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Abstract. We present a method which reduces a family of problems in combinatorial
geometry (concerning multiple intervals) to purely combinatorial questions about hyper-
graphs. The main tool is the Borsuk—Ulam theorem together with one of its extensions.
For a positive integedt, a homogeneous-interval is a union of at mostclosed intervals
on a fixed linef. Let H be a system of homogeneodisntervals such that nk + 1 of its
members are pairwise disjoint. It has been known that its transversal nu@ffecan then
be bounded in terms &fandd. Tardos [9] proved that fod = 2, one has (H) < 8k. In
particular, the bound is linear in We show that the latter holds for ady and prove the
tight boundr (H) < 3k ford = 2.
We obtain similar results in the case of nonhomogenebimervals whose definition
appears below.

1. Introduction

Gallai was the first to observe that# is a family of closed intervals on a line such
that nok + 1 of its members are pairwise disjoint, then there lagints of the line

that intersect all intervals frori. (See [4].) Gallai's theorem answers a particular case
of a more general question which we shall presently outline H.éte any system of
subsets of a seX. The maximum number of pairwise disjoint elementsg-bfs called

its packing numbeand denoted by (H). (WhenH is viewed as a hypergraph of,

the termmatching numbeis used instead.) A subset ¥fthat intersects all members of

‘H is called atransversal The minimum size of a transversal is thansversal number
7(H). One trivially hasv(H) < t(H), but in general there is no inequality in the other
direction. Boundingr in terms ofv is just the problem we had in mind. By Gallai's
theorem, equality holds for systems of closed intervals. Another such example is found
in graphs, where the definitions make sense since every graph is also a hypergraph. By
the well-known theorem of &riig, every bipartite graph hasequal tov.
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The objects of our investigation will be systems of multiple intervals.d & a
positive integer and a line. Ahomogeneous d-interval & ¢ is a nonempty union of
at mostd closed intervals om.

For a variation on this concept, fix distinct parallel linés. .., ¢9 in the plane. A
d-interval Jis a nonvoid subset aft U - - - U ¢4 such that eacli N ¢' is either a closed
segment or the empty set. The et ¢' is called thei th componenbf J and denoted
by J'.

What we get ford = 1 are just closed intervals. This case will not be of interest to
us, and we takd to be at least 2 in the whole paper.

Families of multiple intervals have first been investigated bri@&g and Lehel [3],
who prove that there is a function ofandd which bounds (from above) the transversal
numberr of any system ofi-intervals with packing number equaltoThis function was
o) for fixedd. A slightly weaker bound was established for the homogeneous case.

Tardos [9] proved that for either homogeneous and nonhomogeneous 2-intervals,
is bounded by a linear function of

Theorem 1.1(Tardos). Every systerf of 2-intervals(resp homogeneouintervalg
has a transversal of siz& (H) (resp of size8v(H)).

The bound for (hnonhomogeneous) 2-intervals is moreover tight as [3] proves that for
anyd andv there is a system af-intervals with the packing number equaht@and the
transversal number at least.

In the present paper, we derive results corresponding to Theorem 1.1 for all values
of d. We prefer to treat the homogeneous case first. Thus in Section 2 we prove the
following statement.

Theorem 1.2. Every systenit of homogeneous d-intervals has a transversal of size
(d? — d + 1)v(H). Moreovey the bound improves t@? — d)v(H) if d > 3 and there
is no projective plane of order & 1.

Ford = 2, this specializes to(H) < 3v(H). Consider the family in Fig. 1, taken
from [3]. (Note: All segments in the figure lie orsaglehorizontal line.) Using several
“disjoint copies” of this family, one can see that the above inequality is optimal.

The proof of Theorem 1.2 makes use of the following classic.

Theorem 1.3(Borsuk—Ulam). Let f be a continuous map from the n-sphefa@&R".
If f is antipodal(thatis f(—x) = — f(x) for all x), then it has a zero

This is proved, e.g., in [8].

