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Abstract. If X is a symmetric Lévy process on the line, then there exists a non-decreasing,
càdlàg process H such that X(H(x)) = x for all x ≥ 0 if and only if X is recurrent and has
a non-trivial Gaussian component. The minimal such H is a subordinator K . The law of K
is identified and shown to be the same as that of a linear time change of the inverse local
time at 0 of X. When X is Brownian motion, K is just the usual ladder times process and
this result extends the classical result of Lévy that the maximum process has the same law
as the local time at 0. Write Gt for last point in the range of K prior to t . In a parallel with
classical fluctuation theory, the process Z := (Xt −XGt )t≥0 is Markov with local time at 0
given by (XGt )t≥0. The transition kernel and excursion measure ofZ are identified. A similar
programme is outlined for Lévy processes on the circle. This leads to the construction of a
stopping time such that the stopped local times constitute a stationary process indexed by
the circle.

1. Introduction

Let X = (Xt ,Px) be a Brownian motion on the circle T thought of as the unit
interval [0, 1[ equipped with addition mod 1. Write �xt for the local time of X at
position x ∈ T up to time t ≥ 0. It was shown in [Pit96] that there are stopping
times T such that the T-indexed process (�xT )x∈T is stationary under P0 (that is,
(�xT )x∈T and (�x+yT )x∈T have the same distribution for all y ∈ T). The discrete
state-space analogue of this question for Markov chains that are equivariant under
the action of a group acting on the state-space was considered in [EP97].

Motivated by a construction in [EP97], we define as follows a particular stop-
ping time T for X with the property that (�xT )x∈T is stationary. For n ∈ N put

T n0 := inf{t ≥ 0 : Xt = 0}
T nk+1 := inf

{
t ≥ T nk : Xt = k + 1

2n

}
, k ≥ 0.
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Note that T n2n is increasing in n, and it is not hard to see that T := supn T
n

2n is finite
P0-a.s. (for example, if one constructs X by wrapping a linear Brownian motion
around the circle, then T is dominated by the first time that the linear Brownian
motion hits the level 1 after hitting the level 0). It is not hard to see that (�xT )x∈T is
indeed stationary under P0 (cf. the proof of Theorem 3.1 in [EP97]).

Note further that if we define a process (Knx )x≥0 by

Knx := T nk ,
k

2n
≤ x < k + 1

2n
,

thenKnx is increasing in n for each x and the càdlàg processK := (Kx)x≥0 defined
by

Kx := inf
y>x

sup
n
Kny

has the property that P0-a.s. X(Kx) := x mod 1 for all x ≥ 0. Observe that K
is a subordinator under P0. Of course, K is just an analogue of the usual ladder
times process for linear Brownian motion.

Suppose now that we let X be an arbitrary Lévy process on T and ask whether
the same construction leads to a finite stopping time T and a finite valued process
K , which will necessarily be a subordinator under P0. If T is finite andX has local
times, then the local time process stopped at T is stationary in the spatial variable.
More generally, if T is finite then the occupation measure process of X stopped at
T is stationary in the obvious sense for random measures on T. We also note that
we can apply the recipe for defining T and K to Lévy processes on R. We will
show below that if K is finite valued and H is any non-decreasing, càdlàg process
such that X(H(x)) = x, then K(x) ≤ H(x), whereas no such H exist if K is not
finite valued.

In the R-valued case, the construction of T certainly leads to a finite stopping
time under P0 when Px{X hits y} = 1 for all x < y, andX has no positive jumps.
We leave the relatively straightforward proof to the reader. A much more interesting
case is when the Lévy measure of X assigns positive (and possibly infinite) mass
to the positive half-line, so that X no longer “creeps over levels from below”.

In this paper we consider symmetric Lévy processes on T or R and show that T
is finite if and only if X has a non-zero Gaussian component and, in the R-valued
case, is also recurrent. Moreover, we identify the distribution of the subordinator
K in this case.

