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Abstract. We investigate the asymptotic behaviour of the heat content as the time t → 0
for an s-adic von Koch snowflake generated by a square. We show that the heat content
satisfies a functional equation which, after appropriate transformations, takes the form of an
inhomogeneous renewal equation. We obtain the structure of the solution of this equation in
the arithmetic case up to an exponentially small remainder in t .

1. Introduction

LetD be an open, bounded set in euclidean space �m (m = 2, 3, . . .) with boundary
∂D, and let uD : D×[0,∞) → � be the unique weak solution of the heat equation


u = ∂u

∂t
, x ∈ D, t > 0, (1.1)

with initial condition
u(x; 0) = 0, x ∈ D, (1.2)

and boundary condition

u(x; t) = 1, x ∈ ∂D, t > 0. (1.3)

Let

ED(t) =
∫
D

uD(x; t)dx (1.4)

represent the total amount of heat in D at time t .
The asymptotic behaviour of ED(t) as t → 0 has been the subject of an

extensive investigation, and is well understood if ∂D is smooth or piecewise smooth
[1–5, 8, 15, 16]. Little is known if D is a region with a fractal boundary. In this
paper we analyse the example of the s-adic arithmetic von Koch snowflake Ks in
detail. The construction of Ks is as follows.

Fix 0 < s ≤ 1
3 , and let A1A2A3A4 be the unit square in �2 with vertices

A1 =
(
− 1

2 ,− 1
2

)
,A2 =

(
1
2 ,− 1

2

)
,A3 =

(
1
2 ,

1
2

)
andA4 =

(
− 1

2 ,
1
2

)
. We construct

∂Ks by repeatedly replacing the middle proportion s of each segment, beginning
with A1A2, A2A3, A3A4 and A4A1, by the three other sides of a square.
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Fig. 1. A sketch of the von Koch snowflake Ks(s = 1
4 ), together with the partition used in

the proof of Proposition 2.1.

Ks is an open, bounded and simply connected set in �2 with volume

|Ks | = (1 + s)2

1 − 7s2 + 2s
. (1.5)

Moreover, Ks is embeddable in �2 if and only if 0 < s ≤ 1
3 . One can show that the

Hausdorff dimension of ∂Ks and the interior Minkowski (box) dimension of ∂Ks

are equal, and are given by the unique positive root ds of

3sd + 2

(
1 − s

2

)d

= 1. (1.6)

See chapter 8 in [9] and chapter 9 in [10]. Note that 1 < ds ≤ (log 5)/ log 3.
The heat content for the snowflakeK 1

3
has been analysed by Fleckinger, Levitin

and Vassiliev [12, 13]. They proved the existence of two strictly positive, continuous
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and log 9-periodic functions ψ1 and χ such that for t → 0

EK 1
3
(t) = ψ1(− log t)t1− log 5

log 9 − χ(− log t)t + O
(
e− 1

1152t

)
. (1.7)

In fact their proof was given for the snowflake with an equilateral triangle as a
generator. Modifying their proof results in (1.7).

We say that Ks is an arithmetic snowflake if s ∈ I , where

I =

s ∈

(
0,

1

3

]
:

log
(

1−s
2

)
log s

= p

q
, p ∈ �, q ∈ �, (p, q) = 1


 . (1.8)

The simplest example of an arithmetic snowflake is K 1
3

(p = q = 1).

It was shown in [6] that if Ks is non-arithmetic (s ∈
(

0, 1
3

)
\ I ), then there

exists a positive constant Cs such that for t → 0

EKs (t) = Cst
1− ds

2 + o
(
t1− ds

2

)
. (1.9)

Moreover, if s ∈ I then there exists a strictly positive, continuous, 2
q

log 1
s
-periodic

function ψ̃ such that for t → 0,

EKs (t) = ψ̃(− log t)t1− ds
2 + o

(
t1− ds

2

)
. (1.10)

The main result of this paper (Theorem 1.2) is a refinement of (1.10) up to an
exponential remainder, thereby completing the analysis of [13] for the remaining
arithmetic snowflakes. Let s ∈ I , and let p and q be the corresponding positive
integers in (1.8). Let

P(z) = 1 − 3sds zq − 2

(
1 − s

2

)ds

zp, (1.11)

and let z1, . . . , zq be the roots of P(z) = 0, ordered such that

|z1| ≤ |z2| ≤ · · · ≤ |zq |. (1.12)

The structure of the asymptotic expansion of EKs (t) as t → 0 and s ∈ I (Theorem
1.2 (ii) and (iii)) depends on the geometry of {z1, . . . , zq}, which is summarized in
the following.

Proposition 1.1. (i) All roots of P(z) = 0 are simple.
(ii) If z is a root with |z| = r , then z is the only possible other root with modulus r .

