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Abstract. If X isasymmetric Lévy process on the line, then there exists anon-decreasing,
cadlag process H suchthat X (H (x)) = x for al x > 0if and only if X isrecurrent and has
anon-trivial Gaussian component. The minimal such H isasubordinator K. The law of K
is identified and shown to be the same as that of alinear time change of the inverse local
time at 0 of X. When X is Brownian motion, K isjust the usual ladder times process and
this result extends the classical result of Lévy that the maximum process has the same law
asthelocal timeat 0. Write G, for last point in the range of K prior to ¢. In aparallel with
classical fluctuation theory, the process Z := (X, — Xg,):>0 is Markov with local time at O
givenby (Xg,);>o. Thetransition kernel and excursion measure of Z areidentified. A similar
programme is outlined for Lévy processes on the circle. This leads to the construction of a
stopping time such that the stopped local times constitute a stationary process indexed by
the circle.

1. Introduction

Let X = (X;, P*) be a Brownian motion on the circle T thought of as the unit
interval [0, 1] equipped with addition mod 1. Write ¢; for the local time of X at
position x € T uptotimer > 0. It was shown in [Pit96] that there are stopping
times T' such that the T-indexed process (£7)ct is Stationary under PO (that is,
(€3)xeT and (£3) e have the same distribution for al y € T). The discrete
state-space analogue of this question for Markov chains that are equivariant under
the action of a group acting on the state-space was considered in [EP97].
Motivated by a construction in [EP97], we define as follows a particular stop-
ping time T for X with the property that (£7.),c isstationary. For n € N put

Ty ==inf{r > 0: X, =0}

. k+1
Tk”+1:=|nf{tsz":X[=2—t},kzo.
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Notethat 72, isincreasing inn, anditisnot hard to seethat 7' := sup,, T, isfinite
PO-as. (for example, if one constructs X by wrapping a linear Brownian motion
around the circle, then T is dominated by the first time that the linear Brownian
motion hitsthe level 1 after hitting the level 0). Itisnot hard to seethat (£7)xeT iS
indeed stationary under P° (cf. the proof of Theorem 3.1 in [EP97]).

Note further that if we define a process (K7)>0 by

k+1
K! =T, 2—n§x< o
then K isincreasing in n for each x and the cadlag process K := (K)o defined
by

K, = inf suijf

y>x 5

has the property that P%-as. X (K,) := x mod 1 for all x > 0. Observe that K
is a subordinator under P9, Of course, K is just an anaogue of the usual ladder
times process for linear Brownian motion.

Suppose now that we let X be an arbitrary Lévy processon T and ask whether
the same construction leads to afinite stopping time T and a finite valued process
K, which will necessarily be asubordinator under PC. If T isfiniteand X haslocal
times, then the local time process stopped at T is stationary in the spatial variable.
More generally, if T isfinite then the occupation measure process of X stopped at
T is stationary in the obvious sense for random measures on T. We & so note that
we can apply the recipe for defining T and K to Lévy processes on R. We will
show below that if K isfinite valued and H is any non-decreasing, cadlag process
such that X (H(x)) = x, then K(x) < H(x), whereasno such H exist if K isnot
finite valued.

In the R-valued case, the construction of T certainly leads to afinite stopping
time under P? when P*{X hits y} = 1foral x < y, and X has no positive jumps.
Weleavetherelatively straightforward proof to thereader. A much moreinteresting
case is when the Lévy measure of X assigns positive (and possibly infinite) mass
to the positive half-line, so that X no longer “creeps over levels from below”.

In this paper we consider symmetric Lévy processeson T or R and show that T
isfiniteif and only if X has anon-zero Gaussian component and, in the R-valued
case, is also recurrent. Moreover, we identify the distribution of the subordinator
K inthiscase.

Suppose now that X has a non-zero Gaussian component and is also recurrent
in the R-valued case. Set

Gy =sup ([0, 7] N{Ky :x =0},
with the convention that sup ¥ = —oo, and write

XG[a If Gt ?é —0oQ,

Ll = .
0, otherwise.
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Observe that L; is just the current maximum when X is linear Brownian motion
started at 0. We show that Z := (X; — L;);>0 isaMarkov process. In the R-valued
case, (L;);>o isalocal time at O for this process, whilst in the T-valued case this
process needs to be “ unwrapped” onto the line to produce alocal time.