Suppose now that X has a non-zero Gaussian component and is also recurrent
in the R-valued case. Set

Gt := sup ([0, t] ∩ {Kx : x ≥ 0}) ,

with the convention that sup∅ = −∞, and write

Lt :=
{
XGt , if Gt �= −∞,
0, otherwise.
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Observe that Lt is just the current maximum when X is linear Brownian motion
started at 0. We show that Z := (Xt −Lt)t≥0 is a Markov process. In the R-valued
case, (Lt )t≥0 is a local time at 0 for this process, whilst in the T-valued case this
process needs to be “unwrapped” onto the line to produce a local time.

We identify the distribution of Z and find the excursion law in the Itô decom-
position of Z into a point process of excursions away from 0. Of course, when X
is linear Brownian motion we just recover the usual fluctation theory and classical
results for excursions below the maximum, but we get new objects when dealing
with processes that have jumps. At the end of the paper we investigate some of the
properties of the zero set of Z.

For the remainder of the paper we will restrict attention to the R-valued setting
and leave to the reader the straightforward formulation and proof of the correspond-
ing T-valued results.

2. Inverses for real-valued, c̀adlàg functions

Definition 2.1. Given a càdlàg function f : R+ → R, write I(f ) for the class
of non-decreasing, càdlàg functions g : R+ → R+ such that f (g(x)) = x for all
x ≥ 0. Note that if I(f ) is non-empty, then f̌ defined by f̌ (x) := inf{g(x) : g ∈
I(f )} is also in I(f ) and f̌ (x) ≤ g(x) for any g ∈ I(f ).

Remark 2.2. Note that if f : R+ → R is continuous, f (0) ≤ 0, and the range of
f contains R+, then I(f ) �= ∅ and f̌ (x) = inf{t ≥ 0 : f (t) > x}.
Definition 2.3. Given a càdlàg function f : R+ → R and n ∈ N write

T n0 (f ) := inf{t ≥ 0 : f (t) = 0}
T nk+1(f ) := inf

{
t ≥ T nk (f ) : f (t) = k + 1

2n

}
, k ≥ 0,

with the usual convention that inf ∅ = ∞. Set

f̌ n(x) := T nk (f ),
k

2n
≤ x < k + 1

2n
.

Note that the quantity f̌ n(x) is non-decreasing in both n and x.

Lemma 2.4. The set I(f ) is non-empty if and only if supn f̌
n(x) < ∞ for all

x ≥ 0, in which case f̌ (x) = infy>x supn f̌
n(y).

Proof. Suppose first thatI(f ) is non-empty. It is clear that each of the times T nk (f )
is finite and that T nk (f ) ≤ g(k/2n) for any g ∈ I(f ). In particular, T nk (f ) ≤
f̌ (k/2n). Thus f̌ n(x) ≤ f̌ (x) for all n, k. Set f̂ (x) = supn f̌

n(x) ≤ f̌ (x).
We claim that f̂ is strictly increasing. If not, then there are three dyadic

rationals a < b < c such that f̂ (a) = f̂ (b) = f̂ (c) = s, say. By construc-
tion, f (f̌ n(a)) = a, f (f̌ n(b)) = b, and f (f̌ n(c)) = c for all n sufficiently large.
Also, we either have f̌ n(a) < s for all n or f̌ n(a) = s for all n sufficiently large,
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with similar behaviour for f̌ n(b) and f̌ n(c). The only way this could possibly hap-
pen would be if f̌ n(a) < s and f̌ n(b) < s for all n, but this would contradict the
existence of a left-limit at s for f .

Now, if f̂ (x) is not one of the countable number of points of discontinuity of
f , then f (f̂ (x)) = limn f (f̌

n(x)) = x. Because f̂ is strictly increasing, the set
of x such that f̂ (x) is a discontinuity point of f is also countable. Therefore, for
a dense set of x we have f (f̂ (x)) = x and hence, by the right-continuity of f ,
f (f̄ (x)) = x for all x, where we set f̄ (x) := infy>x f̂ (y). Note that f̄ is càdlàg
and non-decreasing, and f̄ (x) ≤ infy>x f̌ (y) = f̌ (x), so that f̄ = f̌ , as required.

The proof of the converse is similar and is left to the reader. ��
Remark 2.5. It follows from the proof of Lemma 2.4 that f̌ is strictly increasing.
Of course, this is also immediate from the properties that f̌ is non-decreasing and
f (f̌ (x)) = x.

