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Abstract. We deal with the problem of estimating some unknown regression function in-
volved in a regression framework with deterministic design points. For this end, we consider
some collection of finite dimensional linear spaces (models) and the least-squares estimator
built on a data driven selected model among this collection. This data driven choice is per-
formed via the minimization of some penalized model selection criterion that generalizes
on Mallows’ Cp . We provide non asymptotic risk bounds for the so-defined estimator from
which we deduce adaptivity properties. Our results hold under mild moment conditions on
the errors. The statement and the use of a new moment inequality for empirical processes is
at the heart of the techniques involved in our approach.

1. Introduction

Let ψj for j = 1, ..., n be some basis of �n which is endowed with the normalized
Euclidean norm ‖.‖n defined by ‖t‖2

n = n−1∑n
i=1 t

2
i for t ∈ �n. To start with, let

us consider the problem of estimating the unknown �n-vector s =∑n
j=1 βjψj =

�[Y ] from one realization of the random vector Y ∈ �n deriving from

Model 1 Y =
n∑

j=1

βjψj + ε,

where ε denotes some centered random vector of �n with i.i.d. components admit-
ting a finite variance σ 2. For the sake of simplicity σ 2 is supposed to be known all
along this section. The classical linear model relies on the assumption that s belongs
to the linear span, Sm0 , of {ψj , j ∈ m0} where m0 is a known subset of {1, . . . , n}.
One well-known method to estimate s is to use the least-squares estimator, ŝm0 ,
which minimizes the least-squares contrast function γn(t) = n−1∑n

i=1(Yi − ti )
2

over the vectors t of Sm0 . Since the quadratic risk �[‖s− ŝm0‖2
n] of this estimator is

equal to σ 2|m0|/n, we see that ŝm0 behaves poorly when |m0| is large. To improve
the estimation of s let us consider the least-squares estimator ŝm with respect to Sm
for some m ⊂ m0. We set dn(s, Sm) = inf t∈Sm ‖s − t‖n. Since the quadratic risk
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of ŝm is equal to

Rn(m) = �
[
‖s − ŝm‖2

n

]
= d2

n(s, Sm)+ σ 2|m|/n, (1)

there exists some optimal choice m∗ of m among the subsets of m0 that realizes
the best trade-off between the bias term d2

n(s, Sm) and the variance term σ 2|m|/n.
Unfortunately m∗ depends on the unknown coefficients βj s. The problem of vari-
able selection is to determine from the data some subset m̂ ⊂ m0 for which the
estimator s̃ = ŝm̂ admits a quadratic risk that is as close as possible to the infimum
of the risks of the least-squares estimators ŝm when m varies among the collection
of all subsets of m0. To solve this problem an heuristic approach was given by
Mallows (1973) . He suggested that m̂ should be chosen to minimize the penalized
criterion (Mallows’ Cp) γn(ŝm)+ 2σ 2|m|/n.

In a parametric framework, i.e. when m0 is given by {1, . . . , N} for some inte-
ger N independent of n, Nishii (1984) considered the problem of variable selection
under a Gaussian assumption on the εis and for n tending to infinity. In this asymp-
totic context the problem is then to determine m∗ = {j/ βj = 0}. For this purpose
Nishii studied different kind of penalized criteria and among them one that is simi-
lar to Mallows’ Cp: m̂ is obtained by minimizing over the subsets m of {1, . . . , N}
γn(ŝm) + aσ 2|m|/n for some arbitrary positive constant a. Nishii gave the exact
asymptotics of n�[‖s − s̃‖2

n] and showed that if this criterion fails to determine
m∗ asymptotically, one selects a model m̂ that contains m∗ with a probability that
tends to one as n becomes large. Nevertheless, as N is fixed and n becomes large
s̃ converges towards s at rate 1/

√
n.

Now consider the problem of estimating the unknown function s mapping X
into � from the sample of size n (Yi, xi) obtained from

Model 2 Yi = s(xi)+ εi, i = 1, ..., n.

The design points xis are deterministic points of X (not necessarily distinct) and
the errors εis are unobservable i.i.d. centered random variables with common finite
variance σ 2. When we deal with Model 2, we equipXwith the measureµn given by
µn = n−1∑n

i=1 δxi . By considering the mapping I from �2(X, µn) to �n defined
by

f �→ I (f ) = t (f (x1), ..., f (xn)),

we have that the functional space (�2(X, µn), ‖ ‖µn) is isometric to �n (or to a
subspace of �n when the xis are not distinct) endowed with the norm ‖ ‖n defined
previously. In the sequel we shall denote the same way ‖ ‖µn and ‖ ‖n, emphasiz-
ing thus the links between Model 1 and Model 2. To illustrate the relevance of our
method of estimation, let us assume for a short time that for some α ∈]0, 1[ and
L > 0, s belongs to the set of α-Hölderian functions Hα(L) defined by

Hα(L) = {s/ |s(x)− s(y)| ≤ L|x − y|α ∀ x, y ∈ [0, 1]}.
In addition, let us assume that the xis are equidistant points of [0, 1], i.e. xi = i/n

for all i = 1, ..., n. When s is known to belong this set, we describe two ways of
estimating s:
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1. One can introduce the linear spaces Sms for m = 1, ..., n, where Sm is defined
as the linear span of the 1I[(j−1)/m,j/m[ for j = 1, ..., m. We denote by ŝm the
least-squares estimator of s in Sm ⊂ �2(X, µn), which is defined by

ŝm = argmin
t∈Sm

n∑
i=1

(Yi − t (xi))
2 ,

and thanks to the isometry I we know from (1) that

�
[
‖s − ŝm‖2

n

]
= d2

n(s, Sm)+
m

n
σ 2. (2)

As s belongs toHα(L) a simple computation shows that the bias term d2
n(s, Sm)

is bounded by L2m−2α and therefore a possible choice of m in (2) to re-
alize the best trade-off between the bias and the variance term is given by
m(α,L) = [(L/σ)2/(1+2α)n1/(1+2α)] ([x] denotes the integer part of x). We
notice that this particular choice of m leads to a risk of ŝm(α,L) of order
σ 4α/(1+2α)L2/(1+2α)n−2α/(1+2α) which is known to be (up to a constant) the
minimax risk on Hα(L).

2. One can consider the least-squares estimator of s in Hα(L). This approach was
considered by van de Geer (1990) in the case of Sobolev balls. By introducing
empirical processes techniques, she related the size (in some sense) of this set
to the rate of convergence of the estimator. By so doing, she proved that such
an estimator reaches the minimax rate of convergence (up to a multiplicative
constant).

The defect of both approaches lies in the fact that they heavily rely on a prior infor-
mation on the regularity of s that is seldom available in practice. In the first example,
a selection procedure of some m̂ among {1, . . . , n} solely based on the data offers
the advantage to free the estimator from any prior knowledge of α and L. Of course
the selection procedure is relevant if for all α ∈]0, 1[ and L > 0 s̃ = ŝm̂ is proved
to perform almost as well as ŝm(α,L) under the posterior information that s belongs
to Hα(L). If so, the resulting estimator is said to be adaptive in the minimax sense
with respect to the class of Hölderian functions (for a precise definition we refer to
Barron, Birgé and Massart (1999)).

The aim of this paper is to propose a model selection procedure (the word
“model” will be repeatedly used to name the Sms) by penalized least-squares which
is relevant for both variable selection and adaptive estimation (in the minimax
sense). This is actually possible since our approach is not asymptotic. Unlike the
parametric approach, it must be emphasized that we consider collections of mod-
els where the dimension and the number of models are both allowed to depend
on n. This makes it possible to take collections of models that properly approxi-
mate Hölderian functions and consequently to derive properties of adaptivity in the
minimax sense on s̃.