We identify the distribution of Z and find the excursion law in the Itd decom-
position of Z into a point process of excursions away from 0. Of course, when X
islinear Brownian motion we just recover the usua fluctation theory and classical
results for excursions below the maximum, but we get new objects when dealing
with processes that have jumps. At the end of the paper we investigate some of the
properties of the zero set of Z.

For the remainder of the paper we will restrict attention to the R-valued setting
and leaveto thereader the strai ghtforward formul ation and proof of the correspond-
ing T-valued resullts.

2. Inverses for real-valued, @dlag functions

Definition 2.1. Given a cadlag function f : Ry — R, write .#(f) for the class
of non-decreasing, cadlag functions g : R, — R, such that f(g(x)) = x for all
x > 0. Notethat if .#( f) is non-empty, then f defined by f(x) := inf{g(x) : g €
J(f)}isasoin.g(f)and f(x) < g(x) forany g € 7 (/).

Remark 2.2. Notethat if f : Ry — Riscontinuous, f(0) < 0, and the range of
f contains Ry, then #(f) #@and f(x) =inf{r > 0: f(r) > x}.

Definition 2.3. Given acadlag function f : R — Randn € N write
Ty (f):=inf{r >=0: f(r) =0}
T () =ity e 2 T f() = —— . k=0,

with the usual convention that inf @ = oco. Set

k+1

Fre =180, 5 >

Note that the quantity /”(x) is non-decreasing in both n and x.

Lemma 2.4. The set .#(f) is non-empty if and only if sup, /" (x) < oo for all
x > 0, inwhich case f(x) = inf -, sup, /().

Proof. Supposefirstthat.# ( f) isnon-empty. Itisclear that each of thetimes 7;" ( )
is finite and that 7;" (f) < g(k/2") for any g € Z(f). In particular, T;'(f) <
fk/2"). Thus f"(x) < f(x) foral n, k. Set f(x) = sup, f"(x) < f(x).

We claim that 7 is strictly increasing. If not, then there are three dyadic
rat|onaISa <b<c such that f(a) = f(b) = f(c) = s, say. By construc-
tion, f(f"(a)) =a, f(f”(b)) =b,and f(f”(c)) = ¢ for all n sufficiently large.
Also, we either have f"(a) < s for dl n or f"(a) = s for al n sufficiently large,
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with similar behaviour for 7 (b) and f” (¢). Theonly way this could possibly hap-
pen would beif f(a) < s and f"(b) < s for al n, but this would contradict the
existence of aleft-limit at s for f.

Now, if f(x) is not one of the countable number of points of discontinuity of
£, then f(f(x)) = lim, f(f"(x)) = x. Because f is strictly increasing, the set
of x such that f(x) is a discontinuity point of f isalso countable. Therefore, for
a dense set of x we have f( f (x)) = x and hence, by the right-continuity of f,
F(f(x)) = x foral x, wherewe set f(x) := inf,-, f(y). Notethat f iscadlag
and non-decreasing, and f(x) < inf,., f(y) = f(x), sothat f = £, asrequired.

The proof of the converseis similar and is|eft to the reader. O

Remark 2.5. It follows from the proof of Lemma 2.4 that f is strictly increasing.
Of course, thisis also immediate from the propertiesthat f is non-decreasing and

F(f(x) = x.
Definition 2.6. Suppose that .# () is non-empty. Put

77 = p([0.1N{f(x):x = 0)), 120,

with the convention that sup % = —oo, and

) — { IO 11 2 oo
X otherwise.

Lemma 2.7. Suppose that .# (f) is non-empty.

(i) Thefunction f is continuous and non-decreasing. y
(if) Thefunction f isthe right-continuous functional inverse of f, that is

f) =inf{t > 0: f(r) > x}.
(iii) If for fixed s > O we define a cadlag function g : Ry — R by
g(t) = f(s+1) = f(5),
then #(g) # ¥ and

fGs+0=f(s)+8&@), t>0.

(iv) Let g beasin part (iii) and suppose that s = f(x) for some x > 0, then
fa+»—fx) =80, y=0.

Proof. (i) Itisclear that f is non-decreasing and right-continuous.
Consider the |eft-continuity of f at r > 0. There are four casesto consider:

(a) tisnotinthe closure of {f(x) :x > 0},

v

(b) 1 = f(0),

(c) t = f(x) for somex > 0, 5
(d) r =sup,_, f(w)forsomex > O0and f(x) > t.
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In case (a), f(s) = f(t) foral s < ¢ sufficiently close to ¢. Case (b) is obvi-
ous. In Case(c), IimsM f(S) = “mwa f(f(w)) = “mwa w=x= f(f(x)) =

f(@®).Incase (d), limgs, f(s) = x by the argument for case (c), and we also have
limgy, f(s) < f(@0) < f(F(x) = fF(f(x) =x.