Fig. 1. A family of homogeneous 2-intervals with= 1 andr = 3.
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In Section 3, we focus on the nonhomogenedtiatervals. Note that any bound
on homogeneous intervals carries over to the nonhomogeneous case. Indeed; if the
intervals in lie on lines¢?, ..., ¢9, then each' can be mapped homeomorphically
onto an open interval of unit length and the intersection propertiés afe preserved
under this map. Next one can place thanit intervals onto one liné so that they are
pairwise disjoint. This transforng into a system of homogeneous intervals with the
samev and the same.

We can, however, improve on Theorem 1.2 a bit, obtaining

Theorem 1.4. Every systerfi{ of d-intervals has a transversal of sigd? — d)v(H).

To show this, we employ a generalization of the Borsuk—Ulam theorem (due to Ramos)
which will be described later. This theorem, as well as two nontrivial results on graphs
and hypergraphs and the Borsuk—-Ulam theorem itself, will be stated without proof.
However, the paragraph concluding Section 2 shows how only a slightly weaker bound
T(H) < d?v(H) (certainly sufficient for most readers) can be proved in the homogeneous
case, using just the Borsuk—Ulam theorem plus elementary hypergraph considerations.
And according to what has been said, this bound applies to the nonhomogeneous case
as well. This eliminates the need of the first three quoted statements.

2. Homogeneousl-Intervals

Fix a systent{ of homogeneoud-intervals on a liné. Considering the homeomorphism
just mentioned in the paragraph following Theorem 1.3, we may assume that all members
of H are contained in the closed unit interval {0. It may also be assumed that all
members ot arenondegeneraté.e., thateachis the union of exaatlglisjoint intervals.
(For finite’H, one can complete each degenerate merhigrextra components which
do not intersect any other member7gf This does not influence the relevant properties
of H. A similar reduction can be done in the infinite case.)
Letk denote the packing numbeiof H. We search for a transversaldfconsisting
of n points of¢. (The numben will be specified later.) Any suah-tuple can be identified
with an elemenk of 17, where

I"={y=U....¥) |0<y1 <--- <y <1 CR".

For convenience, we piyp = 0 andy,,; = 1. The open unit interval is broken by

X into n + 1 open intervalsLy, ..., Ly, some of which are possibly empty. Here
Li = (X, Xi+1).

There is a correspondence betwégand then-sphereS™: forz = (z, ..., z,) € S,
define

i—1
9= 7,
j=0

wherei =1, ..., n. Then the vector-valued functiay restricted to one closed orthant
in R"*!, is a homeomorphism of the corresponding parBbivith |2. (This mapping
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has been used by Alon and West in the proof of the Necklace theorem, see [1].) Note
thatgo(z) = 0 andgn.1(2) = 1, in accordance with our convention. The valuey®f)
does not change on reversing the signs of any componeats of
The “space of candidates” for the transversato€an thus be naturally considered
to beS". Its elements are mapped byo n-tuples of points of.
Consider a fixed € S". Let{L;: i € [n]} be the open intervals determined @¢z)
as above, wheren] = {0, ..., n}. Now z corresponds to a transversal if and only if no
| € H is contained in any unioh;, U --- U L;,. For giveniy, ..., ig € [n], we define

Wi, ...iy (2) = supdist(g(z), 1),
|

with | ranging over those members&fthat intersect each; form=1,...,d and
are contained in the uniop)2_, L;,. The symbol “dist” denotes the usual distance.
Intuitively, one could say thaiv;,..;,(z2) measures to what extegiz) fails to be a
transversal fof{ because of members “escaping it” throm@ﬂhl Li,,.

Observation 2.1. Foreachi,...,iq, the following holds

(i) wi,.i, is acontinuous and nonnegative function fromt&R.
(i) wi,. i,(2) = 0iff no element of{ is contained in l, U --- U Lj,.