Definition 2.6. Suppose that I(f ) is non-empty. Put

γf (t) := sup
(

[0, t] ∩ {f̌ (x) : x ≥ 0}
)
, t ≥ 0,

with the convention that sup∅ = −∞, and

f̃ (t) :=
{
f (γf (t)), if γf (t) �= −∞,
0, otherwise.

Lemma 2.7. Suppose that I(f ) is non-empty.

(i) The function f̃ is continuous and non-decreasing.
(ii) The function f̌ is the right-continuous functional inverse of f̃ , that is

f̌ (x) := inf{t ≥ 0 : f̃ (t) > x}.
(iii) If for fixed s ≥ 0 we define a càdlàg function g : R+ → R by

g(t) := f (s + t)− f̃ (s),
then I(g) �= ∅ and

f̃ (s + t) = f̃ (s)+ g̃(t), t ≥ 0.

(iv) Let g be as in part (iii) and suppose that s = f̌ (x) for some x ≥ 0, then

f̌ (x + y)− f̌ (x) = ǧ(y), y ≥ 0.

Proof. (i) It is clear that f̃ is non-decreasing and right-continuous.
Consider the left-continuity of f̃ at t > 0. There are four cases to consider:

(a) t is not in the closure of {f̌ (x) : x ≥ 0},
(b) t = f̌ (0),
(c) t = f̌ (x) for some x > 0,
(d) t = supw<x f̌ (w) for some x > 0 and f̌ (x) > t .
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In case (a), f̃ (s) = f̃ (t) for all s < t sufficiently close to t . Case (b) is obvi-
ous. In case (c), lims↑t f̃ (s) = limw↑x f (f̌ (w)) = limw↑x w = x = f (f̌ (x)) =
f̃ (t). In case (d), lims↑t f̃ (s) = x by the argument for case (c), and we also have
lims↑t f̃ (s) ≤ f̃ (t) ≤ f̃ (f̌ (x)) = f (f̌ (x)) = x.
(ii) Suppose that f̌ (x) = t for some t ≥ 0. We have limy↓x f̌ (y) = t , which
implies that f̃ (u) > f̃ (t) for all u > t .
(iii) Observe that g(f̌ (x + f̃ (s)) − s) = x, x ≥ 0, so I(g) �= ∅ and ǧ(x) ≤
f̌ (x + f̃ (s))− s, x ≥ 0. Equivalently,

s + ǧ(x − f̃ (s)) ≤ f̌ (x), x ≥ f̃ (s). (2.1)

If we set

f ∗(x) :=
{
f̌ (x), if x < f̃ (s),

s + ǧ(x − f̃ (s)), if x ≥ f̃ (s),

then f (f ∗(x)) = x, and, by (2.1), f ∗(x) ≤ f̌ (x), x ≥ 0. Therefore f ∗ = f̌ . The
result follows readily from this equality.
(iv) This is immediate from the proof of part (iii). ��

3. Existence of inverses for Ĺevy processes

Let X = (�,F,Ft , Xt , θt ,Px) be a symmetric Lévy process on R. That is, X is
a conservative R-valued Hunt process such that Px{Xt ∈ A} = P0{x + Xt ∈ A}
and P0{Xt ∈ A} = P0{−Xt ∈ A} for all x ∈ R, t ≥ 0, and Borel sets A. For the
convenience of the reader, we have tried to use [Ber96] as a unified reference on
Lévy processes, and we refer the reader there for original bibliographic citations.

Recall that

P0 [
exp(iξXt )

] = exp (−t#(ξ)) , ξ ∈ R,

where

#(ξ) = σ 2

2
ξ2 +

∫
R\{0}

(1− cos ξx) ν(dx)

for some σ ≥ 0 and symmetric measure ν such that
∫
(x2 ∧ 1) ν(dx) < ∞. Note

that

lim
|ξ |→∞

#(ξ)

ξ2
= σ 2

2
. (3.1)

(see Proposition I.2 of [Ber96]). When σ > 0 we say that X has a non-trivial
Gaussian component.
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Notation 3.1. For q > 0 set

κ(q) :=
[
σ 2

2π

∫
1

q +#(ξ) dξ
]−1

,

with the convention that 0−1 = +∞ and +∞−1 = 0.

Notation 3.2. Write Sx := inf{t > 0 : Xt = x} for x ∈ R.