(i) Suppose that f(x) = r for some r > 0. We have lim,, f(y) = ¢, which
impliesthat f(u) > f(r) foral u > 1.

(iii) Observe that g(f(x + f(s)) —s) = x,x > 0,50 #(g) # @ and §(x) <
f@x + f(s)) —s, x > 0. Equivalently,

s+30x— () < fx), x = f(s). (2.2)
If we set

IR RiCo) ifx < f(s).
frx) = . ~ _ g
s+8(x — f(s)), ifx> f(s),

then f(f*(x)) = x, and, by (2.1), f*(x) < f(x), x > 0. Therefore f* = f. The
result follows readily from this equality.

(iv) Thisisimmediate from the proof of part (iii). ]

3. Existence of inverses for Evy processes

Let X = (Q, 7,7, X,,06,, P*) beasymmetric Lévy processon R. That is, X is

a conservative R-valued Hunt process such that P*{X, € A} = POx + X, € A}

and PO{X; € A} = PO{—X, € A} foral x € R, r > 0, and Borel sets A. For the

convenience of the reader, we have tried to use [Ber96] as a unified reference on

Lévy processes, and we refer the reader there for original bibliographic citations.
Recall that

PO [exp(i&X,)] = exp (—1 ¥ (8)), & € R,
where
02 2
wE) = T 62+ / (1— coséx) v(dx)
2 R\(0}
for some o > 0 and symmetric measure v such that f(x2 A Dv(dx) < co. Note

that

v(E) o

im — =—. 31

El>oo E2 2 G4

(see Proposition 1.2 of [Ber96]). When ¢ > 0 we say that X has a non-trivial
Gaussian component.
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Notation 3.1. For g > 0 set
1

_[o? 1 4 B
’“‘”'—[zfm i

with the convention that 0~ = +00 and +00~1 = 0.
Notation 3.2. Write S, :=inf{r > 0: X; = x} forx € R.

Theorem 3.3. If X is recurrent and has non-trivial Gaussian component, then
J(X) #0,P-as. for all y. Otherwise, .#(X) = ¢, PY-a.s. for all y. Intheformer
case, K := X isasubordinator under P° with

POlexp(—g K )] = exp (—xk(q)) -

Proof. Put 7" .= 7' (X) and K} := X"(x),in agreement with the notation in the
Introduction.

Suppose until further notice that X has a non-trivial Gaussian component and
consider first what happens under P°.

By Lemma 2.4 we need to show that sup, K7 isfinite PO-as. for eachx > Oif
and only if X isrecurrent.

By (3.1)

1

By Corollary 11.20 and Theorem I1.19 of [Ber96], X has continuous resolvent den-
sities (uq)q>0:

POlexp(—¢S:)] = u? (x)/u?(0), (33
and
1 Ccoséx

q —_ - 2

ul (x) = 2n/q+\1/(s) dE. (3.4)
We claim that

- ul(0) —ul(x) 1

lim—————=—. (3.5)

To see this, note that

u?(0) — u(x) _ i/ 1— cosé
x B x%(q +W(/x))
By (3.1) theintegrand on the right-hand side is bounded above by ¢(1 — cosg)& —2

for asuitable constant ¢ and convergesto 2(1 — cosé)é 20 2 asx | 0. Theclaim
(3.5) now follows from dominated convergence and the observation

1-—

dk.
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It follows from (3.3), (3.4) and (3.5) that
POlexp(—g sup K7)] = lim PO[exp(—g K )]

= lim PP[exp(—q Sp-)]1#™]
n

o uq(z—n) [2"x]
-in| 5]
= exp(—xk(q)) - (36)

Therefore, sup, K7 will be finite PO-as. if and only if the rightmost term in (3.6)
convergestolasq | 0. This, however, will occur if and only if theintegral in (3.2)
goes to oo, and this, in turn, is equivalent to X being recurrent when (3.2) holds
(see Theorem 1.17 of [Ber96]).

