obtain that the sausage conjecture holds for all
dimensions≥ 42.

We start with the examination of the “sausage-like” case.
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Lemma 2.1. LetϕL = arccos(|〈y1, y2〉|), and forδ ∈ [0, π/2] let

v(δ) = π − δ
2
−
arccos

(
2 sin

(
δ

2

))
− 2 sin

(
δ

2

)√
1−

(
2 sin

(
δ

2

))2
 .

Then

V(P2 ∩ Bd)

{≥ ϕ/2 if 〈y1, y2〉 ≥ − 1
2,= v(ϕL) else.

Proof. See the proof of Lemma 4.2 in [BHW1].

Lemma 2.2. Letϕ < π/3 and〈y1, y2〉 > 0. Then

V(D0(P2)) ≥ 1− ϕ/π
2

κd.

Proof. See [BHW1, Lemma 4.5].

Lemma 2.3. Let ϕ < π/3, 〈y1, y2〉 < 0, and D̃1(P2) = {x ∈ D1(P2) : 8(x) ∈
conv{2y1, 2y2}}. Then

V(D̃1(P2)) ≥ cos(ϕ)− sin(ϕ)

cos(ϕ/2)
· κd−1.

Proof. See [BHW1, Lemma 4.6].

Next we define certain functionsp1(ϕ, d), p2(α, d), and p̃2(α, d) which allow us
to describe the influence of points inC outsideL on the size ofD0(P2), D1(P2), and
D2(P2).

Lemma 2.4. Letϕ∗ = 1.16,and let

p1(ϕ, d)

=


1, ϕ < π/4,

min

{
1,
∫ (1−sin(ϕ))/cos(ϕ)

0

(
−r

cos(ϕ)

sin(ϕ)
+ 1

sin(ϕ)

)d−1

dr

}
, π/4≤ ϕ ≤ ϕ∗.

Then, for d ≥ 42

V(D1(P2)) ≥ V(D̂1(P2)) ≥ p1(ϕ, d) · κd−1,

whereD̂1(P2) = {x ∈ D1(P2) : 8(x) ∈ conv{0, 2y1} ∪ conv{0, 2y2}}.

Proof. See Section 5.
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Lemma 2.5. Letα∗ = 1.11,and let

p2(α, d)

=


1
2, α < π/4,

min

{
1
2,

∫ (1−sin(α))/cos(α)

0
r

(
−r

cos(α)

sin(α)
+ 1

sin(α)

)d−2

dr

}
, π/4≤ α ≤ α∗.

Then, for d ≥ 42

V(D2(P2)) ≥ V(P2 ∩ Bd) · 2 · p2(α, d)κd−2.

Proof. See Section 5.

For certain values ofα and ϕ it is better to considerV(D2(P2)) together with
V(D0(P2)). We have

Lemma 2.6. Letα∗ = 1.11,and let

p̃2(α, d)

=


1
2, α < π/4,

min

{
1
2, 2 ·

∫ (1−sin(α))/cos(α)

0
r

(
−r

cos(α)

sin(α)
+ 1

sin(α)

)d−2

dr

}
, π/4≤ α ≤ α∗.

Then for d≥ 42andϕ ≥ π/3

V(D0(P2))+ V(D2(P2)) ≥ ϕ
2
· 2 · p̃2(α, d)κd−2.

Proof. See Section 5.

With the help of the next two lemmas we estimateV(D) for largeϕ or α. These
estimates are based on computing the size of sections of the DV-cellH with a technique
due to Rogers [R2].

Lemma 2.7. Let d≥ 42.Then

V(D1(P2)) > 0.65019· κd−1.

Proof. See Section 3.

For largeα it becomes favorable to considerP3 rather thanP2.

Lemma 2.8. Letα ≥ α∗ = 1.11.Then for d≥ 42

V(D) ≥ V(D1(P3))+ V(D2(P3))+ V(D3(P3)) > 2κd−1.

Proof. See Section 3.
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Now, with the lemmas above we are able to give the proof of the theorem.

Proof of the Theorem. Before we start we remark that the functionsp̃2(α, d), p2(α, d),
p1(ϕ, d) (see Lemmas 2.6, 2.5, and 2.4) are monotonely decreasing inα, ϕ, respectively,
and monotonely increasing ind. Hence, ford ≥ 42,

p̃2(α, d) ≥ p̃2(α∗, 42) ≥ 0.45358, α ≤ α∗ = 1.11,

p2(α, d) = p2

(π
3
, 42

)
= 1

2, α ≤ π

3
,

p1(ϕ, d) = p1(ϕ∗, 42) = 1, ϕ ≤ ϕ∗ = 1.16.

(2.7)

We recall that the quotientκd−1/κd is strictly monotonely increasing ind. Further,
observe that we always haveα ≤ ϕ (see (2.5)). We distinguish three cases depending on
the angleϕ and the sign of〈y1, y2〉.
(i) ϕ < π/3 and〈y1, y2〉 ≥ 0.
So we have the “end of the sausage” case and by Lemmas 2.1, 2.2, 2.4, and 2.5 we get

V(D) ≥ V(D0(P2))+ V(D1(P2))+ V(D2(P2))

≥ ϕp2(α, d)κd−2+ p1(ϕ, d)κd−1+ 1− ϕ/π
2

κd.

Sinceα ≤ ϕ < π/3 we obtain by (2.7):

V(D) ≥ κd−1+ 1
2κd + ϕ

2
κd

(
κd−2

κd
− 1

π

)
≥ κd−1+ 1

2κd + ϕ
2
κd

(
κ40

κ42
− 1

π

)
≥ κd−1+ 1

2κd, d ≥ 42.

(ii) ϕ < π/3 and〈y1, y2〉 < 0.
By Lemma 2.1 we haveV(P2 ∩ Bd) = v(ϕL) and the derivative ofv(δ) with respect to
δ is

∂v(δ)

∂δ
= − 1

2 + 2 cos

(
δ

2

)√
1−

(
2 sin

(
δ

2

))2

.

This shows thatV(P2 ∩ Bd) is a concave function inδ and certainly monotonely in-
creasing forδ ∈ [0, π/4]. An easy computation yields min{v(π/8), v(π/3)} = v(π/8)
and so by (2.4)

V(P2 ∩ Bd) ≥
{
v(ϕ/2) for ϕ ≤ π/4,
v(π/8) for π/4≤ ϕ ≤ π/3.

First, assumeϕ ≤ π/4. Then by Lemmas 2.1, 2.3, 2.4, 2.5, and (2.7):

V(D) ≥ V(D̃1(P2))+ V(D̂1(P2))+ V(D2(P2))

≥ 2 · v
(
ϕ

2

)
p2(α, d)κd−2+ p1(ϕ, d)κd−1+ cos(ϕ)− sin(ϕ)

cos(ϕ/2)
κd−1

= 2κd−1+ κd−1

(
v

(
ϕ

2

)
κd−2

κd−1
+ cos(ϕ)− sin(ϕ)

cos(ϕ/2)
− 1

)
.
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Calculating the second derivative shows that the function in the brackets is concave
with respect toϕ, ϕ ≤ π/2. Sincev(π/8) ≥ 0.56373 andκ40/κ41 ≥ 2.57, as a simple
computation shows, we obtain ford ≥ 42,ϕ ∈ [0, π/4]:

V(D) ≥ min

{
2κd−1, 2κd−1+ κd−1

(
v

(
π

8

)
κ40

κ41
− 1

)}
≥ 2κd−1. (2.8)

Now let π/4 ≤ ϕ < π/3. ThenV(P2 ∩ Bd) ≥ v(π/8) and as above we obtain for
d ≥ 42:

V(D1) ≥ 2κd−1+ κd−1

(
v

(
ϕ

2

)
κd−2

κd−1
− 1

)
≥ 2κd−1+ κd−1

(
v

(
π

8

)
κ40

κ41
− 1

)
.

> 2κd−1.

Together with (2.8) it impliesV(D) ≥ 2κd−1 for d ≥ 42.

(iii) ϕ ≥ π/3.
Here we distinguish two cases depending on the angleα.

(a)α ≤ α∗.
For d ≥ 42 andϕ ≥ ϕ∗ we find by Lemmas 2.6, 2.7, and (2.7)

V(D) ≥ V(D0(P2))+ V(D2(P2))+ V(D1(P2))

≥ ϕ · 0.45358· κd−2+ 0.65019· κd−1

≥ 2κd−1+ κd−1

(
1.16 · 0.45358· κd−2

κd−1
− 1.34981

)
≥ 2κd−1+ κd−1

(
0.5261528· κ40

κ41
− 1.34981

)
> 2κd−1.