Proof. (i) is clear. (ii) follows from the fact that members&fare closed. O

We will shortly see how the functions just defined determine a hypergraph. First some
terminology. For a hypergrapi = (V (M), E(M)), anedge-weight functioon M is
a mapw: E(M) — R. Since our edge-weight functions will themselves depend on a
variablez, we will write the weight of an edgeaswe(z) or simplywe. Thevertex-weight
function induced by is the mapw’: V(M) — R defined byw,, = »"_, we. We use
the termweighted hypergrapfor a hypergraph equipped with an edge-weight function.
Now to anyz € S" there corresponds a hypergralgh(z) on the vertex se¥ = [n],
together with an edge-weight function. Let the unordetddple{i,, ..., iq} (possibly
with repetitions) be an edge M (2) if wi, _;,(2) > 0, in which case this number will be
the weight of the edge. This makes sense because the valyg Qfz) does not change
under a permutation of the indices. The resulting hypergraph need detibiéorm but
its rank (maximum size of an edge) will be at makt

Lemma?2.2. Forallze S":

(i) The matching number of &) is less than or equal to the packing numbefof
in symbolsv(M(2)) < k.
(i) ze S" and its antipode-z determine the same weighted hypergraph
(iii) If z; = Ofor some j then the vertex i is isolated in ).

Proof.  (ii) and (iii) follow from the definition ofM (z). We prove (i). LefT be a set of
k+1 pairwise disjointedges iWl (z). Eachedge = {i1, ..., iq} € T correspondsto aset
Li, U---UL,;,, disjoint edges corresponding to disjoint sets. Part (ii) of Observation 2.1
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implies that there ar& + 1 pairwise disjoint sets of the forrh;, U --- U L;,, each
containing a member ¢f{. But this contradicts the fact that) = k. O

Consider a hypergrapkl with an edge-weight functiom. Call M weight regularif
w, is the same for all vertices wherew’ is the vertex-weight function induced ly.

Lemma 2.3. Thereis a poing € S such that M2) is weight regular

Proof. For1<i < n,define function;: S — R by
hi (2) = sgn(z)w; (2) — sgNzi_1)w;_;(2).

We claim that all of them are continuous. Part (iii) of Lemma 2.2 implies that for each
i andj, ..., ja, the function sgtw) - wij,...j; (2) is continuous. Andh; is, up to signs, a
sum of terms of this form.

Allthe h;’s are antipodal (recall this meang —z) = —h; (2) for all z). Taken together,
they form an antipodal functioh: S" — R" defined by

h=(hy,..., ho.

The Borsuk—Ulam theorem (Theorem 1.3) implies thags a roog. By the definition
of theh;’s, all the numbersy{ (2) are, up to signs, equal to some numBeBut the signs
cannot differ since all the weights are positive. 8¢z) is weight regular. O

Recall that dractional matchingn any hypergraptM is a nonnegative edge-weight
functiona for whicha, < 1 for every vertexw. Thesize|a| of the matching is defined
as the sum of weights of all edges. Tinectional matching numbes then

v*(M) = suplal,

the supremum taken over all fractional matching#/in
We will first show that the fractional matching numbeidfz) is “large” and then use
general theorems which bound it from above in terms of the ordinary matching number.

Lemma 2.4. If M(2) has at least one edgthen

n+1
g

Vi (M(2) =

Proof. Assume thaM (2) has an edge. Denote I the nonzero numbew; (z) which

is for all vertices the same. Then the edge-weight funciiaefined byie = we(2)/K

is a fractional matching. Its siz&@| can be estimated by double counting as follows. Let
A=) .y w,(2).ClearlyA = K(n+1). Onthe other hand, since each edge contains at
mostd vertices, we havé < djw| = dK|®|. Hencgw| > (n+ 1)/d which concludes

the proof. O
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At this point we have to separate the cdse 2 from the others. Suppose ththt= 2
and soM (z) is just a graph for alk. We use the following theorem by Lagz (see [6]
for the proof) to bound the fractional matching number of this graph in terms of its usual
matching number.

Theorem 2.5(Lovasz). For any graph G
V*(G) < 2v(G).

Assuming thaM (z) has atleast one edge and combining the theorem with Lemma 2.4,
we get(n + 1)/2 < 3k/2, orn < 3k. So if we deliberately violate this condition by
settingn = 3k, the only possibility is thaM (z) has no edges, or in other words, taat
determines a transversal fof consisting of & points.

