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Abstract. We show that the sausage conjecture aftb Fejes Bth on finite sphere
packings is true in dimension 42 and above.

1. Introduction

Throughout this papeE? denotes thd-dimensional Euclidean space equipped with the
Euclidean norm - | and the scalar produc¢t, -). B¢ denotes the-dimensional unit ball
with boundaryS?~1 and convP (lin P) denotes the convex (linear) hull of a $&ic EY.
The interior of P is denoted by inP and the volume oP with respect to the affine
hull of P is denoted by (P). The spherical volume is denoted By(-). Further, let
kg = V(BY).

C c EYis called apacking arrangemenor simply apacking(of spheres), if for
every pairx, y € C, X # y, we have intx + BY) nint(y + BY) = ¢ or equivalently
X — y| > 2. Finally, #S denotes the cardinality of a finite s&t

For infinite packings of spheres (and more generally convex bodies) there is an old
and well-known concept of the density of such packings which has led to an extensive
theory (see, e.g., [GL], [CS], and [FK]). As usual we denotesty) the density of a
densest infinite packing of sphereshf.

* Part of this paper was written while the first author was visiting the Technical University of Berlin. His
stay in Berlin and the work of the second author was supported by the Gerhard Hess Forschenysis of
the German Science Association awardedtot®i M. Ziegler (Zi 475/1-1). The paper contains some material
of the Habilitationsschrift by the second author.
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In contrast to this, the theory of finite packings of spheres is much younger. First
results for finite packings have been obtained by Rogers [R1] for general convex planar
bodies and by Groemer [Gro] for circles. They measured the size of a paCking
V (convC) and some additional summands measuring the size of the boundary & conv
Defining the density of a finite packing as the quotient of its size and its cardinality their
results showed that by taking limits with respect to the cardinality one obtains the density
of the densest infinite packing. For a more detailed survey of finite packing$ amd
finite packing in general, see [GW].

The following observation by L. Fejesott [F] indicated that for higher dimensions
the theory for finite packings and infinite packings should be quite different: For a finite
packingC c EY, he defined its densit§(C) by

#C . Kd
V (convC + BY)’

This immediately leads to the definition of the maximal den&ity, n) of packings of
n-spheres irE? by

§(C) =

8(d,n) = maxs(C) : C c EYis packing with # = n}.
Ford = 2, from Groemer’s result quoted above, we have
nleDoa(z, n) =48(2).
Now L. Fejes DBth [F] called the packing
S ={2iu:uesti=1...,n
asausage arrangemeirt EY and observed

8(S) < 8(d)

for all n, provided that the dimensiahis at least 5. Further, he conjectured:

Sausage Conjecture. Forn e Nand d > 5,
s(d,n) =8(S.

Thus L. Fejes dth's observation poses two problems: The first one is to prove or
disprove the sausage conjecture. The second, slightly less obvious one, is to find a
common approach to the density of finite and infinite packings. To begin with, the first
problem was studied by various authors, though the results were rather weak in that
eithern had to be small compared tbor strong additional assumptions for the packing
C had to be made. For a survey on these results, see again [GW].

In fact, it turned out that the recent study of the second problem was fruitful as well
for the solution of the first problem. A certain solution for the second problem was given
by Betkeet al. in [BHW1]. There aparametric density,(C) of a packingC and a
positive parametes was introduced by

#C - kyq

(S C = )
o (©) V (convC + pBd)
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such that Fejes @th’s definition corresponds to the special paramgtes 1. Conse-
quently, a maximal parametric finite packing density was defined by

8,(d, n) = maxs,(C) : C c EYis packing with #£ = n}.

Then it was shown that lim, . §,(d, n) = §(d) forall p > 2, and thas,(d, n) = §(S)
provided thap < 2/+/3 andd is greater than some constant depending.dn [BHW2]
this was improved in that/2/3 could be replaced by/2. It was further shown that
8,(d,n) = 8(F) if 8,,(d,n) = () andp < ps. This proved that asymptotically
(with respect tad) a stronger result than the sausage conjecture holds and it is most
interesting to prove the sausage conjecture in low dimensions. A first step in verifying
the sausage conjecture was done in [BHW1]: The sausage conjecture holdsifor all
13,387.

Here we optimize the methods developed in [BHW1] and [BHW?2] for the special
parameter 1 and introduce some new ideas for the study of this special parameter to
prove:

Theorem. The sausage conjecture holds for all dimensions d2.

As the proof of the theorem is somewhat intricate we proceed as follows: In the second
section we first introduce some guantities to measure the size of a packing. After this
we state a number of results for these quantities from which we derive our theorem. We
close the section by a discussion of the limits of our approach.

In the last three sections we prove the results stated in Section 2. More specifically,
in Sections 3 and 4 we study sections of the Dirichlet—Voronoi cell of a fixed point of
the packing with certain planes, while in the last section we examine the case that the
local deviation of the packing from a sausage is not too large.

2. Proof of the Theorem

In this section we give a proof of the theorem based on several lemmas that will be
proved in the next sections. First, observe thatnfer N,

V(convs! + BY) = 2(n — L)kq_1 + kq.

So in order to prove the sausage conjecture we have to show that for each packing
C={x%...,x"}one has

V(convC + BY) > 2(n — 1)kq_1 + «q. (2.1

To this end we use a local approach, i.e., for a packingCset .{xl, ..., X"} we
consider the associated Dirichlet—Voronoi cells (DV-cells, for shdt)C), 1 <i < n,
given by

H'(C) = {xeEY: x—x'| < |x—xI|,1<j <n}

= (xeEY:2(x,x) =x) < XIP—|x'|?, 1< ] <n}
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and the parts of cor@ + BY belonging toH' (C):
D(H'(C)) = H'(C) N (convC + BY). (2.2

Obviously, we have

V(convC + BY) = ZV(D(Hi(C)))-
i—1

Forasausage, we havVéD (H' (§))) = 2«q_1,i = 2, ..., n—1,andv(D(HY(S))) =
V(D(H”($))) = Kkq_1 + kq/2. Thus it suffices to prove

2K4—1 for n— 2 sets,

i
V(DHI(C)) = {Kd_l + Kkd/2 for the remaining 2 sets.

(2.3)

Hence for the proof of (2.3) we have to identify at most two point€afhich can be
compared to the ends of the sausage. This is done with the help of the following angle
¢' associated to the point.

Definition 2.1. Fori = 1,...,n,letyll = (xi —x))/|x} —=x'|,1<j<n,j#i,
and

¢ = maxarccos|(y*', ")) : 1 <k, | <n},
where arccoi) is chosen in [0r/2].

We say that a point' is anendpointof the packingC if ¢' < 7/3 and(y*', y'') > 0
for 1 < k,1 < n. Observe that a packing has at most two endpoints. Otherwise, if there
were three endpoints they would form a triangle such that the sum of its angles is less
thanz. From now on we keep the packir@ and a pointx', sayx", fixed. Further,
we assume without loss of generality = 0. For abbreviation, we writél, D, ¢, y¥
instead ofH"(C), D(H"(C)), ¢", y*".

Unfortunately, it can happen that < /3 and for the pointg/X, y' with arccos
(Y%, Y = ¢ we have(y*, y') > 0, but the point 0 is not an endpoint. To identify in
this case points i€ which correspond to the “neighbors” in the sausage we define:

Definition 2.2. Letylt, yi2 be a pair such that

@ if o>n/3 or (Y, y)>0 for1<kl<n-—1,
max 1{arcco$|<y", yhD) (YK, Y < 0} otherwise.
<n—

I =

arccog|(y™, yi2)|) =

1<

Without loss of generality ley* = yit, y? = yl2 and letL = lin{yl, yl}.

