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Abstract. To each function ¢ (w) mapping the upper complex half plane H* intoitself such
that the coefficient of w in the Nevanlinna integral representation is one, we associate the
kernel p(y, dx) of aMarkov chain on R by

[a(w)—y]"l=/ (@—x)""p(y,dx).

—00

The aim of this paper is to study this chain in terms of the measure p appearing in the
Nevanlinna representation of G(w). We prove in particular three results. If x? isintegrable
by 1, alaw of large numbersisavailable. If  issingular, i.e. if @ isan inner function, then
the operator P on L>°(R) for the Lebesgue measure is the adjoint of T defined on L(R)
by T(f)(w) = f(p(w)), where ¢ isthe restriction of ¢ to R. Finally, if  is both singular
and with compact support, we give anecessary and sufficient condition for recurrence of the
chain.

1. Introduction

Denote by HT (resp. H™) the set of complex numbersw = a + ib suchthatb > 0
(resp. b < 0). An analytic map ¢ from H* to itself is called a Pick function and
is described by three parameters : a non-negative number &, areal number o and a
positive bounded measure 1 on thereal line R such that :

—+00
ortl v )

$(w)=kw+a—/

00 —Xx

for any w in H': see Donoghile (1974). This is called the Nevanlinna represen-
tation and is unique. Sometimes we denote by (k(¢), (¢), ug) the unique triple
appearing in the representation of ¢. The set of Pick functions ¢ suchthat k = k(@)
is denoted by 2.

It is awell known fact that ¢ in 21 if and only if there exists a probability
measure p(dx) on R such that

o0

[P(0)]? =/ (@ — x)71 p(dx).

—00
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(see Lemma 2.2 page 24 in Shohat and Tamarkin (1963)). Now take a constant y
in R, and do the same with ¢(w) — y. The probability p dependson y, and we get

[aw—ﬂ4=/ (@—x)"* p(y, dx). )

The kernel p(y, dx) isthe transition of aMarkov chain on R.

Denote for awhile p(y, dx) by pz(y, dx). Such akernel is closely related to
the iteration and to the composition of functions : take ¢ and ¢1 in the class 2.
Thenforwin HT and y in R

[7 o Pr(w) —y] = / (@ — )7 pgog, (v, dx)
=/ @1(@) — )™ py(y, du)

—00

/ / (@ — x)"pp(y, du) piy (v, d)

Therefore ¢ o @1 isin the class 221 and

o0

Doy (v, dx) = f py(y, du)pg, (u, dx).

—0o0

An easy consequence of thisisthat

-1
o0 ., (n)
N p"(y,dx)
so(w)—y+<[_oo—w_x )

where p™ (y, dx) isthe n'" iterate of the kernel p(y, dx). Note that if w € H™,
then the sequence (¢" (w)),,cn+ iStherefore bounded. Thisimpliesthat the Julia set
of ¢ ISR U oo (see e.g. Barnsley (1988) page 258 for definition of the Julia set of

).
If o =a+ibisin H*, denote now by 1., the Cauchy distributionon R :

po(dx) =71 [(x —a)’+ bz]_lbdx. 3

A trite example of the above Markov chainisgiven by ¢(w) = o + a + i,
with 8 > 0, corresponding to u© = 8 u; (defined by (3)) Since
1/°°a)x+l dx 1/"0 1 Bdx 1

——:and— = S
7)o x— 14+x2 : TJ)ww—xx24+p2 w+if

it follows that p(y, dx) = fty—a+ip(dx). Thusin this case, the Markov chain is
simply arandom walk governed by the Cauchy distribution p_;4 defined by (2).
A moretypical situation is offered by the Boole function @(w) = w — w1, which
correspondstoa = Oandto u = Jg, the Dirac masson 0in (1). Here, thetransition
probability p(y, dx) is aBernoulli distribution which is concentrated on the two
roots of the equation y = w — w L. The weights on these roots are such that the
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expectation of p(y,dx) is y (more generally, when ¢ is a rational function, we
shall seein Section 2 arather explicit form of the transition kerndl p(y, dx)).
The am of this paper is to study the above Markov chain in some particular
cases. To describeits contents, let usrecall some notations, definitions, and results.
When p isasingular measure, ¢ iscalled aninner function (seeAaronson (1997)
page 208). Animportant property of theinner function ¢ isthat Ibi ?3 @(a+ib) exists