If #(X) isnon-empty P%-as. and so K = X is finite valued P°-as,, then it
is clear from Lemma 2.4 that each K is a stopping time for X. Moreover, it fol-
lows straightforwardly from Lemma 2.7(iv) and the Lévy property of X that X is
asubordinator under P° with the stated L aplace exponent.

Now consider what happens under P> for general y (but still with the assump-
tionthat X hasanon-trivial Gaussian component). In order that .# (X) isnon-empty
PY-as. for some y € R it is necessary and sufficient that .# (X) is non-empty P°-
as.and PY{Sy < oo} = 1. Fromwhat we have seen above, both of these conditions
hold for all y € R when X is recurrent. On the other hand, if X istransient, then
we have seen that .# (X) is empty P0-as., and this certainly impliesthat .7 (X) is
empty PY-as. foral y € R.

Suppose how that X does not have a non-trivial Gaussian component. In order
that PO{.7 (X) # ¥} > O, it must certainly be the case that P%{S, < oo} > 0
for al x > 0, and so we can restrict attention to X with this latter property. By
Exercise 11.6.5 of [Ber96], inf{r > 0 : X, = 0} = 0, PY%-as. Thus, by Theo-
rem 11.19 of [Ber96], X has continuous resolvent densities (u4), -0, and (3.3) and
(3.4) hold. We can then use (3.1) and the arguments above to show that for al
x > 0, PO[exp(—¢ sup, k)] = Oforal ¢ > 0, and so sup, K" = oo, PP-as, as

X

required. ]

Remark 3.4. If X has a non-trivial Gaussian component, then X has local times.
If X isalso recurrent, then the inverse local time at 0 is a subordinator with La-
place exponent amultiple of « (see Proposition V.4 of [Ber96]). That is, theinverse
local time is distributed as a linear time change of K. For Brownian motion this
is equivalent to Lévy’s theorem that the maximum and local time at O processes
have the same distribution.

Remark 3.5. SetU, :=inf{t > 0: X; > x},x > 0. Aswasremarked to ushy Jean
Bertoin, the condition that X has a non-trivial Gaussian component is equivalent
(in our symmetric setting) to the condition that P°{Xy, = Xy, = x} > Ofor
some (equivalently, all) x > 0. That is, there is “ positive probability of creeping,
rather than jumping, over the level x.” This latter condition is, in turn, equivalent
to the condition that the ladder height process of X is a subordinator with positive
drift (see Theorem V1.19 of [Ber96] and the discussion that followsiit).
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Remark 3.6. It is clear from the proof of Theorem 3.3 that .7 (X) # ¢, PY-as. for
al y € R,whenever X isarecurrent Lévy process (not necessarily symmetric) with
continuousresolvent densities (19) ;.o suchthat o (q) := limy o(u?(0) —u4(h))/h
exists and is finite, in which case p(gq) is the Laplace exponent of the subordina-
tor K. Aswas pointed out to us by the referee, the existence of this limit can be
established for certain non-symmetric processes. For example, if X has only posi-
tive jumps and non-trivial Gaussian component, then one can show using Exercise
V11.5.2(b) of [Ber96] that the limit existsand is given by

p(q) = ®(q),

2
o2®'(q)
where @ istheinverse Laplace exponent of X.

4. The “reflected” process

Note: From now on we supposethat X isrecurrent with non-trivial Gaussian com-
ponent.

Notation 4.1. Asin the Introduction, put

G = yx (1),

and
Zt = Xt - Lt~

Recall that a point y is said to be regular (resp. instantaneous) for a Markov
process (M;, Q%) ifinf{r > 0: M; = y} = 0 (resp. inf{t > 0: M; # y} = 0),
QY-as.

Theorem 4.2. (i) The process Z is a time-homogeneous, strong Markov process
with respect to thefiltration (% ;);>o.

(if) The state O isregular and instantaneousfor Z, and L isa corresponding local
time.

Proof. Given Lemma 2.7(iii), the proof of (i) is straightforward from the homoge-
neity and independence of the increments of X, and followsthe pattern of the proof
in standard fluctuation theory that a Lévy process reflected at its current maximum
is strong Markov (see Proposition V1.1 of [Ber96]).

Under PO, the closure of the zero set of Z contains the closure of the range
of a dtrictly increasing subordinator K. Consequently, O is regular for Z. Also,
inf{r > 0: X, < 0} = 0, Pl-as. and s0 0 is instantaneous for Z (for exam-
ple, by symmetry and the fact that the distribution of X, is non-atomic we have
PO{I0 < s <1 : X, < 0} > PO{X, < 0} = 1/2, and the result follows from the
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Blumenthal zero-one law). Therefore, by Theorem 1V.4 of [Ber96] the process Z
does have alocd timeat 0.