Let us now describe our estimation procedure in details. We start with some
collection of linear subspaces (Sm)m∈Mn of �n, in the case of Model 1, or of
�2(X, µn) in the case of Model 2. Our selection strategy consists in estimating
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m∗(n) that minimizes Rn(m) over Mn by m̂ that minimizes among m ∈ Mn the
penalized least-squares criterion γn(ŝm) + penn(m) where penn is some positive
function defined on Mn. The main issue is to discuss whether it is possible to de-
fine the penalty function penn in such a way that the resulting estimator s̃ = ŝm̂
performs almost as well as ŝm∗(n). Under adequate assumptions on the distribu-
tion of the εis and the collections of models, a choice of a penalty of the form
penn(m) = Cσ 2Dm/n with C > 1 leads to risk bounds of the form

�
[
‖s − s̃‖2

n

]
≤ C′ inf

m∈Mn

�
[
‖s − ŝm‖2

n

]

= C′ inf
m∈Mn

(
d2
n(s, Sm)+ σ 2 Dm

n

)
. (3)

Our method generalizes the well-known model selection method introduced by
Mallows and known as Mallows’ Cp. It amounts to take penn(m) = 2σ 2Dm/n

(C = 2) for all m ∈ Mn. As a consequence of (3), when �[|ε1|p] < ∞ for some
p > 2, we show that building adaptive estimators (in the minimax sense) with re-
spect to classical smoothness classes is possible. Moreover in the context of Model 1
our results are also meaningful for the ordered variable selection problem. To solve
this problem we consider the collection of models given by the Sms defined as the
linear span of theψj s for j ∈ m andm varying among all the subsets of {1, ..., n} of
the form {1, ..., J } (1 ≤ J ≤ n). The original variable selection problem mentioned
at the beginning requires that m should vary among all the subsets of {1, . . . , n}
(i.e. |Mn| = 2n−1), but we believe that very restrictive integrability conditions on
the εis are then necessary. Since we are interested in weak integrability conditions
on the εis, the method that is presented here only covers the case of collections of
models with a polynomial restriction (relatively to n) on the number of models.

As far as we know, the first results about adaptation in the minimax sense are
due to Efroimovich and Pinsker (1984) in the white noise model. They got very
precise asymptotic results using a method which is more sophisticated than a mod-
el selection procedure. Considering the estimator s̃ built using the Mallows’ Cp

method, in the context of Model 2, Li (1987) (and earlier Shibata (1981) when the
εis are Gaussian, see also Kneip (1994) for extension of the work of Li) showed
that

‖s − s̃‖2
n

infm∈Mn ‖s − ŝm‖2
n

→ 1 in probability

assuming that the εis have moments of order 8. Assuming moments of order 4 only,
Polyak and Tsybakov (1990) gave further results by using the Fourier expansion
of s. Unfortunately, all the above mentioned results of Shibata, Li and Polyak and
Tsybakov are of an asymptotic nature and only hold under the unpleasant assump-
tion that s does not belong to any of the models Sm which excludes the classical
parametric case.

In contrast, as announced in (3) we shall give non asymptotic risk bounds for
the penalized least-squares estimators which are valid for all s (belonging to some
Sm or not). As a consequence if s belongs to one of the models the method allows
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to recover the usual parametric rate of convergence 1/
√
n of s̃ to s when n tends

to infinity.
To our knowledge, the first non-asymptotic risk bounds for estimators built via

model selection are due to Birgé and Massart (1997) in a density estimation con-
text. They also showed how such bounds imply adaptive properties in the minimax
sense for the corresponding estimators. Related results are to be found in Barron,
Birgé and Massart (1999) for various statistical frameworks including regression.
While our approach is inspired by their work, the techniques that are used here
differ from those used by Barron, Birgé and Massart in their treatment of the re-
gression framework. Their results concerning regression have indeed the following
weaknesses:

• the εis are supposed to have exponential moments;
• the models and the regression function s are assumed to be bounded by some

known constant B;
• the value of the penalty involves unpleasant quantities such as B and irrelevant

numerical constants.

In order to relax the boundedness assumptions and to weaken the integrability
condition on the εis, we introduce some new probabilistic tools which allow to
control the supremum of unbounded empirical processes. More precisely we state
a moment inequality for the supremum of an empirical process over some class of
functions G, controlling its fluctuations around its mean, which does not require
that the class G should be uniformly bounded. This inequality can be seen as an
analogue of Talagrand’s Inequality (1996) (Theorem 1.4) for unbounded empirical
processes. Moreover, this technique allows us to provide an explicit value for the
constant involved in the penalty term.

The paper is organized as follows. The description of the statistical framework
including the definition of the estimator is given in Section 2. The main statistical
result is to be found in Section 3. This result assumes the variance σ 2 of the errors to
be known. The case of an unknown variance will be treated in Section 6. The prop-
erties of adaptation of the estimator is the subject of Section 4. Section 5 is devoted
to the statement of a moment inequality on suprema of empirical processes and
its consequences. The most technical proofs are given in Section 7. Some moment
inequalities on sum of independent and centered random variables are recalled in
the Appendix.

Throughout this paper C, C′, C′′ ... denote constants that may vary from line
to line. The notation C(.) specifies the dependency of C on some quantities.

2. The statistical framework

We observe a sample of pairs (Yi, xi), i = 1, · · · , n where the Yis are independent
real valued random variables and the xis are deterministic design points with values
in some measurable space X. The Yis and the xis are constrained by the relation

Yi = s(xi)+ εi, (4)
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where the real variables ε1, ..., εn are unobservable i.i.d. centered random variables
with common variance σ 2. The object of this paper is to estimate the unknown func-
tion s from X to � thanks to the observation of those pairs. Note that Model 1 is a
particular case of (4) by taking X = {1, ..., n} and xi = i for i = 1, ..., n.

For any t ∈ �2(X, µn) we define the least-squares loss function by

γn(t) = 1

n

n∑
i=1

(Yi − t (xi))
2. (5)

Let us now consider a finite collection of linear subspaces of �2(X, µn) denoted
by (Sm)m∈Mn . We allow one of the Sms to be reduced to {0}. The minimum of γn
over Sm is acheived at a single point ŝm called the Least-Squares Estimator of s in
Sm ⊂ �2(X, µn). Given some positive penalty function pen mapping Mn into �+,
we define the Penalized Least-Squares Estimator (PLSE for short), s̃, by

s̃ = ŝm̂ (6)

where m̂ is chosen to minimize over Mn the penalized criterion

γn(ŝm) + pen(m). (7)

Thus,

s̃ = argmin
m∈Mn
t∈Sm

[
γn(t)+ pen(m)

]

and therefore s̃ satisfies

s̃ ∈ Sm̂ and γn(s̃)+ pen(m̂) ≤ γn(t)+ pen(m) (8)

for all m ∈ Mn and t ∈ Sm.

Notations: for t ∈ �2(X, µn) we set

‖t‖2
n =

1

n

n∑
i=1

t2(xi)

and d2
n(s, Sm) = inf{‖s − t‖2

n/ t ∈ Sm}. We denote by Dm the dimension of the
linear space Sm.

3. Main results

Throughout this section the variance σ 2 of the εis is assumed to be known. For the
case of an unknown σ 2, which is of practical relevance, we refer to Section 6.
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3.1. Risk bounds in
(
�2(X, µn), ‖.‖n

)
As already mentioned in the introduction, an ideal selection procedure would select
some m∗ ∈ Mn that minimizes the function m �→ �

[‖s − ŝm‖2
n

]
over m ∈ Mn,

the minimum, denoted by M∗
n , representing the minimal risk that can be achieved

with the collection of estimators (ŝm)m∈Mn . We show that for suitable choices of
the penalty function the values of ‖s − s̃‖2

n are closed to M∗
n . More precisely, the

following result holds:

Theorem 3.1. Consider the regression framework (4) and let (Sm)m∈Mn be some
finite collection of finite dimensional linear subspaces of �2(X, µn). For each
m ∈ Mn, let ŝm be the least-squares estimator of s in Sm. Set

M∗
n = inf

m∈Mn

�
[
‖s − ŝm‖2

n

]
.

For any positive number θ let us define pen : Mn → �+ by

pen(m) = (1 + θ)
Dm

n
σ 2.