andisrea for damost al a in R. A rea valued function ¢ will be said arestriction
of theinner function ¢ on R if we have ailmost everywhere

p(a) = Ew@(a +ib).

If fisamap from R to R, denote by f.u, the image by f of the Cauchy
distribution . A striking property of arestriction ¢ of the inner function ¢ isthe
following:

Pulho = Ljw) fordlwe H*. 4
This property impliesin particular that ¢ is determined by arestriction ¢. Further-
more, a converse of (4) istrue: if f : R — Rissuch that for any w in H* there
exists o’ in Ht such that fi i, = e, then either £ or — f isarestriction ¢ of
some inner function (see Letac (1977) for these two results). A consegquence of this
isthe fact that the set of inner functionsis a semi-group for composition.

Denote by .#4 the class of inner functions such that k = 1 in the represen-
tation (1). As a corollary of (4), it is shown in Letac (1977) that a restriction ¢
of a function of .#1 preserves the Lebesgue measure of R. This means that for
—co<a<b<ox:

measure of ¢ [a,b] = b — a. (5)

This paper shows three things:

(1) Given ¢ € 27 such that [ x?u(dx) < oo, then the Markov chain
(Xn)oo g issuch that lim, . o X, /n is afinite constant A (Theorem 4.1).

(2) Given ¢ € .#1 and arestriction ¢ of ¢, then the operator P on L*°(R)
which is associated to the Markov chain is the adjoint of T defined on L1(R) by
T(f)(w) = f(gp(w)) (Theorem 5.1). In the case where ¢ is rational, this opera-
tor P is nothing but the Perron-Frobenius operator associated to ¢ (see Katok &
Hasselblatt (1995), def 5.1.7 page 187), sometimes al so called the Ruelle operator.

(3) Given ¢ € .#1, and assuming that the singular measure u. has compact sup-
port, we show that (X,,)° , is recurrent when A = 0 and is transient when A # 0
(see Theorem 6.2 and 6.4). Thiswill imply that T is conservative and ¢ is ergodic
when A = 0, and that 7" isdissipative when A # 0. This extends the result of Adler
and Weiss (1973), who prove that the Boole function x — x — x~1 is ergodic
on R. Actualy our argument in the proof of the Theorem (6.4) below is a natural
extension of the Adler and Weiss' argument.

Section 2 is elementary and only of pedagogical value : we consider there the
casewhere ¢ isrational, we compute explicitly thetransition kernel and we give an
elementary proof of the result (2) in this particular case. Section 3 contains some
general remarks about our Markov chain generated by aPick function ¢. Thethree
subsequent sections are devoted to the three results above.
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2. An example: ¢ rational

Consider now the class of ¢ in 221 which are rational. In this case, 1 has no con-
tinuous part and isthe sum of afinite number n > 1 of atomsy1 < y2 < -+ < y,.
Here ¢ takesthe following form :

c1 Cn

R
Yy1i—X Yn —X

o(x) =x — A+ (6)

wherecs, - - -, ¢, arepositive numbers (infact¢; = (1+ yiz)u({y,-})) and A isreal
r=—-a+ Z vi({yi})). That such a ¢ satisfies (5) was known to Cayley (see

i=1
Glaisher (1870) and (1879)). It was proved by Szego that if arational function f
preserves L ebesgue measure, then either f or — f hasthe form (6) (See Polyaand
Szegd (1972), page 79, part |1, problem 118.1 and Szego (1934)).