Such a paity?, y? may not be uniquely determined, but in any case the definition of
¢ and ofy!, y? gives us:

Iy, ¥")| > coslg), 1<kl<n-1, and
YL y3)| = codlg), if e=>m/3 or (yy)>0, 1<kl=<n-1,
(y5y?) € [—cosip/2), —cosp)], otherwise (2.4)



Finite Packings of Spheres 201

Moreover, we need to measure the local deviatiof @ft O from the pland_. To this
end, we introduce another angle

Definition 2.3. Let
o = a(L) = maxarccog|y' |L]) :1<i <n—1},

wherey'|L denotes the orthogonal projectionyfonto L. Without loss of generality,
leta = arccog|y3|L|).

Clearly, the angles, ¢ are not independent of each other and it is not hard to see that
(see (2.4))

cog) cogy/2) = Cogy). (2.5)

We are interested in certain polytopes depending'oy?, y3, and their faces. Therefore,
we set for a polytop®

Fi(P) = {F : F is ani face of P}.

With respect to a polytopP c convC we dissecD with the help of the nearest point
map®: E9 — EY which is given by (see [MS]):

dx)=yeP with |[x —y|=min{|x — 2| : ze P}.
Definition 2.4. For a polytopeP, let
D'(P)=clixe D: ®(x) e F, F € F(P)},
where cl denotes the closure.

ThenV (D) = Y.%™P v(D/(P)), and in the following we consider fd? the poly-
topes

P2 = conV0, 2y%, 2y?} N H and  P3=conV0, 2y}, 2y% 2y} N H. (2.6)

Using the set®' (P?), D' (P®) we shall estimate the size ¥f(D). To this end, we use
two different approaches depending on the sizg.of

A small ¢ means that “close to 0” the arrangement is “sausage-like.” The vectors
y!, y? define the “direction” of the arrangement at 0 and we consider a sliBegiven
by sections orthogonal to this direction. Compared to a corresponding slice of a sausage
this part of D is wider, but shorter. Nevertheless, in the Lemmata 2.1-2.6 we show that
such a“nonsausage” slice has larger volume provggisahot too large but the dimension
is sufficiently high. For large we use a technique due to Rogers [R2] to compute the
volume of D. Here, it turns out that the volume is large enough compared to the slice of
a sausage, ip is not too small and the dimension is sufficiently high (see Lemmas 2.7
and 2.8). Putting the results together we obtain that the sausage conjecture holds for all
dimensions> 42.

We start with the examination of the “sausage-like” case.
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Lemma 2.1. Lety, = arccog|(y', y?)|), and fors € [0, /2] let

=750 (smzon3)) 2on(z) o oo ))

Then
V(szBd) Z(P/Z if <y1a y2> 2_%7
=v(pL) else
Proof. See the proof of Lemma 4.2 in [BHW1]. O

Lemma2.2. Lety < m/3and(y!, y?) > 0.Then

1-¢/m
I Ay

0/ p2
V(D"(P?)) = >

Proof. See [BHW1, Lemma 4.5]. O

Lemma2.3. Lety < 7/3, (Y1, y3) < 0,and D1(P?) = {x € DY(P?) : &(x) €
conv{2y?, 2y?}}. Then

coslp) —sin(y) -

V (DY(P?
(D*(P9)) > cos9/2)

Kd—1.

Proof. See [BHW1, Lemma 4.6]. O

Next we define certain functiong, (¢, d), p2(«, d), and p2(«, d) which allow us
to describe the influence of points @ outsideL on the size oD°(P?), D'(P?), and
D2(P?).

Lemma2.4. Letg, = 1.16,and let

pl(@r d)
[17 ¢ < /4,

(1—sin(g))/cosp) Coi(p) 1 d_1
min L. S : drt, 1< ¢ <q,.
| { / < sin(e) * Sln((p)> } /A< <.

0

Then for d > 42
V(D*(P?) > V(D*(P?) > pu(g, d) - k-1,

whereD1(P2) = {x € DL(P?) : ®(x) € con{0, 2y*} U con{0, 2y?}}.

Proof. See Section 5. O
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Lemma2.5. Leta, = 1.11,and let
P2(a, d)

{%, a < m/4,

(1-sin(er))/coga) co 1 d-2
min %f r —rﬁJr . dri, T/A<a < a,.
0 sinfe)  sin(a)

Then ford > 42
V(D?(P?)) > V(P?N BY) - 2. pa(a, d)kg-2.

Proof. See Section 5. O

For certain values of and ¢ it is better to considel (D?(P?)) together with
V (D°(P?)). We have

Lemma?2.6. Leta, =1.11,and let

Po(cr, d)

%, a < /4,

— (1-sin(xr))/coga) co 1 d-2
min %2/ r{—r _5(“)+ _ dry, n/4<a <a,.
0 sin(e)  sin(a)

Then for d> 42and¢ > 7/3

V(DO(P?) + V(DA(P?) = £ -2 Po(a. dlka—2.
Proof. See Section 5. O
With the help of the next two lemmas we estimatéD) for large¢ or «. These
estimates are based on computing the size of sections of the DM-eelh a technique

due to Rogers [R2].

Lemma?2.7. Letd> 42.Then
V (DY(P?)) > 0.65019- kq_1.

Proof. See Section 3. O

For largex it becomes favorable to considBf rather thanP?.
Lemma2.8. Leta > «, = 1.11.Then for d> 42
V(D) = V(D'(P®) + V(D?*(P®) + V(D3(P%) > 2¢q4_1.

Proof. See Section 3. O
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Now, with the lemmas above we are able to give the proof of the theorem.
Proof of the Theorem Before we start we remark that the functigi$e, d), p2(«, d),

p1(p, d) (see Lemmas 2.6, 2.5, and 2.4) are monotonely decreasinginmespectively,
and monotonely increasing th Hence, ford > 42,

Po(er, d) > Po(as,42) > 045358 o < o, =111,

P2 (o d) = P2 (z 42) =1 a < z 2.7
9 3’ 2’ —_— 37

pi(p,d) = pi(ps.42) = 1, ¢ < ¢, = 116.

We recall that the quotienty_1/kq is strictly monotonely increasing id. Further,
observe that we always hawe< ¢ (see (2.5)). We distinguish three cases depending on
the anglep and the sign ofy?, y?).

() ¢ <m/3and(y'y? = 0.
So we have the “end of the sausage” case and by Lemmas 2.1, 2.2, 2.4, and 2.5 we get
V(D) = V(D°(P?) + V(D'(P?) + V(D*(P?)
l-—9p/n
2

v

IV

op2(a, d)kg_2 + Pa(e, )kg_1 + Kd.

Sincex < ¢ < /3 we obtain by (2.7):

Kd— 1
V(D) > kg 1+ Sk + Skq (—d 2 —)
2 Kd T

K 1
> Kg-1+ gkd + %Kd (K—‘“’ - ;) > Kkg-1+ zka,  d=42
42

(i) ¢ <m/3and(y!, y?) <O.
By Lemma 2.1 we hav¥ (P? N BY) = v(¢p,) and the derivative o (8) with respect to

§is
e _ 5 f1_ (2sin(2))
Y 2+Zcos<2)\/1 <Zsm<2)>.

This shows thaw/ (P2 N BY) is a concave function id and certainly monotonely in-
creasing fos € [0, 7/4]. An easy computation yields min(z/8), v(x/3)} = v(7/8)
and so by (2.4)

2~ Rd v(p/2)  forg <m/4,
V(PTNBY) = {v(n/S) form/4 < ¢ <m/3.

First, assume < n/4. Then by Lemmas 2.1, 2.3, 2.4, 2.5, and (2.7):
V(D) = V(D'(P%) + V(D*(P?) + V(D?*(P?)

