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Abstract. We present a method which reduces a family of problems in combinatorial
geometry (concerning multiple intervals) to purely combinatorial questions about hyper-
graphs. The main tool is the Borsuk–Ulam theorem together with one of its extensions.

For a positive integerd, a homogeneousd-interval is a union of at mostd closed intervals
on a fixed linè . LetH be a system of homogeneousd-intervals such that nok + 1 of its
members are pairwise disjoint. It has been known that its transversal numberτ(H) can then
be bounded in terms ofk andd. Tardos [9] proved that ford = 2, one hasτ(H) ≤ 8k. In
particular, the bound is linear ink. We show that the latter holds for anyd, and prove the
tight boundτ(H) ≤ 3k for d = 2.

We obtain similar results in the case of nonhomogeneousd-intervals whose definition
appears below.

1. Introduction

Gallai was the first to observe that ifH is a family of closed intervals on a line such
that nok + 1 of its members are pairwise disjoint, then there arek points of the line
that intersect all intervals fromH. (See [4].) Gallai’s theorem answers a particular case
of a more general question which we shall presently outline. LetH be any system of
subsets of a setX. The maximum number of pairwise disjoint elements ofH is called
its packing numberand denoted byν(H). (WhenH is viewed as a hypergraph onX,
the termmatching numberis used instead.) A subset ofX that intersects all members of
H is called atransversal. The minimum size of a transversal is thetransversal number
τ(H). One trivially hasν(H) ≤ τ(H), but in general there is no inequality in the other
direction. Boundingτ in terms ofν is just the problem we had in mind. By Gallai’s
theorem, equality holds for systems of closed intervals. Another such example is found
in graphs, where the definitions make sense since every graph is also a hypergraph. By
the well-known theorem of K¨onig, every bipartite graph hasτ equal toν.
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The objects of our investigation will be systems of multiple intervals. Letd be a
positive integer and̀ a line. A homogeneous d-interval I⊂ ` is a nonempty union of
at mostd closed intervals oǹ.

For a variation on this concept, fix distinct parallel lines`1, . . . , `d in the plane. A
d-interval J is a nonvoid subset of̀1 ∪ · · · ∪ `d such that eachJ ∩ `i is either a closed
segment or the empty set. The setJ ∩ `i is called thei th componentof J and denoted
by Ji .

What we get ford = 1 are just closed intervals. This case will not be of interest to
us, and we taked to be at least 2 in the whole paper.

Families of multiple intervals have first been investigated by Gy´arfás and Lehel [3],
who prove that there is a function ofν andd which bounds (from above) the transversal
numberτ of any system ofd-intervals with packing number equal toν. This function was
O(νd!) for fixedd. A slightly weaker bound was established for the homogeneous case.

Tardos [9] proved that for either homogeneous and nonhomogeneous 2-intervals,τ

is bounded by a linear function ofν.

Theorem 1.1(Tardos). Every systemH of2-intervals(resp. homogeneous2-intervals)
has a transversal of size2ν(H) (resp. of size8ν(H)).

The bound for (nonhomogeneous) 2-intervals is moreover tight as [3] proves that for
anyd andν there is a system ofd-intervals with the packing number equal toν and the
transversal number at leastdν.

In the present paper, we derive results corresponding to Theorem 1.1 for all values
of d. We prefer to treat the homogeneous case first. Thus in Section 2 we prove the
following statement.

Theorem 1.2. Every systemH of homogeneous d-intervals has a transversal of size
(d2 − d + 1)ν(H). Moreover, the bound improves to(d2 − d)ν(H) if d ≥ 3 and there
is no projective plane of order d− 1.

For d = 2, this specializes toτ(H) ≤ 3ν(H). Consider the family in Fig. 1, taken
from [3]. (Note: All segments in the figure lie on asinglehorizontal line.) Using several
“disjoint copies” of this family, one can see that the above inequality is optimal.

The proof of Theorem 1.2 makes use of the following classic.

Theorem 1.3(Borsuk–Ulam). Let f be a continuous map from the n-sphere Sn toRn.
If f is antipodal(that is, f (−x) = − f (x) for all x), then it has a zero.

This is proved, e.g., in [8].

Fig. 1. A family of homogeneous 2-intervals withν = 1 andτ = 3.
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In Section 3, we focus on the nonhomogeneousd-intervals. Note that any bound
on homogeneous intervals carries over to the nonhomogeneous case. Indeed, if thed-
intervals inH lie on lines`1, . . . , `d, then each̀ i can be mapped homeomorphically
onto an open interval of unit length and the intersection properties ofH are preserved
under this map. Next one can place thed unit intervals onto one linè so that they are
pairwise disjoint. This transformsH into a system of homogeneous intervals with the
sameν and the sameτ .

