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Abstract. Let B be a finite pseudodisk collection in the plane. By the principle of 
inclusion--exclusion, the area or any other measure of the union is 

= s (no) .  

We show the existence of a two-dimensional abstract simplicial complex, A" __ 2 B, so the 
above relation holds even if Pc' is substituted for 2 s. In addition, X can be embedded in 
N2 so its underlying space is homotopy equivalent to int Y B, and the frontier of X is 
isomorphic to the nerve of the set of boundary contributions. 

1. Introduction 

Inclusion-Exclusion Principle. Given a finite collection of measurable  sets, B, the 

measure of the union,  U B = I,.Jb~B b, can be expressed in terms of  the measures of the 

common intersections of subcollections: 

. ( U B )  = , , )  

This relation is known as the inclusion--exclusion principle. We are interested in remov- 
ing redundant terms from (1). Trivially, vanishing terms can be dropped, which is the 

same as restricting the sum to all nonempty collections in  the nerve of B, Nrv B = 

{or ___ B I n or ~ i~}. More generally, we consider abstract simplicial complexes, which 
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are systems .A _c 2 n for  which 

a E.4 and r__Ccr implies TEA. 

Clearly, Nrv B is an abstract simplicial complex. The elements in .,4 are called (abstract) 
simplices, and they are subsets of  the vertex set, vert.,4 ----- ~_J .A. The subsets of  a simplex 
are its faces, and a face is proper if it is proper as a subset. The improper faces are the 
empty  set and the simplex itself. The dimension of  a simplex a is dim cr = card a -- 1, 
and a is a k-simplex i f  k = dim o-. The 0-, 1-, and 2-simplices are also referred to 
as vertices, edges, and triangles. The dimension of  A is d i m A  = max, ,eA{dima}.  A 
subcomplex of  .,4 is an abstract simplicial complex .A' _c .A. Finally, .,4 is connected if 
there is no partition vert .A = BIt.) B2, both B1, B2 nonempty,  with A _.c 2 s~ tO 2 oZ. 

Geometric Balls and Simplicial Complexes. It is shown in [5] that if B is a collection 
o f  closed geometr ic  balls in ]R d, there is a d-dimensional  abstract simplicial complex 
P( __c 2 B so that 

/z(UB) = ~ ( - -1 )d ima /z (NO")  . (2) 
aEX-{O} 

This can be a considerable reduction in dimensionality since Nrv B can be of  dimension 
up to n - 1. Furthermore,  P( has nice topological properties: it has a natural geometr ic  
realization in ]Ra whose  underlying space is homotopy  equivalent to int U B, and its 
frontier is i somorphic  to the nerve of  the collection o f  boundary contributions. For  the 
homotopy  equivalence and the isomorphism results a general position assumption on the 
set o f  balls is required. Definitions o f  some of  the terms can be found in Section 2, and 
a two-dimensional  example is shown in Fig. 1.1. A similar result for a generally larger 
complex  without  the above topological properties is established in [14]. 

Pseudoballs. The question arises whether a result similar to the one on geometric balls 
holds for  more  general sets. In particular, we consider the case where for any k < d 
sets in B there is a homeomorphism from ]Ra to itself that maps the k sets to k closed 
geometr ic  balls in general position. Such a collection B is referred to as a pseudoball 

Fig. 1.1. A collection of disks in the plane and a geometric realization of the corresponding abstract simplicial 
complex, X. 
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Fig. 1.2. A noncircularizable collection of six pseudodisks. 

collection in ~d; its elements are topological balls, referred to as pseudoballs. The main 
result of  this paper is an affirmative answer for pseudodisks (pseudoballs in R2). The 
proof depends on the fact that it is always possible to sweep a pseudodisk collection with 
another pseudodisk [ 15]. Unfortunately, in dimensions d > 2 sweeping a pseudo-ball 
collection with another pseudoball is not always possible. A counterexample in d = 3 
is obtained from an interesting oriented matroid due to Fukuda [3, Chapter 10.4]. Thus, 
our proof does not extend beyond two dimensions. Incidentally, the result in ~2 implies 
a result in [11] on the number of arcs bounding a union of pseudodisks. 

Noncircularizable Example. The study of pseudodisk collections begs the question 
whether or not there is always a set of geometric disks with the same combinatorial 
properties. The answer is of course negative, for otherwise the results in this paper would 
be implied by the geometric results in [5]. A pseudodisk collection is circularizable [8, 
p. 68] if there is a homeomorphism from the plane to itself that maps each pseudodisk to 
a geometric disk. By an argument in [7], the number of  noncircularizable examples with 
n pseudodisks grows much faster, as a function of n, than the number of circularizable 
examples. 

A particularly small example of the first kind is shown in Fig. 1.2. Its noncirculariz- 
ability is argued by looking at the three inner disks, a ,  b, c. Denote their centers by the 
same labels and consider the hexagon axbycz  whose vertices are the three centers and 
the three comers of  a U b LJ c. The angles at the centers add up to 

Zzax  + L x b y  q- Zycz  > 2zr 

(the sum would be 2rr if the three circles met at a common point in the middle). The 
angles at x, y, z add up to less than 2rr. Consider the following three sums of two angles 
each: 

A = L a x y  q- Lxyc ,  

B = Lbyz  + Lyza ,  

C = Z c z x  + Lzxb .  

The total sum is A + B + C < 3rr. At least one of A, B, C does not exceed the average, 
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say Zczx + Zzxb < zr. However,  this implies no geometr ic  disk can intersect the disks 
c, a ,  b in this sequence and leave holes between c and a and between a and b, as does 
the pseudodisk in Fig. 1.2. 