Let q > 0 be given such that there exists p > 2(1 + q) satisfying �[|ε1|p] < +∞.
Then for some constant κ(θ) > 1, the PLSE, s̃, defined by (6) satisfies

�

[(
‖s − s̃‖2

n − κ(θ)M∗
n

)q
+

]
≤ )

q
p

σ 2q

nq
, (9)

where

)
q
p = C′(θ, p, q)

�[|ε1|p]

σp


1 +

∑
m∈Mn
Dm≥1

D
−(p/2−1−q)
m


 . (10)

Comments:

• The Mallow’s Cp criterion corresponds to the choice θ = 1.
• )p is a quantity that does not depend on s but rather on the collection of models

and the moments on the εis. We say that a collection (Sm)m∈Mn is more com-
plex than (S′m)m∈M′

n
if M′

n ⊂ Mn. It should be noticed that )p increases with
the “complexity” of the collection of models. In some sense )p evaluates the
complexity of the collection of models with respect to q and the integrability
properties of the εis.

• It comes from the proof of Theorem 3.1 that one can take κ(θ) = 2(1+4/θ)(1+
θ). Since κ(θ) increases toward infinity as θ tends to 0, in practice it does not
seem reasonable to choose θ small. As it is hard to determine an optimal choice
of θ from theoretical computations, simulations should be carried out to deter-
mine it.

We straightforwardly derive the following corollary about the risk of s̃:
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Corollary 3.1. Under the assumptions of Theorem 3.1, the PLSE, s̃, defined by (6)
satisfies (

�
[
‖s − s̃‖2q

n

])1/q

≤ 2(q
−1−1)+

[
κ(θ) inf

m∈Mn

(
d2
n(s, Sm)+

Dm

n
σ 2
)
+ )p

n
σ 2
]
, (11)

where )p is defined by (10).

Proof. We recall from (1) that

M∗
n = inf

m∈Mn

(
d2
n(s, Sm)+

Dm

n
σ 2
)
.

Since(
�
[
‖s − s̃‖2q

n

])1/q ≤
(

�

[(
κ(θ)M∗

n +
(
‖s − s̃‖2

n − κ(θ)M∗
n

)
+

)q])1/q

it follows from Minkowski’s inequality when q ≥ 1 or convexity arguments when
0 ≤ q < 1 that(

�
[
‖s − s̃‖2q

n

])1/q

≤ 2(q
−1−1)+

[
κ(θ)M∗

n +
(

�

[(
‖s − s̃‖2

n − κ(θ)M∗
n

)q
+

])1/q
]
.

The result then follows from (9). ��

3.2. Risk bounds in �2 (X, ν)

Let ν be some measure on X and let us denote by ‖ ‖2
ν the corresponding

�2-norm. The results of this section are very similar to those given in Corollary 3.1,
the difference lying in the fact that we no longer express the distance between s

and Sm in terms of the discrete norm but rather in terms of the norm relative to
�2 (X, ν). This is actually possible thanks to the equivalence between norms over
finite dimensional linear spaces.

Given a function t fromX into � we denote by ‖t‖∞, the quantity supx∈X |t (x)|
and we set L∞(X) for the space of functions t from X into � such that ‖t‖∞ <

+∞. Throughout this section we assume that s belongs toL∞(X). For any finite di-
mensional spaceS in �2 (X, ν)∩L∞(X)we denote by dν(s, S) = inf{‖s−t‖ν/ t ∈
S} and d∞(s, S) = inf{‖s − t‖∞/ t ∈ S}.
Corollary 3.2. Consider the regression framework (4) and assume that s belongs
to �2 (X, ν) ∩ L∞(X). Let Sn be some finite dimensional space of �2 (X, ν) ∩
L∞(X) satisfying the condition that there exists some positive number Rn such
that

sup
t∈Sn
t =0

‖t‖n
‖t‖ν ≤ Rn. (12)
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Let (Sm)m∈Mn be some finite family of linear subspaces of Sn and q > 0 such that
there exists p > 2(1 + q) satisfying �[|ε1|p] < +∞. Then the estimator s̃ defined
by (6) satisfies

�
[
‖s − s̃‖2q

n

]
≤ C1

[
inf

m∈Mn

(
d2
ν(s, Sm) + Dm

n
σ 2
)
+ d2

∞(s,Sn)+ )p

n
σ 2
]q

, (13)

where C1 = C(θ, q, Rn) and )p is defined by (10).
If there exists a positive constant rn such that

sup
t∈Sn
t =0

‖t‖ν
‖t‖n ≤ rn, (14)

then we can control ‖s − s̃‖ν in the following way

�
[
‖s − s̃‖2q

ν

]
≤ C2

[
inf

m∈Mn

(
d2
ν(s, Sm) + Dm

n
σ 2
)
+ d2

∞(s,Sn)+ )p

n
σ 2
]q

, (15)

where C2 = C(θ, q, Rn, rn).

Proof. Let us denote by πm the �2(X, ν)-orthogonal projector onto Sm. For any
sn ∈ Sn, we have that dn(s, Sm) ≤ ‖s − πms‖n ≤ ‖s − sn‖n + ‖sn − πms‖n.
Since sn − πms ∈ Sn we know from (12) that ‖sn − πms‖n ≤ Rn‖sn − πms‖ν ≤
Rn(‖s − sn‖ν + ‖s − πms‖ν). Thus for any sn ∈ Sn, dn(s, Sm) ≤ (1 + Rn)‖s −
sn‖∞ +Rn‖s −πms‖ν , therefore dn(s, Sm) ≤ (1+Rn)d∞(s,Sn)+Rndν(s, Sm)
and (13) follows from (11). Thanks to (14), similar arguments lead to ‖s − s̃‖ν ≤
(1 + rn)‖s − sn‖∞ + rn‖s − s̃‖n and (15) follows from (13). ��

Comment: In practice, the right-hand sides of (12) and (14) can be computed via
the evaluation of spectral radii of Gramm matrices. More precisely, let A be some
matrix of �k(�) (k ∈ �∗) and let us denote by ρ(A) its spectral radius, which is
defined by

ρ(A) = sup
x =0

‖Ax‖k
‖x‖k . (16)

Then the following result holds:

Lemma 3.1. Let (ϕλ)λ∈2n be an orthonormal basis of Sn ⊂ �2(X, ν). Set 3n,
the Gramm matrix

3n =
(

1

n

n∑
i=1

ϕλ(xi)ϕλ′(xi)

)
λ,λ′∈2n

.
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Then we have

sup
t∈Sn\{0}

‖t‖2
n

‖t‖2
ν

= ρ(3n). (17)

If 3n is positive definite, we also have

sup
t∈Sn\{0}

‖t‖2
ν

‖t‖2
n

= ρ(3−1
n ). (18)

The proof is deferred to Section 7.5.

4. Adaptivity properties of the PLSE in the minimax sense

In the sequel we assume that �2(X, ν) = �2([0, 1], dx) and that xi = i/n,
i = 1, ..., n. This section is devoted to asymptotic properties of the PLSE, i.e.
n is no longer fixed but allowed to increase towards infinity. As a consequence of
Corollary 3.2, we show that under the assumption that �[|ε1|p] < +∞ for some
p > 2 and for a suitable choice of the family of models, s̃ is adaptive in the minimax
sense simultaneously over Besov spaces of the formBα,l,∞ with α > 1/l and l ≥ 2
(for a precise definition of Besov spaces we refer to DeVore and G. Lorentz (1993)).
In order to prove such a result we introduce collections of models for which both the
cardinality and the dimension of the models are allowed to depend on n. Moreover
each collection is chosen in order to satisfy three important properties:

• The collection is not too “complex” with respect to the integrability properties
of the errors εis i.e. there exists some positive q and some p > 2(q + 1) such
that �[|ε1|p] < +∞ and such that)p = )p(n) remains bounded as n becomes
large.

• On each model of the collection ‖ ‖n remains controlled by ‖ ‖ν , i.e the quantity
Rn involved in equation (12) remains bounded as n becomes large.