Theorem 3.3. If X is recurrent and has non-trivial Gaussian component, then
I(X) �= ∅, Py-a.s. for all y. Otherwise, I(X) = ∅, Py-a.s. for all y. In the former
case, K := X̌ is a subordinator under P0 with

P0[exp(−qKx)] = exp (−xκ(q)) .
Proof. Put T nk := T nk (X) and Knx := X̌n(x), in agreement with the notation in the
Introduction.

Suppose until further notice that X has a non-trivial Gaussian component and
consider first what happens under P0.

By Lemma 2.4 we need to show that supn K
n
x is finite P0-a.s. for each x ≥ 0 if

and only if X is recurrent.
By (3.1) ∫

1

q +#(ξ) dξ <∞, q > 0. (3.2)

By Corollary II.20 and Theorem II.19 of [Ber96],X has continuous resolvent den-
sities (uq)q>0,

P0[exp(−qSx)] = uq(x)/uq(0), (3.3)

and

uq(x) = 1

2π

∫
cos ξx

q +#(ξ) dξ. (3.4)

We claim that

lim
x↓0

uq(0)− uq(x)
x

= 1

σ 2
. (3.5)

To see this, note that

uq(0)− uq(x)
x

= 1

2π

∫
1− cos ξ

x2(q +#(ξ/x)) dξ.

By (3.1) the integrand on the right-hand side is bounded above by c(1− cos ξ)ξ−2

for a suitable constant c and converges to 2(1− cos ξ)ξ−2σ−2 as x ↓ 0. The claim
(3.5) now follows from dominated convergence and the observation∫

1− cos ξ

ξ2
dξ = π.
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It follows from (3.3), (3.4) and (3.5) that

P0[exp(−q sup
n
Knx )] = lim

n
P0[exp(−qKnx )]

= lim
n

P0[exp(−qS2−n)]
�2nx�

= lim
n

[
uq(2−n)
uq(0)

]�2nx�
= exp (−xκ(q)) . (3.6)

Therefore, supn K
n
x will be finite P0-a.s. if and only if the rightmost term in (3.6)

converges to 1 as q ↓ 0. This, however, will occur if and only if the integral in (3.2)
goes to ∞, and this, in turn, is equivalent to X being recurrent when (3.2) holds
(see Theorem I.17 of [Ber96]).

If I(X) is non-empty P0-a.s. and so K = X̌ is finite valued P0-a.s., then it
is clear from Lemma 2.4 that each Kx is a stopping time for X. Moreover, it fol-
lows straightforwardly from Lemma 2.7(iv) and the Lévy property of X that K is
a subordinator under P0 with the stated Laplace exponent.

Now consider what happens under Py for general y (but still with the assump-
tion thatX has a non-trivial Gaussian component). In order thatI(X) is non-empty
Py-a.s. for some y ∈ R it is necessary and sufficient that I(X) is non-empty P0-
a.s. and Py{S0 <∞} = 1. From what we have seen above, both of these conditions
hold for all y ∈ R when X is recurrent. On the other hand, if X is transient, then
we have seen that I(X) is empty P0-a.s., and this certainly implies that I(X) is
empty Py-a.s. for all y ∈ R.

Suppose now that X does not have a non-trivial Gaussian component. In order
that P0{I(X) �= ∅} > 0, it must certainly be the case that P0{Sx < ∞} > 0
for all x > 0, and so we can restrict attention to X with this latter property. By
Exercise II.6.5 of [Ber96], inf{t > 0 : Xt = 0} = 0, P0-a.s. Thus, by Theo-
rem II.19 of [Ber96], X has continuous resolvent densities (uq)q>0, and (3.3) and
(3.4) hold. We can then use (3.1) and the arguments above to show that for all
x > 0, P0[exp(−q supn K

n
x )] = 0 for all q > 0, and so supn K

n
x = ∞, P0-a.s., as

required. ��
Remark 3.4. If X has a non-trivial Gaussian component, then X has local times.
If X is also recurrent, then the inverse local time at 0 is a subordinator with La-
place exponent a multiple of κ (see Proposition V.4 of [Ber96]). That is, the inverse
local time is distributed as a linear time change of K . For Brownian motion this
is equivalent to Lévy’s theorem that the maximum and local time at 0 processes
have the same distribution.