If d > 2, then a powerful analogous theorem lyé&di applies. Its proof can be found
in [2].

Theorem 2.6(Furedi). Let M be a hypergraph of rank ¢ 3. Suppose M does not
contain p+ 1 pairwise disjoint copies of the projective plane of orderd.. Then

V(M) < (d - Dv(M) + ap

[We remark that this theorem does not hold do& 2 (assuming that the “projective
plane of order 1” is taken to be a triangle). This is demonstrated by taking the 5-cycle,
for instance.]

One does not know how many pairwise disjoint copies of the projective plane there
are contained irM (2), but the number is clearly at madst So the inequality from the
theorem becomes

d

Using Lemma 2.4 again, we see thanifs set to equak(d? — d + 1), thenM(2) has
no edges. Therefore, there always is a transversal consistiig?of- d + 1) points. Of
course, this improves in an obvious way if the projective plane of atderl does not
exist. So the proof of Theorem 1.2 is complete. O

Vi(M(2) < k(d—1+ E).

Letus pointout thatitis possible to use arguments less sophisticated than the theorems
of Lovasz and Biedi, and still get a satisfactory bound which is linedk.ithe simplest
such argument runs as followsl () is weight regular; assume again that it has at least
one edge. IX C V is a set of vertices, then the sdm, _, w), (2) equalsK - | X| whereK
is as in the proof of Lemma 2.4. Sind&(2) hasn + 1 vertices and its matching number
is at most, there certainly is a sék C V such thajA] = n — dk + 1 and every edge
of M(2) contains at least one vertex outsideSumming up the weights of all vertices
inV — Aand inA, respectively, we gdiv — A| > |A]/(d — 1), because at least one of
the < d contributions from each edge goes to the sunMor A. The inequality can be
rewritten asdk > (n — dk+ 1)/(d — 1), orn < d?k — 1. This has been deduced from
the assumption that the edge setwz) is nonempty. As before, we conclude that one
can always find a transversal consistingiet d?k points.
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3.  Nonhomogeneous-Intervals

We shall now turn to families of (ordinang-intervals. LetH denote the family in
guestionk stands for its packing number. Thdines containing the members &f are
again denoted by, . .., ¢¢. We make similar assumptions abduas in the preceding
section, i.e., that all components are nonempty and contained in a fixed unitlength interval
on the appropriate ling . In view of the tight bounds to the transversal numbenfer 1
andd = 2 mentioned in the Introduction, namekyand X, one might be tempted to
conjecture thatlk points always suffice for a transversal. This is not true as shown by
an example from [3]. It presents a family of ten pairwise intersecting 3-intervals which
has transversal number 4.

We shall proceed in general very similarly as in the homogeneous case. Our candidate
for the transversal will now consist dfindependenb-tuples of points, one-tuple on
each linet' (more precisely, in the unit interval @f). So the “space of candidates” will
be the product

(HYW=9"x...x S (d times.

If z= (Z, ..., 2% is an element of this space, then thtuple on¢' is given byg(z')
with g as in Section 2. Writingy(Z' ), we will always mean a subset 6f. Hopefully
this will cause no confusion. The open unit interval on each finis again split into
n -+ 1 open intervals, denoted ), ..., Li. We may now define functions;,..;, for
all d-elementsequencesf elements offi]; these functions will no more be symmetric
with respect to the indices. Put

wi,.i,(2) = sup n"iind dist(g(z)), 1),
e

wherel ranges over all members &f contained in the uniod = Lil1 U..-u Lf’d. This
is again a continuous nonnegative function, and it is zerd iffontains no members of
H.

These functions define a hypergraph(z) and an edge weight again, with the
difference thatM (2) is nowd-uniform andd-partite. Each partite is a copy af]f The
ith vertex in themth partite is referred to agn, i), where l< m<dand 0<i < n.
The whole vertex set is denoted By Foriy, ..., ig € [n], let e,..i, be the set whose
intersection with thenth partite consists of the vertér, i) for eachm. Thene, .., is
defined to be an edge ™M (2) iff wy,..i,(2) > 0, in which case it gets this number for a
weight.