(iii)

z1 = 1, (1.13)

|zq | < s
− ds

q , q odd, (1.14)

zq = −s
− ds

q , q even. (1.15)
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Let

σj = lim
z→zj

zj − z

P (z)
, (1.16)

z = − log t, (1.17)

γ = 2

q
log

1

s
, (1.18)

and define ψ : � → � by

ψ(z) = 1

4
e
z
(

1− ds
2

){
EKs (e

−z) − 3s2EKs

(
s−2e−z

)

−2

(
1 − s

2

)2

EKs

((
1 − s

2

)−2

e−z

)}
. (1.19)

Theorem 1.2. (i) ψ is continuous and for z ∈ �∑
m∈�

w−mψ(z − mγ ) (1.20)

converges absolutely on the annulus W = {w ∈ � : 1 ≤ |w| < s−ds/q}. For
w ∈ W define ψw : � → � by

ψw(z) =
∑
m∈�

w
−m+ 1

γ
z
ψ(z − mγ ). (1.21)

Then ψw is uniformly continuous and γ -periodic.
(ii) Suppose s ∈ I and q is odd. Then there exists a pγ -periodic, uniformly con-

tinuous function χ : � → � such that for t → 0

EKs (t) =
q∑

j=1

t
1− ds

2 + 1
γ

log zj σj

zj
ψzj (− log t)

−χ(− log t)t + O

(
e− s2

32t

)
. (1.22)

(iii) Suppose s ∈ I and q is even. Then there exists a 2pγ -periodic, uniformly
continuous function % : � → � such that for t → 0

EKs (t) =
q−1∑
j=1

t
1− ds

2 + 1
γ

log zj σj

zj
ψzj (− log t) − %(− log t)t + O

(
e− s2

32t

)
.

(1.23)

We see that the leading exponent of t for t → 0 in (1.22) and (1.23) respectively,
comes from the root with the smallest modulus i.e. z1 = 1. Since Ks is simply con-
nected, and the upper and lower ds-dimensional interior Minkowski contents of
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∂Ks are finite and strictly positive, we have by Corollary 1.5 and Proposition 1.6
in [1] that

EKs (t) � t1− ds
2 . (1.24)

This implies that σ1ψ1 > 0 and that the leading term in (1.22) and (1.23) respec-
tively comes from the term with j = 1. Comparing (1.22) and (1.23) with (1.10),
we obtain

ψ̃(− log t) = σ1

∑
m∈�

ψ(− log t − mγ ). (1.25)

We also see that if p = q = 1, then s = 1
3 , σ1 = 1 and (1.22) agrees with (1.7). For

q ≥ 2, we see (by Proposition 1.1) that all other terms in the sum over j in (1.22)

and (1.23) give contributions which are much larger than t (but are o
(
t1− ds

2

)
).

The proof of Theorem 1.2 is organised as follows. In Section 2 we use the prob-
abilistic solutution of (1.1–1.3) for D = Ks to derive an approximate functional
equation forEKs . This functional equation takes, after appropriate transformations,
the form of an inhomogeneous renewal equation. In Section 3 we shall give the
analysis of this equation. The combinatorial part is fairly standard (see for example
Section A.2 in [14]). The asymptotic part is complicated by the fact that for q even,

|zq | = s
− ds

q . It turns out that this root contributes 2p terms of logarithmic order.
These terms cancel, and result in the 2pγ -periodic function %. This complication
does not occur for q odd.

As in [6, 7, 12, 13] we were unable to prove that, for example, the function ψ̃

in (1.25) is not a constant function. Similarly, we do not know whether % in (1.23)
is 2pγ -periodic but not pγ -periodic. These problems exist due to the fact that we
only have the asymptotic properties for t → 0 of the inhomogeneous term in the
renewal equation.

It is possible to derive this approximate renewal equation for p = 1, q ≥ 1
following Sections 1 and 2 in [13]. However, the methods used in that paper seem
to break down for p > 1. The probabilistic methods used in this paper have the
advantage that they combine both the maximum principle (or the principle of not
feeling the boundary), together with standard scaling properties of functionals of
brownian motion. Some of these functionals do not possess a straightforward ana-
lytic interpretation as required in [13].

The proof of Proposition 1.1 (i) and (ii) can be found, after a suitable transfor-
mation, in Lemma 6.4 of [11]. From (1.6) it is clear that z = 1 is a root ofP(z) = 0,

and that z = −s
− ds

q is a root of P(z) = 0 if q is even. It remains to prove that all

roots are contained in the annulus
{
z ∈ � : 1 ≤ |z| ≤ s

− ds
q

}
. Indeed if z is a root,

then

1 = 3sds zq + 2

(
1 − s

2

)ds

zp

=
∣∣∣∣∣3sds zq + 2

(
1 − s

2

)ds

zp

∣∣∣∣∣
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≤ 3sds |z|q + 2

(
1 − s

2

)ds

|z|p. (1.26)

Since the right hand side of (1.26) is strictly increasing in |z|, and equals 1 for
|z| = 1, (by (1.6)), we obtain |z| ≥ 1. If q = 1, then p = 1, and z = 1 is the only

root of P(z) = 0. If s ∈ I , s < 1
3 then q > p. Suppose z is a root with |z| > s

− ds
q .

Then

3
(
s
ds
q |z|

)q
=

∣∣∣∣∣1 − 2

(
1 − s

2

)ds

zp

∣∣∣∣∣
=

∣∣∣∣1 − 2
(
s
ds
q z

)p∣∣∣∣
≤ 1 + 2

(
s
ds
q |z|

)p
< 1 + 2

(
s
ds
q |z|

)q
, (1.27)

which is a contradiction.