Forπ/3≤ ϕ ≤ ϕ∗ we use Lemma 2.4 instead of Lemma 2.7 and obtain

V(D) ≥ V(D0(P2))+ V(D2(P2))+ V(D1(P2))

≥ ϕ · 0.45358· κd−2+ κd−1

≥ 2κd−1+ κd−1

(
π

3
· 0.45358· κd−2

κd−1
− 1.

)
≥ 2κd−1+ κd−1

(
0.47498· κ40

κ41
− 1.

)
> 2κd−1.

(b) α ≥ α∗.
In this caseV(D) > 2κd−1, d ≥ 42, follows immediately from Lemma 2.8.

As the first case (ϕ < π/3, 〈y1, y2〉 > 0) can occur at most twice, the proof is
finished.

We close this section with a short discussion of our method. Since we use a local ap-
proach we have to compare for a packingC = {x1, . . . , xn} the volumes ofV(D(Hi (C)))
to 2κd−1 for at least(n − 2) cells (see (2.3)). Now let convC be a regular triangle. In
this case we have to compareV(D(Hi (C))) with 2κd−1 for at least onei . But

V(D(Hi (C))) = 1√
3
κd−2+ κd−1+ 1

3κd.
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So V(D(Hi (C))) < 2κd−1 for d ≤ 11. Thus to prove the conjecture ford ≤ 11 a
nonlocal method has to be applied.

It is, in principle, no problem to improve several arguments in our reasoning. However,
as far as we can see, such an improvement would make the proof disproportionately more
technical. The dimension 42 may be considered as a compromise between a “good”
dimension and complexity of the proof.

3. Sections of the Dirichlet–Voronoi Cell

Let L⊥ be the orthogonal complement of the planeL, and for a parameterρ <
√

2 let

M(ρ, L⊥) = {z ∈ Sd−1∩ L⊥ : ρz /∈ H}, K (ρ, L⊥) = {z ∈ Sd−1∩ L⊥ : ρz ∈ H}.
In [BHW2] it was shown that the ratio of the spherical volumes ofM(ρ, L⊥) to K (ρ, L⊥)
is bounded from above by a constantc provided the dimensiond is large enough (see
Theorem 1.1 in [BHW2]). Forρ < 2/

√
3 this was already proved in [BHW1] and

there it was also shown that based on such an estimate one obtains a lower bound for
V(w + (Bd ∩ L⊥)), w ∈ (P2 ∩ Bd), which leads to a lower bound ofV(D2(P2)) (see
Lemma 4.7 in [BHW1]).

Here we want to give a generalization of these results for the special parameterρ = 1.
To keep the paper self-contained as much as possible we first state the two basic lemmas
which yield the upper bound ofV?(M(ρ, L⊥))/V?(K (ρ, L⊥)) in [BHW2].

Lemma 3.1. Let S⊂ Ed be a d-simplex, let Fk be a k-face of S, k ≤ d − 1, and let
F̄k be the(d− k− 1)-face of S with Fk ∩ F̄k = ∅. For a measurable subset G⊂ S and
a continuous function f on S we have∫

G
f dx = d!

k! (d − 1− k)!

V(S)

V(Fk)V(F̄k)

·
∫

Fk

∫
F̄k

∫
µx̄+(1−µ)x∈G

f (µx̄ + (1− µ)x)µd−1−k(1− µ)k dµ dx̄ dx.

Remark. The notation
∫

dx means integration in a space of appropriate dimension.

Proof. See Lemma 2.1 in [BHW2].

Lemma 3.2. Let k, k̄ ∈ N with k̄ ≥ k+ 1 and letα, β, γ ∈ R with γ > β > 0,α > 0.
Then for a, b, c ∈ R, d ∈ N, with b, c ≥ 0, b < c, a ≥ α, a2 + c2 ≥ γ , a2 + b2 ≤ β,
d ≥ k̄ the quotient∫ µ0

0 (
√

a2+ (µc+ (1− µ)b)2)−(d+1)µd−1−k(1− µ)k dµ∫ 1
µ0
(
√

a2+ (µc+ (1− µ)b)2)−(d+1)µd−1−k(1− µ)k dµ
, (3.1)

whereµ0 ∈ [0, 1] is determined by a2+ (µ0c+ (1−µ0)b)2 = β, is maximal for a= α,
b = 0, a2+ c2 = γ , and d= k̄.
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Proof. See Lemma 2.2 in [BHW2].

In order to formulate our generalization we need some elementary notation from
the theory of convex polytopes (see [Gr¨u]). For a nonemptyn-dimensional faceF of
a p-dimensional polytopeP ⊂ Ed the normal coneN(P, F) is the cone generated
by all vectorsv ∈ Ed with the property that there exists aν ∈ R≥0 with F = P ∩
{x ∈ Ed : 〈v, x〉 = ν} and 〈v, x〉 ≤ ν for all x ∈ P. The dimension of the normal
cone isd − n. In particular,F + N(P, F) is the set of all pointsx ∈ Ed such that the
nearest point ofx with respect toP belongs toF . The ratio of the spherical volume of
N(P, F)∩Sd−1 to V?(Sd−n) is called the external angle ofF and is denoted byθ(P, F).

Moreover, we define some functions which will be used in the forthcoming estimates:

Definition 3.1. Let r ∈ R with 0 ≤ r < 1 and letd, k, l ,m ∈ N, such thatk + 2 ≤
d − l +m andk+ 2−m> (1+ r 2)/(1− r 2). Let

a(r ) =
√

1− r 2,

c(k,m) =
√

2(k+ 2−m)

k+ 3−m
− r 2− a(r )2 =

√
k+ 1−m

k+ 3−m
,

µ0(k,m, r ) = r

c(k,m)
,

M(d, l , k,m, r ) =
∫ µ0(k,m,r )

0
(
√

a(r )2+ µ2c(k,m)2
)−(d−l+m)

× µd−l+m−(k+2)(1− µ)k dµ,

K (d, l , k,m, r ) =
∫ 1

µ0(k,m,r )
(
√

a(r )2+ µ2c(k,m)2
)−(d−l+m)

× µd−l+m−(k+2)(1− µ)k dµ,

Q(d, l ,m, r ) =
{

k ∈ N :
1+ r 2

1− r 2
+m< k+ 2≤ d − l +m

}
,

q(d, l ,m, r ) =
{∞, Q(d, l ,m, r ) = ∅,

min
{

M(d,l ,k,m,r )
K (d,l ,k,m,r ) : k ∈ Q(d, l ,m, r )

}
otherwise.

The purpose of this section is to prove:

Lemma 3.3. Let L̂ ⊂ Ed be an l-dimensional subspace and let P⊂ L̂ be an l-
dimensional polytope with vertex0. Moreover, let F be an(l −m)-dimensional face of
P with0 ∈ F and letw ∈ F with |w| < 1. Then

V?((w + (N(P, F) ∩ Sd−1)) ∩ H) ≥ θ(P, F) · (d − l +m)κd−l+m

1+ q(d, l ,m, |w|) . (3.2)

Proof. Let Mw = {z ∈ N(P, F) ∩ Sd−1 : w + z /∈ H} and letKw = {z ∈ N(P, F) ∩
Sd−1 : w+z ∈ H}. By the definition of the external angle, we haveV?(Mw)+V?(Kw) =
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θ(P, F) · (d − l +m)κd−l+m, and thus

V?(Kw) = θ(P, F)
(d − l +m)κd−l+m

1+ V?(Mw)/V?(Kw)
.

It remains to show
V?(Mw)

V?(Kw)
≤ q(d, l ,m, |w|). (3.3)

To this end, we may assumeQ(d, l ,m, |w|) 6= ∅ and letW be ad-dimensional cube
with midpoint 0 and edge of length 2

√
2. To prove (3.3) we proceed as in the proof

of Theorem 1.1 in [BHW2]. First, we apply Rogers’ dissection technique (see [R2]) to
the(d − l +m)-dimensional polyhedronP = (w + N(P, F)) ∩ H with respect to the
reference pointc0 = w. This means, we construct a dissection of the bounded polyhedron
P∩W into simplicesSof the formS= conv{c0, . . . , cd−l+m}, such thatci is contained
in a (d − l +m− i )-faceG of P ∩W with w /∈ G, G contains conv{ci , . . . , cd−l+m},
andci is the nearest point ofG to c0.