We easily obtain an analogue of Lemma 2.2.

Lemma3.1. Forallz=(z} ..., 2% e (9")%:

(i) The matching number(M (2)) is less than or equal to.k
(ii) If Z' is obtained from z by changing the sign in any of the d componiets z
and Z determine the same weighted hypergraph
(iii) If zjm = O0for some m |, then the vertexm, j) is isolated in Mz).

Let us now state the extension of the Borsuk—Ulam theorem to products of spheres,
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established by Ramos, and refer the reader to [7] for a proof. The original version deals

with products of balls rather than spheres, but it is equivalent to the one we will use.
Let f be a continuous function from the produst x ... x S% to RY, where

q = Y_q;. We write f; for theith component off. Now let f have the property that,

for some numbers;; which may be either zero or one,

fi(X]J-"ya_Xj"-'aXd):(_1)aij fi(Xl,...,Xj,...,Xd)

foralll<i<q,1<j<dandall(xg,...,Xs) € S x --- x S¥ (If ; =0, then

one says thaf; has positive antipodality in thgth coordinate, otherwise it has negative
antipodality.) The numbess; define ag by d, 0—1 matrix called thantipodality matrix
A(f)ofthe functionf. The generalized permanent of this matrix has a surprising relation
where eacl; is an entry in theth row of A(T), and exactlyy; factors are taken from
the jth column (for each).

Using this theorem, we can convince ourselves that there again exists a point which
determines a weight-regular hypergraph.

Lemma 3.3. Thereis a poink € (S")9 such that M2) is weight regularin particular,
the fractional matching number of (@) is at least i+ 1 provided that M2) has at least
one edge

Proof. The second part follows by double counting as in Lemma 2.4, recalling that the
number of vertices is now(n + 1). Let us prove the first part. For each elementi)

of V whichhas > 0(so1<m<d, 1 <i < n), define a functiomm,,: (H > R

by

Nm.iy(2) = sgNZMwip ;) (2) — SgNZ" Pwim;_1,(2).

All the hmi)’s are continuous. One checks easily that the antipodality matrix of the
function

h=(hawy, .-, han, ..., @1, ..., Nd.n)

.....

rootz. All the numbersw, ;1 (2) with a givenm are equal, as in the proof of Lemma 2.3.
Since the sum of vertex weights in a partite is for every partite the same, it follows that
actually all vertex weights it (2) coincide. O

The rest of the argument is as in the preceding sectiod. ¥ 2, we can invoke
Theorem 2.6 and benefit from the fact th&z) contains no copy of the projective plane
of orderd — 1 as the plane is nat-partite. By Lemma 3.3, iM (2) has any edges, then
n+1<d-121k.

The same inequality can actually be proveddos 2, too. For this, we have to do
better than to use Theorem 2.5. An improvement is possible because theM(aph
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is bipartite now, and so it has = v* = t by Konig's theorem, mentioned in the
Introduction. In our case this yields+ 1 < k as desired.

Thusforarbitrang > 2, ifwe seh = (d—1)k, thenthe above inequalities are violated
andM (2) has no edges. The transversal determined igw containgln = (d? — d)k
points. The proof of Theorem 1.4 is now complete. O

4. Concluding Remarks

It should be mentioned that the method can be modified to use Brouwer’s fixed point
theorem in place of the Borsuk—Ulam theorem. This approach has been used in [5] to
prove a statement related to those of the present paper.

We would like to conclude by pointing out two remaining open problems. The first
one is to improve the existing lower bounds to the possible transversal number of systems
of d-intervals (homogeneous or not). To our knowledge, the best one availableds,
in general (see the Introduction). We find it plausible that the upper bounds established
in this paper are essentially tight, meaning that one cannot improve?tfactor to
anything subquadratic. However, we have to leave this feeling quite unsupported.

And the other open problem: Is it possible to apply a similar topological method to
related problems concerning convex bodies in higher dimensions?
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