2. Definit ions and Results  

We begin with the definitions necessary to give a detailed s ta tement  of  the results in this 
paper. These consist  o f  a technical l emma and inc lus ion-exclus ion  formulas  implied by 
the lemma.  

Abstract Concepts. Let  B be a finite collection o f  pseudodisks  in ~2. An important 
notion is the region of  a subset 0 __c B defined as 

= 

The region of  a subset  can be empty,  and if nonempty  it can be disconnected and compo-  
nents can be mul t ip ly  connected.  ~ _c B is regional i f r eg  B 0 ~ 0. Different  subsets o f  B 
define disjoint regions, and together they cover ]R 2. The  n = card  B pseudocircles bound- 

( n )  
ing pseudodisks  in B decompose  R 2 into at most  2 2 + 2 connected two-dimensional  

cells or  chambers, and this is also an upper  bound on the n u m b e r  o f  regional subsets o f  
/ \ 

B. o i s  independenti fregor~OforallrC__ 0. Because  2 ( 2 )  + 2 < 2  n whenever 
\ / 

n _> 4, we have 3 as an upper  bound on the cardinality o f  every  independent  0- Two 
independent  triangles that share a common  edge, {a, b, c} and {a, b, d}, are consistently 
oriented if  one point  o f  b d a  n b d b  belongs to c and the other  to d. By  assumption of  
independence c cannot  contain both points, and neither can d. 

For  an abstract  simplicial complex A c 2 B, the subcomplex  induced by O - B is 
..41 o = {tr E .A I cr __c 0}. For example,  2BI o = 2 o. Symmetr ica l ly ,  the s ta r  o f  r c B is 
Ai r  = {or ~ .,4 I r c tr}. The s tar is  a subset but not a subcomplex  of~4, unless r = 0 in 
which case AI0 = .A. It  is, however, isomorphic to the link, L k  r = {tr - r I c r e  Air}, 
which is an abstract  simplicial  complex.  We call .Air connected i f  Lk  r is. The star of  r 
in the subcomplex  induced by Q consists of  all s implices that contain r and are contained 
in 0: 

.AI~ = (.AI~ = .41 ~ n .Air ,  

see Fig. 2.1. For vertices d ~ B we use the shorter notations -Aid = .Alle) and r = 
-Algal. A subcomplex  of  .A is regional if  it is induced by a regional  subset  o f  B. 

The Euler characteristic of.,4 is 

X(,,4) = ~ ( - - 1 )  dimcr. 

The principle of  inclusion--exclusion, relation (1), fol lows f rom X ( 2 s  [o) = 0 for every 
regional a __c B. Indeed, 2sl ~ = 2 o and X(2 ~ = (1 - I) c~du = 0. The  definition of  
the Euler  characteristic applies to any finite set system, not jus t  to abstract simplicial 
complexes.  Exploi t ing this we talk about the Euler  characterist ic o f  a star, X (.Air) ---- 
( - 1 ) c ~ x ( L k  r ) . 
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The subcomplex induced by Q _c B consists of all subsets in .4. Symmetrically, the star of r consists 

Geometric Realization and Embedding.. To state the results, we need a few additional 
definitions about embedding  abstract complexes in space. An abstract  simplicial  com-  
plex, -4, is geometrically realized by an injective map  ~o: ve r t -4  ~ ~ d  SO cr, tr '  ~ .4 
implies the intersection of  conv ~o(tr) and conv ~o(cr') is conv ~o(tr N tr ' ) .  conv ~o(tr) is the 
geometr ic  s implex that corresponds to cr ~ .A, and 

12 = {conv~0(tr) I cr ~ .4} 

is a geometric realization of  -4. Without any further knowledge  we know d > d im -4 is 
necessary and d > 2 dim -4 4- 1 is sufficient for 12 to exist. The  underlying space of  12 is 
U 12 = U,,~ conv ~o(a). 

,4 is embedded in IR 2 by  a continuous injection e: U s ~ R2 whose  restriction to 
e (U12)  is a homeomorphism.  The image r/(cr) = e (conv~0(a) )  o f  every abstract  k- 
simplex is a homeomorph  of  a geometric  k-simplex. We use the short notat ion r/(a) = 
r/({a}), rl(ab) = r/({a, b}), etc. The set 

is an embedding o f - 4  in ]~z. Ffiri's theorem [6] implies if/C exists, then -4 can be geomet-  
rically realized in I~ 2. In any case, the underlying space of /C  is U / C  = U ~ . a  ~(tr) = 
e(  U 12). No geometr ic  3-simplex can be mapped homeomorphica l ly  into I~ 2, so d im -4 < 
2 is necessary for  the existence of  an embedding in R 2. 

The definitions imply that all embeddings of .4 have h o m e o m o r p h i c  underlying 
spaces. The boundary of  U / c ,  bd U / c ,  consists of  all points x ~ U / c  without  open 
neighborhood contained in U / c .  Since the boundaries of  different embedd ings  are also 
homeomorphic ,  it makes  sense to define the frontier 

F r . 4 =  { t r ~  A [ r / ( a ) _  b d U / C  } . 

The upcoming  technical l e m m a  includes a relation be tween the boundary  of  U B 
and the frontier o f  -4. The boundary contribution of  a pseudodisk  d ~ B is d = 
b d d  - U (B - {d}), which is a possibly disconnected set in R z. The  set o f  boundary 
contributions is /~ ---- {d I d E B}. 
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Technical Lemma. Every pseudodisk collection in/R 2 has a two-dimensional abstract 
simplicial complex reflecting the combinatorial properties of the collection. This complex 
is generally not unique. Specifically, the following is proved in this paper. 