We can, however, improve on Theorem 1.2 a bit, obtaining

Theorem 1.4. Every systemH of d-intervals has a transversal of size(d2− d)ν(H).

To show this, we employ a generalization of the Borsuk–Ulam theorem (due to Ramos)
which will be described later. This theorem, as well as two nontrivial results on graphs
and hypergraphs and the Borsuk–Ulam theorem itself, will be stated without proof.
However, the paragraph concluding Section 2 shows how only a slightly weaker bound
τ(H) ≤ d2ν(H) (certainly sufficient for most readers) can be proved in the homogeneous
case, using just the Borsuk–Ulam theorem plus elementary hypergraph considerations.
And according to what has been said, this bound applies to the nonhomogeneous case
as well. This eliminates the need of the first three quoted statements.

2. Homogeneousd-Intervals

Fix a systemH of homogeneousd-intervals on a linè. Considering the homeomorphism
just mentioned in the paragraph following Theorem 1.3, we may assume that all members
of H are contained in the closed unit interval [0, 1]. It may also be assumed that all
members ofHarenondegenerate, i.e., that each is the union of exactlyd disjoint intervals.
(For finiteH, one can complete each degenerate memberI by extra components which
do not intersect any other member ofH. This does not influence the relevant properties
ofH. A similar reduction can be done in the infinite case.)

Let k denote the packing numberν ofH. We search for a transversal ofH consisting
of n points of̀ . (The numbern will be specified later.) Any suchn-tuple can be identified
with an elementx of I n

≤, where

I n
≤ = {y = (y1, . . . , yn) | 0≤ y1 ≤ · · · ≤ yn ≤ 1} ⊂ Rn.

For convenience, we puty0 = 0 andyn+1 = 1. The open unit interval is broken by
x into n + 1 open intervalsL0, . . . , Ln, some of which are possibly empty. Here
Li = (xi , xi+1).

There is a correspondence betweenI n
≤ and then-sphereSn: for z= (z0, . . . , zn) ∈ Sn,

define

gi (z) =
i−1∑
j=0

z2
j ,

wherei = 1, . . . ,n. Then the vector-valued functiong, restricted to one closed orthant
in Rn+1, is a homeomorphism of the corresponding part ofSn with I n

≤. (This mapping
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has been used by Alon and West in the proof of the Necklace theorem, see [1].) Note
thatg0(z) = 0 andgn+1(z) = 1, in accordance with our convention. The value ofg(z)
does not change on reversing the signs of any components ofz.

The “space of candidates” for the transversal ofH can thus be naturally considered
to beSn. Its elements are mapped byg to n-tuples of points oǹ .

Consider a fixedz ∈ Sn. Let {Li : i ∈ [n]} be the open intervals determined byg(z)
as above, where [n] = {0, . . . ,n}. Now z corresponds to a transversal if and only if no
I ∈ H is contained in any unionLi1 ∪ · · · ∪ Lid . For giveni1, . . . , i d ∈ [n], we define

wi1···id(z) = sup
I

dist(g(z), I ),

with I ranging over those members ofH that intersect eachLim for m = 1, . . . ,d and
are contained in the union

⋃d
m=1 Lim. The symbol “dist” denotes the usual distance.

Intuitively, one could say thatwi1···id(z) measures to what extentg(z) fails to be a
transversal forH because of members “escaping it” through

⋃d
m=1 Lim.

Observation 2.1. For each i1, . . . , i d, the following holds:

(i) wi1...id is a continuous and nonnegative function from Sn toR.
(ii) wi1...id(z) = 0 iff no element ofH is contained in Li1 ∪ · · · ∪ Lid .

Proof. (i) is clear. (ii) follows from the fact that members ofH are closed.

We will shortly see how the functions just defined determine a hypergraph. First some
terminology. For a hypergraphM = (V(M), E(M)), anedge-weight functionon M is
a mapw: E(M) → R. Since our edge-weight functions will themselves depend on a
variablez, we will write the weight of an edgeeaswe(z) or simplywe. Thevertex-weight
function induced byw is the mapw′: V(M)→ R defined byw′v =

∑
e3v we. We use

the termweighted hypergraphfor a hypergraph equipped with an edge-weight function.
Now to anyz ∈ Sn there corresponds a hypergraphM(z) on the vertex setV = [n],

together with an edge-weight function. Let the unorderedd-tuple{i1, . . . , i d} (possibly
with repetitions) be an edge ofM(z) if wi1...id(z) > 0, in which case this number will be
the weight of the edge. This makes sense because the value ofwi1...id(z) does not change
under a permutation of the indices. The resulting hypergraph need not bed-uniform but
its rank (maximum size of an edge) will be at mostd.