• Each model of the collection provides a good linear approximation of functions
belonging to Besov spaces Bα,l,∞ (α > 1/l and l ≥ 2) with respect to both
norms ‖ ‖ν and ‖ ‖∞. Namely, for each s ∈ Bα,l,∞

dν(s, Sm) ≤ C(α)|s|α,2D−α
m and d∞(s, Sm) ≤ C′(α)|s|α,lD−α+1/l

m

where |.|α,l denotes the semi-norm associated to the Besov space Bα,l,∞.

In the sequel [x] denotes the integer part of x and we set mn = max{m ∈ �,

2m ≤ n}. Two collections of models satisfying the required properties are described
below:

(a) Mn = {0, ..., mn}, Sm (resp. Sn) is the space of piecewise polynomials of
degree less or equal r based on the dyadic grid {j2−m/0 ≤ j ≤ 2m} (resp.
{j2−mn/0 ≤ j ≤ 2mn}).

(b) Mn = {0, ..., mn−2}, Sm (resp. Sn) is the space of trigonometric polynomials
of degree less or equal 2m (resp. 2mn−2).

For those collections the following holds
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Proposition 4.1. For each α > 0 (α < r + 1 in the case of the collection (a)) and
L > 0 we set l = (2α + 1)/(2α2). Consider either the collection of models (a) or
(b) and assume that �[|ε1|p] < ∞ for some p > 2. Then the PLSE s̃ defined by (6)
satisfies for each positive q < p/2 − 1

(
sup

|s|α,l≤L
�
[
‖s − s̃‖2q

n

])1/(2q)

≤ C(L, α)n−
α

2α+1 . (19)

In the case of the collection (b), ‖s − s̃‖n can be replaced by ‖s − s̃‖ν .

The proof is deferred to Section 7.4.

Comment: Note that for each l′ ≥ l, Bα,l′,∞ ⊂ Bα,l,∞ and for all s ∈ Bα,l,∞,
|s|α,l ≤ |s|α,l′ . Thus, (19) also holds by replacing l by l′.

5. Moment inequalities for empirical processes

The proof of our main theorem relies on a sharp control of the fluctuation of a su-
premum, over some class of functions, of an empirical process. In the recent years,
Talagrand (1996) stated a very powerful theorem on the concentration of such a
supremum around its expectation. This theorem is recalled below.

Theorem 5.1 (Talagrand’s Theorem). Let U1, . . . , Un be independent random
variables with values in some measurable space E. Let G be some countable class
of real valued measurable functions onE. Assume that there exists a constant b > 0
such that for all g ∈ G, ‖g‖∞ ≤ b. Let us set

either Z = sup
g∈G

n∑
i=1

g(Ui) , or Z = sup
g∈G

∣∣∣∣∣
n∑

i=1

g(Ui)

∣∣∣∣∣
and V 2 = �

[
sup
g∈G

n∑
i=1

g2(Ui)

]
.

Then for each t > 0, we have in both cases

� [|Z − � [Z]| ≥ t] ≤ C0 exp

(
− t

C0b
ln

(
1 + tb

V 2

))
, (20)

where C0 denotes some universal constant.

Unfortunately, the class of functions that is relevant for proving our main result
is not uniformly bounded. In order to get a suitable result about the concentration
of our empirical process around its mean, we use the following moment inequality
(the proof is deferred to Section 7.2):
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Theorem 5.2. Let U1, . . . , Un be independent random variables with values in
some measurable space E. Let G be some countable class of real valued measur-
able functions on E. Let us set

either Z = sup
g∈G

n∑
i=1

g(Ui) , or Z = sup
g∈G

∣∣∣∣∣
n∑

i=1

g(Ui)

∣∣∣∣∣ .
Then in both cases we have for all p ≥ 2,

C(p)−1�
[|Z − � [Z]|p] ≤ �

[
max

i=1,···,n
sup
g∈G

|g(Ui)|p
]

+
(

�

[
sup
g∈G

n∑
i=1

g2(Ui)

])p/2

, (21)

where C(p) is a constant that depends on p only.

Comment: By a density argument, the previous result extends to classes of func-
tions G that are not countable but for which there exists some countable subset
G′ ⊂ G that is dense in G ⊂ �∞.

As a consequence of Theorem 5.2, we give a deviation inequality for random
variables ζ 2 of the form

ζ 2 =
n∑

i=1

(Aε)2
i = t ε tAAε,

where A denotes some matrix of �n(�). This deviation bound is used to prove
Theorem 3.1. When the εis are i.i.d. standard Gaussian random variables and A a
projector onto some linear space of dimension D then ζ 2 is known to be distributed
like a khi-square with D degrees of freedom. In this case, a deviation inequality
was established by Laurent and Massart (1998). An analogue is given below which
holds for more general symmetric matrices and under weak moment condition on
the εis. We recall that ρ(A) denotes the spectral radius of A defined by (16).

Corollary 5.1. Let Ã denote some symmetric nonnegative matrix in �n(�) \ {0}
and ε = t (ε1, ..., εn) a random vector in �n with i.i.d centered components. Assume
that σ 2 = �[ε2

1] < +∞ and set

ζ(ε) =
√

t εÃε.

For all p ≥ 2 such that �[|ε1|p] < +∞ we have

�

[
ζ 2(ε) ≥ tr(Ã)σ 2 + 2σ 2

√
ρ(Ã)tr(Ã)x + σ 2ρ(Ã)x

]
≤ C(p)τp

tr(Ã)

ρ(Ã)xp/2
,

(22)
where τp = �[|ε1|p]/σp.
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Proof. By homogeneity we assume that σ 2 = 1. Let Bn be the unit ball of �n

(with respect to the Euclidean norm denoted by ‖ ‖) and {e1, ..., en} be the canoni-
cal basis. Since Ã is nonnegative and symmetric there exists A ∈ �n(�) \ {0} such
that Ã = tAA. By Cauchy-Schwarz we have

ζ 2(ε) = ‖Aε‖2 =
[

sup
u∈Bn

n∑
i=1

(Aε)iui

]2

=
[

sup
u∈Bn

n∑
i=1

εi(
tAu)i

]2

.

By defining

G =

gu/ gu(x) =

n∑
j=1

xj (
tAu)j , u ∈ Bn




we see that

ζ(ε) = sup
u∈Bn

n∑
i=1

gu(εiei),

the supremum being nonnegative since 0 ∈ Bn. By applying Theorem 5.2 with
Ui = εiei , E = �n we obtain for each positive number t

� [ζ(ε) ≥ �[ζ(ε)] + t]

≤ t−p�
[|ζ(ε)− �[ζ(ε)]|p]

≤ C(p)t−p


�

[
max

i=1,...,n
sup
u∈Bn

|εi |p(tAu)pi
]

+
(

�

[
sup
u∈Bn

n∑
i=1

ε2
i (

tAu)2
i

])p/2



= C(p)t−p
(

�1 + �
p/2
2

)
. (23)

We start by bounding �1. For all u ∈ Bn and i ∈ {1, ..., n},

(tAu)2
i ≤ ‖tAu‖2 ≤ ρ2(tA)× 1 = ρ2(A),

therefore

�1 ≤ ρp−2(A)�

[
sup
u∈Bn

n∑
i=1

( tAu)2
i |εi |p

]
.

Writing that u =∑n
j=1 uj ej with

∑n
j=1 u

2
j = 1 gives

(tAu)2
i =


 n∑

j=1

uj (
tAej )i




2

≤
n∑

j=1

(tAej )
2
i =

n∑
j=1

A2
ji .
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Thus,

�1 ≤ ρp−2(A)�[|ε1|p]
n∑

i=1

n∑
j=1

A2
ji = ρp−2(A)�[|ε1|p]tr(Ã).