Remark 3.5. SetUx := inf{t ≥ 0 : Xt > x}, x > 0. As was remarked to us by Jean
Bertoin, the condition that X has a non-trivial Gaussian component is equivalent
(in our symmetric setting) to the condition that P0{XUx = XUx− = x} > 0 for
some (equivalently, all) x > 0. That is, there is “positive probability of creeping,
rather than jumping, over the level x.” This latter condition is, in turn, equivalent
to the condition that the ladder height process of X is a subordinator with positive
drift (see Theorem VI.19 of [Ber96] and the discussion that follows it).
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Remark 3.6. It is clear from the proof of Theorem 3.3 that I(X) �= ∅, Py-a.s. for
all y ∈ R, wheneverX is a recurrent Lévy process (not necessarily symmetric) with
continuous resolvent densities (uq)q>0 such thatρ(q) := limh↓0(u

q(0)− uq(h))/h
exists and is finite, in which case ρ(q) is the Laplace exponent of the subordina-
tor K . As was pointed out to us by the referee, the existence of this limit can be
established for certain non-symmetric processes. For example, if X has only posi-
tive jumps and non-trivial Gaussian component, then one can show using Exercise
VII.5.2(b) of [Ber96] that the limit exists and is given by

ρ(q) = 2

σ 2.′(q)
−.(q),

where . is the inverse Laplace exponent of X.

4. The “reflected” process

Note: From now on we suppose thatX is recurrent with non-trivial Gaussian com-
ponent.

Notation 4.1. As in the Introduction, put

Gt := γX(t),

Lt := X̃t ,
and

Zt := Xt − Lt .
Recall that a point y is said to be regular (resp. instantaneous) for a Markov

process (Mt ,Qx) if inf{t > 0 : Mt = y} = 0 (resp. inf{t > 0 : Mt �= y} = 0),
Qy-a.s.

Theorem 4.2. (i) The process Z is a time-homogeneous, strong Markov process
with respect to the filtration (Ft )t≥0.

(ii) The state 0 is regular and instantaneous for Z, and L is a corresponding local
time.

Proof. Given Lemma 2.7(iii), the proof of (i) is straightforward from the homoge-
neity and independence of the increments ofX, and follows the pattern of the proof
in standard fluctuation theory that a Lévy process reflected at its current maximum
is strong Markov (see Proposition VI.1 of [Ber96]).

Under P0, the closure of the zero set of Z contains the closure of the range
of a strictly increasing subordinator K . Consequently, 0 is regular for Z. Also,
inf{t > 0 : Xt < 0} = 0, P0-a.s. and so 0 is instantaneous for Z (for exam-
ple, by symmetry and the fact that the distribution of Xt is non-atomic we have
P0{∃0 ≤ s ≤ t : Xt < 0} ≥ P0{Xt < 0} = 1/2, and the result follows from the
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Blumenthal zero-one law). Therefore, by Theorem IV.4 of [Ber96] the process Z
does have a local time at 0.

Now, by parts (i) and (ii) of Lemma 2.7, (Lt )t≥0 is a continuous, non-decreas-
ing, (F)t≥0–adapted process such that the support of the random measure dL is
contained in closure of the range of K which is, in turn, contained in the closure
of the zero set of Z. Moreover, if S is a (F)t≥0 stopping time such that ZS = 0,
P0-a.s. on {S <∞}, then it follows from Lemma 2.7(iii) and the Lévy property of
X that ((ZS+t , LS+t −LS))t≥0 is independent of FS under P0{· | S <∞} and has
the same law as (Z,L) under P0. Consequently, by Proposition IV.5 of [Ber96],
L is, up to a choice of normalisation, the local time of Z at 0.

Notation 4.3. Under the assumption thatX has a non-trivial Gaussian component,
the distribution of Xt , t > 0, has a density pt under P0 (so that the density of Xt
under Px is pt (· − x)).
Remark 4.4. Note that pt is differentiable and

∫ |p′t (x)| dx ≤ (πσ 2t/2)−1/2. Con-
sequently, the joint Laplace-Fourier transform

∫∞
0

∫
exp(−qt + izx) p′t (x) dx dt

is well-defined and is given by −iz/[q +#(z)].
Theorem 4.5. Suppose that τ is a rate q exponential time that is independent of
X.