Lemma 2.2. For all z ∈ Sn:

(i) The matching number of M(z) is less than or equal to the packing number ofH;
in symbols, ν(M(z)) ≤ k.

(ii) z ∈ Sn and its antipode−z determine the same weighted hypergraph.
(iii) If zi = 0 for some i, then the vertex i is isolated in M(z).

Proof. (ii) and (iii) follow from the definition ofM(z). We prove (i). LetT be a set of
k+1 pairwise disjoint edges inM(z). Each edgee= {i1, . . . , i d} ∈ T corresponds to a set
Li1 ∪ · · · ∪ Lid , disjoint edges corresponding to disjoint sets. Part (ii) of Observation 2.1
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implies that there arek + 1 pairwise disjoint sets of the formLi1 ∪ · · · ∪ Lid , each
containing a member ofH. But this contradicts the fact thatν(H) = k.

Consider a hypergraphM with an edge-weight functionw. Call M weight regularif
w′v is the same for all verticesv, wherew′ is the vertex-weight function induced byw.

Lemma 2.3. There is a point̄z ∈ Sn such that M(z̄) is weight regular.

Proof. For 1≤ i ≤ n, define functionshi : Sn→ R by

hi (z) = sgn(zi )w
′
i (z)− sgn(zi−1)w

′
i−1(z).

We claim that all of them are continuous. Part (iii) of Lemma 2.2 implies that for each
i and j2, . . . , jd, the function sgn(zi ) ·wi j2··· jd(z) is continuous. Andhi is, up to signs, a
sum of terms of this form.

All the hi ’s are antipodal (recall this meanshi (−z) = −hi (z) for all z). Taken together,
they form an antipodal functioñh: Sn→ Rn defined by

h̃ = (h1, . . . , hk).

The Borsuk–Ulam theorem (Theorem 1.3) implies thath̃ has a root̄z. By the definition
of thehi ’s, all the numbersw′i (z̄) are, up to signs, equal to some numberK . But the signs
cannot differ since all the weights are positive. SoM(z̄) is weight regular.

Recall that afractional matchingin any hypergraphM is a nonnegative edge-weight
functiona for which a′v ≤ 1 for every vertexv. Thesize|a| of the matching is defined
as the sum of weights of all edges. Thefractional matching numberis then

ν∗(M) = sup|a|,

the supremum taken over all fractional matchings inM .
We will first show that the fractional matching number ofM(z̄) is “large” and then use

general theorems which bound it from above in terms of the ordinary matching number.

Lemma 2.4. If M (z̄) has at least one edge, then

ν∗(M(z̄)) ≥ n+ 1

d
.

Proof. Assume thatM(z̄) has an edge. Denote byK the nonzero numberw′v(z̄) which
is for all vertices the same. Then the edge-weight functionw̃ defined byw̃e = we(z̄)/K
is a fractional matching. Its size|w̃| can be estimated by double counting as follows. Let
A =∑v∈V w

′
v(z̄). ClearlyA = K (n+1). On the other hand, since each edge contains at

mostd vertices, we haveA ≤ d|w| = dK|w̃|. Hence|w̃| ≥ (n+ 1)/d which concludes
the proof.
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At this point we have to separate the cased = 2 from the others. Suppose thatd = 2
and soM(z) is just a graph for allz. We use the following theorem by Lov´asz (see [6]
for the proof) to bound the fractional matching number of this graph in terms of its usual
matching number.

Theorem 2.5(Lovász). For any graph G,

ν∗(G) ≤ 3
2ν(G).

Assuming thatM(z̄)has at least one edge and combining the theorem with Lemma 2.4,
we get(n + 1)/2 ≤ 3k/2, or n < 3k. So if we deliberately violate this condition by
settingn = 3k, the only possibility is thatM(z̄) has no edges, or in other words, thatz̄
determines a transversal forH consisting of 3k points.

If d > 2, then a powerful analogous theorem by F¨uredi applies. Its proof can be found
in [2].