Now, by parts (i) and (ii) of Lemma 2.7, (L;);>0 iSacontinuous, non-decreas-
ing, (#):>0—adapted process such that the support of the random measure dL is
contained in closure of the range of K which is, in turn, contained in the closure
of the zero set of Z. Moreover, if Sisa(#);>o stopping time such that Zs = 0,
PO-as. on {S < oo}, then it follows from Lemma 2.7(iii) and the Lévy property of
X that (Zs4:, Lsy: — Ls)):=0 isindependent of # g under P%{- | § < oo} and has
the same law as (Z, L) under P°. Consequently, by Proposition IV.5 of [Ber96],
L is, up to achoice of normalisation, the local time of Z at 0.

Notation 4.3. Under the assumption that X has anon-trivial Gaussian component,
the distribution of X,, ¢ > 0, has adensity p, under P? (so that the density of X,
under P~ is p;(- — x)).

Remark 4.4. Notethat p, isdifferentiableand [ |p)(x)|dx < (wo?t/2)~Y/2. Con-
sequently, the joint Laplace-Fourier transform [~ [ exp(—qt + izx) p;(x) dx dt
iswell-defined and isgiven by —iz/[q + W (2)].

Theorem 4.5. Suppose that t is a rate ¢ exponential time that is independent of
X.

(i) Therandomvariables L, and Z, are independent under P°.
(ii) The random variable L, has an exponential distribution under P° with rate

Kk(q).
(iii) Under P* therandom variable Z, has characteristic function

2
. q . Y Ccoséx
P* lexp(izZ;)| = —— | ex —iz— | ————d
[exp(izZ,)] q+\l'(z)|: p(izx) zzzn/q+w(g) S}
(iv) Under P* therandomvariable Z;, t > 0, has a density given by
P¥{(Z;, ed !
% =pi(y —x) +02/0 ps(—=x) pj_s(y)ds

Proof. Part (i) isageneral result from excursion theory, asisthe claim in part (ii)
that L isexponential (see V1.50.4 and V1.49.5 in [RW87], respectively).
In order to compute the rate of L, note that

PO[L.] = P° / qexp<—qt)L,dr}

= p° /O h exp(—qt)clL,}

r o0
= po [ exp(—qu)dx}
LJO
=) " (4.9)
by Theorem 3.3.
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Turning to part (iii), wefirst consider the case when x = 0. We have from parts
(i) and (ii) and the identity X, = Z, + L, that
PO [exp(izZ:)] = P° [exp(izX+)] /P° [exp(izL+)]
__alk(g) —i2)
(g +Y@)(g)

Recall from the proof of Theorem 3.3 that X has continuous resolvent densities
(u)4>0, and we have from (3.3) that

4.2)

q

. _pr
—q T exp(izx)

= p*
= p*
= p*

eXp(l'ZXf)]

exp(izX7), T < So] + P* [exp(izX:), T > So]
exp(izX:), T < So] + P* {r > So} P? [exp(izX)]
ul(=x) ¢
ui(0) g+ ¥(z)

Because (Z; : 0 <t < Sg) hasthe same law under P* as (X; : 0 <t < Sp),
we have by similar reasoning and using (4.2) that

— /e e

exp(izXy), T < So] +

ul(—=x) qk(g) —iz)
ud(0) (g + ¥(@)k(g)
Part (iii) follows upon rearranging and using the expression for 4 in (3.4).

Part (iv) follows by inverting the joint Laplace-Fourier transform implicit in
part (iii). ]

P* [exp(izZo) ] = P* [exp(izX<), T < So] +

Remark 4.6. Supposethat X isstandard Brownianmotion. Inthiscase L, = max{X :
0 <s <t}vOunder P*, x < 0, and s0, by a celebrated theorem of Lévy, Z
should be distributed as Brownian motion on the negative half-line reflected at
0. Recall for any x, y that [;° exp(—q?) p;(—x) dt = exp(—+/2¢|x])/+/2¢ and
Jo~ exp(—qt) p;(y) dt = —sgn(y) exp(—+/2q|y|). Hence, for x < 0,

o0 t
/O exp(—qt) [/O ps(—X)p§s(y)ds}dt

| —exp(—v2qly = x1)/v/2q, y >0,
| +exp(—v2qly + xD/v2q. y <0,
- {—fo‘” exp(—qN)pi(y — x)di, y >0,
|+ ST exp(—gt pi(—y —x)dt, y <O.