Next we consider the distance from a pointci , i ≥ 1, of such a simplex tow.
Obviously, if ci belongs to a face ofW, then we have|ci − w| ≥

√
2− |w|2. Now let

ci be a point of a(d − l +m− i )-faceG of P. As the(d − l )-dimensional orthogonal
complement ofL̂ is contained inN(P, F) we have that fori > m the pointci belongs
to a(d − (i −m))-face ofH . Clearly, for 1≤ i ≤ m the pointci lies at least in 1 facet
of H . In view of a result by Rogers about the distance between(d − i )-faces ofH and
the origin (see [R2]), we get

|ci − w| ≥
{√

1− |w|2, 1≤ i ≤ m,√
2(i −m)/(i −m+ 1)− |w|2, m< i .

(3.4)

Let S= conv{c0, . . . , cd−l+m} be an arbitrary but fixed simplex of this dissection, letC0

be the cone generated byc1, . . . , cd−l+m, and let

MS = {z ∈ (N(P, F) ∩ Sd−1) ∩ C0 : w + z /∈ S},
KS = {z ∈ (N(P, F) ∩ Sd−1) ∩ C0 : w + z ∈ S}.

Clearly, it suffices to prove (3.3) for the setsMS, KS. Based on Lemma 3.1, (3.4), and the
definition of the setQ(d, l ,m, |w|) we obtain analogously to the proof of Theorem 1.1
in [BHW2] for eachk ∈ Q(d, l ,m, |w|):
V?(MS)

V?(KS)

=
∫

Fk

∫
F̄k

∫
|µx̄+(1−µ)x|w≤1[(µd−l+m−(k+2)(1− µ)k)/|µx̄ + (1− µ)x|d−l+m

w ] dµ dx̄ dx∫
Fk

∫
F̄k

∫
|µx̄+(1−µ)x|w≥1[(µd−l+m−(k+2)(1− µ)k)/|µx̄ + (1− µ)x|d−l+m

w ] dµ dx̄ dx
,

where|y|w denotes the distance from the pointy tow andF̄k = conv{ck+2, . . . , cd−l+m},
Fk = conv{c1, . . . , ck+1}. Hence

V?(Mw)

V?(Kw)
≤
∫
|µx̄+(1−µ)x|w≤1 |µx̄ + (1− µ)x|−(d−l+m)

w µd−l+m−(k+2)(1− µ)k dµ∫
|µx̄+(1−µ)x|w≥1 |µx̄ + (1− µ)x|−(d−l+m)

w µd−l+m−(k+2)(1− µ)k dµ
,

(3.5)
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for certain points̄x ∈ F̄k, x ∈ Fk. By (3.4) and the choice ofk we have

|x|w ≥
√

1− |w|2, |x̄|w ≥
√

2(k+ 2−m)

(k+ 3−m)
− |w|2 > 1.

Since|µx̄+ (1−µ)x|w is monotonely increasing inµ we may assume|x|w < 1. Then
(3.5) is of the form

V?(Mw)

V?(Kw)
≤
∫ µ0

0

√
a2+ (µc+ (1− µ)b)2−(d−l+m)

µd−l+m−(k+2)(1− µ)k dµ∫ 1
µ0

√
a2+ (µc+ (1− µ)b)2−(d−l+m)

µd−l+m−(k+2)(1− µ)k dµ
,

wherea ≥ α =
√

1− |w|2 denotes the distance between the line throughx̄, x to w,
b is given bya2 + b2 = |x|2w, c is given bya2 + c2 = |x̄|2w, andµ0 is determined by
a2+ (µ0c+ (1−µ0)b)2 = 1. But now (3.3) follows from Lemma 3.2 and Definition 3.1
with β = 1, γ = 2(k + 2−m)/(k + 3−m)− |w|2, α = a(|w|), b = 0, c = c(k,m),
andµ0 = µ0(k,m, |w|).

Instead of the spherical volumeV?((w + (N(P, F) ∩ Sd−1)) ∩ H), we are often
interested in the volumeV((w + (N(P, F) ∩ Bd)) ∩ H). Since

V((w + (N(P, F) ∩ Bd)) ∩ H) = 1

d − l +m
V?((w + (N(P, F) ∩ Sd−1)) ∩ H),

we have:

Corollary 3.1. Under the assumptions of Lemma3.3one has

V((w + (N(P, F) ∩ Bd)) ∩ H) ≥ θ(P, F) · κd−l+m

1+ q(d, l ,m, |w|) .

Furthermore, as an immediate consequence we obtain:

Corollary 3.2.

V(D2(P2)) ≥ κd−2

∫
P2∩Bd

1

1+ q(d, 2, 0, |w|)dw,

V(D1(P2)) ≥ κd−1

∫ 1

0

1

1+ q(d, 2, 1, r )
dr.

Proof. For F = P2 we haveθ(P2, F) = 1 andN(P2, F) = L⊥. By the definition of
D2(P2) and the normal cones, we get

((P2 ∩ Bd)+ (N(P2, F) ∩ Bd)) ∩ H ⊂ D2(P2).

In view of Corollary 3.1 this implies the lower bound forV(D2(P2)). For the bound of
V(D1(P2)) we note that

(conv{0, yi } + (N(P2, conv{0, 2yi }) ∩ Bd)) ∩ H ⊂ D1(P2)

andθ(P2, conv{0, 2yi }) = 1
2 for i = 1, 2.
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Next we collect some numerical results involving the functionq(d, l ,m, r ) which
will be used in the course of our investigations. Therefore, we define

Definition 3.2. Let h̄ = 0.74740141:

ω1(d) =
∫ 1

0

1

1+ q(d, 3, 2, r )
dr, ω2(d) =

∫ 1

0

r

1+ q(d, 3, 1, r )
dr,

ω3(d) =
∫ h̄

0

r 2

1+ q(d, 3, 0, r )
dr.

Proposition 3.1. The functionsωi (d) are monotonely increasing functions in d. For
d ≥ 42,we have

ω1(d) ≥ ω1(42) ≥ 0.62638506,

ω2(d) ≥ ω2(42) ≥ 0.21085103,

ω3(d) ≥ ω3(42) ≥ 0.10145239,∫ 1

0

1

1+ q(d, 2, 1, r )
dr ≥

∫ 1

0

1

1+ q(42, 2, 1, r )
dr ≥ 0.65019115.

Proof. As Q(d, l ,m, r ) ⊂ Q(d′, l ,m, r ) for d′ ≥ d, we see by Lemma 3.2 that
the functionq(d, l ,m, r ) is monotonely decreasing ind and thusωi (d) are increasing
functions.

Instead of determining the exact value ofq(d, l ,m, r ) we use the following upper
bound:

q(d, l ,m, r ) ≤ M(d, l , k(m, r ),m, r )

K (d, l , k(m, r ),m, r )
,

wherek(m, r ) is the smallest integer greater than(1+ r 2)/(1− r 2) +m. If k(m, r ) /∈
Q(d, l ,m, r ), then we use the trivial upper bound∞. The numerical calculations of the
integrals were carried out by the programMathematica1 with a working precision of 40
digits.

In view of these computations, Lemma 2.7 follows from Corollary 3.2

Lemma 2.7. Let d≥ 42.Then

V(D1(P2)) > 0.65019· κd−1.

In the next section we shall apply Corollary 3.1 to the setP3.

1 c©1988, 1991, 1992 von Wolfram Research Inc.
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4. Three-Dimensional Sections

In order to simplify the analysis we assign the following coordinates to the vectors
y1, y2, y3 defined by Definitions 2.2 and 2.3

y1 = (1, 0, 0, . . . ,0)T ,

y2 = (cos(γ ), sin(γ ), 0, . . . ,0)T ,

y3 = (cos(α) cos(β), cos(α) sin(β), sin(α), 0, . . . ,0)T ,

whereγ ∈ [0, π ] denotes the angle betweeny1 andy2 andβ ∈ [0, 2π ]. Forα ≥ π/3 we
clearly haveϕ ≥ π/3 by (2.5) and thus|cos(γ )| = cos(ϕ). Moreover, we see by (2.5)

cos(α) ≥ cos(γ )

cos(γ /2)
, γ ≤ π

2
, cos(α) ≥ − cos(γ )

sin(γ /2)
, γ ≥ π

2
. (4.1)

Hence with

ϒ(α) = arccos
(

1
4 cos2(α)+ cos(α)

√
1
16 cos2(α)+ 1

2

)
we obtain, forα ≥ π/3, the following restriction on the angleγ

γ ∈ [ϒ(α), π −ϒ(α)]. (4.2)

In what follows we study some geometric quantities ofP3. Let fi, j denote the angle
betweenyi andy j , 1≤ i < j ≤ 3. Then

f1,2 = γ, f1,3 = arccos(cos(α) cos(β)) and f2,3 = arccos(cos(α) cos(γ − β)).
Forα > 0, letui, j ∈ lin{y1, y2, y3}, 1≤ i < j ≤ 3, be the outward unit normal vector
of the 2-faceFi, j = conv{0, 2yi , 2y j } ∩ H of P3:

u1,2 = (0, 0,−1, 0, . . . ,0)T ,

u1,3 = (0,− sin(α), cos(α) sin(β), 0, . . . ,0)T√
1− cos2(α) cos2(β)

,

u2,3 = (− sin(α) sin(γ ), sin(α) cos(γ ), cos(α) sin(γ − β), 0, . . . ,0)T√
1− cos2(α) cos2(γ − β) .