(i) The random variables Lτ and Zτ are independent under P0.
(ii) The random variable Lτ has an exponential distribution under P0 with rate

κ(q).
(iii) Under Px the random variable Zτ has characteristic function

Px
[
exp(izZτ )

] = q

q +#(z)
[

exp(izx)− iz σ
2

2π

∫
cos ξx

q +#(ξ) dξ
]

(iv) Under Px the random variable Zt , t > 0, has a density given by

Px{Zt ∈ dy}
dy

= pt (y − x)+ σ 2
∫ t

0
ps(−x) p′t−s(y) ds

Proof. Part (i) is a general result from excursion theory, as is the claim in part (ii)
that Lτ is exponential (see VI.50.4 and VI.49.5 in [RW87], respectively).

In order to compute the rate of Lτ note that

P0 [Lτ ] = P0
[∫ ∞

0
q exp(−qt)Lt dt

]

= P0
[∫ ∞

0
exp(−qt) dLt

]

= P0
[∫ ∞

0
exp(−qKx) dx

]
= κ(q)−1 (4.1)

by Theorem 3.3.
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Turning to part (iii), we first consider the case when x = 0. We have from parts
(i) and (ii) and the identity Xτ = Zτ + Lτ that

P0 [
exp(izZτ )

] = P0 [
exp(izXτ )

]
/P0 [

exp(izLτ )
]

= q(κ(q)− iz)
(q +#(z))κ(q) . (4.2)

Recall from the proof of Theorem 3.3 thatX has continuous resolvent densities
(uq)q>0, and we have from (3.3) that

q

q +#(z) exp(izx) = Px
[
exp(izXτ )

]
= Px

[
exp(izXτ ), τ < S0

]+ Px
[
exp(izXτ ), τ ≥ S0

]
= Px

[
exp(izXτ ), τ < S0

]+ Px {τ ≥ S0}P0 [
exp(izXτ )

]
= Px

[
exp(izXτ ), τ < S0

]+ uq(−x)
uq(0)

q

q +#(z) .

Because (Zt : 0 ≤ t < S0) has the same law under Px as (Xt : 0 ≤ t < S0),
we have by similar reasoning and using (4.2) that

Px
[
exp(izZτ )

] = Px
[
exp(izXτ ), τ < S0

]+ uq(−x)
uq(0)

q(κ(q)− iz)
(q +#(z))κ(q) .

Part (iii) follows upon rearranging and using the expression for uq in (3.4).
Part (iv) follows by inverting the joint Laplace-Fourier transform implicit in

part (iii). ��
Remark 4.6. Suppose thatX is standard Brownian motion. In this caseLt = max{Xs :
0 ≤ s ≤ t} ∨ 0 under Px , x ≤ 0, and so, by a celebrated theorem of Lévy, Z
should be distributed as Brownian motion on the negative half-line reflected at
0. Recall for any x, y that

∫∞
0 exp(−qt)pt (−x) dt = exp(−√2q|x|)/√2q and∫∞

0 exp(−qt)p′t (y) dt = −sgn(y) exp(−√2q|y|). Hence, for x ≤ 0,∫ ∞

0
exp(−qt)

[∫ t

0
ps(−x)p′t−s(y) ds

]
dt

=
{
− exp(−√2q|y − x|)/√2q, y > 0,

+ exp(−√2q|y + x|)/√2q, y < 0,

=
{
− ∫∞

0 exp(−qt)pt (y − x) dt, y > 0,

+ ∫∞
0 exp(−qt)pt (−y − x) dt, y < 0.