We now bound �2 via a truncation argument. Since for allu ∈ Bn, ‖tAu‖2 ≤ ρ2(A),
for any positive number c to be specified later we have

�2 ≤ �

[
sup
u∈Bn

n∑
i=1

(tAu)2
i ε

2
i 1I|εi |≤c

]
+ �

[
sup
u∈Bn

n∑
i=1

(tAu)2
i ε

2
i 1I|εi |>c

]

≤ c2ρ2(A) + c2−p�

[
sup
u∈Bn

n∑
i=1

(tAu)2
i |εi |p

]

≤ c2ρ2(A) + c2−p�[|ε1|p]tr(Ã)

using the preceding result on �1. It remains to take cp = �[|ε1|p]tr(Ã)/ρ2(A) to
get that

2−p/2�
p/2
2 ≤ ρp−2(A)�[|ε1|p]tr(Ã).

Since (�[ζ(ε)])2 ≤ �[ζ 2(ε)], we straightforwardly derive from (23) that

�

[
ζ 2(ε) ≥ �[ζ 2(ε)] + 2

√
�[ζ 2(ε)]t2 + t2

]
≤ C′(p)t−pρp−2(A)�[|ε1|p]tr(Ã),

(24)

for all t > 0. Moreover �[ζ 2(ε)] = �[ tεÃε] = tr(Ã) and the result follows by
choosing t2 = ρ(Ã)x > 0. ��

6. Estimation of s when the variance is unknown

In contrast with Section 3, in this section the variance σ 2 is assumed to be some
unknown quantity. Since this quantity can no longer appear in the definition of the
estimator (more precisely, in the definition of the penalty term) we introduce some
estimator for it, namely a residual least-squares estimator, σ̂ 2

n defined as follows.
Let Vn be some linear subspace of �n such that dim(Vn) = [n/2], we define

σ̂ 2
n = n

n− [n/2]
d2
n (Y, Vn) , (25)

then the following result holds.

Theorem 6.1. Let (Sm)m∈Mn , be some collection of finite dimensional linear sub-
spaces of �2(X, µn). For any positive number θ , let us define pen: Mn → �+
by

pen(m) = (1 + θ)
Dm

n
σ̂ 2
n ,
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where σ̂ 2
n is defined by (25). Let q ∈]0, 1] be given such that �[|ε1|p] < +∞ for

some p > 2(1 + 2q). Then the PLSE defined by (6) satisfies for some constant C
that depends on θ and q only(

�
[
‖s − s̃‖2q

n

])1/q

≤ C

[
inf

m∈Mn

(
d2
n(s, Sm) + Dm

n
σ 2
)
+ d2

n(s, Vn)+)′
p

σ 2

n

]
, (26)

where

(
)

′
p

)q = C′(p, q, θ)


�[|ε1|p]

σp


1 +

∑
m∈Mn
Dm≥1

D
−(p/2−1−q)
m


+ ‖s‖2

n

σ 2


 .

7. Proofs

7.1. Proof of Theorem 3.1

In this section, we actually show something stronger than Theorem 3.1, namely we
show that for any η > 0 and any sequence of positive numbers Lm, if the penalty
function is chosen to satisfy

pen(m) ≥ (1 + η + Lm)
Dm

n
σ 2 for all m ∈ Mn, (27)

then for each x > 0 and p ≥ 2

�
[
H(s) ≥

(
1 + 2η−1

) x

n
σ 2
]
≤ C(p, η)τp

∑
m∈Mn

Dm ∨ 1

(LmDm + x)p/2
, (28)

where

H(s) =
(
‖s − s̃‖2

n −
(

2 + 4η−1
)

inf
m∈Mn

(
d2
n(s, Sm)+ pen(m)

))
+

and τp = �[|ε1|p]/σp. To obtain (9), take η = θ/2 = Lm. As for each m ∈ Mn,

d2
n(s, Sm)+ pen(m) ≤ (1 + θ)

(
d2
n(s, Sm)+

Dm

n
σ 2
)
= (1 + θ)�

[
‖s − ŝm‖2

n

]
,

we get that for all q > 0,

Hq(s) ≥
(
‖s − s̃‖2

n − (2 + 8θ−1)(1 + θ)M∗
n

)q
+

=
(
‖s − s̃‖2

n − κ(θ)M∗
n

)q
+
. (29)
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Since

�[Hq(s)] =
∫ +∞

0
quq−1�[H(s) > u]du,

we derive from (28) and (29) that for all p > 2(1 + q)

�

[(
‖s − s̃‖2

n − κ(θ)M∗
n

)q
+

]
≤ �[Hq(s)]

≤ C(p, θ)(1 + 4

θ
)qτp

σ 2q

nq

∑
m∈Mn

∫ +∞

0
qxq−1

[
Dm ∨ 1

(θDm/2 + x)p/2
∧ 1

]
dx

≤ C′(p, q, θ)τp
σ 2q

nq


1 +

∑
m∈Mn
Dm≥1

D
−(p/2−1−q)
m


 . (30)

Indeed, if there exists some m ∈ Mn such that Sm = {0}, then for such an m,∫ +∞

0
qxq−1

[
Dm ∨ 1

(θDm/2 + x)p/2
∧ 1

]
dx =

∫ +∞

0
qxq−1

[
1

xp/2
∧ 1

]
dx

=
∫ 1

0
qxq−1dx +

∫ +∞

1
qxq−1−p/2dx

= 1 + q

p/2 − q
.

On the other hand, for m ∈ Mn such that Dm ≥ 1,∫ +∞

0
qxq−1 Dm

(θDm/2 + x)p/2
dx

≤ 2p/2θ−p/2D
1−p/2
m

∫ Dm

0
qxq−1dx + Dm

∫ +∞

Dm

qxq−1−p/2dx

≤ D
−(p/2−1−q)
m

(
2p/2θ−p/2 + q

p/2 − q

)
.

This proves (30) which leads to (9).
We now turn to the proof of (28). For the sake of simplicity, we identify the func-

tion f with the n-dimensional vector t (f (x1), ..., f (xn)) and we denote by <,>n

the inner product of �n associated to the norm ‖ ‖n. For each m ∈ Mn we denote
by Am the orthogonal projector onto the linear space { t(f (x1), ..., f (xn))/ f ∈
Sm} ⊂ �n. This linear space is also denoted by Sm. From now on, the subscript m
denotes any minimizer of the function m′ �→ ‖s −Am′s‖2

n + pen(m′), m′ ∈ Mn.
Using the definition of γn we have that for all f ∈ �n, ‖s − f ‖2

n = γn(f )

+ 2 < f − Y, ε >n +‖ε‖2
n. We derive that

‖s − s̃‖2
n − ‖s −Ams‖2

n = γn(s̃)− γn(Ams)+ 2 < s̃ −Ams, ε >n . (31)
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By (8) we know that γn(s̃) − γn(Ams) ≤ pen(m) − pen(m̂) so we get from (31)
that

‖s − s̃‖2
n ≤ ‖s −Ams‖2

n + 2 < s −Ams, ε >n + 2 < Am̂s − s, ε >n

+ 2 < s̃ −Am̂s, ε >n +pen(m)− pen(m̂). (32)

In the following we set for each m′ ∈ Mn,

Bm′ = {t ∈ Sm′/ ‖t‖n ≤ 1}, Gm′ = sup
t∈Bm′

< t, ε >n= ‖Am′ε‖n

and

um′ =
{
(Am′s − s)/‖Am′s − s‖n if Am′s = s

0 otherwise.

Since s̃ = Am̂s +Am̂ε, (32) gives

‖s − s̃‖2
n ≤ ‖s −Ams‖2

n + 2‖s −Ams‖n| < um, ε >n |
+ 2‖s −Am̂s‖n| < um̂, ε >n |
+ 2G2

m̂
+ pen(m)− pen(m̂). (33)

Using repeatedly the following elementary inequality that holds for all positive
numbers α, y, z

2yz ≤ αy2 + α−1z2, (34)

we get for any m′ ∈ {m, m̂}

2‖s −Am′s‖n| < um′ , ε >n | ≤ α‖s −Am′s‖2
n + α−1 < um′ , ε >2

n .