From Theorem 4.5(iv) we thus have for x < 0 that

=11 _ =02 1 _(=y=x)?

4y Aree(-057) + gmen(-S7). <o
as expected. Of course, for general X with jumpsitispossiblethat Z, > 0, and so
it certainly not the case for such X that Z has the same distribution as —| X | under
P*, x <O.

PY(Z, € dy} _ {O, y >0,
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By Theorem 4.2 and standard results of excursion theory (see Ch. IV of [Ber96]
or Ch. VI of [RW87]) the paths of Z under P? can be decomposed using the lo-
cal time L into a Poisson point process on R4 x E, where E is the space of
excursion paths from 0. That is, E is the space of cadlag pathe : Ry — R
such that e(t) = e(h(e)) = Oforadl t > h(e) >0, where h(e) := inf{r>0:
e(t) = 0ore(t—) = 0}. This Poisson process has intenstity A ® n?, where 1 is
L ebesgue measure on R, and nZ isthe o—finite Itd excursion measure on E.

If p?(x, dy) isthetransition kernel of the stopped process Z(t A h(Z)) (which
coincides with the transition kernel of X stopped at Sp), then nZ is given by

nZ{e € Eeyedxy, ... e €dxg, he) > t1}
= nf(dx1)pp_,, (x1,dx2) -+ po_,  (xe—1, dxp)

for0 <t < - <t < oo, where (n?),~¢ is a certain family of measures (the
entrance law of the excursion measure).

Similarly, the paths of X under P° can be decomposed using alocal time at 0
into a Poisson process of excursions from 0. The usual choice of hormalisation for
thelocal timeat 0 issuch that theinverselocal timeisasubordinator with Laplace
exponent 1/u4(0) = o« (¢). Denote the corresponding excursion measure by nX.
Then n* is Markovian with transition kernel p© and entrance law that we denote
(n}X)t>0-

Proposition 4.7. Thefamily (nZ),~o (and hence the measure n?) is characterised
by

k(g) —iz

/O /W exp(—qt + izx) n(dx) dt = PERTAt

Thus
VA 1 X /
ny (dx) = ﬁ”t (dx) + p,(x)dx.
Proof. From V1.50.3 of [RW87], Theorem 4.5 and (4.1) we have that

Jo~ PO [exp(—qt +izZy)] dt
Pl" (/o exp(—qt) dL,]
[1 _ izic(q)_l] /K(q)‘l,

T g+ Y)
and the claim for the joint Laplace-Fourier transform follows.
As similar argument shows that

o o0
f f exp(—qt + izx) n? (dx) dt =
0 —00

o2%k(q)

exp(—gt + i Xdx)dt = ——2|
/O/_OO p(—qt + izx) n; (dx)dt JRTT

and the second claim follows by inverting transforms. O
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Remark 4.8. Suppose that X is standard Brownian motion. Then

midy) ko (_xj)
ix Jop P Ty
(see (V1.50.9) of [RW8T7]), and so
n?(dx) {O, x>0,

- x| 2
dx \/zxﬁeXp(_é_z)’ x <0,
which is the entrance law for Brownian motion on the negative half-line reflected
at O (cf. Remark 4.6).

5. Properties of the zero set
Proposition 5.1. (i) Wth P probability 1,

limsu L® =
140 P (252t log|logs)1/2

(ii) The Hausdorff and packing dimensions of the set {r > 0 : Z, = 0} are both
PO-as. equal to 1/2.

(iii) Asr | Othelaw of therandomvariabler~1G, convergesweakly to an arcsine
distribution.

Proof. The key to all of the claimsis the consequence of (3.1) that
lim qfl/zlc(q) = \/i/o.
q—)OC

(i) See Exercise V.4.4(b) of [Ber96].

(ii) Note that {r > 0 : Z, = 0} differs from its closure by a countable set and
the sameistrue of the range of K. Moreover, by Theorem I1V.4(iii) of [Ber96], the
closureof {r > 0: Z, = 0} coincideswith the closure of therange of K. Theclaim
follows by known results on the Hausdorff and packing dimensions of the range of
a subordinator — see the discussion around (2.10) and (2.11) in [PT96].

(iii) See Theorem 111.6 of [Ber96]. ]
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