From Theorem 4.5(iv) we thus have for x ≤ 0 that

Px{Zt ∈ dy}
dy

=
{

0, y > 0,
1√
2πt

exp
(
− (y− x)22t

)
+ 1√

2πt
exp

(
− (−y− x)22t

)
, y < 0,

as expected. Of course, for general X with jumps it is possible that Zt > 0, and so
it certainly not the case for such X that Z has the same distribution as −|X| under
Px , x ≤ 0.
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By Theorem 4.2 and standard results of excursion theory (see Ch. IV of [Ber96]
or Ch. VI of [RW87]) the paths of Z under P0 can be decomposed using the lo-
cal time L into a Poisson point process on R+ × E, where E is the space of
excursion paths from 0. That is, E is the space of càdlàg path e : R+ → R

such that e(t) = e(h(e)) = 0 for all t ≥ h(e)> 0, where h(e) := inf{t > 0 :
e(t) = 0 or e(t−) = 0}. This Poisson process has intenstity λ ⊗ nZ , where λ is
Lebesgue measure on R+ and nZ is the σ–finite Itô excursion measure on E.

If p0
t (x, dy) is the transition kernel of the stopped process Z(t ∧ h(Z)) (which

coincides with the transition kernel of X stopped at S0), then nZ is given by

nZ{e ∈ E : et1 ∈ dx1, . . . , etk ∈ dxk, h(e) > t1}
= nZt1(dx1)p

0
t2−t1(x1, dx2) · · ·p0

tk−tk−1
(xk−1, dxk)

for 0 < t1 < · · · < tk < ∞, where (nZt )t>0 is a certain family of measures (the
entrance law of the excursion measure).

Similarly, the paths of X under P0 can be decomposed using a local time at 0
into a Poisson process of excursions from 0. The usual choice of normalisation for
the local time at 0 is such that the inverse local time is a subordinator with Laplace
exponent 1/uq(0) = σ 2κ(q). Denote the corresponding excursion measure by nX.
Then nX is Markovian with transition kernel p0

t and entrance law that we denote
(nXt )t>0.

Proposition 4.7. The family (nZt )t>0 (and hence the measure nZ) is characterised
by ∫ ∞

0

∫ ∞

−∞
exp(−qt + izx) nZt (dx) dt =

κ(q)− iz
q +#(z) .

Thus

nZt (dx) =
1

σ 2
nXt (dx)+ p′t (x) dx.

Proof. From VI.50.3 of [RW87], Theorem 4.5 and (4.1) we have that

∫ ∞

0

∫ ∞

−∞
exp(−qt + izx) nZt (dx) dt =

∫∞
0 P0

[
exp(−qt + izZt )

]
dt

P0
[∫∞

0 exp(−qt) dLt
]

= 1

q +#(z)
[
1− izκ(q)−1

] /
κ(q)−1,

and the claim for the joint Laplace-Fourier transform follows.
As similar argument shows that

∫ ∞

0

∫ ∞

−∞
exp(−qt + izx) nXt (dx) dt =

σ 2κ(q)

q +#(z) ,

and the second claim follows by inverting transforms. ��
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Remark 4.8. Suppose that X is standard Brownian motion. Then

nXt (dx)

dx
= |x|√

2πt3
exp

(
−x

2

2t

)
(see (VI.50.9) of [RW87]), and so

nZt (dx)

dx
=

{
0, x > 0,

2 |x|√
2πt3

exp
(
− x2

2t

)
, x < 0,

which is the entrance law for Brownian motion on the negative half-line reflected
at 0 (cf. Remark 4.6).

5. Properties of the zero set

Proposition 5.1. (i) With P0 probability 1,

lim sup
t↓0

L(t)

(2σ 2t log | log t |)1/2 = 1.

(ii) The Hausdorff and packing dimensions of the set {t ≥ 0 : Zt = 0} are both
P0-a.s. equal to 1/2.

(iii) As t ↓ 0 the law of the random variable t−1Gt converges weakly to an arcsine
distribution.

Proof. The key to all of the claims is the consequence of (3.1) that

lim
q→∞ q

−1/2κ(q) =
√

2/σ.

(i) See Exercise V.4.4(b) of [Ber96].
(ii) Note that {t ≥ 0 : Zt = 0} differs from its closure by a countable set and
the same is true of the range of K . Moreover, by Theorem IV.4(iii) of [Ber96], the
closure of {t ≥ 0 : Zt = 0} coincides with the closure of the range ofK . The claim
follows by known results on the Hausdorff and packing dimensions of the range of
a subordinator – see the discussion around (2.10) and (2.11) in [PT96].
(iii) See Theorem III.6 of [Ber96]. ��
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Itô Calculus, volume 2. Wiley, Chichester, England (1987)