2. v(%) po(o, d)g—2 + pre, d)kg—1 + cos(p) — sin(y)

cos¢/2)

@\ Kkd—2  COSp) — sin(p)
Haat K‘“(” (5) o1 cosg/) 1) '

v
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Calculating the second derivative shows that the function in the brackets is concave
with respect tap, ¢ < /2. Sincev(rr/8) > 0.56373 andcso/x41 > 2.57, as a simple
computation shows, we obtain fdr> 42, ¢ € [0, 7 /4]:

V(D) = min {ZKdl, 2Kd—1 + kd—1 (v(%) o _ 1)} > 264-1. (2.8)
Ka1

Now let7/4 < ¢ < /3. ThenV(P?2 N BY% > v(x/8) and as above we obtain for
d > 42:

V(D1 = 21 +igo (0 £) 22 —1) = 2+ (v & )2 - 1).
2 Kd—1 8 Ka1
> 2Kd_1.

Together with (2.8) it implie®/ (D) > 2«4_1 ford > 42.

(iii) ¢ = 7/3.
Here we distinguish two cases depending on the asmgle

@) a < a,.
Ford > 42 andyp > ¢, we find by Lemmas 2.6, 2.7, and (2.7)
V(D) > V(D°(P?) + V(D?*(P?) + V(D*(P?)
> ¢ -0.45358. ky_» + 0.65019- kq_1

\Y

v

2K4-1 + kd-1 (1.16~ 0.45358. k-2 _ 1.34981)
Kd—1

v

icd1 + Kd1 (0.5261528 ka0 _ 1.34981) > kg1,
K41

Form/3 < ¢ < ¢, we use Lemma 2.4 instead of Lemma 2.7 and obtain
V(D) > V(D°(P?) + V(D*(P?%) + V(D*(P?)
@ - 0.45358: kg_2 + kg_1

v

\

v

2d-1 + Kd—1 (E .0.45358. 292 _ 1,)
3 Kd—1
291 + Kd—1 <O.47498~ o _ 1.) > kg1
Ka1

v

(b) @ > a,.
In this caseV/ (D) > 2«4_1, d > 42, follows immediately from Lemma 2.8.

As the first cased < m/3, (y%, y?) > 0) can occur at most twice, the proof is
finished. O

We close this section with a short discussion of our method. Since we use a local ap-
proach we have to compare for apackiig= {x, ..., x"} the volumes o¥/ (D(H' (C)))
to 241 for at least(n — 2) cells (see (2.3)). Now let cor be a regular triangle. In
this case we have to compavgD (H'(C))) with 2«4_ for at least oné. But

i 1
V(D(H'(C))) = ﬁKd72 + Kkg_1+ %Kd-



206 U. Betke and M. Henk

SoV(D(H'(C))) < 2k4_1 for d < 11. Thus to prove the conjecture fdr< 11 a
nonlocal method has to be applied.

Itis, in principle, no problem to improve several arguments in our reasoning. However,
as far as we can see, such animprovement would make the proof disproportionately more
technical. The dimension 42 may be considered as a compromise between a “good”
dimension and complexity of the proof.

3. Sections of the Dirichlet—Voronoi Cell

Let L be the orthogonal complement of the pldneand for a parametegr < /2 let
M(p,LY) ={ze S tnLt: pz ¢ H), K(p,LY) ={ze S tnLt: pze H).

In[BHW2] it was shown that the ratio of the spherical volumedaf, L) toK (o, LL)
is bounded from above by a constanprovided the dimensiod is large enough (see
Theorem 1.1 in [BHW2]). Fop < 2/+/3 this was already proved in [BHW1] and
there it was also shown that based on such an estimate one obtains a lower bound for
V(w + (BYN L)), w e (P2N BY), which leads to a lower bound & (D?(P?)) (see
Lemma 4.7 in [BHW1]).

Here we want to give a generalization of these results for the special parametéer
To keep the paper self-contained as much as possible we first state the two basic lemmas
which yield the upper bound &f,(M(p, L*))/V,.(K (p, L)) in [BHW2].

Lemma3.1. LetScC Ed be a d-simplexiet R be a k-face of &k < d —1,and let
F¢ be the(d — k — 1)-face of S with N Fy = @. For a measurable subset G S and
a continuous function f on S we have

- dl V(S
fG X = @ 1=K VROV (Y

- f / / F(uX 4+ (L — 00u® K1 — ¥ du d dx.
Fx Ifk [L)_(+(1—M)X€G

Remark. The notation/ dx means integration in a space of appropriate dimension.

Proof. SeelLemma 2.1 in [BHW?2]. O

Lemma 3.2. Letk k e Nwithk > k+1andleta, 8,y € Rwithy > g > 0, > 0.
Thenforab,ce R,d e N,withb,c>0,b <c,a>«a,a’+c* > y,a”+b* < 8,
d > k the quotient

S (Va2 + (ue+ (L= b))~ Mtk — pkdy
f:o(\/az + (ue+ (1 — p)b)2) =@+ yd=1-k(1 — y)kdye”

(3.1

wherey € [0, 1] is determined by &+ (110c+ (1— po)b)? = B, is maximal for a= «,
b=0,a2+c?=y,and d= k.
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Proof. SeelLemma 2.2 in [BHW?2]. O

In order to formulate our generalization we need some elementary notation from
the theory of convex polytopes (see [(Br"For a nonemptyn-dimensional face= of
a p-dimensional polytope® c EY the normal coneN(P, F) is the cone generated
by all vectorsv € EY with the property that there existsiae R=% with F = P N
{x € E9: (v,x) = v} and(v,x) < v for all x € P. The dimension of the normal
cone isd — n. In particular,F + N(P, F) is the set of all pointx € E® such that the
nearest point ok with respect toP belongs toF. The ratio of the spherical volume of
N(P, F)nS*-1toV,(S"") is called the external angle 6fand is denoted bg(P, F).
Moreover, we define some functions which will be used in the forthcoming estimates:

Definition 3.1. Letr e RwithO0 <r < 1andletd, k,I, m € N, such thak + 2 <
d—l+mandk+2—m> (14+r?)/@1—r?). Let

afr) = v1-r2,

2k+2—-m) \/k—i—l—m
k - /== 7 _yr2_ 2 2=
o, M) \/ kra—m A0 =i

r
ck, m)’
po(k,m,r)
M, 1,k mr) = f (/a2 + p2c(k, my?)~@-1+m
0

x Md7|+m7(k+2) (1 _ M)k dﬂ,

wo(k, m,r) =

1
K (d, I, k, m, ry = / (\/a(r)Z + /LZC(k, m)Z)—(d—I+m)
m

o(k,m,r)

x Md7|+m7(k+2) (1 _ M)k du”

1472
Qud,l,mr) = keN:1 r2+m<k+2§d—l+m,
0, Q(d, I, m,r) =4,
qe.l.mr) = mini%m:keQ(d,l,m,r)} otherwise.

The purpose of this section is to prove:

Lemma3.3. Let[ c E® be an I-dimensional subspace and let® L be an I-
dimensional polytope with vert& Moreoverlet F be an(l — m)-dimensional face of
P withO € F and letw € F with jw| < 1. Then

d-1+ M)kd—I+m

Vi((w + (N(P,F)nS"™M)nH) > 6(P, F) - 1+q@d,lm w)

3.2

Proof. LetM, ={ze N(P,F)NnS*1:w+z¢ H}andletk, = {ze N(P,F)N
S¥-1: w4z e H}. By the definition of the external angle, we haygM,,) + V, (K,,) =
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(P, F)-(d -1+ m)ig_i+m, and thus

d =1 4+ M)kg_14m
1+ Vi(My)/Va(Ky)

Vi(Ky) =0(P, F)

It remains to show

Vi(My,)

V(o) <q,l, m,|w|. 3.3
To this end, we may assun@(d, |, m, lw|) # ¢ and letW be ad-dimensional cube
with midpoint 0 and edge of lengthv2. To prove (3.3) we proceed as in the proof
of Theorem 1.1 in [BHW?2]. First, we apply Rogers’ dissection technique (see [R2]) to
the(d — I + m)-dimensional polyhedroP = (w + N(P, F)) N H with respect to the
reference point® = w. This means, we construct a dissection of the bounded polyhedron
P N W into simplicesS of the formS = conV{c®, . .., c~'*™M}, such that' is contained
ina(d—1+m—i)-faceG of P N W with w ¢ G, G contains con{c', ..., cd—'+m},
andc' is the nearest point @ to c°.