2. The approximate functional equation for EKs

Let

E(t) = 1

4
EKs (t) = 1

4

∫
Ks

uKs (x; t)dx, (2.1)

and define H : [0,∞) → � by

H(t) = E(t) − 3s2E

(
t

s2

)
− 2

(
1 − s

2

)2

E


 t(

1−s
2

)2


 . (2.2)

Note that, by (1.19), (2.1) and (2.2),

ψ(z) = ez(1− ds
2 )H(e−z). (2.3)

Proposition 2.1. H is continuous and satisfies

|H(t)| ≤ 1

4
|Ks |, (2.4)

H(t) = F(t) + O

(
e− s2

32t

)
, t → 0, (2.5)

where F : [0,∞) → � is continuous and satisfies the functional equation

F(t) =
(

1 − s

2

)2

F


 t(

1−s
2

)2


 , (2.6)

and
|F(t)| ≤ 16πt. (2.7)
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To prove Proposition 2.1, we let (B(s), s ≥ 0; �x, x ∈ �2) be a brownian
motion with generator 
. For any Borel set C ⊂ �2, we define the first hitting time
by

τC = inf{s ≥ 0 : B(s) ∈ C}. (2.8)

For any open set D ⊂ �2, we define the first exit time TD by

TD = τ�2\D. (2.9)

We note that if x ∈ D then
TD = τ∂D. (2.10)

The solution uD of (1.1–1.3) has the following probabilistic solution:

uD(x; t) = �x[TD ≤ t]. (2.11)

The probabilistic solution (2.11) allows us to prove several comparison estimates.
The following estimate is a version of Kac’s principle of not feeling the boundary.

Lemma 2.2. Let D be an open set in �2. Then for all x ∈ D, t > 0

uD(x; t) ≤ 2e− d(x,∂D)2
4t , (2.12)

where
d(x, ∂D) = min{|x − y| : y ∈ ∂D}. (2.13)

Proof. See the proof of Lemma 6 in [7].

Lemma 2.3. Let D be an open set in �2, and let C be a closed subset of �2. Then

uD(x; t) = �x

[
τ(∂D)∪C ≤ t

] − �x [τ∂D > t, τC ≤ t] . (2.14)

Proof.

uD(x; t) = �x [τ∂D ≤ t, τC ≤ t] + �x [τ∂D ≤ t, τC > t]

= �x [τ∂D ≤ t, τC ≤ t] + �x

[
τ(∂D)∪C ≤ t, τC > t

]
= �x [τ∂D ≤ t, τC ≤ t] + �x

[
τ(∂D)∪C ≤ t

] − �x [τC ≤ t]

= �x

[
τ(∂D)∪C ≤ t

] − �x [τ∂D > t, τC ≤ t] . (2.15)

The following estimate is a generalisation of Lemma 7 in [7].

Lemma 2.4. Let D,F and G be open sets in �2 such that F ⊂ D ∩ G. Let C be
a closed subset of �2, and let E be a Borel subset of F with finite measure |E|.
Then∣∣∣∣

∫
E

�x [TD ≤ t, τC ≤ t] dx −
∫
E

�x [TG ≤ t, τC ≤ t] dx

∣∣∣∣ ≤ 2|E|e− δ2
4t ,

(2.16)
where

δ = inf
{
|x − y| : x ∈ E, y ∈ (∂F ) ∩ (D ∪ G)

}
. (2.17)

Moreover, if C = �2 then∣∣∣∣
∫
E

uD(x; t)dx −
∫
E

uG(x; t)dx
∣∣∣∣ ≤ 2|E|e− δ2

4t . (2.18)
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Proof. The case C = �2 has been proved in Lemma 7 of [7]. It follows directly
from (2.16). To prove (2.16), we have

�x [TD ≤ t, τC ≤ t] = �x [TD ≤ t, TG ≤ t, τC ≤ t]

+ �x [TD ≤ t, TG > t, τC ≤ t]

≤ �x [TG ≤ t, τC ≤ t] + �x

[
τ(∂D)∩G ≤ t, TG > t

]
.

(2.19)

Since E ⊂ F ⊂ D ∩ G, we have for all x ∈ E,
{
τ(∂D)∩G ≤ t, TG > t

} ⊆{
τ(∂F )∩(G∪D) ≤ t

}
. Hence

�x [TD ≤ t, τC ≤ t] − �x [TG ≤ t, τC ≤ t] ≤ �x

[
τ(∂F )∩(G∪D) ≤ t

]
. (2.20)

By Lemma 2.2 we have for all x ∈ E

�x [TD ≤ t, τC ≤ t] − �x [TG ≤ t, τC ≤ t] ≤ 2e− δ2
4t , (2.21)

where δ is given by (2.17). Integrating (2.21) with respect to x over E gives∫
E

�x [TD ≤ t, τC ≤ t] dx −
∫
E

�x [TG ≤ t, τC ≤ t] dx ≤ 2|E|e− δ2
4t . (2.22)

Reversing the roles of D and G in (2.22) completes the proof of (2.16).