We assume that n € N*. We take the conventions yg = —oo and y,,+1 = oo.
Let usfix areal number y and let us denote by «; (y) the unique root of the equa-
tion p(x) = ysuchthat y; < x < y;41, i = 0,1, ..., n. Clearly the equation
@(x) = y isequivalent to P(x) = 0, where P isthe (n + 1) degree polynomial :

PO =G —-r=—n[Jec—w =Y a]]x—w.

i=1 i=1 i
Henceao(y), a1(y), ..., a,(y)aretheonly rootsof P.Considering the coefficient
of x", we get
a) +a1(y) +Fan () =y+r+ Y v )

i=1
Since g, (y) is the reciprocal of the function ¢(x) restricted to (y;, yi+1), a;(y)

n
exists and is positive, and the identity (7) implies that Zalf (y) = 1. Define now

i=0
the probability kernel

p(y,dx) =Y aj(y)84,(»(dx) ®

i=0
wheres,, isthe Dirac masson a. Therational functionw — [@(w) — y]~* hasonly
simple polesinag(y), - - -, ax(y), with residues a’(y) = [(p’(ai(y))]_l : hence:
n /
~ 1 a; )
W) — = _ 9
[P =17 =2 o C)

i=0

Using (8), this can be written :

[P(w) -yt = / (@ — )" p(y, dx).

—00
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For fin LY(R) let usdefineTf = f o ¢. We have

Yi+1 o0
f F o) dx = / FO)al() dy.
Vi —00

Hence/oo(Tf)(x)dx = /oo f(y)dy,and T isanisometry of L1(R). Similarly,

for g in L*=(R) let us define (Pg)(y) =Za£(y)g(ai(y))=/ gx)p(y.dx).
i=0 -

If £isin LY(R), wewrite

Yi+1 e’}
/ fopx)gkx)dx = / Fa;(y)glai(y)dy.
Vi —00

o]

Hence/OO (Tf) (x)gx)dx = / f(») (Pg) (y)dy,and P isthe adjoint of T.

Somé%q[her formulas related tSO;(y, dx) can be easily obtained : for fixed y in
R and complex number z # 0, (9) gives

n -1 n
[1 —2y+n -2y A- zyi)—lci] =Y (A —zai(y) 4] (y).
i=1 i=0
Therefore we obtain the moments of p in asimple way, by considering the coeffi-

cient of z”* in both members of this equality. For instance

n

Y a(maj(y) =y +4,

i=0
Y@ Maiy) = +07+ Y ci
i=0 i=1

The proofs of these facts are simple, but we can observe that their extension to
afunction of .#1 isnot straightforward.

3. Thetransition kernel

The transition kernel is simple to understand outside of the closed support of the
measure . The following proposition shows that the restriction of p(y, dx) toan
interval which is contiguous to this support is nothing but a Dirac mass.

Proposition 3.1. Let us suppose that ¢ is defined by (1) and that w{(a, b)} = 0,
with —co < a < b < co. Then @ hasan analytic continuationin H U (a, b)) UH ™.
Denote the inverse function of ¢ restricted to (a, b) by ¥ (y). Then the restriction
¢ to (a, b) of thisanalytic continuation is real and strictly increasing, and :

V' (08yn(dx) if ye(p),pbd).
la,py () p(y,dx) =
0 otherwise

Here, 8 ;) (dx) isthe Dirac masson v/ (y).
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Proof. Thefirst two statements are standard (see Donoghtie (1974)). Denote 2 =
H* U (a, b) UH™. Clearly wehave §(w) = ¢(w) for w in H*. Since Sm@(w) > 0
for w in HT, the only zeros of §(w) — y areon (a, b).