Next we consider the distance from a poghti > 1, of such a simplex taw.

Obviously, ifc' belongs to a face ofV, then we havéc — w| > /2 — |w|2. Now let
¢ be a point of 8d — | + m — i)-faceG of P. As the(d — |)-dimensional orthogonal
complement oL is contained irfN (P, F) we have that fof > m the pointc' belongs
to a(d — (i — m))-face ofH. Clearly, for 1< i < mthe pointc' lies at least in 1 facet
of H. In view of a result by Rogers about the distance between i)-faces ofH and
the origin (see [R2]), we get

X _ 2 i
O —w| > {vl lw|?, 1<i<m, (3.4)

V2 —my/(i —m+1) — w2, m<i.

LetS= convc’, ..., cd~'*™M} be an arbitrary but fixed simplex of this dissection @8t
be the cone generated b; ..., cd~'+™ and let

Ms = {ze N(P,F-)NS HNC:w+z¢ S,
Ks = {ze (N(P,F-))nSHNnc’:w+ze S
Clearly, it suffices to prove (3.3) for the séik;, Ks. Based on Lemma 3.1, (3.4), and the
definition of the seQ(d, I, m, |w|) we obtain analogously to the proof of Theorem 1.1
in [BHW?Z2] for eachk € Q(d, |, m, |w|):
V.(Ms)
V*(KS)
e e s, <l = 0 /% 4+ (L= x| d dx dx
T e Je S aciong, =l (TR — 1)k) /K 4+ (1 — w)x|$FM dpdx dX

where]y|,, denotes the distance from the pojrib w andF, = convj{c**2, ..., ¢d-1+m},
F« = convcl, ..., ct1}. Hence
V. (M,,) - fw>‘<+(1—mx|w51 |UX 4 (1 — pyx|5@=1+m d-lem=e2 1 ykdy,

V. (K, — ./i,p‘(.t,-(l-,”xhzl |uX + (1 — M)X|;(d—|+m)ﬂd—|+m—(k+2)(l — M)k d/L ’
(35)
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for certain pointst € Fy, x € Fy. By (3.4) and the choice dfwe have

2k+2—m
IXlw > +/1— |w|?, [X|w > \/g —w|?> 1

(k+3—m)

Since|uX + (1 — w)X|,, is monotonely increasing in we may assumg|, < 1. Then
(3.5) is of the form

d—|
ViMy) _ [5e /a2 F Guet @ — b2 s e 2 -k dp
Vellu) = Va2 4 (ue+ (1 - by T a2 (1 ok dpe

wherea > o = /1 — |w|? denotes the distance between the line throkgh to w,

b is given bya? + b? = [x|2, c is given bya? + ¢? = |X|?, and o is determined by
a4+ (uoc+ (1— no)b)? = 1. But now (3.3) follows from Lemma 3.2 and Definition 3.1
withg =1,y =2k +2-m)/(k+3—-m) — |w|?, « = a(jw|), b = 0,c = c(k, m),
anduo = po(k, m, [w|). O

Instead of the spherical volumé ((w + (N(P, F) N 1)) N H), we are often
interested in the volum¥ ((w + (N(P, F) N BY)) N H). Since

1
V(w+ (N(P,F)nBH) NH) = T o V(@ + (NP PN s™H) N H),

we have:

Corollary 3.1. Under the assumptions of Lemi8&8one has

Kd—I4+m

Furthermore, as an immediate consequence we obtain:

Corollary 3.2.

V(D?(P?))

v

I o
Kd— w,
d-2 p2apd 1+ q(d, 2,0, jw])

/l ! dr
Kd— _— .
1)y 1+qd,2,11)

Proof. ForF = P?we haved(P?, F) = 1 andN(P?, F) = L*. By the definition of
D2(P?) and the normal cones, we get

V(D*(P?))

v

(P2N B + (N(P2, F) N BY) N H c D4P?).

In view of Corollary 3.1 this implies the lower bound farD?(P?)). For the bound of
V (D1(P?)) we note that

(conv(0, y'} + (N(P2, conv0, 2y'})) N BY)) N H c DY(P?)
and@ (P2, conv{0, 2y'}) = 1 fori =1, 2. O
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Next we collect some numerical results involving the functigd, I, m, r) which
will be used in the course of our investigations. Therefore, we define

Definition 3.2. Leth = 0.74740141:

1 1 ! r
2® = | frgasan®™ O] trgasin™

h r2
=/ — " an
@3(d) /0 1+q@d.300 "

Proposition 3.1. The functionsy; (d) are monotonely increasing functions in lbr
d > 42,we have

w1(d) > w1(42) > 0.62638506
w2(d) > wy(42) > 0.21085103
w3(d) > w3(42) > 0.10145239

1 1 1 1
- d —  d 0.65019115
/o 1tq@.2Lr) rZ/o 1tq@22 L0’ =

Proof. As Q(d,I,m,r) c Q' I,m,r) ford > d, we see by Lemma 3.2 that
the functionq(d, I, m, r) is monotonely decreasing thand thusw; (d) are increasing
functions.

Instead of determining the exact valuegifd, I, m, r) we use the following upper
bound:

M, I, k(m,r), m,r)

q,l,mr) < K(d7|’k(m,r),m,r)’

wherek(m, r) is the smallest integer greater théin+r?) /(1 — r?) + m. If k(m,r) ¢
Qd, I, m,r), then we use the trivial upper bound. The numerical calculations of the
integrals were carried out by the prografathematica with a working precision of 40
digits. O

In view of these computations, Lemma 2.7 follows from Corollary 3.2

Lemma?2.7. Letd> 42.Then
V(D(P?)) > 0.65019- kg_;.

In the next section we shall apply Corollary 3.1 to the R&t

1 ©1988, 1991, 1992 von Wolfram Research Inc.
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4. Three-Dimensional Sections

In order to simplify the analysis we assign the following coordinates to the vectors
y1, y?, y2 defined by Definitions 2.2 and 2.3

y! = (1,0,0,...,07,
y? = (cogy),sin(y),0,...,0)7,
y® = (coqa)cogp), coda) sin(p), sina), 0, ..., 0,

wherey € [0, ] denotes the angle betweghandy? andg < [0, 2r]. Fora > /3 we
clearly havep > /3 by (2.5) and thugcoqy)| = coS¢). Moreover, we see by (2.5)

cogy) T —cogy) T
<= coja) > SNy /2’ y = 7 4.1

cosy/2) =2
Y () = arccos(;l1 cos(a) + cosa),/ = Co () + 3 )

we obtain, fore > /3, the following restriction on the angje

coqw) >

Hence with

y €Y (@), 7 — Y(x)]. (4.2

In what follows we study some geometric quantitieskt Let fi ; denote the angle
betweeny' andy!, 1 <i < j < 3. Then

fi» =1y, f13=arccogscoqw)cogp)) and f,3= arccogcoqw)coy — fB)).

Fora > 0, letu; j € lin{y*, y?, y®}, 1 <i < j < 3, be the outward unit normal vector
of the 2-faceF; j = conv{0, 2y', 2y!} N H of P*:

ui, = (0,0,-1,0,..., 0,

(0, — sin(e), cog) sin(B), 0, ..., 07
Uz = )
V1 —co2(a) co2(B)
(— sin(e) sin(y), sin(a) cogy), cose) sin(y — 8),0,...,07T
V1= co2(a)cof(y — B) '

U3 =

Finally, letg 2, 01,3, andgy 3 denote the angle between the normal vectais, U, 3),
(U1.2, Uz3) and(uy 2, Ug 3), respectively. We get

61s = arccod ST COLy) + coS(e) sinp) sinty — p)
: V1= co2(a)co2(B)/1— cof(a)co(y — B) )

_ — coga) sin(y — B)
Ss = arCCOS<\/1 —co(a) coS(y — ,3)) ’

B — coga) sin(B)
023 = arCCOS( V11— cof(a) CO§(/3)) '

With this notation we obtain fov (D) the lower bound:
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Lemma4.1l. Leta > o, = 1.11.Then with the notation of DefinitioB.2

V(D'(P?)

v

2

f f f
(w) (@) - kg,

(2 — 012 — 013 — 02.3) - w3(d) - kg_3.