Finally, let g1,2, g1,3, andg2,3 denote the angle between the normal vectors(u1,3, u2,3),
(u1,2, u2,3) and(u1,2, u1,3), respectively. We get

g1,2 = arccos

(
− sin2(α) cos(γ )+ cos2(α) sin(β) sin(γ − β)√
1− cos2(α) cos2(β)

√
1− cos2(α) cos2(γ − β)

)
,

g1,3 = arccos

(
− cos(α) sin(γ − β)√

1− cos2(α) cos2(γ − β)

)
,

g2,3 = arccos

(
− cos(α) sin(β)√

1− cos2(α) cos2(β)

)
.

With this notation we obtain forV(D) the lower bound:
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Lemma 4.1. Letα ≥ α∗ = 1.11.Then with the notation of Definition3.2

V(D1(P3)) ≥
(

g1,2+ g1,3+ g2,3

2π

)
· ω1(d) · κd−1,

V(D2(P3)) ≥
(

f1,2+ f1,3+ f2,3

2

)
· ω2(d) · κd−2,

V(D3(P3)) ≥ (2π − g1,2− g1,3− g2,3) · ω3(d) · κd−3.

Proof. From the definition ofP3 and the normal cones follows:

V(D1(P3)) ≥
3∑

i=1

∫
conv{0,yi }

V((w + (N(P3, conv{0, 2yi }) ∩ Bd)) ∩ H) dw,

V(D2(P3)) ≥
∑

1≤i< j≤3

∫
Fi, j

V((w + (N(P3, conv{0, 2yi , 2y j }) ∩ Bd)) ∩ H) dw,

V(D3(P3)) ≥
∫

P3
V((w + (N(P3, P3) ∩ Bd)) ∩ H) dw.

From Corollary 3.1 we obtain:

V(D1(P3)) ≥
3∑

i=1

θ(P3, conv{0, 2yi }) · κd−1

∫
conv{0,yi }

1

1+ q(d, 3, 2, |w|) dw,

V(D2(P3)) ≥
∑

1≤i< j≤3

θ(P3, conv{0, 2yi , 2y j }) · κd−2

∫
Fi, j

1

1+ q(d, 3, 1, |w|) dw,

V(D3(P3)) ≥ θ(P3, P3) · κd−3

∫
P3

1

1+ q(d, 3, 0, |w|) dw.

Now θ(P3, conv{0, 2yi }) = gk, j /(2π), k, j 6= i , θ(P3, conv{0, 2yi , 2y j }) = 1
2, and

θ(P3, P3) = 1. Sinceα ≥ π/3, we have f1,2, f1,3, f2,3 ∈ [π/3, 2π/3]. Thus, the
intersection of the cone generated byyi , y j with Bd belongs to the 2-faceFi, j . Hence
we get the formulas forV(D1(P3)) andV(D2(P3)).

Let h be the distance from conv{2y1, 2y2, 2y3} to the origin. Then

min{1, h} · (cone{y1, y2, y3} ∩ Bd) ⊂ P3

and asV?
(
cone{y1, y2, y3} ∩ Sd−1

) = (2π − g1,2− g1,3− g2,3) (see [S]), we get

V(D3(P3)) ≥ (2π − g1,2− g1,3− g2,3)

∫ min{h,1}

0

r 2

1+ q(d, 3, 0, r )
dr.

It remains to show that forα ≥ α∗ the distanceh is not less than̄h of Definition 3.2.
A lower bound forh is given by the distanceη(α, β, γ ) between the affine hull of
{2y1, 2y2, 2y3} and the origin:

h ≥ η(α, β, γ ) = (2 sin(α) sin(γ ))

·((sin(α) sin(γ ))2+ (sin(α)(1− cos(γ )))2

+ (sin(γ )− cos(α) sin(β)+ cos(α) sin(β − γ ))2)−1/2.
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Calculating the first partial derivatives of(sin(γ )− cos(α) sin(β)+ cos(α) sin(β− γ ))2
with respect toβ shows that this function becomes maximal forβ = π + γ /2. Hence
η(α, β, γ ) ≥ η(α, π + γ /2, γ ). Furthermore, it is easy to see that forγ ∈ (0, π),
α ∈ (0, π/2] the function

η

(
α, π + γ

2
, γ

)
= 2 ·

(
1+

(
1− cos(γ )

sin(γ )

)2

+
(

1

sin(α)
+ cos(α)

sin(α)
· 2 sin(γ /2)

sin(γ )

)2)−1/2

is monotonely increasing inα and monotonely decreasing inγ . Since

γ ∈ [ϒ(α∗), π −ϒ(α∗)]

for α ≥ α∗ (see (4.2)) we obtain

h ≥ η
(
α∗, 3

2π −
ϒ(α∗)

2
, π −ϒ(α∗)

)
> 0.74740141= h̄. (4.3)

Based on Lemma 4.1 we give in the sequel a lower bound forV(D) only depending
onα. To this end, we write for abbreviation

f1(α, β, γ,d) =
∑

gi, j

(
w1(d) · κd−1

2π
− w3(d)κd−3

)
+ 2πw3(d)κd−3+

∑
fi, j

2
w2(d)κd−2, (4.4)

where
∑

indicates the summation over 1≤ i < j ≤ 3. By Lemma 4.1 we have for
α ≥ α∗

V(D) ≥ f1(α, β, γ,d).

We claim:

Lemma 4.2. Letα∗ ≤ α0 ≤ π/2 and let d satisfy

w1(d) · κd−1

2π
− w3(d)κd−3 ≤ 0. (4.5)

Then forα ≥ α0, one has

V(D) ≥ f1

(
α0,

ϒ(α0)

2
, ϒ(α0), d

)
.

Proof. It suffices to show that forα ≥ α0 and based on the restriction (4.1), the function
f1(α, β, γ,d) is minimal forα = α0, β = ϒ(α0)/2, andγ = ϒ(α0). To this end we
study the behavior of the partial derivatives of

∑
fi, j and

∑
gi, j . The calculations of

the derivatives were carried out with help of the programMathematica, but all results
can also be verified “by hand.” For more details we refer to [H]. Since the trigonometric
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transformations are rather tedious we omit the details. With respect toγ we obtain:

∂
∑

fi, j
∂γ

= ∂ f1,2

∂γ
+ ∂ f2,3

∂γ
= 1+ cos(α) sin(γ − β)√

1− cos2(α) cos2(γ − β)
= 1+ cos(α) sin(γ − β)√

sin2(α)+ cos2(α) sin2(γ − β)
≥ 0,

∂
∑

gi, j

∂γ
= ∂g1,2

∂γ
+ ∂g1,3

∂γ

= − sin(α)

1− cos2(α) cos2(γ − β) +
sin(α) cos(α) cos(γ − β)
1− cos2(α) cos2(γ − β)

= − sin(α)

1+ cos(α) cos(γ − β) ≤ 0.

So for all α ∈ [α0, π/2], β ∈ [0, 2π ], the function
∑

fi, j is monotonely increasing
in γ and

∑
gi, j is monotonely decreasing inγ . By the choice ofd (see (4.5)) we

get that f1(α, β, γ,d) is monotonely increasing inγ . In view of (4.2) andα ≥ α0 this
shows

f1(α, β, γ ) ≥ f1(α, β,ϒ(α0)). (4.6)

Next we consider the partial derivatives with respect toβ and get:

∂
∑

fi, j
∂β

= ∂ f1,3

∂β
+ ∂ f2,3

∂β

= cos(α) sin(β)√
1− cos2(α) cos2(β)

− cos(α) sin(γ − β)√
1− cos2(α) cos2(γ − β) ,

∂
∑

gi, j

∂β
= ∂g1,2

∂β
+ ∂g1,3

∂β
+ ∂g2,3

∂β

= − sin(α) cos2(α) sin(γ ) sin(γ − 2β)

(1− cos2(α) cos2(β))(1− cos2(α) cos2(γ − β))
− sin(α) cos(α) cos(γ − β)

1− cos2(α) cos2(γ − β) +
sin(α) cos(α) cos(β)

1− cos2(α) cos2(β)

= 2 sin(α) cos(α) sin(γ /2) sin(γ /2− β)
(1+ cos(α) cos(β))(1+ cos(α) cos(γ − β)) .