Theorem 2.6(Füredi). Let M be a hypergraph of rank d≥ 3. Suppose M does not
contain p+ 1 pairwise disjoint copies of the projective plane of order d− 1. Then

ν∗(M) ≤ (d − 1)ν(M)+ p

d
.

[We remark that this theorem does not hold ford = 2 (assuming that the “projective
plane of order 1” is taken to be a triangle). This is demonstrated by taking the 5-cycle,
for instance.]

One does not know how many pairwise disjoint copies of the projective plane there
are contained inM(z̄), but the number is clearly at mostk. So the inequality from the
theorem becomes

ν∗(M(z̄)) ≤ k

(
d − 1+ 1

d

)
.

Using Lemma 2.4 again, we see that ifn is set to equalk(d2 − d + 1), thenM(z̄) has
no edges. Therefore, there always is a transversal consisting ofk(d2− d+ 1) points. Of
course, this improves in an obvious way if the projective plane of orderd − 1 does not
exist. So the proof of Theorem 1.2 is complete.

Let us point out that it is possible to use arguments less sophisticated than the theorems
of Lovász and F¨uredi, and still get a satisfactory bound which is linear ink. The simplest
such argument runs as follows.M(z̄) is weight regular; assume again that it has at least
one edge. IfX ⊂ V is a set of vertices, then the sum

∑
v∈X w

′
v(z̄) equalsK · |X|whereK

is as in the proof of Lemma 2.4. SinceM(z̄) hasn+ 1 vertices and its matching number
is at mostk, there certainly is a setA ⊂ V such that|A| = n− dk+ 1 and every edge
of M(z̄) contains at least one vertex outsideA. Summing up the weights of all vertices
in V − A and inA, respectively, we get|V − A| ≥ |A|/(d− 1), because at least one of
the≤ d contributions from each edge goes to the sum forV − A. The inequality can be
rewritten asdk ≥ (n− dk+ 1)/(d − 1), or n ≤ d2k− 1. This has been deduced from
the assumption that the edge set ofM(z̄) is nonempty. As before, we conclude that one
can always find a transversal consisting ofn = d2k points.



Transversals ofd-Intervals 201

3. Nonhomogeneousd-Intervals

We shall now turn to families of (ordinary)d-intervals. LetH denote the family in
question,k stands for its packing number. Thed lines containing the members ofH are
again denoted bỳ1, . . . , `d. We make similar assumptions aboutH as in the preceding
section, i.e., that all components are nonempty and contained in a fixed unit length interval
on the appropriate linèi . In view of the tight bounds to the transversal number ford = 1
andd = 2 mentioned in the Introduction, namely,k and 2k, one might be tempted to
conjecture thatdk points always suffice for a transversal. This is not true as shown by
an example from [3]. It presents a family of ten pairwise intersecting 3-intervals which
has transversal number 4.

We shall proceed in general very similarly as in the homogeneous case. Our candidate
for the transversal will now consist ofd independentn-tuples of points, onen-tuple on
each linè i (more precisely, in the unit interval of`i ). So the “space of candidates” will
be the product

(Sn)d = Sn × · · · × Sn (d times).

If z = (z1, . . . , zd) is an element of this space, then then-tuple on`i is given byg(zi )

with g as in Section 2. Writingg(zi ), we will always mean a subset of`i . Hopefully
this will cause no confusion. The open unit interval on each line`i is again split into
n + 1 open intervals, denoted byLi

0, . . . , Li
n. We may now define functionswi1···id for

all d-elementsequencesof elements of [n]; these functions will no more be symmetric
with respect to the indices. Put

wi1···id(z) = sup
I

min
j=1···d

dist(g(zj ), I j ),

whereI ranges over all members ofH contained in the unionU = L1
i1
∪ · · · ∪ Ld

id
. This

is again a continuous nonnegative function, and it is zero iffU contains no members of
H.

These functions define a hypergraphM(z) and an edge weightw again, with the
difference thatM(z) is nowd-uniform andd-partite. Each partite is a copy of [n]. The
i th vertex in themth partite is referred to as(m, i ), where 1≤ m ≤ d and 0≤ i ≤ n.
The whole vertex set is denoted byV . For i1, . . . , i d ∈ [n], let ei1···id be the set whose
intersection with themth partite consists of the vertex(m, im) for eachm. Thenei1···id is
defined to be an edge ofM(z) iff wi1···id(z) > 0, in which case it gets this number for a
weight.

We easily obtain an analogue of Lemma 2.2.