) -w1(d) - kg-1,

V(D?(P%) >

V(D3(P?)

v

Proof. From the definition o2 and the normal cones follows:

V(DY(P?)

v

3
Z/ V((w + (N(P2, conq0, 2y' }) N BY)) N H) dw,
i=1 Jcon0.y'}

V(D?(P?))

v

> f V((w + (N(P3, conq0, 2y', 2y'}) N BY)) N H) duw,
Fij

1<i<j<3

V(D3(P?)

v

f V((w + (N(P%, P®n BY) N H)dw.
p3
From Corollary 3.1 we obtain:

! d
w,
onvo,y} 1+49(d, 3,2, [w|)

V(D'(P?)

v

3
>~ 0(P®, conv0.2y ) ko [
i=1 [«

V(D?(P?))

v

o 1
0(P3, conv0, 2y', 2yl 1) . _/ dw,
15253 (P, comO.2y. 2D ko2 | 14 3.1 jwp

1
o(P3, P3) . KH/

3 3
V(D3(P%) 0149, 3.0, w) "

v

Now 6(P3, conv0, 2y'}) = g« j/(27), k. j # i, 8(P3 con®0, 2y, 2y'}) = 1, and
6(P3, P3 = 1. Sincea > n/3, we havefi,, f13, fo3 € [n/3,27/3]. Thus, the
intersection of the cone generated Yy y! with B¢ belongs to the 2-facE; ;. Hence
we get the formulas fov (D1(P3)) andV (D?(P?3)).

Let h be the distance from cof®y?, 2y?, 2y®} to the origin. Then

min{1, h} - (condy?, y?, y3} n BY) c P3
and asV, (condy?, y2, y3} N §'1) = (27 — 12 — G153 — Go.3) (See [S]), we get
V(D¥(P%) = (21 — G12— G123 — G22) /minm} S
- ’ ’ " Jo 1+q(d,3,0,r)

It remains to show that fax > «, the distancéh is not less thar of Definition 3.2.
A lower bound forh is given by the distance(«, 8, y) between the affine hull of
{2y, 2y?, 2y} and the origin:

h> (e, B,y) = 2sina) sin(y))

-((sin(a) sin(y))? + (sin(a)(1 — cogy)))?
+ (sin(y) — cosa) Sin(B) + cos(a) sin(B — ))*) 2.
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Calculating the first partial derivatives ¢fin(y ) — coS«) sin(8) 4+ cosa) sin(g — y))?

with respect tg8 shows that this function becomes maximal foe= 7 + ¢ /2. Hence
(e, B,v) > n(a, m + v/2,y). Furthermore, it is easy to see that fere (0, 7),

a € (0, /2] the function

14
n(a,n—i— 2,)/)

_ 2 ; 2\ —1/2
_>. <1+ (1 cos(y)) +< 1 N coqw) _ Zsm(y/Z)) )

sin(y) sinfw)  sin(a) sin(y)

is monotonely increasing im and monotonely decreasingjn Since
Y € [T(ew), m — ()]
for o > «, (see (4.2)) we obtain

Y (o _
h>g (a*, Sy — (;‘ ) o T(a*)> > 074740141=h. O (43

Based on Lemma 4.1 we give in the sequel a lower boun¥ f@) only depending
one. To this end, we write for abbreviation

d) - kg—
fi(e, By, d) = ) i (% - w3(d)/<d3>

f. .
+ 2rwz(d)kg_3 + 221,1 wa(d)kg_2, (4.4)

where) indicates the summation over4d i < j < 3. By Lemma 4.1 we have for
O > Oy

V(D) = fi(a, B, v, d).

We claim:

Lemma4.2. Leta, < ag < m/2and letd satisfy

w1(d) - kg—1

— w3(d)kg_3 < 0. (4.5
27

Then fora > ag, one has
T
V(D) > f, (ao, ) d) .

Proof. It suffices to show that far > «g and based on the restriction (4.1), the function
fi(a, B, y, d) is minimal fora = ag, B = Y(ag)/2, andy = Y (ap). To this end we
study the behavior of the partial derivativesf fi ; and}_ gi ;. The calculations of

the derivatives were carried out with help of the progrfgliahematica but all results

can also be verified “by hand.” For more details we refer to [H]. Since the trigonometric
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transformations are rather tedious we omit the details. With respgciv® obtain:

03 fij _ dfiz  3fea cosa) sin(y — B)
Iy dy  y V1= cof(a) cof(y — B)
14 cogw) sin(y — B) -0

Vsirf(a) + co(a) sit(y — B)
) 0. _ 9912 n 9913

ay ay ay
— sin(a) sin(a) cogw) cogy — B)
 1-coR(@)cof(y —B) 1—coP(a)co(y — B)
— sin(a)

<0.
14 coqw)cosy — B) —

So for alla € [ao, 7/2], B € [0, 2r], the function}_ f; j is monotonely increasing
in y and )" gi; is monotonely decreasing in. By the choice ofd (see (4.5)) we
get thatfi(«, 8, y, d) is monotonely increasing ifn. In view of (4.2) andx > «g this
shows

file, B, v) = (e, B, Y (x0)). (4.6)

Next we consider the partial derivatives with respegt tand get:

Y fij  ofiz  9fas
B B B
. coq) sin(B) B coqw) sin(y — B)
J1=co2(@)co(B) +/1—co(a)cod(y —fB)
9.0 _ 9912 9913 , 9923
8 9B | 0B | op

_ sin(a) cog () sin(y) sin(y — 28)
T (1-coR(a)co(B))(1 — coR(a) co(y — B))
sin(a) coga) cosy — B)  sin(a) coSa) cogB)
~ 1-coR(a)coR(y — ) = 1-— coR(a)coR(B)
. 2 sin(a) coqw) sin(y /2) sin(y /2 — B)
(14 coda) cogB))(1+ cosa) coy — )

It is easy to see that

oy £, |50 0=B=y/2mty/2=p=2m,
% |z0 y2=p<m+y/2
1Y g > 0, 0<B<y/2, m+y/2<B<2nm,
—’] :09 13:)//27 ,8:774‘)//2,
B <o, yr<p<nty/2
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Thus by (4.6) and (4.5):

Y(xo) ) . 4.7)

fl(aa ,35 )’, d) Z fl <aa T’ T(ao)v d

Finally, for the partial derivatives with respectdave find:

Y fij 4 _ (9fiz | 9fa3 4
e \U27) T\ e + da *Y

sin(a) cogy /2)
V1—co2(a)cog(y/2) ~

0012 . 0013 , 0023 4
,)/) - ( Do + do + do )(a,i,y>
o coga) sin(y) 3 2( sin(y /2) )
1— co(a) cof(y/2) 1— cog(x)cog(y/2)
2sin(y /2) (cosy /2) cosa) = 1) _
1— co(x) co(y/2) -

3 0ij o
do ’

N[

Hence, the functiorf,(«, v /2, y, d) is monotonely increasing im. In view of (4.7), we
obtain

T (o)

fi(a, B, y,d) > f1 <Olo, , T (), d) . O

Now we have all the ingredients to prove:

Lemma?2.8. Leta > a, = 1.11.Then for d> 42

V(D) > V(D*(P?) + V(D?(P?) + V(D3(P3)) > 2q_1.