If y &(¢(a), (b)), the function
o> /oo (@—x)"tp(y, dx)

isanalyticin , and thisimplies (see Donoghuie (1974)) that p(y, (a, b)) =0
If p(a) <y < @(b), thenyr(y) isasimple pole of [¢(w) — y]_l with residue
¥’ (y). Hence the function

s f°° p(y.dx) = ¥'(y)8yy) (dx)

w—X

isanalyticin  and thisimpliesthat p(y, (a, b)) = ¥/ (y).
It is worth mentioning that ¢ has neither fixed points nor periodic orbitsin the
half plane : this comes from the fact that

2
|2M( x)

Sm(p(w) —w) = (\smw)/ »

cannot be 0. However if we take the one point compactification, ¢ (co0) = oo with
¢'(w) = 1, thus oo is a neutral fixed point. On the other hand, ¢ can have many
fixed points and periodic orbits on R.

4. Thecase/ Xp(de) < oo
—oo

Consider ananayticmap@ : HT — H™ suchthat k = 1and/ x’u(dx) < oo

in the representation (1). Recall that w is not necessarily smgular in this section.
We denote
c(dx) = (1+ x*)p(dx),

o0
A= —«a +/ xu(dx).
—0o0

. o0 1 ® (14 x2 .
Smcef wx + ;L(dx):/ < s —x>u(dx),wecanwr|te:

R o \ X —w
awzw—x+[_;@2. (10)

We have the following large numbers law for the Markov chain associated to ¢ :
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Theorem 4.1. Let ¢ be given by (10), where ¢ is a positive bounded measure on
R. Then:

/ xp(y,dx) =y +ar (11)
/ x2p(y.dx) = (y + M? + c(R). (12

Furthermore, theMarkov chain (X,)7° jwithtransition p(y, dx) satisfies X, /n —
Awhenn — oo almost surely. If A > 0, T, = inf {n; X, > a} isamost surely
finite for any positive a. If & < 0O, T, isfinite with probability < 1.

Proof. By using the expression (10) of ¢ we can easily verify the two following
equalities:

. 1 1 A

lim wz[—~—+—+y+ }: ,
w
1
w

w—>+i00 o(w) — w?

; 3|1 1 o y+2rl_ 2
wﬂi*}oo“’[ e }_ [0+ 07+ c®).

On the other hand, if we evaluate the |l eft hand side of these two equalities by using

the definition of p(y, dx), we obtain the expressions (11) and (12).
Consider now Y, = X,, — ni. Equalities (11) and (12) imply

[E(Xn+l|Xn) =Xn+A
E(X2,11X,) = c(R) + (X, + )2

These formulas imply that (Y,,)7° ; isamartingale and that

E (i1 = Y0?1X, ) = (R,

We can now use the law of large numbers for martingales (see Feller (1966), page
238, Theorem 2) to get Y,,/n — O whenn — oo, admost surely.

Letusfixa > 0.1f A > 0, T, < oo trividly. If A < 0, T, = +o0 with apositive
probability. If 1 = 0, we get from (11), (12) and from the Schwarz inequality :

/ xp(y,dx) < /c(R) + y. (13)

Let us consider now the martingale X/, = X7, .,. Then

()] = E[() N To 0] +E[(x) (N Ta > 1]

n

00
= UE(”X1<a,~~,Xk;L<a,Xk2a / xp(Xg—1, dx))
k=1 @

+E[(x) " Ta > 1]
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y=aJa

< (sup a0, dx)) Y P(T =k +a
k=1

o0
< sup xp(y,dx)P(T, <n)+a

y=adJa
< Je(R) + 2a

Therefore (X,,);,2 ; converges, and it is easy to conclude that P [T, = oo] = 0.

To end this section, we mention here the following fact:

Proposition 4.2. In the sense of weak convergence of measures, one has
Y2 [Py, dx) = 8,(dx)] — c(dx), |yl > oo
where §, isthe Dirac masson y.

Proof. Sincethe linear space generated by the g, (x) = [o — x] "t wherew € H
isdensein Co(R), enough to prove that

o0

y? [f 8o (X)p(y,dx) — gw(y)] — / 8w(X)c(dx), y— oo.