Lemma.  Every finite pseudodisk collection B in ]R 2 has an abstract simplicial complex 
2( = At(B) c 2 s that satisfies the following properties: 

(P1) 

(P2) 

(P3) 
(P4) 
(1"5) 

(P6) 

For each regional Q c B, the induced subcomplex 2(I Q is connected and 
x (X I  ~) = O. 
For each regional Q c_ B and d E O for which Q -- {d} is also regional, Atfa is 
connected and X (Atl,~) = 0. 
Each simplex cr E At is independent. 
The triangles containing a common edge in 2( are consistently oriented. 
2( has an embedding in ]R 2, and the underlying space of  this embedding is 
homotopy equivalent to int_U B. 
Fr Pc' is isomorphic to Nrv B. 

The six conditions are not entirely independent, as we will see. Although it appears 
that some of  the conditions have little to do with each other, we state them at once because 
they are all used concurrently to maintain the induction hypothesis in the proof of the 
lemma. 

Measuring by Integratlon. Properties (P1) and (P2) imply X can be used as the index 
set of inclusion--exclusion formulas measuring the union of the pseudodisks and its 
boundary. 

T h e o r e m .  

(i) /z(U B) = ~--~-o~x-101 (--1)dim"/Z(f-'}Cr)" 
(ii) /Z (bd U B) = )--~-o~x ( -  1)dim cr/.z(bd A o'). 

Proof. Let 8(x) be the density at x ~ ]R 2, so 

,.(u,,) =Lu .x,,,x 

Define Q(x) -- {d E B I x E d}. Q(x) is regional by construction. Furthermore, 

{ t  if x E U B ,  
x(Pc'IQ(*)) = 1 if x ~ U B. 

For x E U B this is implied by property (P1), and for x ~ U B we have a(x) = 0 and 
X(XI  o(x)) = X(0) = - 1 .  X(XI 0(*)) + 1 is used as an indicator fo rx  E U B. Let 

{1 if x E I'} or, 
ta(x) = if x r r"lcr 
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be the indicator for x belonging to the intersection of pseudodisks in tr. Note that 
a c_ O(x) i ff t~(x) = 1. Then 

/ z ( U B  ) = f~R2(X(XI~(~))+ 1),(x)dx 

= f - 2  E (--1)dimc~8(x)dx 
xel~ ,:r e..~,it,(,,),a ~ 0 

= f 2 E (--1)dim~176 
xER o EA"-IO} 

= Z (-- lldima f to(xlS(xldx 
aeA'--{O} ER2 

a~A'-lO} 

This completes the proof of (i). A similar argument is used to show (ii). The contribution 
o f d  ~ B to the boundary of  U B is measured by integrating 8(x) over d. Again we use 
an indicator function, namely 

{0 if x E b d d N U ( B - - { d } ) ,  
X(Xl~a(x)) = if x E d. 

/ 

The first part of the equation is implied by (P2). Indeed, i fx  E b d d  and a '  (x) = a (x) - {d} 
is nonempty, then O'(x) is also regional and (P2) applies. For x ~ U ( B  - {d}) we have 
O(x) = {d} and X(Xl~ (x)) = x({d})  = 1. 

The measure of the boundary of the union is therefore 

.(udu.) = ;Cfx , , x , , x  
dEB Ed 

= ~_.,f x(Xlg(X))8(x) dx 
dEB Ebdd 

xEbdd o E pt.,l~(.~) 

= E Z (--1)dimtr fx t a ( x ) t ~ ( x ) d x  
dEB aEA'la Ebdd 

( 1) dima = 

erE,Y dEtx Ebdd 

= E(--I) dim~ E/z(bddOr'qa) 
t~ErY dEo" 

= Z(-1)dim~176 [] 
crEPt" 

Influence Regions. The complex X in the technical lemma is the abstract counterpart of  
the (geometric) dual complex of a collection of geometric disks [5]. The latter is defined 
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( 
Decomposition of LJ B generated from the barycentric subdivision of L. 

by decomposing the disk union into convex closed regions overlapping only along the 
boundary, as indicated in Fig. 1.1. The complex is the geometric realization of the nerve 
of regions. It is natural to expect the complex P( be isomorphic to the nerve of a similar 
decomposition of  the union of  pseudodisks into influence regions. Such a decomposition 
can indeed be obtained from A', see Fig. 2.2 

Let L be a geometric realization of Pd, and let/C be an embedding in N2. The existence 
of/C is guaranteed by (P5). The homeomorphism e: ~ E -+ U / C  takes each geometric 
simplex convtp@r) ~ E to ~(tr) ~/C. 

Let E '  be the barycentric subdivision of  E, see, e.g., [13]. E '  is a geometric simplicial 
complex with the same underlying space, U E '  = U s In short, each edge of  E is cut 
into two by adding its midpoint as a new vertex, and each triangle is cut into six by 
adding its centroid as a new vertex and edges connecting the centroid with the vertices 
and edge midpoints. The closed star of a vertex u e E '  is the collection of simplices 
containing u and the faces of these simplices; it is a subcomplex of  E'.  

To obtain the influence region of a pseudodisk d ~ B take the vertex u = ~0(d) ~ L '  
and the underlying space of its closed star. The image under e of  this underlying space is 
a closed and connected subset of U/C. The influence region o f d  is this subset, possibly 
extended outside I..J 1~ by attaching fibers of  the deformation retraction discussed below, 
see Fig. 2.2. 

3. Proof Preparation 

The proof of  the lemma is simplified by assuming no pseudodisk is redundant, that is, 
U B # U,3 (B - {d}) for all d ~ B. For i f d  is redundant, we can take a complex A'0 that 
satisfies (P1)-(P6) for B0 = B - {d}; it also satisfies the conditions for B. 