Lemma 2.5. Let E be a non-empty set in �2 and let α > 0. Let Eα,A denote the
similitude of E by a factor α with respect to a point A, given by

Eα,A =
{
B ∈ �2 : α−1(B − A) ∈ E

}
. (2.23)

Let C and F be closed sets in �2, let D be an open set in �2, and let E ⊂ �2 be a
Borel set. Then∫

Eα,A

�x

[
τCα,A

> t, τFα,A > t, TDα,A
≤ t

]
dx

= α2
∫
E

�x

[
τC >

t

α2
, τF >

t

α2
, TD ≤ t

α2

]
dx. (2.24)

Proof. This follows directly from the scaling properties of brownian motion.

We introduce the following notation. If A and B are points in �2, then AB is
the closed edge with endpoints A and B, and if A �= B then lA,B is the straight line
throughA andB. IfA andB are points of ∂Ks and (0, 0) /∈ AB, thenA andB parti-
tion ∂Ks into a “large” and a “small” component. LetA,B ∈ ∂Ks with (0, 0) /∈ AB,
and let C ∈ Ks . Then SACB is the open set bounded by the closed segments CA
and CB and the smaller part of ∂Ks bounded by A and by B. Let A5 = (0, 0),

A6 =
(
− s

2 ,− 1
2

)
, A7 =

(
s
2 ,− 1

2

)
, A8 =

(
s
2 ,−s − 1

2

)
, A9 =

(
− s

2 ,−s − 1
2

)
,
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A10 =
(

0,− 1+s
2

)
, A11 =

(
− 1+s

4 ,− 1+s
4

)
and A12 =

(
1+s

4 ,− 1+s
4

)
. The triangle

with vertices A5, A10 and A11 is denoted by 
A5A10A11 .
We note that A1A3 and A2A4 partition Ks into 4 congruent sets: SA1A5A2 ,

SA2A5A3 , SA3A5A4 and SA4A5A1 . Since A1A3 and A2A4 have measure zero, we have
by symmetry and by (2.1)

E(t) = 1

4

∫
Ks

uKs (x; t)dx =
∫
SA1A5A2

uKs (x; t)dx, (2.25)

∫
SA1A11A6

uKs (x; t)dx =
∫
SA2A12A7

uKs (x; t)dx, (2.26)

∫
SA6A10A9

uKs (x; t)dx =
∫
SA7A10A8

uKs (x; t)dx. (2.27)

Lemma 2.6. For t → 0∫
SA9A10A8

uKs (x; t)dx = s2E

(
t

s2

)
+ O

(
e− s2

16t

)
. (2.28)

Proof. Let C be the s-adic von Koch curve constructed on A6A7 such that C is the
reflection of the (small) part of ∂Ks bounded by A9 and A8. The region bounded
by ∂Ks (between A6 and A7) and C is a similitude of Ks by a factor s. Hence∫

SA9A10A8

�x

[
τ(∂Ks)∪C ≤ t

] = s2E

(
t

s2

)
. (2.29)

Since d(x, C) ≥ s
2 for x ∈ SA9A10A8 , we have by Lemma 2.2∫

SA9A10A8

�x

[
τ∂Ks > t, τC ≤ t

]
dx ≤

∫
SA9A10A8

�x [τC ≤ t] dx

= O

(
e− s2

16t

)
. (2.30)

Lemma 2.6 follows from Lemma 2.3 with D = Ks and by (2.29–2.30).

Lemma 2.7. For t → 0,∫
SA6A10A9

uKs (x; t)dx = s2E

(
t

s2

)
− F1(t) + O

(
e− s2

32t

)
, (2.31)

where F1 satisfies the functional relation (2.6), and

0 ≤ F1(t) ≤ 4πt. (2.32)

Proof. Let C be as in the proof of Lemma 2.6 and let C̃ be the self-similar ex-
tended von Koch curve along the half line through A6 and A7 with endpoint A6.
(So C ⊂ C̃, C̃ 1−s

2 ,A6
= C̃). In a similar manner we denote the extended von Koch

curve constructed on the half line through A6 and A9 with endpoint A6 by Ĉ. (So
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Ĉ 1−s
2 ,A6

= Ĉ, and Ĉ contains the part of ∂Ks with endpoints A6 and A9). The

extended von Koch curve along the half line through A6 and A1 with endpoint A6
which contains the part of ∂Ks with endpoints A6 and A1 is denoted by Č. (So
Č 1−s

2 ,A6
= Č).

LetG be the open set in �2, containingKs , and with boundary Č∪Ĉ. LetA13 be

the midpoint of the part of ∂Ks bounded by A6 and A9. (A13 =
(
− s+s2

2−2s ,− 1+s
2

)
).

Put D = Ks in Lemma 2.3. By scaling we obtain∫
SA6A10A9

uKs (x; t)dx = s2E

(
t

s2

)
−

∫
SA6A10A9

�x

[
τ∂Ks > t, τ

C̃
≤ t

]
dx

= s2E

(
t

s2

)
−

∫
SA6A10A9

�x

[
τ
C̃

≤ t
]
dx

+
∫
SA6A10A9

�x

[
τ∂Ks ≤ t, τ

C̃
≤ t

]
dx. (2.33)

Since d(SA13A10A9 , C̃) ≥ s
2 , we have by Lemma 2.3∫

SA13A10A9

�x

[
τ∂Ks ≤ t, τ

C̃
≤ t

]
dx ≤

∫
SA13A10A9

�x

[
τ
C̃

≤ t
]
dx

= O

(
e− s2

16t

)
. (2.34)

