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Bound States in Weakly Deformed Strips and Layers

D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčǐŕık

Abstract. We consider Dirichlet Laplacians on straight strips in R
2 or layers in R

3

with a weak local deformation. First we generalize a result of Bulla et al. to the
three-dimensional situation showing that weakly coupled bound states exist if the
volume change induced by the deformation is positive; we also derive the lead-
ing order of the weak-coupling asymptotics. With the knowledge of the eigenvalue
analytic properties, we demonstrate then an alternative method which makes it
possible to evaluate the next term in the asymptotic expansion for both the strips
and layers. It gives, in particular, a criterion for the bound-state existence in the
critical case when the added volume is zero.

1 Introduction

Spectra of Dirichlet Laplacians in infinitely stretched regions such as a planar strip
or a layer of a fixed width have attracted a lot of attention recently. Of course,
the problem is trivial as long as the strip or layer is straight because then one
can employ separation of variables. However, already a local perturbation such
as bending, deformation, or a change of boundary conditions can produce a non-
empty discrete spectrum.

This effect was studied intensively in the last decade, first because it had ap-
plications in condensed matter physics, and also because it was itself an interesting
mathematical problem. A particular aspect we will be concerned with here is the
behaviour in the weak-coupling regime, i.e., the situation when the perturbation
is gentle.

Recall that the answer to this question depends on the type of the perturba-
tion. For bend strips, e.g., one can perform the Birman-Schwinger analysis which
yields the first term in the asymptotic expansion for the gap between the eigen-
value and the threshold of the essential spectrum [DE]. It is proportional to the
fourth power of the bending angle and always positive, since any nontrivial (local)
bending induces a non-empty discrete spectrum. A local switch of the boundary
condition from Dirichlet to Neumann has a similar effect. Here the weak-coupling
behaviour was determine variationally to be governed by the fourth power of the
“window width” [EV1] and the exact asymptotics was derived formally in [Po] by
a direct application of the technique developed in [Il, Ga]. Notice that this asymp-
totics differs substantially from that corresponding to a local change in the mixed
boundary conditions, where the Birman-Schwinger technique is applicable and the
leading term is a multiple of the square of the said parameter [EK]. Recall also
that analogous results can be derived for layers with locally perturbed boundary
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conditions where, however, the asymptotics is exponential rather that powerlike
[EV2].

The present paper deals with the case of a local deformation of the strip or
layer, which is more subtle than the bending or boundary-condition modification.
The main difference is that the effective interaction induced by a deformation can
be of different signs, both attractive and repulsive. It is easy to see by bracketing
that a bulge on a strip or layer does create bound states while a squeeze does
not. The answer is less clear for more complicated deformations where the width
change does not have a definite sign.

The first rigorous treatment of this problem was presented in the work of
Bulla et al [BGRS] dealing with a local one-sided deformation (characterized by
a function λv) of a straight strip of a constant width d. The authors found that
the added volume was decisive: a bound state exists for small positive λ if the
area change λd〈v〉 is positive, and in that case the ground-state eigenvalue has the
following weak-coupling expansion,

E(λ) = κ2
1 − λ2κ4

1〈v〉2 +O(λ3) , (1.1)

where κ1 = π
d is the square root of the first transverse eigenvalue.1 On the other

hand, the discrete spectrum is empty if 〈v〉 < 0. A problem arises in the critical
case, 〈v〉 = 0, when the areas of the outward and inward deformation coincide. The
authors of [BGRS] suggested that the analogy with one-dimensional Schrödinger
operators by which bound states should exist again may be misleading due to the
presence of the higher transverse modes.

This suspicion was confirmed in [EV3] where it was shown that this is true
only if the deformation was “smeared” enough. More specifically, the discrete spec-
trum is empty if

d >
4√
3
b (1.2)

provided supp v ⊂ [−b, b]. On the other hand, a weakly bound state exists if

‖v′‖2
‖v‖2 <

6κ2
1

9 +
√

90 + 12π2
, (1.3)

and in that case there are positive c1, c2 such that

−c1λ4 ≤ E(λ)− κ2
1 ≤ −c2λ4 . (1.4)

These results have been obtained by a variational method and they are certainly
not optimal, because there are deformed strips which fulfill neither of the conditions
(1.2), (1.3).