General Proof Idea. The proof is by induction on the number of  pseudodisks, n. The 
induction basis for n = 1 is trivial. For the induction step, let B be a collection of  n > 1 
nonredundant pseudodisks, d ~ B, and B'  = B -- {d}. We show how to modify the 
complex A" = X ( B ' )  that satisfies the lemma for B '  so it reflects the addition of  d to 
B'.  d is added first as a point outside 1,3 B' which continuously grows until it equals 
d. The growth process can be understood as sweeping an arrangement of  pseudocircles 
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with another pseudocircle. Simultaneously, the complex of B '  is maintained using the 
operations of  deleting, attaching, and shelling, so that the Euler characteristic of  regional 
subcomplexes is preserved. A simple property used repeatedly in the proof of  the lemma 
is the following: 

(A1) Let `4 be an abstract simplicial complex and let/C be an embedding in ~ 2 . . 4  is 
connected and X (.4) = 0 iff U/C is simply connected, that is, U /C  is connected 
and so is R E - U/C. 

Sweeping Pseudodisks .  Le t  x be a point in d outside U B'.  The intention is to grow 
a tiny pseudodisk s around x to the final shape, d, in a continuous manner so that 
Bs = B '  U {s} is always a pseudodisk collection, except at a finite number of  moments. 
At these exceptional moments, or sweeping steps, s commits degeneracies of  two possible 
types: 

(1) there is an a ~ B' so that bds  and b d a  meet in a single point, or 
(2) there are a,  b ~ B so that bd s passes through a point of  bd a O bd b. 

It is shown in [15] that such a sweep is always possible. The sweeping steps of  type (2) 
can be further classified according to how s, a, and b intersect before and after the step. 
Because of the nonredundancy assumption and the start of the sweep outside U B', a 
total of only four types (i-iv) result as illustrated in Fig. 3.1. In particular, the following 
cases cannot happen: type (1) in which one pseudodisk is contained in the other (a c_c_ s or 
s c a), and type (2) in which one is contained in the union of the other two (s c a U b or 
a c_ s U b or b C s U a). The simplifications allow an argument that sweeping is always 
possible which is significantly shorter than that in [ 15]. We present it for completeness. 
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Triangle, half-triangle, leg, and bump. 

Sweeping Is Always  Possible. We consider the arrangement formed by the boundaries 
o f  a nonredundant  collection of  pseudodisks. The current and final configurations of  the 
sweeping curve are ~- = bd s and 8 = bd d, with g- contained in d. The sweep region is 
the region between ~- and 8. The arrangement defines vertices, edges, and chambers in the 
usual way. Let u, v, w be vertices of  the arrangement and ct and/~ curves so u ~ ff fq or, 
v = ff tq t ,  and w = ot N /3 lies in the sweep region, u v w  is a triangle if uv,  uw,  vw 
are edges in the arrangement, see Fig. 3.2. u v w  is a half-triangle if u w  is an edge but 
v w  is not; v w  is called the leg of  the half-triangle. Let  Zvw denote the vertex on the leg 
v w  closest to g-. A half-triangle u v w  has a bump if the curve that intersects its leg vw at 
Zvw intersects the leg twice, see Fig. 3.2. 

We show that g- can make progress, that is, it can proceed to 8 directly or a step o f  
type (1) or  (2) is possible. For the sake o f  contradiction, suppose this is not the case, and 
let A be a configuration with a minimum number  o f  curves in which the sweep cannot 
make progress. By  nonredundancy and minimality, all curves in A intersect both ff and 
8. There are vertices in the sweep region, for otherwise g- could advance to 8 without 
any sweep step. A has no triangle, for otherwise a step o f  type (2) would be possible. It 
follows A has half-triangles. 

We prove by induction over the number  o f  curves intersecting a leg that every half- 
triangle in A has a bump. I f  only one curve intersects the leg it must  form a bump, 
or else there is a triangle in A. This forms the basis o f  the induction. Let UVoWo be a 
half-triangle with leg oowo. Suppose the curve Y1 that intersects Vowo at wl = zo0w0 
is not a bump, that is, y~ also intersects the segment uvo of  g-, say at vertex Vl. Now, 
vovl wl  is a half-triangle, and by the induction hypothesis it has a bump, say created by 
7'2, which intersects g- at v2. VlV2W2 with w2 = zo, w, is again a half-triangle so it has a 
bump, say created by Y3- A continuation o f  this argument  creates an infinite sequence 
o f  half-triangles with bumps all o f  which are different, see Fig. 3.3. This contradiction 
implies the inductive step, so every half-lriangle has a bump. 

tOl 

/ 

Fig. 3.3. Sequences of half-triangles and bumps. 
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Finally, using the fact just proved, we again find an infinite sequence of half-triangles 
and bumps starting with any half-triangle. Cycling around ff would require pairs of  curves 
intersecting at more than two points, so all half-triangles are different, see Fig. 3.3. This 
contradicts the existence of a configuration in which the sweep cannot make progress. 

Deleting and Collapsing.. We need additional definitions to describe the maintenance 
of X during the sweep. Let r be a simplex in an abstract simplicial complex .,4. The 
subcomplex A'  = A - .Air is said to be obtained from A by deleting r .  If  .Air has a 
unique maximal simplex 0 ~ r,  then the deletion is a collapse. The inverse operation of 
a collapse is an anticollapse, and the inverse of a deletion is an attachment. A collapse 
(or anticollapse) does not change the Euler characteristic, that is, X (.A') = X (.A). This 
is because .Air = .A[~ is isomorphic to a simplex of dimension d i m 0  - dim r - 1 _> 0 
and hence X (.A[~) = 0. A deletion (or attachment) preserves the Euler characteristic iff 
~((.AIr) = 0, which is, for example, the case if it can be decomposed into a sequence of 
collapses (or anticollapses). 