It is easy to see that

∂
∑

fi, j
∂β

≤ 0, 0≤ β ≤ γ /2, π + γ /2≤ β ≤ 2π,
= 0, β = γ /2, β = π + γ /2,
≥ 0, γ /2≤ β ≤ π + γ /2,

∂
∑

gi, j

∂β

≥ 0, 0≤ β ≤ γ /2, π + γ /2≤ β ≤ 2π,
= 0, β = γ /2, β = π + γ /2,
≤ 0, γ /2≤ β ≤ π + γ /2.
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Thus by (4.6) and (4.5):

f1(α, β, γ,d) ≥ f1

(
α,
ϒ(α0)

2
, ϒ(α0), d

)
. (4.7)

Finally, for the partial derivatives with respect toα we find:

∂
∑

fi, j
∂α

(
α,
γ

2
, γ

)
=
(
∂ f1,3

∂α
+ ∂ f2,3

∂α

)(
α,
γ

2
, γ

)
= 2

sin(α) cos(γ /2)√
1− cos2(α) cos2(γ /2)

≥ 0,

∂
∑

gi, j

∂α

(
α,
γ

2
, γ

)
=
(
∂g1,2

∂α
+ ∂g1,3

∂α
+ ∂g2,3

∂α

)(
α,
γ

2
, γ

)
= cos(α) sin(γ )

1− cos2(α) cos2(γ /2)
− 2

(
sin(γ /2)

1− cos2(α) cos2(γ /2)

)
= 2 sin(γ /2) (cos(γ /2) cos(α)− 1)

1− cos2(α) cos2(γ /2)
≤ 0.

Hence, the functionf1(α, γ /2, γ,d) is monotonely increasing inα. In view of (4.7), we
obtain

f1(α, β, γ,d) ≥ f1

(
α0,

ϒ(α0)

2
, ϒ(α0), d

)
.

Now we have all the ingredients to prove:

Lemma 2.8. Letα ≥ α∗ = 1.11.Then for d≥ 42

V(D) ≥ V(D1(P3))+ V(D2(P3))+ V(D3(P3)) > 2κd−1.

Proof. First we check that ford ≥ 42 the condition (4.5) of Lemma 4.2 is satisfied. To
show this we use Proposition 3.1. Since the functionswi (d), 1≤ i ≤ 3, are monotonely
increasing ind we havew1(d)/w3(d) ≤ 1/w3(42) for d ≥ 42. Hence ford ≥ 42 we
havew1(d)/w3(d) < 10 < 2πκd−3/κd−1 and (4.5) is satisfied. Lemma 4.1 together
with Lemma 4.2 yields

V(D) ≥ V(D1(P3))+ V(D2(P3))+ V(D3(P3)) ≥ f1(α∗, ϒ(α∗)/2, ϒ(α∗), d),

with ϒ(α∗) ≈ 1.1942. By (4.4) we see thatf1(α∗, ϒ(α∗)/2, ϒ(α∗), d)/κd−1 is mono-
tonely increasing ind and with f1(α∗, ϒ(α∗)/2, ϒ(α∗), 42)/κ41 ≥ 2.02124 we get

V(D) ≥ 2κd−1+ κd−1

(
f1(α∗, ϒ(α∗)/2, ϒ(α∗), d)

κd−1
− 2

)
≥ 2κd−1+ κd−1

(
f1(α∗, ϒ(α∗)/2, ϒ(α∗), 42)

κ41
− 2

)
> 2κd−1, d ≥ 42.
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5. Small Local Deviation From a Sausage Arrangement

As in the previous section, letγ be the angle betweeny1 andy2, and letα ∈ [0, π/2]
be the maximal angle of a vector of the configuration with the two-dimensional plane
L (see Definition 2.3). Forδ ∈ [0, γ ] let wδ be the point of the boundary ofP2 ∩ Bd

with 〈wδ/|wδ|, y1〉 = cos(δ). ThenP2 ∩ Bd = {λwδ : λ ∈ [0, 1], δ ∈ [0, γ ]} and by
the definition ofD2(P2) we have

V(D2(P2)) ≥
∫ γ

0

∫ |wδ |
0

r · V
((

r
wδ

|wδ| + L⊥
)
∩ D

)
dr dδ,

whereL⊥ denotes the orthogonal complement ofL. To evaluate the inner integral we
use polar coordinates for the set(rwδ/|wδ| + L⊥) ∩ D and obtain

V(D2(P2)) ≥ 1

d − 2

∫ γ

0

∫
Sd−1∩L⊥

|wδ|2
∫ 1

0
r · h(r, wδ, z)d−2 dr dz dδ,

where forr ∈ [0, 1], δ ∈ [0, γ ], andz ∈ Sd−1 ∩ L⊥

h(r, wδ, z) = max{h ∈ R≥0 : rwδ + hz∈ D},
denotes the “height ofD” in the direction ofzoverrwδ. Forδ ∈ [0, γ ] andz ∈ Sd−1∩L⊥

we are only interested in pointsrwδ whose “height” in the direction ofz is at least 1.
Hence we set

rδ,z = max{r ∈ R≥0 : h(r, wδ, z) ≥ 1, r ≤ 1}.
With this notation, we get

V(D2(P2)) ≥ 1

d − 2

∫ γ

0

∫
Sd−1∩L⊥

|wδ|2
∫ rδ,z

0
r · h(r, wδ, z)d−2 dr dz dδ. (5.1)

In general, we cannot assume that conv{0, wδ} + z ⊂ H , i.e., rδ,z = 1, because there
might be a hyperplaneMj = {x ∈ Ed : 〈x j , x〉 = |x j |2/2} which separates a part of the
set conv{0, wδ} + z from H , i.e.,

〈x j , rwδ + z〉 > |x
j |2
2
, r > rδ,z.

But beside this negative influence, such a perturbing pointx j has also a positive effect:
For sufficiently small values ofr we find rwδ + εr z ∈ conv(Bd ∪ x j + Bd) ∩ H for
suitable numbersεr > 1. Henceh(r, wδ, z) > 1 for smallr and in view of the exponent
(d − 2) in (5.1) the inner integral becomes large.

In the following we discuss the relationship between perturbing points and the size
of the integral

∫ rδ,z
0 r · h(r, wδ, z)d−2 dr for a fixed pair of pointswδ, z. The main result

is:

Lemma 5.1. Let d ≥ 42, δ ∈ [0, γ ], z ∈ Sd−1 ∩ L⊥, and p2(α, d) as in Lemma2.5.
Then forα ≤ α∗ = 1.11 ∫ rδ,z

0
rh(r, wδ, z)

d−2 dr ≥ p2(α, d).



Finite Packings of Spheres 217

As an immediate consequence of Lemma 5.1 we obtain:

Lemma 2.5. Letα ≤ α∗ = 1.11and d≥ 42.Then

V(D2(P2)) ≥ V(P2 ∩ Bd) · 2p2(α, d)κd−2.

Proof.

V(D2(P2)) ≥ 1

d − 2

∫ γ

0

∫
Sd−1∩L⊥

|wδ|2 p2(α, d) dz dδ

=
(∫ γ

0

|wδ|2
2

dδ

)
κd−2 · 2 · p2(α, d).

At the end of this section we show that a slightly better result holds if one considers
both setsD0(P2) and D2(P2) (see Lemma 2.6). Further, we shall show that a similar
result holds for the volume of the setD̂1(P2), but with a function depending onϕ instead
of α (see Lemma 2.4).

For the proof of Lemma 5.1 we need the following functions:

Definition 5.1. Forα ∈ [0, π/2) and 0≤ ζ ≤ min{2 sin(α), 2 cos(α)}, let

µ(α, ζ ) =
√

4− ζ 2− 2 sin(α)

2+ ζ − 2 sin(α)
,

g1(α, ζ,d) =
∫ µ(α,ζ )

0
r

(
r

ζ√
4− ζ 2

+ 2√
4− ζ 2

)d−2

dr,

g2(α, ζ,d) =
∫ √(2−ζ )/(2+ζ )
µ(α,ζ )

r

(
r

sin(α)− 1

sin(α)

√
2+ ζ
2− ζ +

1

sin(α)

)d−2

dr,

g3(α, ζ,d) = g1(α, ζ,d)+ g2(α, ζ,d),

g(α, d) = min{g3(α, ζ,d) : 0≤ ζ ≤ min{2 sin(α), 2 cos(α)}},

p(α, d) =
∫ (1−sin(α))/cos(α)

0
r

(
−r

cos(α)

sin(α)
+ 1

sin(α)

)d−2

dr.