A way to improve the above conclusions would be to compute the Birman-
Schwinger expansion employed in [BGRS] to the second order which becomes the

1In fact, they assumed d = 1, but it is easy to restore the strip width in their expression
obtaining eq. (1.1).
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leading one when the term linear in λ2 in (1.1) is absent, and the asymptotics is
governed by λ4 in correspondence with (1.4). This is not easy, however. The stan-
dard technique in these situations is to map the strip in question onto a straight
one by means of suitable curvilinear coordinates. In distinction to the bent-strip
case [DE] these coordinates typically are not locally orthogonal. Hence the trans-
formed Laplacian contains numerous terms which make the computation extremely
cumbersome.

After this introduction, let us describe the aim and the scope of the present
paper. The aim is twofold. First we are going to consider an extension of the result
of [BGRS] to the case of a locally deformed layer. The result is summarized in
Theorem 2.4. In particular, we derive a weak-coupling expansion of the ground-
state eigenvalue,

E(λ) = κ2
1 − exp

[
2
(
−λκ

2
1

π
〈v〉+O(λ2)

)−1
]

(1.5)

and show the analytical properties of the round-bracket expression w.r.t. λ. This
is done in Sec. 2; the results again say nothing about the behaviour in the critical
case.

Instead of attempting to proceed further by the Birman-Schwinger method,
we demonstrate in Sec. 3 a different approach to the weak-coupling problem. It is
based on constructing the asymptotics of a particular boundary value problem, and
requires as a prerequisite the analyticity of the function E(·) itself in dimension
two, and of its above mentioned constituent in dimension three. In the present case,
however, these properties are guaranteed by [BGRS] and the results of Sec. 2. The
methods allows us to recover the expansions (1.1) and (1.5) in a different way.
What is more, we are also able to compute higher terms, in principle of any order.
We perform the explicit computation for the second-order terms which play role
in the critical case. In particular, we made in this way more precise the result
expressed by (1.2) and (1.3) about the critical bound-state existence for smeared
perturbations, and derive its analog in the deformed-layer case.

2 Locally deformed layers

2.1 The curvilinear coordinates

Let x = (x1, x2) ∈ R
2 and (x, u) ∈ Ω0 := R

2×(0, d) with d > 0. Given a func-
tion v ∈ C∞

0 (R2) we define the mapping

φ : Ω0 → R
3 :
{
(x, u) → φ(x, u) :=

(
x1, x2, (1 + λv(x)) u

)}
(2.1)

for λ > 0, which defines our deformed layer Ωλ := φ(Ω0).
To make use of the curvilinear coordinates defined by the mapping φ we need

the metric tensor Gij := φ,i.φ,j of the deformed layer. It can be seen easily to be
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of the form

(Gij) =


 1 + λ2v2

,1u
2 λ2v,1v,2u

2 λv,1(1 + λv)u
λ2v,1v,2u

2 1 + λ2v2
,2u

2 λv,2(1 + λv)u
λv,1(1 + λv)u λv,2(1 + λv)u (1 + λv)2


 , (2.2)

where v,µ means the derivative w.r.t. xµ, and its determinant is G := det(Gij) =
(1 + λv)2.

In view of the inverse function theorem, the mapping φ defining the layer
will be diffeomorphism provided λ‖v−‖∞ < 1, where we put conventionally v− :=
max{0,−v}. For a sign-changing v, this is a nontrivial restriction which is satisfied,
however, when λ is small enough. That is just the case we are interested in.

We will also need the contravariant metric tensor, in other words the inverse
matrix

(Gij) =




1 0 −λv,1u
1+λv

0 1 −λv,2u
1+λv

−λv,1u
1+λv −λv,2u

1+λv
1+λ2|∇v|2u2

(1+λv)2


 (2.3)

and the following contraction identities

Gµj
,j = − λv,µ

1 + λv
, G3j

,j = − λ∆v u

1 + λv
+

3λ2|∇v|2u
(1 + λv)2

, (2.4)

where conventionally summation is performed over repeated indices, and we de-
note |∇v|2 := v2

,1 + v2
,2 and ∆v := v,11 + v,22. Another convention concerns the

range of the indices, which is 1, 2 for Greek and 1, 2, 3 for Latin indices. The
indices are at that associated with the above coordinates by (1, 2, 3)↔ (x1, x2, u).