Proof. First we check that fodl > 42 the condition (4.5) of Lemma 4.2 is satisfied. To
show this we use Proposition 3.1. Since the functiopn@), 1 < i < 3, are monotonely
increasing ind we havew;(d)/wsz(d) < 1/w3(42) for d > 42. Hence fod > 42 we
havew(d)/ws(d) < 10 < 2mwkq_3/kq—1 and (4.5) is satisfied. Lemma 4.1 together
with Lemma 4.2 yields

V(D) > V(D*(P?) + V(D?(P%) + V(D3(P%) > fi(a, Y()/2, Y(as), d),

with Y (a,) =~ 1.1942. By (4.4) we see thdh (a., Y (o) /2, T (), d)/kg_1 iS mono-
tonely increasing i and with f1 (o, Y (o) /2, Y (o), 42) /k41 > 2.02124 we get

f * T * 27 T * /s d
V(D) = 2xd_1+xd_1( e (“KZ/ (@) )—2>
-1
fr(oy, Y(ay)/2, Y (), 42
= 2Kd_1+fcd—1( 1@ (@ Zu (@), 42 — 2)
> 2K4_1, d> 42 O
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5. Small Local Deviation From a Sausage Arrangement

As in the previous section, lgt be the angle betweeyt andy?, and leto € [0, 7/2]

be the maximal angle of a vector of the configuration with the two-dimensional plane
L (see Definition 2.3). Fos € [0, y] let ws be the point of the boundary ¢> N BY

with (ws/|ws|, y*) = cog8). ThenP2N BY = {Jws : A € [0, 1], 8 € [0, ¥]} and by

the definition ofD2(P?2) we have

|ws |
V(D(PZ))>// rV<( |+LL> )drda,

whereL* denotes the orthogonal complementlofTo evaluate the inner integral we
use polar coordinates for the setv;/|ws| + L) N D and obtain

V(D?(P?)) > —/ / s / h(r. wy, 292 dr dz &b,
S-1nLL

where forr €[0,1],8 € [0, y],andze S*1nL*
h(r, ws, Z) = maxh € R=% : rw; + hze D},

denotes the “height dd” in the direction ofz overr ws. Fors € [0, y]andz e SS-1nL+
we are only interested in pointsvs whose “height” in the direction of is at least 1.
Hence we set

rs.=maxr e R=°:h(r,ws,2) > 1, r <1}.
With this notation, we get

V(D?(P ))>—/ / [ws| / r-har, ws, 2% 2drdzds.  (5.1)
Si-1nLL

In general, we cannot assume that d@yw;} + z C H, i.e.,rs, = 1, because there
might be a hyperplan®l; = {x € E% : (x), x) = |x/|2/2} which separates a part of the
set cony0, ws} + zfrom H, i.e.,
|xJ 2
(x1, rw5+z)>7, r>rs,.
But beside this negative influence, such a perturbing pditias also a positive effect:
For sufficiently small values af we findrws 4+ &z € conyB? U xJ 4+ BY) N H for
suitable numbers; > 1. Henceh(r, ws, z) > 1 for smallr and in view of the exponent
(d — 2) in (5.1) the inner integral becomes large.
In the following we discuss the relationship between perturbing points and the size
of the mtegral[”z -h(r, ws, 29=2dr for a fixed pair of pointavs, z. The main result
is:

Lemma5.1. Letd> 42,8 €[0,y],ze SN L+, and p(e, d) as in Lemma2.5.
Then fora < o, = 1.11

rS‘z
/ th(r, ws, 2°-2dr = pa(ac, d).
0
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As an immediate consequence of Lemma 5.1 we obtain:
Lemma?2.5. Leta <a,=11landd> 42.Then
V(D*(P?) = V(PN BY) - 2pz(a, d)ka-2-

Proof.

V(D?(P?)

v

1 v 2
_— dydzds
d-2 /(; /sdflm_i s [” Pafer, dy dz

y 2
- (f 5] da) Ka2-2- Pa(a, d). 0
y 2

At the end of this section we show that a slightly better result holds if one considers
both setsD°(P?) and D?(P?) (see Lemma 2.6). Further, we shall show that a similar
result holds for the volume of the sBf(P2), but with a function depending gninstead
of o (see Lemma 2.4).

For the proof of Lemma 5.1 we need the following functions:

Definition 5.1. Fora € [0, 7/2) and 0< ¢ < min{2sin(x), 2 cosw)}, let

VA4 — 2 —2sin(a)
21 ¢ - 2sina)
. @) ¢ 2 dizd
K b = r r + r’
Oi(e, ¢, d) /0 it i
d-—2

Vesore (rsin(a)—l 2+47¢ 1 ) or

sin(a) 2—¢ sin(a)

’

ua, &) =

Qe(a, £,d) = /

IZCR9]

93(05, §9 d) = gl(a7 é‘? d) + gZ(av é" d),
(e, d) = min{gs(e, ¢,d) : 0 < ¢ < min{2sin(a), 2 cogw)}},

(1-sin(a))/coga) d-2
p(e, d) = / r (—rcos(a) + = ) dr.
0

sin(w)  sin(a)

We note thatgs(a, ¢, d) is a continuous function fox € [0,7/2) and 0< ¢ <
min{2 sin(), 2 coga)} with gs(er, 0, d) = g1(r, 0,d) = 3, & € [0, 7/2). Lemma 5.1
is an easy consequence of the next two propositions.

Proposition 5.1. Leta € [0, 7/2),8 € [0, y], and ze "1 N LL. Then

Faz d—2 O(x, d), a<m/4,
/0 rhr, ws, 27 > {min{g(a, 4, pa,d)}, w/h<a
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Proposition 5.2. Letd > 42and lete < o, = 1.11.Then
gla. d) = 3.
For the proof of these two propositions we need another result from [BHW1]
Lemmab5.2. Letw e HN S v e wt N1, 4, e > Owith (u+e)v e H.Then

ci(u, &) -con0, w} + uv C H,
with ci(u, &) = e/y/(u +&)? = Lif u = 1/(u +¢), else (i, &) = /1 — p?.

Proof of Propositiorb.1. Instead ofv; we writew for short. For the proof we replace
the Dirichlet—\Voronoi celH by the “smaller” seHs c H given by

Hs={xeE%:(x,y)<1l,1<j<n-1
and define analogously tar, ws, 2), rs.:

hs(r) = maxth € R=°: rw + hz e Hs N (convC) + B},
r« = maxr e R=%: hg(r) > 1, r <1}.

Ashg(r) < h(r, w, z) andrs < r;; it suffices to show

e d—2 _ |9(a, d), a <m/4,
/0 rhs(r)™= 2 {min{g(a, d), pla.d)}, 7/4<a. (5.2)

Observe thaB? ¢ Hs and thusw € P2 N Hs. In the cases = 1 there is nothing to
prove becausg(olrhs(r)d‘zdr > 2 andg(e,0,d) = 3. So we may assumg < 1.
Hence there exists a poiate {2y, ..., 2y"~!} with

(U rsw+z) = 2. (5.3)

Let

w
U=ocv+1— +(2
lwl

with o, 7, ¢ € Randv € lin(w, 2+, |[v| = 1. Then

02+72+C2=4 5.4
and (5.3) is equivalent to

Tlwlrs+¢ = 2. (5.5)

Obviously, we have & 7, ¢ < 2. We claim that

¢ < 2sina). (5.6)
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By the definition ofe we get(y!, x) < sin(a) forallx e 'nLtand 1< j <n.
Sincers < 1, we havex > 0 and thus

(_1 )er& xe S inLt. (5.7)
sin(a)

As (2/¢)z ¢ int(Hy), it follows 2/¢ > 1/sin(@).

In particular, (5.6) and (5.5) imply > 0 and we may write
_2-¢
T wlt

(5.8

I's

Now we study the positive effects of such a perturbing poiriorr < [0, 1], let
h(r) = maxh € R=° : rw + hz € con{0, u} + B%}.

The functionh’(r) can easily be determined by the equality

2

(rw+h'(r)z,u/2) u =1

h —
rw-+h'(r)z 5

which says that the point given by the orthogonal projectionwf+ h'(r)z onto the
hyperplane with normal vectar has unit length. We obtain with (5.4):

lWIrte +2y/4— 2+ (—4+ 12+ ¢2)[w|2r2
42
lwlrt¢ + 24— ¢2 — o2|w|r2
42 '

h{r) =

We distinguish two cases.