The result is now obvious:

00 -1 00
y2 [[a} v+ / c(dx)] - y]_l:| e / c(dx)
o X — @ P )

5. The Markov chain associated to a function of .#;

In this section, we gather easy facts about the Markov chain (X,,)3> when the
governing measure p is singular.

When ¢ isin .1, p(y, dx) issingular for al y in R: the reason is that the set
of inner functions is a semi group for composition. Since w > —w ! and w
—[@(w) — y]~* are inner functions, this is aso true for w — —[F(w) — y] 2.
Thisaso impliesthat for ¢ in.#1, the Markov chain cannot be a Harris chain (see
Krengel (1985) for a definition) with respect to Lebesgue measure, although the
Lebesgue measure is a stationary measure for the chain (see Corollary 5.2). We
shall see also that in this case p(y, dx) is concentrated on the set ¢ ~1(y) aimost
everywhere with respect to y (see Corollary 5.3).

Consider & in .71, and the restriction ¢ of . Define T : LY(R) — LY(R)
by (Tf) (x) = [ (p(x)), and define P L¥(®) — L*(R) by (Pg)(y) =

g(x)p(y, dx). We show that P isthe adjoint of T':

—00

Theorem 5.1. For all fin LY(R) and g in L (R) we have

/ g(X)(Tf)(X)dX=[ F () (Pg) (y)dy. (14)
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Proof. For w in H*, denote g,,(y) = (o — y)~1. We provefirst (14) for g = g,
that isto say

/ (@—x)"Lf 0 p(x)dx = / 3@ — Y] Fody.  (15)

To prove (15) we observe that both members are analytic functions of w on
H*. Suppose that f is area function. Imaginary parts of the two members are
respectively, foro =a +ib:

> 2, 2]t Oo
/ b[x—ap+1?] foso(x)dx=n/ fop®uady)  (16)

—00

/ 1§(w) — yI72 Sme(w) f(y)dy = ﬂf F O UG (dy). (17)

where the Cauchy measures 1, and 115, are defined by (2). Using (3), we see
that (16) and (17) are equal.

Since imaginary parts are equal, real parts of the two members of (15) differ
by somereal constant a. Now if @ — +ioo, since |¢(w)| — oo one can easily see
that a is zero. This proves (14) for areal f, For an f with an imaginary part, one
easily extends the result.

Equality (14) is true when g is a constant. Therefore (14) is true also for the
g’'sinthe closure C (in the sense of sup norm) of the space generated by 1 and the
gw'S, With w in HT. The set C is the space of continuous functions f on R such
that lim,_ o f(x) and lim,_, _ f(x) exist and are equal.

If —oo <a < b < ooandg(x) = l.p(x), we choose a positive sequence
gn of C suchthat g, (x) 1 g(x) for al x. Hence (Pg,)(y) 1+ (Pg)(y) for dl y.
Therefore :

/ f(P(y)ydy = lim. / F) (Pgn) (0)dy
= lim / " fov@adx

=/ fopx)gx)dx.

The second equality is given by monotone convergence and the third one is
given by bounded convergence. Since formula (14) is now proved for g = I, p),
the extension to any g in L°°(R) is standard.

Corollary 5.2. If gisin.#1,theLebesguemeasureon Risstationaryfor p(y, dx).

Proof. Wetake g = I, With —oo < a < b < oo and f;, = l(—p,») in Theorem
5.1, which gives:

b n
/ Ly (0(x)) dx = f Py, (@, BY)dy.

—n
o0

Takingn — oo, we get thedesiredresult : b —a = / p(y, (a, b))dy.

—00
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Corollary 5.3. If gisin.#1,
p(reie)) =1 foramostall y.

Proof. For ¢ real, denote g; (x) = exp[it@(x)]. Taking f in L1(R), from Theorem
51weget:

/ f(y)/ eXp[itw(x)]p(y,dX)=/ foek)explite(x)]dx

= / Jf(y) exp(ity) dy.