Lemma 3.1. For all z = (z1, . . . , zd) ∈ (Sn)d:

(i) The matching numberν(M(z)) is less than or equal to k.
(ii) If z′ is obtained from z by changing the sign in any of the d components, then z

and z′ determine the same weighted hypergraph.
(iii) If zm

j = 0 for some m, j , then the vertex(m, j ) is isolated in M(z).

Let us now state the extension of the Borsuk–Ulam theorem to products of spheres,
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established by Ramos, and refer the reader to [7] for a proof. The original version deals
with products of balls rather than spheres, but it is equivalent to the one we will use.

Let f be a continuous function from the productSq1 × · · · × Sqd to Rq, where
q = ∑qj . We write fi for the i th component off . Now let f have the property that,
for some numbersai j which may be either zero or one,

fi (x1, . . . , ,−xj , . . . , xd) = (−1)ai j fi (x1, . . . , xj , . . . , xd)

for all 1 ≤ i ≤ q, 1 ≤ j ≤ d, and all(x1, . . . , xd) ∈ Sq1 × · · · × Sqd . (If ai j = 0, then
one says thatfi has positive antipodality in thej th coordinate, otherwise it has negative
antipodality.) The numbersai j define aq by d, 0–1 matrix called theantipodality matrix
A( f )of the functionf . The generalized permanent of this matrix has a surprising relation
to zeros off . Define permq1,...,qd

A( f ) to be the sum of all products of the typeb1 · · ·bq,
where eachbi is an entry in thei th row of A( f ), and exactlyqj factors are taken from
the j th column (for eachj ).

Theorem 3.2(Ramos). If permq1,...,qd
A( f ) is odd, then f has a zero.

Using this theorem, we can convince ourselves that there again exists a point which
determines a weight-regular hypergraph.

Lemma 3.3. There is a point̄z ∈ (Sn)d such that M(z̄) is weight regular. In particular,
the fractional matching number of M(z̄) is at least n+1 provided that M(z̄) has at least
one edge.

Proof. The second part follows by double counting as in Lemma 2.4, recalling that the
number of vertices is nowd(n+ 1). Let us prove the first part. For each element(m, i )
of V which hasi > 0 (so 1≤ m ≤ d, 1≤ i ≤ n), define a functionh(m,i ): (Sn)d → R
by

h(m,i )(z) = sgn(zm
i )w

′
(m,i )(z)− sgn(zm

i−1)w
′
(m,i−1)(z).

All the h(m,i )’s are continuous. One checks easily that the antipodality matrix of the
function

h̃ = (h(1,1), . . . , h(1,n), . . . , h(d,1), . . . , h(d,n))
has permanent (more precisely, permn,...,n) equal to 1. Therefore by Theorem 3.2, it has a
root z̄. All the numbersw′(m,i )(z̄)with a givenm are equal, as in the proof of Lemma 2.3.
Since the sum of vertex weights in a partite is for every partite the same, it follows that
actually all vertex weights inM(z̄) coincide.

The rest of the argument is as in the preceding section. Ifd > 2, we can invoke
Theorem 2.6 and benefit from the fact thatM(z̄) contains no copy of the projective plane
of orderd− 1 as the plane is notd-partite. By Lemma 3.3, ifM(z̄) has any edges, then
n+ 1≤ (d − 1)k.

The same inequality can actually be proved ford = 2, too. For this, we have to do
better than to use Theorem 2.5. An improvement is possible because the graphM(z̄)
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is bipartite now, and so it hasν = ν∗ = τ by König’s theorem, mentioned in the
Introduction. In our case this yieldsn+ 1≤ k as desired.

Thus for arbitraryd ≥ 2, if we setn = (d−1)k, then the above inequalities are violated
andM(z̄) has no edges. The transversal determined byz̄ now containsdn= (d2− d)k
points. The proof of Theorem 1.4 is now complete.

4. Concluding Remarks

It should be mentioned that the method can be modified to use Brouwer’s fixed point
theorem in place of the Borsuk–Ulam theorem. This approach has been used in [5] to
prove a statement related to those of the present paper.

We would like to conclude by pointing out two remaining open problems. The first
one is to improve the existing lower bounds to the possible transversal number of systems
of d-intervals (homogeneous or not). To our knowledge, the best one available isτ ≥ dν,
in general (see the Introduction). We find it plausible that the upper bounds established
in this paper are essentially tight, meaning that one cannot improve thed2 factor to
anything subquadratic. However, we have to leave this feeling quite unsupported.

And the other open problem: Is it possible to apply a similar topological method to
related problems concerning convex bodies in higher dimensions?
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