(i) 1/sin(@) < h'(0) = 2/,/4 - ¢2.

Then sine) > (1 — (¢/2)%)*? and by (5.6) we get si) > coS«). Hencex > /4.
Furthermore, sinch’(0)z € convC + B we may deduce from (5.7) that

_— 7 ¢ (convC + BY) N Hs.
sin(a)

By Lemma 5.2 (withHs instead ofH andc; (1, 1/sin(w) — 1) = (1 — sin(«))/coSw)
we obtain

conv{o, . , 1 — sin() , il — sin(@) w + z} c D. (5.9
sin(a) coqw)|w]| coqw)|w]|
So
hs(r) > —— —r wlCOse) o [0, m} .
sin(a) Sin(a) |w| coqw)

As |w| < 1 we have

I's
/ rhe(r)?=2dr > p(a,d)  for o> (5.10)
0

INE
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(i) 1/sin(@) > W'(0) = 2/\/4 — ¢2.
Then 4 siR(«) < 4 — ¢2 which implies¢ < 2 cogw), and together with (5.6)

¢ < min{2sina), 2cogw)}. (5.11)

Now we determine the smallest valuergfsuch that the pointyw + h’(rg)z lies in the
hyperplaneM = {x € E9 : (u, x) = 2}. Such a paitrg, h'(rg)) (if it exists) must satisfy
the relations:

rolw|t + W (ro)¢ = 2, relw? 4+ h'(ro)*> = 2. (5.12)

The first equation means that the point lies in the hyperpldnand the second one
expresses the property thafw + h'(rg)z belongs to the boundary of th@ — 1)-
dimensional unit ball with center/2 embedded itM. By (5.12) we find

2 —rolw|t\?
et (2 -

and so

2t —5J2(r? 452 -4
lwl(z? +¢2) '

We note that is well defined, i.e.z? + ¢? > 2: Sincers, |w| < 1 we haver +¢ > 2

(see (5.5)) and thus® + ¢2 > 2. Moreover, from (5.11) we get < +/2 which implies
ro > 0. We also havey < rs. To show this we use (5.8) and obtain

o (5.13)

2t —¢ 2(12+§2)—4<2—
wiz®+¢2) 7wl
& YA+ A< -1 =P

fo=Ts

& 1?2402 <2t+1/2(t2+¢2) — 4.

Let h(z,¢) = 12+ ¢%2 — 2¢ — 1/2(z2 4+ ¢2) — 4. In order to showh(z, ¢) < O for
0<¢ <+/2andr € [2—1¢, /4 — ¢?] we calculate the first partial derivative biwith
respect ta:

n(t,0) 2022+ (2 —4—4e2 — 2%+ 4
T 22+ 12 — 4 '

From this we deduce
MED) 0 o ofZTETH—d=22+(2-2

aT
& 12 _£-2 +1) <2t24¢2-2
212472 -2 - '

Sincer < /2 andt?+¢2 > 2 the functiorh(z, ¢) is monotonely decreasing in Thus
h(z,s) <h2-¢,¢)=22-)(1-¢) —+/(1-¢)? < 0. Henceg <rs.
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From the right-hand side equation in (5.12) it follol/rg) > 1 and substitutingg
from (5.13) in the left-hand side equation of (5.12) yields

20 +1/2(t2+¢%) -4

h'(ro) = 2172

(5.14)

Now let

S = conv{0, h'(0)z, row, row + h'(rg)z},
S = conv{row, row + h'(rg)z, rsw, rsw + z}, (5.15)

T(x) = conv{O,(

- Z,rsw,rsw—+2Z¢ .
sin(a)

Clearly, S, S < convC + BY and from the definition ofs and (5.7) we have
T(x) C Hs. Hence

T@)N(SUS) C (convC + BY) N Hs.

In the following, we derive from the s@t(a) N (S U $) a lower bound for the function
hs(r). To this end, we first show that we may assurie- 2 = 4. Let

o =rolw|+h(o) and & =h(ro) —rolw|.
Then based on (5.12), |w| < 1, andh’(rg) > 1 we have
11,81 > 0, l’f + {f =4 and T1lo|w| + flh/(ro) = 2.

Now letl = ryw/|w| + &1z and letfs, h'(r), fo, Si. S, T () be defined as above for
the pointu. By the choice ofry, ¢ we getfy = ro = (11 — ¢1)/(2lw|) andh'(Fp) =

W (ro) = (11 + ¢1)/2 (see (5.13) and (5.14)). Furthermorezagw| + ¢h’(rq) = 2 and
72 4+ ¢? < 4 we obtain; > 7, &1 < ¢ and (see (5.8))

~ 2 2 2 — 2_
RO == < O, Fe=—t<Zf_g

u - Ja-¢2 wi ~ Jwle

Hence we hav&, € S, S € S, andT (a) C T(a). So the set§;, S, T («) become
“minimal” (with respect to inclusion) for parameterss > 0 which satisfyr? + ¢2 =

4 and¢ < min{2sin(a), 2cogw)} (see (5.11)). Therefore, in the sequel we assume
12 + ¢2 = 4 and thus (see (5.8), (5.13), and (5.14))

2-¢ _ VA

e = ——"—, o = ,
R ° 2\w| 516
h() = 2 h(re) = Va—t2+4¢ .
Ja=? 2 '

Next we determine the intersectidia) N (S U ). Let yaw + x2z be the point
of intersection of the two segments

con(1/sin(@))z,rsw +2z} and conyh’(0)z, row + h'(rp)w}.
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Observe that based dri(0) < 1/sin(x) < 2/¢ such a point exists. Then we obviously
have

T@N(SUS) = conv0, h'(0)z, xaw, x1w + x22}
U con{xiw, xaw + x2Z, rsw, rsw + z}
and for x1, x2 we find (see (5.16)):

ACH.
X1 =
[w]
2 e ——— (5.17)
= — o, ) —F——— .
X2 s 2 s
. T )«/2+§'Sin(ot)—1
= Sine) MY A= i)
Hence )
¢ ple, §)
hs(r) > +rw|——— for 0<r <
s(r) ,—4_4_2 lw] T—{Z ]|
and
1 J2+¢sin(w) —1 w(e, ¢) 2—¢
h f —_.
{02 Ghe T Z=F s o Tl =" Zxowl
Together withw| < 1 and the first case (5.10) this shows (5.2). O

Proof of Propositiorb.2.  First we consider the behavior@f(«, ¢, d) with respect to
a. For a given the setT («) in (5.15) becomes “smaller” (with respect to inclusion)
if we increase the angle. So, by construction, the functial(«, ¢, d) is monotonely
decreasing if. In view of { < min{2 sin(), 2 cogw)} this means that

g(a, d) > min{Qs(%, g“,d) 0=t < ﬁ}, o < %,
and fora, > a > 7 /4:
g(a, d) = min{gs(a, 2 coga), d), min{gz(a,, ¢,d) : 0 < ¢ < 2cogw.)}}.
With

( coqw) 1—coqw) )2
via) = - ,
1—sin(e)\ 1+ coqw)

we have

ga(a, 2c08w), d) = g2(er, 2C0gw), d) = v(e) - p(er, d),

where we use the substitution= cog«)/(1 — sin(a)) - (1 — coSa))/(1+ coga))Y?t.
Now v(«) is @ monotonely increasing function withir /4) = 1 and p(«, d) is mono-
tonely decreasing ilmand increasing id. Sincep( /3, 42) > %andv(n/S) p(oy, 42) >
£ we find that forr /4 < o < o, andd > 42

0s(a, 2Cog), d) > 3.
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log,(g3(m/4,(,42))

l°g2(93(a*’C542))

1

41 / T T
5] . cos( ) 2cos({ou)
/ ¢
-1 Ve vz
¢
Fig. 1.