Hence: o
oity 2/ explite(x)] p(y,dx) foramostal y.
—00

Thisimpliesthat theimage p(y, dx) by ¢ isthe Dirac masson y (for amost al y).
6. Recurrence-transience for p compact and singular
In this paragraph we consider the function ¢ of the form (10) and we suppose that

the measure c is concentrated in the interval [A, B]. We also assumethat A and B
bel ong to the support of ¢. Therestriction ¢ of ¢ hastheexplicit formfor x ¢[A, B]

B
o) = x — A+ f cdt) (18)

A t—x

On(—o0, A) and (B, 00), g isstrictly increasing and wewriteg(A) = limy4 4 ¢(x)
< +ooand¢(B) = lim, g ¢(x) > —oo (remark that ¢ (A) and ¢ (B) can befinite
if ¢ isnot rational).

We denote by 6(y) (resp. 6—(y)) theinverse function of ¢ restricted to (B, oo)
(resp. (—oo, A)). Thefunction 6 isdefined on (¢ (B), +o0) andisvauedin (B, co).
If » = 0, obviously ¢(B) < B and ¢(A) > A. Thusiteration of 6 and 6_ make
sense.

The following proposition explains the importance of 9 :

Proposition 6.1. With the above hypothesis, for y > ¢(B), the restriction of
p(y, dx) to (B, oo) isequal to 6'(y)dg(y), where 8q(y) isthe Dirac masson 6(y).

Proof. Apply Proposition 3.1 to (a, b).

We choose the following definitions of recurrence and transience for aMarkov
chainon R :

Definition 6.1. A Markov chain (X,,)7° ; valued in R is said to be recurrent if for
any open interval 1

P {ﬂ Utxa € 1}} =1

k>0 n>k
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It issaid to be transient if for any bounded interval 1 we have
o0
Y P[X, el] <oo.
n=0

Notethat the definition iscompatible with the case of an aperiodic randomwalk
in R (see Feller (1966)). It takes “recurrent” and “transient” in the strongest sense.
One could build Markov chains on R which would neither recurrent nor transient
in the above sense.

Theorem 6.2. Denote by o2 = ¢ ([A, B]) . Wth the above hypothesis, for y —>
+00

o2 1T (B ) 1
0(y)=y+k+—+—2|:/ xc(dx)—ko]+0(—2> (219
y y A y
2
1
0 =1-"+o (—2> . (20)
y y
Furthermoreif » = 0 and if 8" (y) isthe n” iterate of 6, then we have :

limn=Y20"(y) =ov2 and 0’ (0"(y)) =1- ) +0 (3) .
ntoo 2n n

B
Proof. Sincey = 9(y)—k+/ (t —0(y)"Le(dr) fory > ¢(B), clearly 6(y) =
A

2
1
Y+ A+ o) ande(y)=y+/\+%+o<;>.Now

2 B y
[0 =3 =y =Ty =y [* (7= 1) etan
= —A02+/ xc(dx) +o(1)
which gives (19). Thus
M S [H/OO c(dx) }—1
VE o) T e (=0

and we get easily (20).

Suppose now that A = 0. The definition of 6 impliesthat 6(y) > y. Clearly the
increasing sequence 6" (y) has no finite limit. From (19) we infer that there exists
aconstant k > 0 such that, forany y > ¢(B) :

o k
- 259(}’)§}’+7+F- (22)
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6" (y)

We show that liminf,,_
exists N (¢) such that, forn > N(e) :

o k
(1—ew2n (1—e)2022n
This can be checked by Taylor expansion of both members with respect to & =
1/+/2n. Thisgives

o(l—e¢) h? 3 o 2 4
; [1+m+0(h)}zﬁ(l—e)[l+h +0(h)]-

> o. To do this, we fix ¢ and observe that there

o(l—e)vn + >o(l—e)W2n+2. (23)

which istrivialy true for 4 small enough.
We take now N’ such that 6V (y) > o (1 — €)/2N(e). (22) and (23) give for
n>N":