Shelling. Suppose X = X(Bs) is an abstract simplicial complex that satisfies the 
properties stated in the lemma. (P2) expresses a certain shelling property of  XI Q. We 
show it is implied by (P 1) and (P5). The inductive proof of the lemma can therefore omit 
any further argument for (P2). 

To argue the implication and describe the shelling property, let 0 -- Bs be regional 
and d E 0 so Q' = 0 - {d} is also regional. Then 2'[~' is obtained from XI ~ by deleting 
d, that is, 

X l  ~' = x I  Q - .~'la = .~1 ~ - X l ~ .  

The operation preserves the Euler characteristic of the induced subcomplex because 
x(XL o) = X(X[ ~ = 0 by (PI). X[ ~' and X[~ are both subsets of  X[ ~ It follows that 
the Euler characteristic of X]~ is 

x (X l~ . )  = x ( X I  ~) - x ( X I  ~') = O. 

To see that A'l~ is connected consider the link of d in XIS. Its Euler characteristic is the 
negative of the Euler characteristic of  the star and therefore also 0. Furthermore, X] e 
and X[Q' are both connected by (P1). By (P5) they can be embedded in ]R 2, and by (A1) 
their embeddings are simply connected. It follows d e Fr (XIQ), and its link in X[ ~ is a 
subeomplex of X [~' with Euler characteristic 0. The link of d is therefore connected, or 
else 2t'[Q is not simply connected. This finally implies the star, X[~, is also connected, 
see Fig. 3.4. 

Deformation Retraction. A brief discussion of homotopy equivalence is needed to 
prepare for the inductive maintenance of property (P5). The subsets X = U/C  and 
Y = int U B of IR 2 are homotopy equivalent if there are continuous maps f :  X --+ Y 
and g: Y --+ X so g o f  is homotopic to the identity on X and f o g  is homotopic to the 
identity on Y, see, e.g., Chapter 2 of [13]. To prove homotopy equivalence it suffices to 
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Fig. 3.4. 
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d is attached to 2(10' to form XI o. 
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construct  a deformation retraction, that is a continuous map r: Y x [0, 1] --+ Y with 

r ( y ,  O) = y for all y E Y ,  
r (y, 1) 6 X for all y E Y, and 
r ( y ,  t) = y for all y E X and t ~ [0, 1]. 

Such an r exists only if  X __c Y, that is, every simplex r ~ X is embedded in the 
interior o f  the region covered by the pseudodisks. That this is the case will be maintained 
inductively. The deformation retraction is constructed by decomposing Y -  X as follows. 
Let x = b d a  r b d b  be a point on b d Y .  By (P6), r/(a) and r/(b) are points on b d X .  
Find a simple closed curve connecting x with 0(a)  inside Y - X, and find another one 
connect ing x and 0 (b), see Fig. 3.5. The existence o f  pairwise noncrossing curves is 
maintained inductively. 

Each region in the decomposition is homeomorphic  to a half-open square. The (op- 
posite) edges that belong to the square map to two o f  the curves. The other two edges do 
not belong to the square and can be mapped by limit considerations. We define 

q: (0, 1) x [0, 1] ~ ]R 2 

so 0 x [0, 1] maps to a vertex ~7(a) or edge rl(ab) contained in the boundary o f  3[, 
and 1 x [0, 1] maps to a point or an edge (a component  o f  a boundary contribution) in 
bd Y. The maps q can be chosen so they. agree at their overlap, which are the curves 
decomposing  Y -- X. 

There is one exception to this rule, namely when a pseudodisk, a,  is disjoint f rom all 

Fig. 3.5. Decomposition of [_JB outside [_JIC. 
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other pseudodisks. In this case inta - 0(a) is an open annulus and forms a region by 
itself. The corresponding map q glues the square at q(u, O) = q(u, I). 

The restriction of a map q to an open interval (0, 1) x v, v ~ [0, 1 ], 

f :  (0, 1) - ~  ]l~ 2, 

is called afiber. The above construction amounts to writing Y - X as the disjoint union 
of fibers. The deformation retraction is defined by "moving" points along fibers toward 
X. Specifically, let y ~ ~ - X, f the fiber covering y, and u E (0, 1) so y = f (u) .  Then 

r(y, t) = f ( (1  - t)u). 

Inside X, r(y, t) = y for all t ~ [0, 1]. r is continuous by construction. Furthermore, 
for t = 0 we have r(y, O) = f (u)  = y, and for t = 1 we have r(y, 1) = f ( 0 )  E X, as 
required. 

4. Proof  

As explained above, the proof is by induction and a pseudodisk is added by sweeping out 
its area. At the start of  the continuous sweep, it is sufficient to add an isolated vertex, s, to 
the complex X(B')  to obtain X = X(Bs). During the sweep, no change in X is needed 
as long as the combinatorial structure of the arrangement of  pseudocircles is preserved. 
Except for (P5) all properties of the lemma are trivially maintained. The modification 
of the deformation retraction is not difficult and details are omitted. Thus, we only need 
to verify that X can be updated appropriately at the sweeping steps so as to preserve 
(P1)-(P6). For each type of sweeping step we further distinguish whether or not the step 
changes the combinatorial structure of  bd U Bs. For a sweeping step, the focus is the 
point x ~ ]R 2 where the degeneracy occurs, and the background is the set of pseudodisks 
/~ _ B'  that contain x in their interior. The corresponding subcomplex is denoted by 
B = XI #. A sweeping step is a boundary step if/~ = 0. 