We note thatg3(α, ζ,d) is a continuous function forα ∈ [0, π/2) and 0≤ ζ ≤
min{2 sin(α), 2 cos(α)} with g3(α, 0, d) = g1(α, 0, d) = 1

2, α ∈ [0, π/2). Lemma 5.1
is an easy consequence of the next two propositions.

Proposition 5.1. Letα ∈ [0, π/2), δ ∈ [0, γ ], and z∈ Sd−1 ∩ L⊥. Then∫ rδ,z

0
rh(r, wδ, z)

d−2 ≥
{

g(α, d), α < π/4,
min {g(α, d), p(α, d)} , π/4≤ α.
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Proposition 5.2. Let d≥ 42and letα ≤ α∗ = 1.11.Then

g(α, d) = 1
2.

For the proof of these two propositions we need another result from [BHW1]

Lemma 5.2. Letw ∈ H ∩ Sd−1, v ∈ w⊥ ∩ Sd−1, µ, ε > 0 with (µ+ ε)v ∈ H . Then

c1(µ, ε) · conv{0, w} + µv ⊂ H,

with c1(µ, ε) = ε/
√
(µ+ ε)2− 1 if µ ≥ 1/(µ+ ε), else c1(µ, ε) =

√
1− µ2.

Proof of Proposition5.1. Instead ofwδ we writew for short. For the proof we replace
the Dirichlet–Voronoi cellH by the “smaller” setHs ⊂ H given by

Hs = {x ∈ Ed : 〈x, y j 〉 ≤ 1, 1≤ j ≤ n− 1}

and define analogously toh(r, wδ, z), rδ,z:

hs(r ) = max{h ∈ R≥0 : rw + hz∈ Hs ∩ (conv(C)+ Bd)},
rs = max{r ∈ R≥0 : hs(r ) ≥ 1, r ≤ 1}.

As hs(r ) ≤ h(r, w, z) andrs ≤ rδ,z it suffices to show∫ rs

0
rhs(r )

d−2 ≥
{

g(α, d), α < π/4,
min{g(α, d), p(α, d)}, π/4≤ α. (5.2)

Observe thatBd ⊂ Hs and thusw ∈ P2 ∩ Hs. In the casers = 1 there is nothing to
prove because

∫ 1
0 rhs(r )d−2 dr ≥ 1

2 andg(α, 0, d) = 1
2. So we may assumers < 1.

Hence there exists a pointu ∈ {2y1, . . . ,2yn−1} with

〈u, rsw + z〉 = 2. (5.3)

Let

u = σv + τ w|w| + ζz,

with σ, τ, ζ ∈ R andv ∈ lin(w, z)⊥, |v| = 1. Then

σ 2+ τ 2+ ζ 2 = 4 (5.4)

and (5.3) is equivalent to

τ |w|rs + ζ = 2. (5.5)

Obviously, we have 0≤ τ, ζ ≤ 2. We claim that

ζ ≤ 2 sin(α). (5.6)
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By the definition ofα we get〈y j , x〉 ≤ sin(α) for all x ∈ Sd−1 ∩ L⊥ and 1≤ j ≤ n.
Sincers < 1, we haveα > 0 and thus(

1

sin(α)

)
x ∈ Hs, x ∈ Sd−1 ∩ L⊥. (5.7)

As (2/ζ )z /∈ int(Hs), it follows 2/ζ ≥ 1/sin(α).
In particular, (5.6) and (5.5) implyτ > 0 and we may write

rs = 2− ζ
|w|τ . (5.8)

Now we study the positive effects of such a perturbing pointu. Forr ∈ [0, 1], let

h′(r ) = max{h ∈ R≥0 : rw + hz∈ conv{0, u} + Bd}.
The functionh′(r ) can easily be determined by the equality∣∣∣∣rw + h′(r )z− 〈rw + h′(r )z, u/2〉

2
u

∣∣∣∣2 = 1,

which says that the point given by the orthogonal projection ofrw + h′(r )z onto the
hyperplane with normal vectoru has unit length. We obtain with (5.4):

h′(r ) = |w|r τζ + 2
√

4− ζ 2+ (−4+ τ 2+ ζ 2)|w|2r 2

4− ζ 2

= |w|r τζ + 2
√

4− ζ 2− σ 2|w|2r 2

4− ζ 2
.

We distinguish two cases.

(i) 1/sin(α) ≤ h′(0) = 2/
√

4− ζ 2.
Then sin(α) ≥ (1− (ζ/2)2)1/2 and by (5.6) we get sin(α) ≥ cos(α). Henceα ≥ π/4.
Furthermore, sinceh′(0)z ∈ convC + Bd we may deduce from (5.7) that

1

sin(α)
z ∈ (convC + Bd) ∩ Hs.

By Lemma 5.2 (withHs instead ofH andc1(1, 1/sin(α) − 1) = (1− sin(α))/cos(α)
we obtain

conv

{
0,

1

sin(α)
z,±1− sin(α)

cos(α)|w| w,±
1− sin(α)

cos(α)|w| w + z

}
⊂ D. (5.9)

So

hs(r ) ≥ 1

sin(α)
− r
|w| cos(α)

sin(α)
for r ∈

[
0,

1− sin(α)

|w| cos(α)

]
.

As |w| ≤ 1 we have∫ rs

0
rhs(r )

d−2 dr ≥ p(α, d) for α ≥ π
4
. (5.10)
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(ii) 1/sin(α) ≥ h′(0) = 2/
√

4− ζ 2.
Then 4 sin2(α) ≤ 4− ζ 2 which impliesζ ≤ 2 cos(α), and together with (5.6)

ζ ≤ min{2 sin(α), 2 cos(α)}. (5.11)

Now we determine the smallest value ofr0 such that the pointr0w + h′(r0)z lies in the
hyperplaneM = {x ∈ Ed : 〈u, x〉 = 2}. Such a pair(r0, h′(r0)) (if it exists) must satisfy
the relations:

r0|w|τ + h′(r0)ζ = 2, r 2
0 |w|2+ h′(r0)

2 = 2. (5.12)

The first equation means that the point lies in the hyperplaneM and the second one
expresses the property thatr0w + h′(r0)z belongs to the boundary of the(d − 1)-
dimensional unit ball with centeru/2 embedded inM . By (5.12) we find

r 2
0 |w|2+

(
2− r0|w|τ

ζ

)2

= 2

and so

r0 = 2τ − ζ
√

2(τ 2+ ζ 2)− 4

|w|(τ 2+ ζ 2)
. (5.13)

We note thatr0 is well defined, i.e.,τ 2 + ζ 2 ≥ 2: Sincers, |w| ≤ 1 we haveτ + ζ ≥ 2
(see (5.5)) and thusτ 2 + ζ 2 ≥ 2. Moreover, from (5.11) we getζ ≤ √2 which implies
r0 ≥ 0. We also haver0 ≤ rs. To show this we use (5.8) and obtain

r0 ≤ rs ⇔ 2τ − ζ
√

2(τ 2+ ζ 2)− 4

|w|(τ 2+ ζ 2)
≤ 2− ζ
|w|τ

⇔ −τζ
√

2(τ 2+ ζ 2)− 4≤ ζ(2ζ − τ 2− ζ 2)

⇔ τ 2+ ζ 2 ≤ 2ζ + τ
√

2(τ 2+ ζ 2)− 4.

Let h(τ, ζ ) = τ 2 + ζ 2 − 2ζ − τ
√

2(τ 2+ ζ 2)− 4. In order to showh(τ, ζ ) ≤ 0 for
0≤ ζ ≤ √2 andτ ∈ [2− ζ,

√
4− ζ 2] we calculate the first partial derivative ofh with

respect toτ :

∂h(τ, ζ )

∂τ
= 2τ

√
2(τ 2+ ζ 2)− 4− 4τ 2− 2ζ 2+ 4√

2(τ 2+ ζ 2)− 4
.