So, axy(«, d) < gs(«, 0,d) = % andgs increases i it suffices to prove

min{gs(r/4,¢,42) :0< ¢ <~/2} =
min{ga(a., £,42) : 0 < ¢ < 2coda,)} =

NI NI

(5.18)

Figure 1 shows a plot of the functions lags(/4, ¢, 42)) for ¢ € [0,+/2] and
l0g,(gs(ax, ¢, 42)) for ¢ € [0, 2cosw.,)]. The plots were generated by the program
Mathematica

We “see” that (5.18) holds. However, itis also possible to prove (5.18) “by hand.” First,
we check that fod > 42 anda € {7 /4, .} there exists &, («) with gs(e, ¢,d) > %
for all ¢ € [0, ¢,(«)]. By the definition of the functiorg; («, ¢, d) we get with the
substitutionr = (o, ¢) -t

Us(e, ¢, d) > Quler, &, d)

5 d-2 d-2
= (*) nle, &) / ( S, §)+1> dt
Va—¢2

2 d-2 1¢ d-2
> (\/4_—€2) (e, C)ZE (EEM(O[’ §)+1) ,

where the last inequality results from the convexity of the functivgu («, ¢)/2 + 1).
So, in order to proves(a, ¢, d) > % (for sufficiently small?) it suffices to show

¢42_—¢z“(“’ ¢)?/@-2 (%M(m o)+ 1) > 1. (5.19

To this end, let) («, ¢) be defined by

. JA=)2

M = 2y @ o)

VA—=242sina)2—-4-1¢ )/g
V4 — 24 2sin(a)

Vi, f) =
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By the Bernoulli inequality1 + x)™ > 1+ mxfor x > —1, m € N, we obtain

2 ¢ (d-2)/2 c B [4—¢2/2
<1+m§1ﬁ(0[»§)> 21+§¢(a,§)—m-

Hence

(e, )22 > (V4 —2/2)%02 - VA-2)2
’ T14+Q2/d=2)¢/DY (@, 0) T 1+ (2/(d=2)(E /DY (e, §)

So (5.19) holds for alf with

4
nl, &) > ﬁw(a, 0. (5.20)

Calculating the first partial derivative with respecttshows that/ («, ¢) is monotonely
increasing in;, ¢ < /2. Asu(a, ¢) is monotonely decreasing inwe have shown that
for eache, («) satisfying (5.20) and < [0, ¢.(«@)] one has

Oa(e, ¢, d) > 1. (5.21)

Hence a suitable,(«) can easily be computed. For example, tbr= 42 andao €

{m /4, a.} one may choose,(a) = 0.008. For; > ¢,.(«) one can find certain auxiliary
functions from which (5.18) follows by evaluating these functions at finitely many points.
Since the calculations are rather lengthy we omit them and refer to [H]. O

Now we come to the proof of
Lemma2.6. Leta, =1.1landlety > /3. Then for d> 42

V(D°(P?)) + V(D2(P?) > g - 2Pa(er, dykg_o.

Proof. Leta' e L be the outward unit normal vector of the edge d@ny'} with

respect to theP?, i = 1, 2. Furthermore, let) (¢) be the intersection oBY with the
cone generated byt, a%. We setW(p) = —U (), G(p) = U(p) if (y*, y?) < 0 and
W(p) = P2N BY, G(p) = —(P?n BY) if (y!, y?) > 0. Sincep > /3 we have
W(p) c P2N BY, G(p) c U(yp), and

V(W(g) = V(Gp) = 3.
Fors € [0, ¢] and (y%, y?) > 0 ((y!, y?) < 0) let ws be the point of the boundary

of W(g) with (ws, y!) = cosg8) ( (ws, —a?) = cog8)). ThenW(p) = {Aws : A €
[0, 1], 8 € [0, ¢]} and by the definition 0D°(P?), D?(P?) we obtain

0
V(D°(P?) > /(ﬂ/ —r-V((rws + L) n D)drds,
0 -1

1
V(D2(P?) = /(ﬂ/ [V ((rws + L) N D) dr ds.
0 0
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Now we use polar coordinates for the inner integrals and get

1 ¢ 0 - d—2
_/ / / —r -h7(r,ws, 2" “drdz ds,
d—2Jo Jeine Jo1

1 ¢ .
—/ / / r-ht(r, ws, 2% 2drdz &,
d—2Jo Jerint Jo

where fors € [0, p] andz e S*tNL*

V(D°(P?))

v

V(D?(P?))

v

h*(r, ws, 2 = maxh e R=%:rws + hze D} for r e[0,1],
h=(r,ws,z2) = maxheR=:rws;+hze D}  for r e[-1,0].

Now, let

ry, = maxr e R*°:h*(r,ws, 20> 1, r €[0,1]},

ry, = minfr e R=°:h~(r,ws,2) > 1, r € [-1,0]}.

We claim that forp € [7/3,7/2),8 € [0,¢], andze 1N L+

0 ";Z
/ —rh=(r, ws, 2972 + / rh*(r, ws, 2)972
r 0

' - g(a, d), a < /4,
= Imin{g(e, d), 2 p(a, d)}, m/4<a.

To show this we can proceed as in the proof of Proposition 5.1. All what we have to
prove is that in case (i)/Isin(e) < h'(0) = 2//4 — ¢2,

O r(SAZ
/ —rh=(r, ws, )92 +/ rh*(r, ws, 2972 > 2. p(a, d). (5.22)
r 0

8,z

However, this follows from (5.9) and this shows (5.22). Now the assertion is animmediate
consequence of Proposition 5.2. O

Finally, it remains to prove:

Lemma2.4. Letg, =1.16.Then ford> 42
V(D'(P?) = V(D*(P?) = pi(p. d) - ka-1.
whereD1(P2) = {x € DL(P?) : ®(x) € con{0, 2y*} U con{0, 2y?}}.

Proof  Since the proof can be done completely analogously to the proof of Lemma 2.5
we only give a brief sketch. First, observe that

2 1
VOUPY) = 3 [ V(ry' + NP conv0. 2y ) N D) dr.
i=170
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whereN (P2, con{0, 2y'}) denotes the normal cone of the edge dOn2y'} with re-
spect toP?, Fori = 1,2 andz € N(P?, con{0, 2y'}) N S~ we defineh; (r,z) =
maxth € R=? : ry' + hz e D} andr;, = maxr € R=°: hj(r,2) > 1,r < 1}. Using
polar coordinates we get (see (5.1)):

. -
V(DY(P?) > ——

iz
/ / hi(r,2)% *drdz
d — 147 Jsrinnpz.como2y}) Jo

Forz e N(P2, conv{0, 2y'}) N S™~* we have to estimat§ " hj (r, z)9~1dr. To this end,
we must adjust some of the functions defined in Definition 5.1 in an obvious way: for
¢ €[0,7/2) and 0< ¢ < min{2sin(p), 2cogy)} let

~ q wlg.) c 2 d_ld
» S = r + r,
O1(p, ¢, d) /0 Vi Jae

d-1
G2 0) = /«/(24)/(2%) (Sing) =1 j2+¢ 1 dr
o H(.0) sin(p) Yy 2-¢  sin(e) ’

QS(¢7 §9 d) - gl((pﬂ ;, d) + 92(90’ §9 d)»
G(p,d) = min{Ga(p, ¢, d) : 0 < ¢ < min{2sin(p), 2cogp)}},

(1-sin(p))/cogyp) co 1 d-t
0 sin(p)  sin(e)

If we replace, in the proof of Proposition 5d. py ¢, then we get that fop € [0, 7/2)
andz € N(P?, con{0, 2y'}) N S#-1

e d-1 d(p, d), ¢ <m/4
fo hi(r, 27 = {mm{g«a, d), ple.d)},  7/4<g.

Analogously to the proof of Lemma 5.2 we can estimate the fundignd) and get
ford > 42 and 0< ¢ < ¢,

G(p,d) = 1. O
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