Combining (2.33–2.34), we obtain∫
SA6A10A9

uKs (x; t)dx = s2E

(
t

s2

)
−

∫
SA6A10A13

�x

[
τ
C̃

≤ t
]
dx

+
∫
SA6A10A13

�x

[
τ∂Ks ≤ t, τ

C̃
≤ t

]
dx + O(e− s2

16t ). (2.35)

To estimate the third term in the right hand side of (2.35), we use Lemma 2.4 with

E = SA6A10A13 , F =
{
x ∈ Ks : d

(
x, SA6A10A13

)
<

s

2

}
. (2.36)

Then F ⊂ Ks ∩G, and the corresponding δ in (2.17) is equal to s
2 . By Lemma 2.4,∫

SA6A10A13

�x

[
τ∂Ks ≤ t, τ

C̃
≤ t

]
dx

=
∫
SA6A10A13

�x

[
τ
Č∪Ĉ ≤ t, τ

C̃
≤ t

]
dx + O

(
e− s2

16t

)
. (2.37)

Putting (2.35) and (2.37) together, we obtain∫
SA6A10A9

uKs (x; t)dx

= s2E

(
t

s2

)
−

∫
SA6A10A13

�x

[
τ
Č∪Ĉ > t, τ

C̃
≤ t

]
dx + O

(
e− s2

16t

)
. (2.38)
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Let V be the von Koch sector bounded by Ĉ and the line lA6A10 , which contains
SA6A10A13 . For x ∈ V we put r = d(x,A6). Then d(x, C̃) ≥ r√

2
, so that by Lemma

2.2, ∫
V \SA6A10A13

�x

[
τ
Č∪Ĉ > t, τ

C̃
≤ t

]
dx ≤

∫
V \SA6A10A13

�x

[
τ
C̃

≤ t
]
dx

≤ 2
∫
V \SA6A10A13

e− d(x,C̃)2
4t dx

≤ 2
∫
V \SA6A10A13

e− r2
8t dx. (2.39)

In order to estimate the integral on the right hand side of (2.39), we note that
V is contained in the region bounded by the line lA6A10 and the line through A6
perpendicular to lA6A10 . Moreover r ≥ s

2 for x ∈ V \ SA6A10A13 . By using polar
coordinates, we obtain the following upper bound for (2.39)

2
∫ π

2

0
dϕ

∫ ∞
s
2

e− r2
8t rdr = O

(
e− s2

32t

)
. (2.40)

Similarly, ∫
V

�x

[
τ
Č∪Ĉ > t, τ

C̃
≤ t

]
dx ≤ π

∫ ∞

0
e− r2

8t rdr = 4πt. (2.41)

Finally, we note that(
Č ∪ Ĉ

)
1−s

2 ,A6
= Č ∪ Ĉ, C̃ 1−s

2 ,A6
= C̃, V 1−s

2 ,A6
= V, (2.42)

so that the left hand side of (2.41) (denoted byF1(t)) satisfies the functional relation
(2.6) by an identity similar to (2.24). The proof follows by (2.38–2.42).

Lemma 2.8. For t → 0∫

A5A10A11

uKs (x; t)dx = F2(t) + O

(
e− s2

32t

)
, (2.43)

where F2 satisfies the functional relation (2.6), and

0 ≤ F2(t) ≤ 8πt. (2.44)

Proof. Let Č and Ĉ be as in the proof of Lemma 2.7. We approximate ∂Ks near
the point A6 by Č ∪ Ĉ, and use Lemma 2.4 with D = Ks , C = �2,

F =
{
x ∈ Ks : d

(
x,
A5A10A11

)
<

s

2

}
, (2.45)

and G as the open set with boundary Č ∪ Ĉ which contains Ks . Then F ⊂ Ks ∩G,
and the corresponding δ in (2.17) is equal to s

2 . By (2.18)∫

A5A10A11

uKs (x; t)dx =
∫

A5A10A11

�x

[
τ
Č∪Ĉ ≤ t

]
dx + O

(
e− s2

16t

)
. (2.46)
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Let V be the half space bounded by lA10A11 which contains 
A5A10A11 . For x ∈ V ,
we put r = d(x,A6). Then d(x, Č ∪ Ĉ) ≥ r√

2
, so that by Lemma 2.2,

∫
V \
A5A10A11

�x

[
τ
Č∪Ĉ ≤ t

]
dx ≤ 2

∫
V \
A5A10A11

e− r2
8t dx. (2.47)

In order to estimate the integral in the right hand side of (2.47), we note that r ≥ s
2

for x ∈ V \
A5A10A11 . By using polar coordinates, we obtain that (2.47) is bounded
by

2
∫ π

0
dϕ

∫ ∞
s
2

e− r2
8t rdr = O

(
e− s2

32t

)
. (2.48)

Similarly, ∫
V

�x

[
τ
Č∪Ĉ ≤ t

]
dx ≤ 2π

∫ ∞

0
e− r2

8t rdr = 8πt. (2.49)

Again, Č ∪ Ĉ and V satisfy the scaling identities (2.42), and the left hand side of
(2.49) (denoted by F2(t)) satisfies (2.6), by an identity similar to (2.24). The proof
follows by (2.47–2.49).