From this we deduce

∂h(τ, ζ )

∂τ
≤ 0 ⇔ τ

√
2(τ 2+ ζ 2)− 4≤ 2τ 2+ ζ 2− 2

⇔ τ 2

(
ζ 2− 2

2τ 2+ ζ 2− 2
+ 1

)
≤ 2τ 2+ ζ 2− 2.

Sinceζ ≤ √2 andτ 2+ζ 2 ≥ 2 the functionh(τ, ζ ) is monotonely decreasing inτ . Thus
h(τ, ζ ) ≤ h(2− ζ, ζ ) = 2(2− ζ )((1− ζ )−

√
(1− ζ )2) ≤ 0. Hencer0 ≤ rs.
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From the right-hand side equation in (5.12) it followsh′(r0) > 1 and substitutingr0

from (5.13) in the left-hand side equation of (5.12) yields

h′(r0) = 2ζ + τ
√

2(τ 2+ ζ 2)− 4

τ 2+ ζ 2
. (5.14)

Now let

S1 = conv{0, h′(0)z, r0w, r0w + h′(r0)z},
S2 = conv{r0w, r0w + h′(r0)z, rsw, rsw + z}, (5.15)

T(α) = conv

{
0,

(
1

sin(α)

)
z, rsw, rsw + z

}
.

Clearly, S1, S2 ⊂ convC + Bd and from the definition ofrs and (5.7) we have
T(α) ⊂ Hs. Hence

T(α) ∩ (S1 ∪ S2) ⊂ (convC + Bd) ∩ Hs.

In the following, we derive from the setT(α)∩ (S1∪ S2) a lower bound for the function
hs(r ). To this end, we first show that we may assumeτ 2+ ζ 2 = 4. Let

τ1 = r0|w| + h′(r0) and ζ1 = h′(r0)− r0|w|.
Then based on (5.12),r0, |w| ≤ 1, andh′(r0) > 1 we have

τ1, ζ1 > 0, τ 2
1 + ζ 2

1 = 4 and τ1r0|w| + ζ1h′(r0) = 2.

Now let ũ = τ1w/|w| + ζ1z and letr̃s, h̃′(r ), r̃0, S̃1, S̃2, T̃(α) be defined as above for
the pointu. By the choice ofτ1, ζ1 we getr̃0 = r0 = (τ1 − ζ1)/(2|w|) and h̃′(r̃0) =
h′(r0) = (τ1+ ζ1)/2 (see (5.13) and (5.14)). Furthermore, asτr0|w| + ζh′(r0) = 2 and
τ 2+ ζ 2 ≤ 4 we obtainτ1 ≥ τ , ζ1 ≤ ζ and (see (5.8))

h̃′(0) = 2

τ1
≤ 2√

4− ζ 2
= h′(0), r̃s = 2− ζ1

|w|τ1
≤ 2− ζ
|w|τ = rs.

Hence we havẽS1 ⊂ S1, S̃2 ⊂ S2, andT̃(α) ⊂ T(α). So the setsS1, S2, T(α) become
“minimal” (with respect to inclusion) for parametersτ, ζ ≥ 0 which satisfyτ 2 + ζ 2 =
4 andζ ≤ min{2 sin(α), 2 cos(α)} (see (5.11)). Therefore, in the sequel we assume
τ 2+ ζ 2 = 4 and thus (see (5.8), (5.13), and (5.14))

rs =
√

2− ζ√
2+ ζ |w| , r0 =

√
4− ζ 2− ζ

2|w| ,

h′(0) = 2√
4− ζ 2

, h′(r0) =
√

4− ζ 2+ ζ
2

.

(5.16)

Next we determine the intersectionT(α) ∩ (S1 ∪ S2). Let χ1w + χ2z be the point
of intersection of the two segments

conv{(1/sin(α))z, rsw + z} and conv{h′(0)z, r0w + h′(r0)w}.
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Observe that based onh′(0) ≤ 1/sin(α) ≤ 2/ζ such a point exists. Then we obviously
have

T(α) ∩ (S1 ∪ S2) = conv{0, h′(0)z, χ1w,χ1w + χ2z}
∪ conv{χ1w,χ1w + χ2z, rsw, rsw + z}

and forχ1, χ2 we find (see (5.16)):

χ1 = µ(α, ζ )

|w| ,

χ2 = 2√
4− ζ 2

+ µ(α, ζ ) ζ√
4− ζ 2

(5.17)

= 1

sin(α)
+ µ(α, ζ )

√
2+ ζ√
2− ζ

sin(α)− 1

sin(α)
.

Hence

hs(r ) ≥ 2√
4− ζ 2

+ r |w| ζ√
4− ζ 2

for 0≤ r ≤ µ(α, ζ )|w|
and

hs(r ) ≥ 1

sin(α)
+ r |w|

√
2+ ζ√
2− ζ

sin(α)− 1

sin(α)
for

µ(α, ζ )

|w| ≤ r ≤
√

2− ζ√
2+ ζ |w| .

Together with|w| ≤ 1 and the first case (5.10) this shows (5.2).

Proof of Proposition5.2. First we consider the behavior ofg3(α, ζ,d) with respect to
α. For a givenζ the setT(α) in (5.15) becomes “smaller” (with respect to inclusion)
if we increase the angleα. So, by construction, the functiong3(α, ζ,d) is monotonely
decreasing inα. In view of ζ ≤ min{2 sin(α), 2 cos(α)} this means that

g(α, d) ≥ min

{
g3

(
π

4
, ζ,d

)
: 0≤ ζ ≤

√
2

}
, α ≤ π

4
,

and forα∗ ≥ α ≥ π/4:

g(α, d) ≥ min{g3(α, 2 cos(α), d),min{g3(α∗, ζ,d) : 0≤ ζ ≤ 2 cos(α∗)}}.
With

ν(α) =
(

cos(α)

1− sin(α)

√
1− cos(α)

1+ cos(α)

)2

,

we have

g3(α, 2 cos(α), d) = g2(α, 2 cos(α), d) = ν(α) · p(α, d),
where we use the substitutionr = cos(α)/(1− sin(α)) · (1− cos(α))/(1+ cos(α))1/2t .
Now ν(α) is a monotonely increasing function withν(π/4) = 1 andp(α, d) is mono-
tonely decreasing inα and increasing ind. Sincep(π/3, 42) > 1

2 andν(π/3)p(α∗, 42) >
1
2 we find that forπ/4≤ α ≤ α∗ andd ≥ 42

g3(α, 2 cos(α), d) > 1
2.
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Fig. 1.

So, asg(α, d) ≤ g3(α, 0, d) = 1
2 andg3 increases ind it suffices to prove

min{g3(π/4, ζ,42) : 0≤ ζ ≤
√

2} = 1
2,

min{g3(α∗, ζ,42) : 0≤ ζ ≤ 2 cos(α∗)} = 1
2. (5.18)

Figure 1 shows a plot of the functions log2(g3(π/4, ζ,42)) for ζ ∈ [0,
√

2] and
log2(g3(α∗, ζ,42)) for ζ ∈ [0, 2 cos(α∗)]. The plots were generated by the program
Mathematica.

We “see” that (5.18) holds. However, it is also possible to prove (5.18) “by hand.” First,
we check that ford ≥ 42 andα ∈ {π/4, α∗} there exists aζ∗(α) with g3(α, ζ,d) ≥ 1

2
for all ζ ∈ [0, ζ∗(α)]. By the definition of the functiong1(α, ζ,d) we get with the
substitutionr = µ(α, ζ ) · t

g3(α, ζ,d) ≥ g1(α, ζ,d)

=
(

2√
4− ζ 2

)d−2

µ(α, ζ )2
∫ 1

0
t

(
t
ζ

2
µ(α, ζ )+ 1

)d−2

dt

≥
(

2√
4− ζ 2

)d−2

µ(α, ζ )2
1

2

(
1

2

ζ

2
µ(α, ζ )+ 1

)d−2

,

where the last inequality results from the convexity of the functiont (tζµ(α, ζ )/2+ 1).
So, in order to proveg3(α, ζ,d) ≥ 1

2 (for sufficiently smallζ ) it suffices to show

2√
4− ζ 2

µ(α, ζ )2/(d−2)

(
ζ

4
µ(α, ζ )+ 1

)
≥ 1. (5.19)

To this end, letψ(α, ζ ) be defined by

µ(α, ζ ) =
√

4− ζ 2/2

1+ (ζ/2)ψ(α, ζ ) ,

i.e.,

ψ(α, ζ ) =
√

4− ζ 2+ 2 sin(α)(2−
√

4− ζ 2)/ζ√
4− ζ 2+ 2 sin(α)

.
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By the Bernoulli inequality(1+ x)m ≥ 1+mx for x ≥ −1, m ∈ N, we obtain(
1+ 2

d − 2

ζ

2
ψ(α, ζ )

)(d−2)/2

≥ 1+ ζ
2
ψ(α, ζ ) =

√
4− ζ 2/2

µ(α, ζ )
.