The homotopy equivalence of (P5) and the isomorphism of (P6) need to be verified 
only at boundary steps. For nonboundary steps it turns out that X needs to be changed only 
for steps of  type (iii). A sweeping step creates a unique new chamber in the arrangement 
of pseudocircles, and we denote by v _ Bs the collection of  pseudodisks that cover this 
chamber; reg, ,  v contains this new chamber. For steps of  type (i), (ii), and (iv), v has not 
been regional before the step and becomes regional after the step. For steps of  type (iii), 
v may or may not be regional before the step, and it is certainly regional after the step. 

Type (i), Boundary Case. The growth of s is illustrated in Fig. 3.1 (i). The only change 
in X is the addition of the edge {s, a}, as indicated in Fig. 4.1. (P1) holds for v = {s, a} 
because XI v contains only the new edge together with the two vertices and the empty 
set. All other regional subcomplexes are unchanged, so (P1) holds in general. Property 
(P3) is clear, and (P4) is untouched. 

For (P5) we use the existence of the deformation retraction for int [_J Bs when s and 
a touch at point x. x has two fibers, one in s and one in a,  and the union of the two, 
connected at x, embeds {s, a}. The change in the deformation retraction is indicated in 
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Fig. 4.1. The boundary case of a type (i) sweeping step requires the addition of an edge reflecting the overlap 
between s and a. 

Fig. 4.1. Finally, the only new set in Nrv/)~ is {g, ~} and the only change in F r X  is the 
addition of {s, a}, so (P6) also holds. 

Type (i), Nonboundary Case. The growth of s is again illustrated in Fig. 3.1(i), but 
now the background is nonempty. No change in X is required, so (P1) holds for all 
regional subcomplexes, except possibly for v = / ~  td {s, a}. To verify (P1) for v, note 
that/3,/5 tA {s},/5 tA {a} are all regional, both before and after the sweeping step. So/3, 
~s  = r~'l #t-J{s}, a n d ' B a  = ,)~'l ~Ula} all satisfy (P1). Furthermore, {s, a} ~ X because this 
would violate (P3) before the step. Hence, XI ~ = B~ U Ba and XI ~ is connected because 
B, Bs, and Ba are connected. Observe that each simplex in XI ~ either belongs to all three 
subcomplexes, or it belongs to only one. Hence, 

x(Xl" )  = x (t~.) + x(~a) - x(t3) = 0 ,  

and (P1) holds in general. (P3) and (P4) hold because {s, a} ~ X, and (P5) and (P6) hold 
because/~ ~ ~. 

Type (ii), Boundary Case. The growth of s is illustrated in Fig. 3.1(ii). The disap- 
pearing chamber in the pseudocircle arrangement is not covered by any pseudodisk, so 
{s, a}, {a, b}, {b, s} ~ P( before the sweeping step because of  (P6). It is thus possible to 
add {s, a, b} to X, and this is the only change necessary, see Fig. 4.2. The subcomplex 
induced by v = {s, a, b} consists of this triangle and its faces, so X (XI ~) = 0. No other 
regional subcomplex changes, so (P1) holds in general. (P3) holds because {s, a, b} is in- 
dependent and the step does not affect the independence of  any other simplex. (P4) holds 
because the point of bd s A bd a contained in b is not covered by any other pseudodisk, 
and ditto for bd a fq bd b and s and for bd b f3 bd s and a. 

The embedding of X before the sweeping step has a hole bounded by rl(sa), rl(ab), 
and rl(bs). This hole together with its boundary is a homeomorph of a geometric triangle 
and can be used as rl(sab) embedding {s, a, b}. The deformation retraction becomes 
the identity inside the former hole and remains unchanged, otherwise. Finally, (P6) still 
holds because/~s and Fr X change in unison. 

Type (ii), Nonboundary Case. The complex X remains unchanged. Since the triangle 
{s, a, b} ~ X, the validity of (P4) is not affected. Similarly, {s, a}, {a, b}, {b, s} all 
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O(s) 

Fig. 4.2. The boundary case of a type (ii) sweeping step requires the addition of a triangle reflecting the 
overlap between s, a, and b. 

remain independent, so (P3) still holds in case X contains one or more of  these edges. 
(P1) needs to be verified only for v = / ~  tA {s, a, b}. For all proper faces r C {s, a,  b}, 
/33 --- Xt ~u~ is connected with Euler characteristic 0. Therefore, XI ~ is connected. To 
see that the Euler characteristic vanishes consider 

X =  ~ (-- 1)dxm ~X (~r)-  
rC_{s,a,b} 

Each simplex cr ~ Xt" also belongs to one or more of the/33, ~r C {s, a,  b}, and we have 

X = ~ y ~  (-- l )dim r (-- l ) dimcr 

rC{s,a,b} cr~B~ 

= ~ (--1) dxmcr ~ (--1) dimr 

a ~ X I  v 3 ~ v - a  

= 0  

because all v - ~ are nonempty. X (B3) = 0 for all proper subsets r C {s, a.  b}, hence 
X (XI v) = 0. So (P1) holds in general. Finally, (P5) and (P6) are unaffected because 

Type (iii), Boundary Case. The growth of s is illustrated in Fig. 3.1 (iii). Because s 
starts as x outside U B',  s ~ a tA b; so a A b _ s after the sweeping step. By (P6), 
{a, b} is in the frontier of  X and thus also in X. Furthermore, {s, a, b} e X. This is 
because every r c {s, a,  b} is regional before the sweeping step. Indeed, a violation of 
(P1) can be avoided only if all z _ {s, a,  b} belong to X. To reflect the change brought 
about by the sweeping step, we collapse {a, b}, which amounts to removing {a, b} and 
{s, a, b} from X,  see Fig. 4.3. There is no new regional subset. Because a fq b _c s after 
the sweeping step, each regional Q c Bs that contains a and b also contains s. So for 
each regional subcomplex, the change is either a collapse or does not affect it at all. It 
follows that (P1) holds after the step. (P3) would be violated only by {s, a,  b}, which got 
removed. (P4) clearly remains valid. 