Lemma 2.9. For t → 0

∫
SA1A11A6

uKs (x; t)dx =
(

1 − s

2

)2

E


 t(

1−s
2

)2


−F3(t)+O

(
e− s2

32t

)
, (2.50)

where F3 satisfies (2.6) and

0 ≤ F3(t) ≤ 4πt. (2.51)

Proof. Let A14 =
(
− 1

2 ,− s
2

)
, and let C denote the reflection of the part of ∂Ks

bounded by A6 and A14 with respect to lA6A14 . The region bounded by ∂Ks

(between A6 and A14) and C is a similitude of Ks by a factor 1−s
2 . Hence

∫
SA1A11A6

�x

[
τ(∂Ks)∪C ≤ t

]
dx =

(
1 − s

2

)2

E


 t(

1−s
2

)2


 . (2.52)

By using Lemma 2.3 with D = Ks , we obtain by (2.52)

∫
SA1A11A6

uKs (x; t)dx =
(

1 − s

2

)2

E


 t(

1−s
2

)2




−
∫
SA1A11A6

�x

[
τ∂Ks > t, τC ≤ t

]
dx. (2.53)
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Let A15 =
(
− 1+s

4 ,− 1+s
2

)
be the midpoint of the part of ∂Ks bounded by A1 and

A6. Since d(SA1A11A15 , C) ≥ 1−s
4 ≥ s

2 , we have by Lemma 2.2∫
SA1A11A15

�x

[
τ∂Ks > t, τC ≤ t

]
dx ≤

∫
SA1A11A15

�x

[
τC ≤ t

]
dx

= O

(
e− s2

16t

)
, (2.54)

and so it remains to estimate the contribution from SA15A11A6 to the integral in
the right hand side of (2.53). Let C intersect lA1A3 in A16, and denote by C the
self-similar extension of the part C between A6 and A16 along the half line through
these points and with endpoint A6. (So C 1−s

2 ,A6
= C).

Since d(x, C \ C) ≥ 1−s
4 ≥ s

2 for x ∈ SA15A11A6 we have by Lemma 2.2 and
Lemma 2.3∫

SA15A11A6

�x

[
τ∂Ks > t, τC ≤ t

]
dx =

∫
SA15A11A6

�x

[
τ∂Ks > t, τC ≤ t

]
dx

+O

(
e− s2

16t

)
. (2.55)

Next we approximate ∂Ks near A6 by Č ∪ Ĉ, and use Lemma 2.4 with D = Ks ,
G as in the proof of Lemmas 2.7 and 2.8 and

F =
{
x ∈ Ks : d

(
x, SA15A11A6

)
<

s

2

}
. (2.56)

This gives∫
SA15A11A6

�x

[
τ∂Ks > t, τC ≤ t

]
dx =

∫
SA15A11A6

�x

[
τ
Č∪Ĉ > t, τC ≤ t

]
dx

+ O

(
e− s2

16t

)
. (2.57)

Let V be the region bounded by lA6A11 and Č which contains SA15A11A6 . Put r =
d(x,A6). Then for x ∈ V , d(x, C) ≥ r√

2
, and r ≥ 1−s

4 ≥ s
2 for x ∈ V \SA15A11A6 .

Moreover V is contained in a wedge with vertex A6 bounded by lA6A11 and the
line perpendicular to lA6A11 through A6. Following estimates similar to the ones in
Lemma 2.7, we obtain∫

V \SA15A11A6

�x

[
τ
Č∪Ĉ > t, τC ≤ t

]
dx = O

(
e− s2

32t

)
, (2.58)

∫
V

�x

[
τ
Č∪Ĉ > t, τC ≤ t

]
dx ≤ 4πt. (2.59)

The proof follows from (2.53–2.59), where F3(t) is given by the left hand side of
(2.59).
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Proof of Proposition 2.1. Since

SA1A5A2 = SA1A11A6 ∪ SA6A10A9 ∪ SA9A10A8 ∪ SA8A10A7 ∪ SA7A12A2

∪SA5A10A11 ∪SA5A10A12 ∪ N, (2.60)

where N is a set of measure zero, we have by symmetry (2.25–2.27)

E(t) = 2
∫
SA1A11A6

uKs (x; t)dx + 2
∫
SA6A10A9

uKs (x; t)dx

+ 2
∫
SA5A10A11

uKs (x; t)dx +
∫
SA9A10A8

uKs (x; t)dx. (2.61)

We obtain by (2.61) and Lemmas 2.6–2.9 for t → 0

E(t) = 3s2E

(
t

s2

)
+ 2

(
1 − s

2

)2

E


 t(

1−s
2

)2




− 2F1(t) + 2F2(t) − 2F3(t) + O

(
e− s2

32t

)
. (2.62)

The linear combination −2F1 + 2F2 − 2F3 satisfies (2.6) since each of F1, F2 and
F3 satisfies (2.6). To complete the proof of the Proposition, we put

F(t) = −2F1(t) + 2F2(t) − 2F3(t). (2.63)

Then (2.5) follows from (2.62–2.63), and (2.7) follows from (2.32), (2.44) and
(2.51). Finally, since 0 ≤ uKs ≤ 1, we have by (2.1),

0 ≤ E(t) ≤ 1

4
|Ks |. (2.64)

By (2.2) and (2.64)

−1

4

(
3s2 + 2

(
1 − s

2

)2
)

|Ks | ≤ H(t) ≤ 1

4
|Ks |, (2.65)

which implies (2.4).