0" (y) > 0 (1 —€)y/2N(€) + 2n — 2N,

9}’1
henceliminf,_ o)

>o0(l—¢)foranye.

n
We show that lim sup ")

n
that there exists N (¢) such that forn > N(e) :
o n k
A+e)W2n  (A+e)?022n

We choose N’ > N(e) suchthat y < o(1+ €)v/2N'. (22) and (24) give for all
neN:

< 0. Taking ¢ > 0 we show in the same manner

o(l+eW2n + <o(l+e)W2n+2 (24)

0"(y) <o (l+€)V2N' + 2n,

91‘1
(21) <o(1+¢) forany ¢, and (21) follows.

hence lim sup

Corollary 6.3.

ry, ) <)
y=oo1—6'(y)  c(R)

for anyinterval I = [a, b] suchthat c({a}) = c¢({b}) = 0.

Proof. UseLemma4.2 and (20).

We now state the main result of the paper:
Theorem 6.4. If A = 0, and ¢ has compact support, the chain is recurrent.

Proof. Let I an open and non empty interval of R and let (X;,)7° , be the Markov
chain. We prove that

P [X, € I forinfinitely many n] = 1.
We distinguish thecasesc(/) > Oand ¢(/) = 0.
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First case, c(1) > 0: From Corollary 6.3 there exists yg > ¢(B) such that :

p(y, ) c(l)
- - > _—— for . 25
A-oG) 207 T )
Denote
Ty=inf{n; X, >y}, Si=inf{n>T1; X, el}

andfork > 1:
T =inf{n > Si—1; Xn>yo}, Sk=inf{n>T; X, eI}

with the convention T or S; = oc if thedefining setisempty. Theorem 4.1implies
that Ty < oo as. andthat Sy_1 < oo as. implies Ty < oo as. Therefore, in order
to prove that 7, and Sy are finite a.s., enough is to show that S; < oo as. The
remainder of the proof comes from the Markov property.

Without loss of generality, we suppose that Xo = y > yg with probability 1.
We introduce the stopping time

Ry =inf{n; X,_1> X,}.

From Proposition 3.1 we get

[Ry > n] ]—[9 [e (y)]

From (21), we get that lim, .o P [R, > n] = 0 and that R, < oo as. Equality
(25) implies that :

c(l)
7.
Since {X,, > yo} happens infinitely often, a standard argument using the Markov
property showsthat (26) implies S1 < oco.

P[Xg, €1]> (26)

Second case, ¢(I) = 0: Webegin by asimpleremark : By (10), if I isan open
interval such that (1) = 0, thefunction ¢ restricted to 7 is strictly increasing, and
@(I) isan open interval. We prove now the following statement:

(*) If I isanopeninterval, there exist an integer k such that ¢* (1)
isan open interval with ¢ [* ()] > 0

To prove (*) we shall assume that for any integer k the measure ¢ does not
charge ¢*(I). From the preceding remark, ¢*(I) is an open interval for all k. We
denote I = (a, b) and uy = ¢¥(b) — ¢*(a). There exists & in ¢¥(I) such that

U1 = urg' (&) @7
Since R
, c(dt)
-1 1, 28
@ (&) + sy > (28)

the sequence (uy )< IS strictly increasing.
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Suppose first that there exists an infinite number of k such that
¢ (I)N[A, B] # 0 (29)

For ak such that (29) holds, we have ¢* (1) C (A, B), since ¢ [¢*(I)] = 0 and

since A and B arein the support of c. Thusé, € (A, B). But
_ ; / c([A, B])
K —A<m§l23<ﬂ(§) >1+ B2

Thus uz41 > xuy for al k such that (29) holds and u; —> +oo. Hence ¢* (1)
cannot be contained in (A, B) for an infinite set of k : contradiction.