To maintain the deformation retraction for (P5), we choose a fiber from x to an 
arbitrary interior point of rl(ab) and extend it to rl(s). The subsequent changes in the 
deformation retraction are easy and are illustrated in Fig. 4.3. To verify that (P6) holds 
after the sweeping step, note that {a, b} is removed from Fr,a:' and {s, a}, {s, b}, {s} are 
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, i ~  t" 

r/(s) 

Fig. 4.3. The boundary case of a type (iii) sweeping step requires the removal of an edge and a triangle. The 
deformation retraction is maintained by extending the fibers from x through rl(sab) to rl(sa), rl(sb), and rl(S). 

added, unless they already belong to the frontier. Similarly, h N/~ = 0 after the sweeping 
step, and g n ~, g n /~, and g either become  or remain non-empty.  So (P6) is still valid. 

Type (iii), Nonboundary Case. The growth of  s is again shown in Fig. 3.1 (iii), but now 
fl ~ ~. Consider  first the case {s, a ,  b} ~ 2,. One point  o f b d a  n b d b  is contained in s 
and the other is contained in each pseudodisk in 15. It follows that a n /~ = 0, so there 
are two triangles in 2, that contain {a, b}. One is {s, a ,  b} and the other is {c, a ,  b}, with 
c e fl, see Fig. 4.4. Note that a ,  b, c, s intersect as shown in Fig. 4.5. Indeed, a contains 
one point  o f  bd c N bd s and b contains the other. Anything else would contradict  the 
nonredundancy assumption. There cannot  be any edge connect ing s with B = 2,18. This 
is because  15 U {s, a} and 15 U {s, b} are both regional before the sweeping step. I f s  is 
connected to B, then at least one of  the two subcomplexes  induced by 15 U {s, a} and 
15 U {s, b} is not s imply connected. With (A1), this would imply a violation of  (P1). 

Af ter  the sweeping step, (P1) fails for  2,1 ~, v = 15 U {s}, and (P3) fails for  {s, a ,  b}. 
We cla im that flipping {a, b}, that is, removing {a, b}, {s, a ,  b}, {c, a ,  b} f rom 2 '  and 
adding {c, s}, {a, c, s}, {b, c, s}, fixes the situation. It fixes (P1) because  the flip can be 
pe r fo rmed  by  attaching {c, s} through the 3-s implex {a, b, c, s} and then deleting {a, b}. 
For all regional subcomplexes,  except  possibly the new one, 2"1 ~, the corresponding 
operat ions are either void, an anticollapse, or a collapse. To see this, let 2"1 a be such a 
subcomplex,  and define r = Q N {a, b, c, s}. ~ = {c, s} does not have to be considered 
because  such a Q is regional only if  0 = 15 U {s} = v. r = {a, b} is not possible  because 
a n b _c c U s after the sweeping step. For all other r with card r _< 2 the flip has no 
effect. For card r = 3 one operation of  the flip has no effect and the other is a collapse 

rl(s) rl(s) 

Fig. 4.4. The nonboundary case of a type (iii) sweeping step requires flipping {a, b} if {s, a, b} is present. 
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k / 
%~. _S "aj 

Fig, 4.5. The configuration formed by a, b, c, s immediately before bd s sweeps through the intersection 
point of  bd a and bd b outside s. 

or an anticollapse. For r = {a, b, c, s} the operations are an anticollapse followed by a 
collapse. In any case, the Euler characteristic of ,a:'l~ remains 0. For v = /~ t_J {s}, the 
effect of the flip is that s is now connected to /3  by a single edge, which is the result 
of an anticollapse and hence X (XI ~) = 0. We conclude that (P1) holds in general. (P3) 
holds for the new simplices, {c, s}, {a, c, s}, {b, c, s}, see Fig. 4.5. (P4) holds for the new 
edge, {c, s}, and also for {a, c}, {c, b}, {b, s}, {s, a}, which are affected by the flip, see 
Fig. 4.5. (P5) and (P6) remain valid because ~ ~ 0. 

In the other cases, when {s, a, b} ~ X, no change in the complex is necessary. We 
need to verify (P1) only for v =/~  t3 {s}. Note that/~ t_J r is regional before the sweeping 
step for each r _c {s, a, b}, except for r = {s}. By (P1), the corresponding subcomplex, 
/3~ = XI ~u~, is connected with Euler characteristic 0. We claim s is connected by at 
least one edge to B = Xl p. Assume it is not. Then {s, a} ~ A' because 13s, is connected, 
and similarly {s, b} ~ ,~ because B~b is connected. However, now s is connected within 
13sab tO B via two paths, one containing a and the other b. The two paths leave a hole in 
the embedding of 13~,b because {s, a, b} ( P(. Together with (A1) this contradicts (P1). 
The embedding of A'I v is thus connected, and it is simply connected because otherwise 
there is a hole already in the embeddings of 13, B~a, or 13~b. (A1) now implies that (P1) 
holds for v and therefore in general. (P3) and (P4) hold because {s, a, b} ( A', and (P5) 
and (P6) remain valid because/~ 5~ 0. 