3. Proof of Theorem 1.2

To prove part (i) of Theorem 1.2 we note that ψ is continuous by definition (1.19)
and the continuity of EKs . By (1.19) and (2.1–2.4),

|ψ(z)| ≤ 4−1e
z
(

1− ds
2

)
|Ks |, z ∈ �. (3.1)

Hence for w ∈ W ,

∞∑
m=0

|w|−m|ψ(z − mγ )| ≤ 4−1|Ks |ez
(

1− ds
2

) ∞∑
m=0

e
−mγ

(
1− ds

2

)
< ∞. (3.2)
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On the other hand by (2.4), (2.5) and (2.7), there exists a constant c < ∞ such that
|H(t)| ≤ ct for all t > 0. Hence

|ψ(z)| ≤ ce−z
ds
2 , z ∈ �, (3.3)

and for w ∈ W ,

∞∑
m=1

|w|m|ψ(z + mγ )| ≤ ce−z
ds
2

∞∑
m=1

(
|w|e−γ

ds
2

)m
< ∞, (3.4)

by definition of γ and W . The absolute convergence of the series in (1.20) for
w ∈ W follows from (3.2) and (3.4).

The function z �→ w−mψ(z − mγ ) tends to zero exponentially as m → ∞
by (3.1), and as m → −∞ by (3.3). So the series in the right hand side of (1.21)
converges uniformly on compact subsets of �. Hence ψw is continuous. Substitu-
tion of z �→ z + γ and m �→ m + 1 in (1.21) proves the γ -periodicity of ψw in z.
Finally, periodic, continuous functions are uniformly continuous.

To prove parts (ii) and (iii) of Theorem 1.2, we define f : � → � by

f (z) = e
z
(

1− ds
2

)
E(e−z). (3.5)

Substitution of (3.5) into (2.2) gives by (1.19)

f (z) = 3sds f (z − qγ ) + 2

(
1 − s

2

)ds

f (z − pγ ) + ψ(z). (3.6)

From (2.64) and (3.5) we obtain the boundary condition

lim
z→−∞ f (z) = 0. (3.7)

Let C(�) be the space of bounded complex-valued continuous functions
equipped with the uniform metric. Define L : C(�) → C(�) by

(Lf )(z) = 3sds f (z − qγ ) + 2

(
1 − s

2

)ds

f (z − pγ ). (3.8)

By (3.1) and (3.3),

|ψ(z)| ≤ (c + 4−1|Ks |)e−|z| min
{
ds
2 ,1− ds

2

}
, z ∈ �. (3.9)

By the renewal theorem (p. 198 in [14]), the solution of f = Lf +ψ , (3.7) in C(�)
is unique and is given by

f (z) =
∞∑
n=0

(Lnψ)(z). (3.10)
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Expanding the powers of L in (3.10) gives

f (z) =
∞∑
n=0

n∑
k=0

(
n

k

)(
3sds

)k (
2

(
1 − s

2

)ds
)n−k

ψ(z − kqγ − (n − k)pγ ).

(3.11)
Let cm denote the coefficient of ψ(z − mγ ) in the right hand side of (3.11). A
straightforward calculation yields

∞∑
m=0

cmz
m = (P (z))−1, |z| < 1. (3.12)

By Proposition 1.1 (i), all roots of P(z) = 0 are simple, and so by (1.16)

(P (z))−1 =
q∑

j=1

σj

zj − z
, (3.13)

where

σj =
(

3qsds zq−1
j + 2p

(
1 − s

2

)ds

z
p−1
j

)−1

. (3.14)

Expanding the right hand side of (3.13) in a power series about 0 and comparing
the powers of zm with (3.12), we obtain

cm =
q∑

j=1

σj z
−1−m
j . (3.15)

Hence

f (z) =
∞∑
m=0

q∑
j=1

σj z
−1−m
j ψ(z − mγ ). (3.16)

We consider the two cases:
Suppose q odd. Let

α = |zq |s
ds
q . (3.17)

Then 0 < α < 1 by (1.14), and |zj | ≤ αs
− ds

q for j = 1, . . . , q by (1.12). Hence
by (3.3), (1.12) and (1.13),

∞∑
m=1

|zj |−1+m|ψ(z + mγ )| ≤ ce−z
ds
2

∞∑
m=1

αm < ∞. (3.18)

By (3.16), (3.18) and (1.21), we obtain

f (z) =
q∑

j=1

σj z
−1− z

γ

j ψzj (z) −
∞∑
m=1

q∑
j=1

σj z
−1+m
j ψ(z + mγ ). (3.19)
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Define χ̂ : � → � by

F(t) = t χ̂ (− log t). (3.20)

By Proposition 2.1, χ̂ is continuous, pγ -periodic, and satisfies

|χ̂(− log t)| ≤ 16π. (3.21)

By (2.5) and (3.20), there exists a constant ĉ such that for z ≥ 0 and m ≥ 0,

∣∣H(e−z−mγ ) − e−z−mγ χ̂(z + mγ )
∣∣ ≤ ĉe− s2

32 e
z+mγ

. (3.22)