On the other hand, by Pythagoras Theorem we have

‖s − s̃‖2
n = ‖s −Am̂s‖2

n + ‖Am̂s − s̃‖2
n

= ‖s −Am̂s‖2
n +G2

m̂
. (35)

We derive from (33) that

(1 − α)‖s − s̃‖2
n ≤ (1 + α)‖s −Ams‖2

n + pen(m) + (2 − α)G2
m̂

+α−1 < um̂, ε >2
n − pen(m̂)

+α−1 < um, ε >2
n . (36)

We choose α = 2/(2 + η) ∈]0, 1[ but for legibility we keep using the notation α.
Let p̄1 and p̄2 be two functions depending on η mapping Mn into �+. They will
be specified later to satisfy

pen(m′) ≥ (2 − α)p̄1(m
′) + α−1p̄2(m

′) for all m′ ∈ Mn. (37)
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Since α−1p̄2(m) ≤ pen(m) and 1 + α ≤ 2, we get from (36) and (37)

(1 − α)‖s − s̃‖2
n ≤ (1 + α)‖s −Ams‖2

n + pen(m) + α−1p̄2(m)

+ (2 − α)
(
G2

m̂
− p̄1(m̂)

)
+ α−1

(
< um̂, ε >2

n −p̄2(m̂)
)

+ α−1
(
< um, ε >2

n −p̄2(m)
)

≤ 2
(
‖s −Ams‖2

n + pen(m)
)
+ (2 − α)

(
G2

m̂
− p̄1(m̂)

)
+ α−1

(
< um̂, ε >2

n −p̄2(m̂)
)
+ α−1

(
< um, ε >2

n −p̄2(m)
)
.

As 2/(1 − α) = (2 + 4/η), we obtain that

(1 − α)H(s) ≤ (2 − α)
(
G2

m̂
− p̄1(m̂)

)
+ α−1

(
< um̂, ε >2

n −p̄2(m̂)
)
+ α−1

(
< um, ε >2

n −p̄2(m)
)
.

For any x > 0,

�

[
(1 − α)H(s) ≥ xσ 2

n

]

≤ �

[
∃m′ ∈ Mn, (2 − α)

(
G2

m′ − p̄1(m
′)
)
≥ xσ 2

3n

]

+ �

[
∃m′ ∈ Mn, α

−1
(
< um′ , ε >2

n −p̄2(m
′)
)
≥ xσ 2

3n

]

≤
∑

m′∈Mn

�

[
(2 − α)

(
‖Am′ε‖2

n − p̄1(m
′)
)
≥ xσ 2

3n

]

+
∑

m′∈Mn

�

[
α−1

(
< um′ , ε >2

n −p̄2(m
′)
)
≥ xσ 2

3n

]

=
∑

m′∈Mn

�1,m′(x)+
∑

m′∈Mn

�2,m′(x). (38)

We first bound �2,m′(x). Let t be some positive number,

� [|< um′ , ε >n| ≥ t] ≤ t−p�
[|< um′ , ε >n|p

]
. (39)

By Rosenthal’s inequality (recalled in the Appendix), we know that for some con-
stant C(p) that depends on p only

C−1(p)np�
[|< um′ , ε >n|p

] ≤ �[|ε1|p]
n∑

i=1

|um′,i |p +
(
σ 2

n∑
i=1

u2
m′,i

)p/2

.

Since p ≥ 2, σp ≤ �[|εi |p] and
∑n

i=1 |um′,i |p ≤ (
∑n

i=1 u
2
m′,i )

p/2 = np/2‖um′ ‖pn
≤ np/2. Thus, we deduce from (39) that for some constant C′(p) that only depends
on p

� [|< um′ , ε >n| ≥ t] ≤ C′(p)�[|ε1|p]n−p/2t−p.
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Let δ be some positive number depending onη only to be chosen later. We take t such
that nt2 = min(δ, α/3)(Lm′Dm′ + x)σ 2 and set np̄2(m

′) = δLm′Dm′σ 2. We get

�2,m′(x) = �

[
n < um′ , ε >2

n≥ δLm′Dm′σ 2 + αxσ 2

3

]

≤ �
[
n < um′ , ε >2

n≥ min(δ, α/3) (Lm′Dm′ + x) σ 2
]

≤ C′′(p, η)
τp

(Lm′Dm′ + x)p/2
, (40)

where we recall that τp = �[|ε1|p]/σp.
We now bound �1,m′(x). IfDm′ = 0, we take p̄1(m

′) = 0 and clearly �1,m′(x) = 0,
thus it remains to bound �1,m′(x) for those m′ ∈ Mn such that Dm′ ≥ 1. By using
Corollary 5.1 with A = Am′ = Ã which satisfies tr(Ã) = Dm′ and ρ(Ã) = 1, we
obtain from (22) that for any positive xm′

�
[
nG2

m′ ≥ Dm′σ 2 + 2σ 2
√
Dm′xm′ + σ 2xm′

]
≤ C(p)τpDm′x−p/2

m′ .

Since for any β > 0,

2σ 2
√
Dm′xm′ ≤ βDm′σ 2 + β−1σ 2xm′

we obtain that

�
[
nG2

m′ ≥ (1 + β)Dm′σ 2 + (1 + β−1)xm′σ 2
]
≤ C(p)τpDm′x−p/2

m′ . (41)

Now, for some number β depending on η only to be chosen later, we take

xm′ = (1 + β−1)−1 min(δ, (2 − α)−1/3)(Lm′Dm′ + x)

and np̄1(m
′) = δLm′Dm′σ 2 + (1 + β)Dm′σ 2. This gives

�1,m′(x) = �

[
nG2

m′ ≥ (1 + β)Dm′σ 2 + δLm′Dm′σ 2 + (2 − α)−1

3
xσ 2

]

≤ �
[
nG2

m′ ≥ (1 + β)Dm′σ 2 + (1 + β−1)xm′σ 2
]

≤ C′(p, η)
Dm′τp

(Lm′Dm′ + x)p/2
. (42)

Gathering (38), (40) and (42), we get (28). It remains to choose β and δ for
(37) to hold (we recall that α = 2/(2 + η)). This is the case if (2 − α)(1 +
β) = (1 + η) and (2 − α + α−1)δ = 1, therefore we take β = η/2 and
δ = (1 + η/2 + 2(1 + η)/(2 + η))−1.
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7.2. Proof of Theorem 5.2

The line of proof for Inequality (21) is similar to that given by Petrov (1995)
(p. 59) for the Rosenthal Inequality. We start by setting for each x > 0, Zx =
supg∈G

∑n
i=1g(Ui)1I|g(Ui)|≤x . For any t > 0, we have

� [|Z − �[Z]| > t] ≤ � [Zx = Z] + � [|Z − �[Z]| > t,Z = Zx]

≤ �

[
max

i=1,···,n
sup
g∈G

|g(Ui)| > x

]

+� [|Z − �[Z]| > t,Z = Zx] . (43)

Let r be some nonnegative number that will be chosen later. As

�
[|Z − �[Z]|p] = ∫ ∞

0
ptp−1� [|Z − �[Z]| > t] dt,

using (43), we get by taking r = t/x that

�
[|Z − �[Z]|p] ≤ ∫ ∞

0
ptp−1�

[
r max
i=1,···,n

sup
g∈G

|g(Ui)| > t

]
dt

+
∫ ∞

0
ptp−1� [|Z − �[Z]| > t,Z = Zx] dt

= rp�

[
max

i=1,···,n
sup
g∈G

|g(Ui)|p
]

+
∫ ∞

0
ptp−1� [|Z − �[Z]| > t,Z = Zx] dt. (44)

But,

� [|Z − �[Z]| > t,Z = Zx] ≤ � [|Zx − �[Zx]| > t − |�[Z − Zx]|] (45)

and

|�[Z − Zx]| ≤ �

[
sup
g∈G

n∑
i=1

|g(Ui)− g(Ui)1I|g(Ui)|≤x |
]

= �

[
sup
g∈G

n∑
i=1

|g(Ui)|1I|g(Ui)|>x

]
≤ 1

x
�

[
sup
g∈G

n∑
i=1

g2(Ui)

]

= V 2

x
.