Type (iv), Boundary Case. The growth o r s  in this case is illustrated in Fig. 3.1(iv). 
We have fl = ~, so by (P6), {s, a} and {a, b} are both in F r X  and thus also in X. The 
change caused by the sweeping step requires that {s, b} and {s, a, b} are added to X, 

n(s) 
..- , ,  

..,,, ,,, 

Fig. 4.6. The boundary case of a type (iv) sweeping step requires the addition of an edge and a triangle. 
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see Fig. 4.6. The new regional subset of Bs is v = {s, b}, and (P1) clearly holds for 
u. All other regional Q _.c Bs either do not contain {s, b] or they also contain a, see 
Fig. 3.1. In the former case, XI Q is not affected, and in the latter case the change is an 
anticollapse in XI Q. In both cases (P1) remains valid. (P3) still holds because {s, a, b} is 
independent. (P4) holds for {a, b] because s contains the previously uncovered point x, 
and for symmetric reasons (P4) holds for {s, a} and for {s, b}. 

To show that (P5) is still valid, we embed {s, b} using the two fibers from x to r/(s) 
and to r/(b) and connect them at x to get rl(sb). The hole created by adding rl(sb) is 
bounded by ~(sb), ~(ba), and o(as). Together with its boundary it is homeomorphic 
to a triangle and can thus serve as o(sab). The deformation retraction is changed in a 
manner inverse to the change in type (iii), see Fig. 4.3. Finally, observe that F r X  and 
Nrv/)s change in the same way so (P6) follows. 

Type (iv), Nonboundary Case. See Fig. 3.1 (iv) for an illustration of  the growth of  s in 
this case. No change in X is required. The new regional subset of Bs is v = fl U {s, b}. 
Note that/3 U z is regional before the sweeping step for every r c {s, a, b}, except for 
r = {s, b]. By (P1), the subcomplexes induced by/3,/3 U {s}, and/3 U {b} are connected, 
which implies X I ~ is connected. Furthermore, X (/3~) = 0 for each {s, b} # r _c {s, a, b }. 
Observe that {s, a, b} ~ X because it is not independent before the sweeping step. This 
implies 

( -1 ) '~m~x(B~)  = O, 
rC_ls,a,b} 

by the same argument as in the discussion of the type (ii), no-boundary case. It follow 
that X (Pc'l v) = X (/3sb) = 0. Hence, (P1) holds for v and thus in general. All simplices in 
P( are still independent, so (P3) still holds. Similarly, (P4) still holds, and (P5) and (P6) 
are unaffected by the change because/3 ~ ~. 

5. Concluding Remarks 

This paper proves that every pseudodisk collection, B, in ]~2 has a two-dimensional 
abstract simplicial complex, X __c 2 B, that can be used as the index set for inclusion- 
exclusion formulas measuring the union of the pseudodisks and its boundary. Each term 
corresponds to an abstract simplex, a __. B, and measures the common intersection of  
the at most three pseudodisks in er. The proof directly translates into an algorithm for 
constructing the complex X. Its running time is dominated by the sweep and is linear 
with the number of  pairs (v, a) where v is a vertex of the arrangement and v ~ a ~ B; 
this is O(n 3) where n = card B, but note that the input to the algorithm includes the 
arrangement whose size can be | 

Similar results have been established for geometric spherical balls in R d [5], [ 14]. The 
geometric proofs do not seem to generalize to pseudoball collections, and the extension 
to ]R 3 of the sweep proof in this paper hits obstacles in the form of  nonsweepable 
arrangements. It would be interesting to decide whether the results extend to pseudoball 
collections in three and higher dimensions, or whether there are counterexamples. 

More generally, it would be desirable to develop the theory started in [5] and [14] 
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further and to study sets other than balls. The size of the largest independent subcol- 
lection determines the dimension of the complex X that can be expected. Let B be a 
finite collection of sets and let k be an upper bound on the size of  every independent 
subcollection. Then it is fairly easy to prove the union can be measured in terms of 
intersections of  at most k sets at a time: 

.(UB)= ao..(no ), (3) 
a CB ,ca rdask  

where the ao are integers. An argument generalizing ideas of  Kratky [ 12] is offered below. 
The interesting question is for which types of  sets the a~ can be chosen in { -  1, 0, -t- 1 } 
and for which there is an abstract simplicial complex like X. 

To verify (3) let cr ___ B with n = card cr > k + 1. For each z c cr, n r is the disjoint 
union of regions rego (r  U u), with v ___ cr - r .  Since cr is not independent, there is a 
maximal r with rego r = 0. By choice of  r ,  reg~ (r  O v) 5~ 0 for all nonempty v. Using 
inclusion-exclusion we get 

It follows that # ( n  a )  can be written as a - 1 , 0 , + 1  combination of measures 
/ z ( n  ( r  u v))  for strict subsets r U v C tr. This argument applies as long as n > k + 1. 
Starting with the straightforward inclusion--exclusion formula (1), all terms for subsets 
of size k + 1 or larger can be replaced by integer combinations of  terms for smaller 
subsets. 

The number 3 for pseudodisks suggests a relation to the classical Helly theorem. 
There is certainly a connection but it may not be as direct as would at first be thought. 
The geometric version of Helly's theorem [10] deals with arbitrary convex sets, and 
for such collections short inclusion-exclusion formulas cannot exist. The more direct 
connection to Delaunay triangulations [4] and to Euler's relation for convex polytopes 
is apparent from the work on geometric disks and balls. Furthermore, the significance 
of independent subcollections suggests a connection to the theory of VC dimension [9], 
[16]. It is also interesting to note the complex P( is another example of  a meaningful 
association of a space specified through a covering with an abstract simplicial complex. 
The prime examples of  such associations are possibly the nerve [ 1] and the order complex 
[2] reflecting overlap and enclosure among the covering sets. 
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