Hence by (2.3), (3.22) and the pγ -periodicity of χ̂ we obtain for z → ∞
∞∑
m=1

q∑
j=1

σj z
−1+m
j ψ(z + mγ )

=
∞∑
m=1

q∑
j=1

σj z
−1+m
j e(z+mγ )(1− ds

2 )H(e−z−mγ )

=
∞∑
m=1

q∑
j=1

σj z
−1+m
j e− ds

2 (z+mγ )χ̂(z + mγ ) + R(z)

=
p∑

m=1

q∑
j=1

σj z
−1+m
j

(
1 − z

p
j s

ds
p
q

)−1
e− ds

2 (z+mγ )χ̂(z + mγ ) + R(z),

(3.23)

where for z → ∞

|R(z)| =
∣∣∣ĉ ∞∑

m=1

q∑
j=1

σj z
−1+m
j e(z+mγ )(1− ds

2 )e− s2
32 e

z+mγ
∣∣∣

≤ ĉ

q∑
j=1

|σj z−1
j |

∞∑
m=1

s
−mds

q e(z+mγ )(1− ds
2 )e− s2

32 e
z+mγ

≤ ĉ

q∑
j=1

|σj z−1
j |ez(1− ds

2 )
∞∑
m=1

emγ− s2
32 e

z+mγ

= O

(
e− s2

32 e
z

)
. (3.24)

Since a finite sum of pγ -periodic, continuous functions is pγ -periodic and uni-
formly continuous, we conclude by (3.5), (3.19) and (3.23) that (1.22) holds with

χ(z) =
p∑

m=1

q∑
j=1

σj z
−1+m
j

(
1 − z

p
j s

ds
p
q

)−1
s
ds

m
q χ̂(z + mγ ). (3.25)
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Suppose q even. Since zq = −s
− ds

q , α = 1, and the argument following (3.17)
fails. Instead of (3.17) we redefine α by

α = |zq−1|s
ds
q . (3.26)

By Proposition 1.1, α < 1. We estimate the contribution from the terms j =
1, . . . , q − 1 in (3.16) by modifying (3.18–3.25) with α given by (3.26). This gives

f (z) =
q−1∑
j=1

σj z
−1− z

γ

j ψzj (z) −
p∑

m=1

q−1∑
j=1

σj z
−1+m
j

(
1 − z

p
j s

ds
p
q

)−1

· e− ds
2 (z+mγ )χ̂(z + mγ ) +

∞∑
m=0

σqz
−1−m
q ψ(z − mγ ) + O

(
e− s2

32 e
z

)
.

(3.27)

By (1.15) and (3.14), σq is nonzero, and is given by

σq = (2p − 3q)−1s
− ds

q . (3.28)

Hence the third term in the right hand side of (3.27) is given by

(3q − 2p)−1e−z
ds
2

∞∑
m=0

(−1)mez−mγH
(
e−z+mγ

)
. (3.29)

Let

K(z) = H
(
e−z

) − e−zχ̂(z), (3.30)

and denote the sum over m in (3.29) by G(z). Then by (3.30),

G(z) − G(z + 2pγ ) =
∞∑
m=0

(−1)mez−mγH
(
e−z+mγ

)

−
∞∑
m=0

(−1)mez+2pγ−mγH
(
e−z−2pγ+mγ

)

= −
2p∑
m=1

(−1)mez+mγH
(
e−z−mγ

)

= −
2p∑
m=1

(−1)mez+mγK(z + mγ ) −
2p∑
m=1

(−1)mχ̂(z + mγ )

= −
2p∑
m=1

(−1)mez+mγK(z + mγ ), (3.31)
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by the pγ -periodicity of χ̂ . Denoting the right hand side of (3.31) by L(z), we have
by (3.22) and (3.30)

|L(z)| ≤ 2pĉe2pγ ez−
s2
32 e

z+γ

≤ 64

γ s2
e2pγ−1e− s2

32 e
z

, z ≥ 0. (3.32)

Following Lemma 2.5 in [13], we define

M(z) =
∞∑
k=0

L(z + 2pγ k) − G(z). (3.33)

The series in (3.33) converges absolutely, and it follows from the definition of L(z)
and (3.33) that

M(z + 2pγ ) = M(z), z ∈ �. (3.34)

Moreover, by (3.32)

∞∑
k=0

|L(z + 2pγ k)| = O

(
e− s2

32 e
z

)
. (3.35)

Putting (3.29) and (3.33–3.35) together, we obtain that the third term in the right
hand side of (3.27) is equal to

−(3q − 2p)−1e−z
ds
2 M(z) + O

(
e− s2

32 e
z

)
. (3.36)

Hence (1.23) holds by (3.5), (3.27) and (3.36) with

%(z) =
p∑

m=1

q−1∑
j=1

σj z
−1+m
j

(
1 − z

p
j s

ds
p
q

)−1
s
ds

m
q χ̂(z + mγ )

+ (3q − 2p)−1M(z). (3.37)

This completes the proof of (iii), since a finite sum of 2pγ - and pγ -periodic
continuous functions is 2pγ -periodic and uniformly continuous.
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