A consequence is that there exists ko such that ¢*(1) N [A, B] = @ for dll
k > ko. We prove that this also leads to a contradiction. Without loss of generality
we may assumethat ko = 0and A < B < a < b. Suppose that ¢¥(a) > B for
all k. This would imply that the sequence (¢*(a)), ., hes alimit« > B since

(¢*(@)), ., isadecreasing sequence . But > B would imply ¢(a) = a, which

isimpossible since
B
d
(p(oz)—oczf c(dr) < 0.
A O —t

B
Similarly, « = B wouldimply B = Iiirg o(x) and/ (t —x)"Le(dn) J Owhichis
x A

clearly impossible. Thusthe sequence ¢* (1) cannot beentirely containedin (B, o)
for al k. The same reasoning holds for (—oo, A).
We know now that there exists an infinite number of integers k such that

(¢“@.¢*®) € (B.oo) ad (¢+1@). ¢ 1)) € (=00, 4)
For such an integer k, we get o*t1(b) < A = ¢*(b) < 6_(A) and
up = ¢*(b) — ¢*(a) < 6_(A) — B.

Henceu = limg_ oo ux < 6_(A) — B.
There exist two infinite sequences (t,);> ; and (s,); > ; suchthat 0 < 1 < 51 <
- <ty < Sp < tyy1--- and such that

o*(I) c (B,o0) if0<k <tiors, <k<ty1,

k(1) C (=00, A) ift, <k < s,.

If s, < k < tyy1 (r€Sp. 1, < k < s,,), the sequences ¢ (a) and ¢* (b) are de-
creasing (resp. increasing), because p(x) < x foral x > B.Henceifr, <k < s,,
o' (a) < ¢*(a) < A. Without loss of generality we assume that uy > u/2 for all
integers k. Thus u,,_1 > u/2. Thisimpliesthat (B + u/2) < ¢"(b) < A and
u,, < u.Hencewegetp(B+u/2)—u < ¢"(a). Thesamereasoning holdsto show
that ¥ (b) < ¢* (b) fors, < k < t,,1and¢* (b) < ¢(A+u/2)+u. Thereforewe
have proved that the sequences (¢ (a)),—, and (¢* (b)), , are bounded by some
constant C.
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We use now (28) and denote

g = min ¢'(§) = L U4 B)
HE (B (B — A)?

Identity (27) impliesthat u; — oo. Thiscontradicts uy — u < 6_(A) —
Hence the statement (*) is proved. We now use it to prove the recurrence of the
chain.

Let k be the nonnegative integer such that ¢(7) = --- = ¢ (¢*~1(I)) = 0 and
¢ (¢*(1)) > 0. Let usassumethat * and its derivative are bounded on 7 (If not,
can be replaced by a smaller interval). We claim that

inf p®, >0 (30)
yepk()

Taking y in ¢* (1), there exist a sequence yo, y1,---, Yi—1, Y« = y such that
(i) =yi+1,i =0,---, k—1and

PP, D = p O, 1) p Gk—1, k=2 -+ p (1. {yo})
From Proposition 3.1: p (y;, {yi—1}) = 1/¢’(yi—1). Hence

PP D = H[ (Vo0)]

where y = ¢*(yp) anda < yo < b.

Now, to prove that X,, e I infinitely often we use the fact that X, € ¢*(I)
infinitely often, the first part of the proof of the theorem, and condition (30). The
proof is now complete.

-1

Theorem 6.5. If & # 0, the Markov chain is transient.

Proof. Wetake L > Oand I = (—o0, ), where « is any positive number, and
we prove that Z P(X, € I) < oo forany xp in R. The function 6 is defined on

n>0

(p(B), 00) asin Theorem 6.2. Clearly iterates 6" of 0 satisfy
" 1

/ n 0-2 1
o' [0 (y)]:l—m—i—o = fory > B
From Proposition 3.1
n—1 '
P[Xit1=0(X), i=0....n=UXo=y]=[]0'['].

Therefore P [X,,41 = 6 (X,,) Vn|Xo = y| > 0. From the zero one law :
Py [3Xnt1=0(X») Vn = N] =1.
This ends the proof.
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