Hence, if t ≥ √
2rV = t0 then t−|�[Z−Zx]| ≥ t/2 and by Talagrand’s Inequality

(20) with b = x, we get
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∫ ∞

0
ptp−1� [|Z − �[Z]| > t,Z = Zx] dt

≤
∫ t0

0
ptp−1dt +

∫ ∞

t0

ptp−1�

[
|Zx − �[Zx]| > t

2

]
dt

≤ t
p

0 + C0

∫ ∞

0
ptp−1 exp

(
− t

2C0x
ln

(
1 + tx

2V 2

))
dt

≤ t
p

0 + C0

∫ ∞

0
ptp−1 exp

(
− r

2C0
ln

(
1 + t2

2rV 2

))
dt.

We set u = t/
√

2rV , and as tp−1 ≤ (2rV 2)(p−1)/2(1 + u2)(p−1)/2 we obtain
(replacing t0 by

√
2rV )∫ ∞

0
ptp−1� [|Z − �[Z]| > t,Z = Zx] dt

≤ (2r)p/2V p + C0p(2r)
p/2V p

∫ ∞

0
(1 + u2)(p−1)/2−r/(2C0)du. (46)

Now, it remains to take r = C0(p + 1) to guarantee the convergence of the last
integral in the right-hand side of (46). Finally (21) follows by collecting (44) and
(46).

7.3. Proof of Theorem 6.1

We start with the following claim

Claim: σ̂ 2
n satisfies the following properties:

(i) �[σ̂ 2
n ] ≤ σ 2 + 2d2

n(s, Vn).

(ii) Let 0 < δ < 1/2 then

�
[
σ̂ 2
n ≤ (1 − 2δ)σ 2

]
≤ C(p, δ)

τp

nβ
,

where β = (p/2 − 1) ∧ p/4.

Let us first assume that our claim is true. Given θ > 0 one can find two positive
numbers δ = δ(θ) ≤ 1/2 and η = η(θ) such that (1 + θ)(1 − 2δ) ≥ (1 + 2η). For
such a δ, let

Dn =
{
σ̂ 2
n ≥ (1 − 2δ)σ 2

}
.

We start by bounding �
[
‖s − s̃‖2q

n 1IDn

]
. On Dn we know that

pen(m) ≥ (1 + 2η)
Dm

n
σ 2 for all m ∈ Mn.
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Arguing as in the proof of Theorem 3.1 (with Lm = η), we get under the assump-
tions of Theorem 6.1 that for some m chosen in Mn to minimize d2

n(s, Sm′) +
σ 2Dm′/n among m′ ∈ Mn,

(
�
[
H

q
m(s)1IDn

])1/q ≤ )p

σ 2

n
, (47)

where Hm is defined by

Hm(s) =
(
‖s − s̃‖2

n − κ(θ)

(
d2
n(s, Sm)+

Dm

n
σ̂ 2
n

))
+
.

Since q ≤ 1, by a convexity argument and Jensen’s inequality we deduce from (47)
that(

�
[
‖s − s̃‖2q

n 1IDn

])1/q ≤ C′(θ, q)
(

�

[(
d2
n(s, Sm)+

Dm

n
σ̂ 2
n

)q])1/q

+)p

σ 2

n

≤ C′(θ, q)
[

d2
n(s, Sm)+

Dm

n
�[σ̂ 2

n ]

]
+)p

σ 2

n
.

As Dm ≤ n, we obtain by using (i)(
�
[
‖s − s̃‖2q

n 1IDn

])1/q

≤ C′′(θ, q)
[

d2
n(s, Sm)+

Dm

n
σ 2 + 2d2

n(s, Vn)+)p

σ 2

n

]
. (48)

We now bound �
[
‖s − s̃‖2q

n 1IcDn

]
. From (35) we know that ‖s − s̃‖2

n ≤ ‖s‖2
n

+ ‖ε‖2
n, thus,

�
[
‖s − s̃‖2q

n 1IcDn

]
≤ ‖s‖2q

n �
[
cDn

]+ �
[
‖ε‖2q

n 1IcDn

]
.

Hölder’s inequality with k = p/(2q) > 1 gives

�
[
‖ε‖2q

n 1IcDn

]
≤ (�[‖ε‖pn ]

)1/k
�1−1/k [cDn

]
,

since �[‖ε‖pn ] ≤ �[|ε1|p] for p ≥ 2 we obtain by using (ii) that

�
[
‖s − s̃‖2q

n 1IcDn

]
≤
(
‖s‖2q

n + (�[|ε1|p]
)2q/p)

n−β(1−2q/p). (49)

Assume that
β(1 − 2q/p) ≥ q. (50)

We deduce from (49) and (50) that(
�
[
‖s − s̃‖2q

n 1IcDn

])1/q ≤
(
‖s‖2q

n + (�[|ε1|p]
)2q/p)1/q 1

n

≤ 21/q−1
(
τp + ‖s‖2

n

σ 2

)
σ 2

n
(51)

and (26) follows by collecting (48) and (51). Therefore it remains to check (50).
When 2 ≤ p ≤ 4 then β = p/4 and thus (50) holds if and only if p ≥ 6q. Since
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q ≤ 1, this is true becausep ≥ 2(1+2q) ≥ 6q. Whenp ≥ 4 andp ≥ 2(1+2q) then

β(1 − 2q/p) ≥ (p/2 − 1)(1 − q/2) ≥ 2q((1 − q/2) ≥ q

and therefore (50) is satisfied.
Let us now prove our claim. First we endow �n with the inner product <,>n

defined at the beginning of Section 7.1. In the sequel we shall denote the same
way s and the vector t(s(x1), ..., s(xn)). Let An be the orthogonal projector onto
Vn ⊂ �n. We have the following decomposition

σ̂ 2
n = n

n− [n/2]
‖Y −AnY‖2

n

= n

n− [n/2]

(
‖s −Ans‖2

n + ‖ε −Anε‖2
n + 2 < s −Ans, ε >n

)
. (52)

Using that n/(n− [n/2]) ≤ 2, we obtain (i) by taking the expectation on both side
of (52). Let an ∈ V ⊥

n such that ‖a‖2
n = 1, we set

un =
{
(s −Ans)/‖s −Ans‖n if Ans = s,

an otherwise.

We have

2 |< s −Ans, ε >n| = 2‖s −Ans‖n| < un, ε >n |
≤ ‖s −Ans‖2

n+ < un, ε >2
n,

thus we derive from (52)

σ̂ 2
n ≥ ‖ε −Anε‖2

n− < un, ε >2
n

= ‖ε‖2
n −

(
‖Anε‖2

n+ < un, ε >2
n

)
= ‖ε‖2

n − ‖Ãns‖2
n, (53)

where Ãn denotes the orthogonal projector onto Vn ⊕ �un. As a consequence of
(53),

�
[
σ̂ 2
n ≤ (1 − 2δ)σ 2

]
≤ �

[
‖ε‖2

n − σ 2 ≤ −δ

(
1 − [n/2]

n

)
σ 2
]

+�

[
‖Ãns‖2

n −
[n/2]

n
σ 2 ≥ δ

(
1 − [n/2]

n

)
σ 2
]

= �1 + �2. (54)

Let us bound �1. By Markov’s Inequality, we get

�1 ≤ �

[∣∣∣∣∣
n∑

i=1

ε2
i − nσ 2

∣∣∣∣∣ ≥ nδσ 2/2

]

≤ C′(p)δ−p/2σ−pn−p/2�



∣∣∣∣∣

n∑
i=1

ε2
i − nσ 2

∣∣∣∣∣
p/2

 .
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If p ≥ 4 then we can use the Rosenthal Inequality (59) to obtain

�



∣∣∣∣∣

n∑
i=1

ε2
i − nσ 2

∣∣∣∣∣
p/2

 ≤ C′(p)�[|ε1|p]np/4.

If 2 ≤ p ≤ 4, we use Inequality (60) and we get

�



∣∣∣∣∣

n∑
i=1

ε2
i − nσ 2

∣∣∣∣∣
p/2

 ≤ C′(p)�[|ε1|p]n.