Hence

µ(α, ζ )2/(d−2) ≥ (
√

4− ζ 2/2)2/(d−2)

1+ (2/(d − 2))(ζ/2)ψ(α, ζ )
≥

√
4− ζ 2/2

1+ (2/(d − 2))(ζ/2)ψ(α, ζ )
.

So (5.19) holds for allζ with

µ(α, ζ ) ≥ 4

d − 2
ψ(α, ζ ). (5.20)

Calculating the first partial derivative with respect toζ shows thatψ(α, ζ ) is monotonely
increasing inζ , ζ ≤ √2. Asµ(α, ζ ) is monotonely decreasing inζ we have shown that
for eachζ∗(α) satisfying (5.20) andζ ∈ [0, ζ∗(α)] one has

g3(α, ζ,d) ≥ 1
2. (5.21)

Hence a suitableζ∗(α) can easily be computed. For example, ford = 42 andα ∈
{π/4, α∗} one may chooseζ∗(α) = 0.008. Forζ ≥ ζ∗(α) one can find certain auxiliary
functions from which (5.18) follows by evaluating these functions at finitely many points.
Since the calculations are rather lengthy we omit them and refer to [H].

Now we come to the proof of

Lemma 2.6. Letα∗ = 1.11and letϕ ≥ π/3. Then for d≥ 42

V(D0(P2))+ V(D2(P2)) ≥ ϕ
2
· 2p̃2(α, d)κd−2.

Proof. Let ai ∈ L be the outward unit normal vector of the edge conv{0, 2yi } with
respect to theP2, i = 1, 2. Furthermore, letU (ϕ) be the intersection ofBd with the
cone generated bya1,a2. We setW(ϕ) = −U (ϕ), G(ϕ) = U (ϕ) if 〈y1, y2〉 < 0 and
W(ϕ) = P2 ∩ Bd, G(ϕ) = −(P2 ∩ Bd) if 〈y1, y2〉 ≥ 0. Sinceϕ ≥ π/3 we have
W(ϕ) ⊂ P2 ∩ Bd, G(ϕ) ⊂ U (ϕ), and

V(W(ϕ)) = V(G(ϕ)) = ϕ

2
.

For δ ∈ [0, ϕ] and 〈y1, y2〉 ≥ 0 (〈y1, y2〉 < 0) let wδ be the point of the boundary
of W(ϕ) with 〈wδ, y1〉 = cos(δ) ( 〈wδ,−a2〉 = cos(δ)). ThenW(ϕ) = {λwδ : λ ∈
[0, 1], δ ∈ [0, ϕ]} and by the definition ofD0(P2), D2(P2) we obtain

V(D0(P2)) ≥
∫ ϕ

0

∫ 0

−1
−r · V((rwδ + L⊥) ∩ D) dr dδ,

V(D2(P2)) ≥
∫ ϕ

0

∫ 1

0
r · V((rwδ + L⊥) ∩ D) dr dδ.
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Now we use polar coordinates for the inner integrals and get

V(D0(P2)) ≥ 1

d − 2

∫ ϕ

0

∫
Sd−1∩L⊥

∫ 0

−1
−r · h−(r, wδ, z)d−2 dr dz dδ,

V(D2(P2)) ≥ 1

d − 2

∫ ϕ

0

∫
Sd−1∩L⊥

∫ 1

0
r · h+(r, wδ, z)d−2 dr dz dδ,

where forδ ∈ [0, ϕ] andz ∈ Sd−1 ∩ L⊥

h+(r, wδ, z) = max{h ∈ R≥0 : rwδ + hz∈ D} for r ∈ [0, 1],

h−(r, wδ, z) = max{h ∈ R≥0 : rwδ + hz∈ D} for r ∈ [−1, 0].

Now, let

r+δ,z = max{r ∈ R≥0 : h+(r, wδ, z) ≥ 1, r ∈ [0, 1]},
r−δ,z = min{r ∈ R≥0 : h−(r, wδ, z) ≥ 1, r ∈ [−1, 0]}.

We claim that forϕ ∈ [π/3, π/2), δ ∈ [0, ϕ], andz ∈ Sd−1 ∩ L⊥∫ 0

r−
δ,z

−rh−(r, wδ, z)d−2 +
∫ r+

δ,z

0
rh+(r, wδ, z)d−2

≥
{

g(α, d), α < π/4,
min{g(α, d), 2 · p(α, d)}, π/4≤ α.

To show this we can proceed as in the proof of Proposition 5.1. All what we have to
prove is that in case (i) 1/ sin(α) ≤ h′(0) = 2/

√
4− ζ 2,∫ 0

r−
δ,z

−rh−(r, wδ, z)d−2+
∫ r+

δ,z

0
rh+(r, wδ, z)d−2 ≥ 2 · p(α, d). (5.22)

However, this follows from (5.9) and this shows (5.22). Now the assertion is an immediate
consequence of Proposition 5.2.

Finally, it remains to prove:

Lemma 2.4. Letϕ∗ = 1.16.Then for d≥ 42

V(D1(P2)) ≥ V(D̂1(P2)) ≥ p1(ϕ, d) · κd−1,

whereD̂1(P2) = {x ∈ D1(P2) : 8(x) ∈ conv{0, 2y1} ∪ conv{0, 2y2}}.

Proof. Since the proof can be done completely analogously to the proof of Lemma 2.5
we only give a brief sketch. First, observe that

V(D̂1(P2)) ≥
2∑

i=1

∫ 1

0
V((r yi + N(P2, conv{0, 2yi })) ∩ D) dr,
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whereN(P2, conv{0, 2yi }) denotes the normal cone of the edge conv{0, 2yi } with re-
spect toP2. For i = 1, 2 andz ∈ N(P2, conv{0, 2yi }) ∩ Sd−1 we definehi (r, z) =
max{h ∈ R≥0 : r yi + hz ∈ D} andri,z = max{r ∈ R≥0 : hi (r, z) ≥ 1, r ≤ 1}. Using
polar coordinates we get (see (5.1)):

V(D̂1(P2)) ≥ 1

d − 1

2∑
i=1

∫
Sd−1∩N(P2,conv{0,2yi })

∫ ri,z

0
hi (r, z)

d−1 dr dz.

Forz ∈ N(P2, conv{0, 2yi })∩ Sd−1 we have to estimate
∫ ri,z

0 hi (r, z)d−1dr . To this end,
we must adjust some of the functions defined in Definition 5.1 in an obvious way: for
ϕ ∈ [0, π/2) and 0≤ ζ ≤ min{2 sin(ϕ), 2 cos(ϕ)} let

g̃1(ϕ, ζ,d) =
∫ µ(ϕ,ζ )

0

(
r

ζ√
4− ζ 2

+ 2√
4− ζ 2

)d−1

dr,

g̃2(ϕ, ζ,d) =
∫ √(2−ζ )/(2+ζ )
µ(ϕ,ζ )

(
r

sin(ϕ)− 1

sin(ϕ)

√
2+ ζ
2− ζ +

1

sin(ϕ)

)d−1

dr,

g̃3(ϕ, ζ,d) = g1(ϕ, ζ,d)+ g2(ϕ, ζ,d),

g̃(ϕ, d) = min{g̃3(ϕ, ζ,d) : 0≤ ζ ≤ min{2 sin(ϕ), 2 cos(ϕ)}},

p̃(ϕ, d) =
∫ (1−sin(ϕ))/cos(ϕ)

0

(
−r

cos(ϕ)

sin(ϕ)
+ 1

sin(ϕ)

)d−1

dr.

If we replace, in the proof of Proposition 5.1,α by ϕ, then we get that forϕ ∈ [0, π/2)
andz ∈ N(P2, conv{0, 2yi }) ∩ Sd−1∫ ri,z

0
hi (r, z)

d−1 ≥
{

g̃(ϕ, d), ϕ < π/4,
min{g̃(ϕ, d), p̃(ϕ, d)}, π/4≤ ϕ.

Analogously to the proof of Lemma 5.2 we can estimate the functiong̃(ϕ, d) and get
for d ≥ 42 and 0≤ ϕ ≤ ϕ∗

g̃(ϕ, d) = 1.
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Received October19, 1995,and in revised form May28, 1996.