Therefore

�1 ≤ C′′(p)δ−p/2τpn
−β. (55)

We now bound �2. We use Inequality (22) of Corollary 5.1 with A = Ã = Ãn,
tr(Ãn) = [n/2] ≤ n/2, ρ(Ãn) = 1 and x = δ2n/18. Keeping in mind that δ < 1,
we check that 2

√
[n/2]x + x ≤ δ(1 − [n/2]/n)n. Thus,

�2 ≤ C′(p)δ−p/2τpn
1−p/2 ≤ C′(p)δ−p/2τpn

−β. (56)

Putting (54), (55) and (56) gives (ii). This concludes the proof of the claim.

7.4. Proof of Proposition 4.1

We first claim that:
For each collection of models (a) or (b) the following holds:

(i) there exist q > 0 and a constant E = E(p, q) that does not depend on n such
that ∑

m∈Mn
Dm≥1

D
p/2−1−q
m ≤ E.

(ii) There exists a universal constant R, such that for any n and any t ∈ Sn,
‖t‖n ≤ R‖t‖ν .

(iii) For each l ≥ 2, α > 1/l and s ∈ Bα,l,∞

dν(s, Sm) ≤ C(α)|s|α,2D−α
m and d∞(s, Sm) ≤ C′(α)|s|α,lD−α+1/l

m .

Let us assume the claim is true. Since dim(Sn) is of order n, for all s ∈ Bα,l,∞ such
that |s|α,l ≤ L, we know from (iii) that d∞(s,Sn) = O(n−α+1/l) and as |s|α,2 ≤
|s|α,l ≤ L, for all m ∈ Mn, dν(s, Sm) ≤ C(α)LD−α

m . Since (ii) holds let us apply
Corollary 3.2. By choosingDm of order n1/(2α+1) we get that infm∈Mn(d

2
ν(s, Sm)+

σ 2Dm/n)
1/2 = O(n−α/(2α+1)). Thanks to (i) (13) leads to(

sup
|s|α,l≤L

�
[
‖s − s̃‖2q

ν

])1/2q

= O(n−α/(2α+1))+ O(n−α+1/l) = O(n−α/(2α+1)),

if α ≥ (1 +√
1 + 2l)/2l i.e l ≥ (2α + 1)/(2α2). This proves (19).
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Let us now prove the claim. For (iii) we refer to DeVore and Lorentz (1993)
(p. 354 for the collection (a), p. 205 for (b) and p. 181 to obtain the approximation
in ‖ ‖∞ via the comparison of moduli of smoothness).

For (i), we only treat the case of the collection (a), the arguments being similar
for the collection (b). In this case, dim(Sm)= ([α] + 1)2m, thus

∑
m∈Mn
Dm≥1

D
p/2−1−q
m ≤ C([α], p, q)

mn∑
m=0

2−m(p/2−1−q)

≤ C([α], p, q)
+∞∑
m=0

2−m(p/2−1−q) = E < +∞,

for any q < p/2 − 1.
It remains to show (ii). Let us first consider the case of the collection (b). Then

1I,
√

2 cos(2πkx),
√

2 sin(2πkx) k = 1, ..., 2mn−2 is an orthonormal basis of Sn

with respect to the inner product of �2([0, 1], dx). It follows from easy compu-
tations that it is also orthonormal with respect to the inner product defined by
< t, t ′ >n= n−1∑n

i=1 t (i/n)t
′(i/n). By virtue of Lemma 3.1 Rn can be chosen

equal to 1 in (12). Note that rn in (14) can also be chosen equal to 1 and by applying
(15), (19) holds with ‖s − s̃‖n replaced by ‖s − s̃‖ν . We now consider the case of
the collection (a). Let (ϕ(l))l=0,...,[α] be an �2-orthonormal basis of S0 (with no loss
of generality we assume that the ϕ(l)s vanish out side the interval [0, 1]). Clearly
the family

ϕk,l(x) = 2mn/2ϕ(l)(2mnx − k) k = 0, ..., 2mn − 1, l = 0, ..., [α]

is a �2-orthonormal basis of Sn. Note that if k = k′ then for all l, l′, ϕk,l and ϕk′,l′
have disjoint supports. For each t ∈ Sn, let us decompose t onto this basis, we can
write that t =∑2mn−1

k=0
∑[α]

l=0 ak,lϕk,l , we get

‖t‖2
n = 1

n

n∑
i=1


2mn−1∑

k=0

[α]∑
l=0

ak,lϕk,l(
i

n
)




2

= 1

n

n∑
i=1

2mn−1∑
k=0

( [α]∑
l=0

ak,lϕk,l(
i

n
)

)2

≤ ([α] + 1)
1

n

n∑
i=1

2mn−1∑
k=0

[α]∑
l=0

a2
k,lϕ

2
k,l(

i

n
)

≤ ([α] + 1)‖t‖2
ν max

k,l
‖ϕk,l‖2

n. (57)

But,

‖ϕk,l‖2
n = 2mn

n

n∑
i=1

(
ϕ(l)(2mn

i

n
− k)

)2
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≤ 1

2

[(k+1)n2−mn ]∑
i≥kn2−mn

(
ϕ(l)(2mn

i

n
− k)

)2

≤ 3

2
max

l=0,...,[α]
‖ϕ(l)‖2

∞, (58)

since n2−mn ≤ 2. Putting together (57) and (58) we obtain (ii) with R2 =
1.5(1 + [α])maxl=0,...,[α] ‖ϕ(l)‖2∞.

7.5. Proof of Lemma 3.1

We denote by |.|2 the Euclidean norm of �|2n|. Let (µλ)λ∈2n be the sequence of
the eigenvalues of 3n, since 3n is positive all of them are nonnegative. As 3n is
symmetric, there exists an orthogonal matrix Un such that tUn3nUn = Fn where
Fn is diagonal. We have that

sup
t∈Sn\{0}

‖t‖2
n

‖t‖2
ν

= sup
|a|2=1

‖
∑
λ∈2n

aλϕλ‖2
n = sup

|a|2=1

ta3na = sup
|Una|2=1

t(Ua)3n(Ua)

= sup
|a|2=1

taFna = = sup
|a|2=1

∑
λ∈2n

µλa
2
λ = max{µλ/ λ ∈ 2n}.

Similarly,

inf
t∈Sn\{0}

‖t‖2
n

‖t‖2
ν

= inf{µλ/ λ ∈ 2n}

and thus

sup
t∈Sn\{0}

‖t‖2
ν

‖t‖2
n

=
(

inf
t∈Sn\{0}

‖t‖2
n

‖t‖2
ν

)−1

= sup{µ−1
λ / λ ∈ 2n} = ρ

(
3−1

n

)
.

8. Appendix

In this section we recall two moment inequalities on sum of independent centered
random variables which are repeatedly used throughout this paper.

Theorem 8.1 (Rosenthal’s Inequality). Let U1, ..., Un be independent centered
random variables with values in �. For any p ≥ 2 we have,

�

[∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣
p]

≤ C(p)


 n∑

i=1

�[|Ui |p] +
(

n∑
i=1

�[U2
i ]

)p/2

 . (59)

For the proof of this inequality, we refer to Petrov (1995).
The next result explores the case where p ∈ [1, 2]. To our knowledge the result

is due to von Bahr and Esseen (1965).
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Theorem 8.2. Let U1, ..., Un be independent centered random variables with val-
ues in �. For any 1 ≤ p ≤ 2 we have,

�

[∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣
p]

≤ 8
n∑

i=1

�[|Ui |p]. (60)
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Birgé, L., Massart, P.: From model selection to adaptative estimation. In Festschrift for
Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E. Torgensen
and G. Yang, eds.), 55–87. Springer-Verlag, New York (1997)

DeVore, R.A., Lorentz, G.G.: Constructive approximation. Springer-Verlag, Berlin (1993)
Efroimovich, S., Pinsker, M.: Learning algorithm for nonparametric filtering. Auto. Remote

Control 11, 1434–1440 (1984)
Kneip, A.: Ordered linear smoothers. Ann. Statist. 22, 835–866 (1994)
Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by model selection.

Technical Report. 98.81, Université de Paris-Sud (1998)
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