2.2 The straightening transformation

As mentioned in the introduction the main object of our study is the Dirichlet
Laplacian −∆Ωλ

D on L2(Ωλ). If we think of a quantum particle living in the
region Ωλ with hard walls and exposed to no other interaction, −∆Ωλ

D will be
its Hamiltonian up to a multiplicative constant; we can get rid of the latter by
setting the Planck’s constant � = 1 and the effective mass m∗ = 1

2 . Mathematically
speaking, −∆Ωλ

D is defined for an open set Ωλ ⊂ R
3 as the Friedrichs extension

of the free Laplacian with the domain C∞
0 (Ω) – cf. [RS, Sec. XIII.15]. Moreover,

since the smooth boundary of Ωλ has the segment property, −∆Ωλ

D acts simply as
ψ → −ψ,jj with the Dirichlet b.c. at ∂Ωλ.

A natural way to investigate the Hamiltonian is to introduce the unitary
transformation U : L2(Ωλ)→ L2(Ω0) : {ψ → Uψ := G

1
4ψ ◦ φ} and to investigate

the unitarily equivalent operator

Hλ := U(−∆Ωλ

D )U−1 = −G− 1
4 ∂iG

1
2Gij∂jG

− 1
4 (2.5)
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with the form domain Q(Hλ) = W 1,2
0 (Ω0) instead of −∆Ωλ

D . As usual in such
situations, the “straightened” region is geometrically simpler and the price we pay
is a more complicated form of the operator (2.5).

To make it more explicit, put F := lnG
1
4 . Commuting G− 1

4 with the gradient
components, we cast the operator (2.5) into a form which has a simpler kinetic
part,

Hλ = −∂iGij∂j + V = −Gij∂i∂j −Gij
,j∂i + V ,

but contains an effective potential,

V := (GijF,j),i + F,iG
ijF,j = GijF,ij +Gij

,jF,i +GijF,iF,j .

If we now employ the particular form (2.2) of the metric tensor together with (2.3),
(2.4), we can write

Hλ = −∂2
1 − ∂2

2 −
1 + λ2|∇v|2u2

(1 + λv)2
∂2
3 +

2λv,1u
1 + λv

∂1∂3 +
2λv,2u
1 + λv

∂2∂3

+
λv,1

1 + λv
∂1 +

λv,2
1 + λv

∂2 +
(
λ∆v u

1 + λv
− 3λ2|∇v|2u

(1 + λv)2

)
∂3 + V

with

V =
λ∆v

2
− λ2v∆v

2(1 + λv)
− 3λ2|∇v|2

4(1 + λv)2
.

For our purpose it useful to rewrite this expression further in a form sorted w.r.t.
to the powers of λ:

Hλ = −∆Ω0
D + λ

[
2v∂2

3 + 2v,1u∂1∂3 + 2v,2u∂2∂3 + v,1∂1 + v,2∂2

+ (∆v)u∂3 +
∆v

2

]

−λ2

[
3v2 + |∇v|2u2 + 2λv3

(1 + λv)2
∂2
3 +

2vv,1u
1 + λv

∂1∂3 +
2vv,2u
1 + λv

∂2∂3

+
vv,1

1 + λv
∂1 +

vv,2
1 + λv

∂2 +
(
v(∆v)u
1 + λv

+
3|∇v|2u
(1 + λv)2

)
∂3

+
v∆v

2(1 + λv)
+

3|∇v|2
4(1 + λv)2

]

In analogy with [BGRS], we thus get the following formula for the “straightened”
operator,

Hλ = H0 + λ
3∑

n=1

A∗
nBn + λ2

7∑
n=4

A∗
nBn, (2.6)
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where each of the An’s andBn’s is a first-order differential operator with compactly
supported coefficients and

A∗
1 := 2v∂3 B1 := ω∂3

A∗
2 := ∆v B2 := ω

(
u∂3 +

1
2

)
A∗

3 := (2u∂3 + 1)ω B3 := v,1∂1 + v,2∂2

A∗
4 := −3v2 + |∇v|2u2 + 2λv3

(1 + λv3)
∂3 B4 := ω∂3

A∗
5 := − v∆v

1 + λv
B5 := ω

(
u∂3 +

1
2

)

A∗
6 := − 3|∇v|2

(1 + λv)2
B6 := ω

(
u∂3 +

1
4

)

A∗
7 := −2u∂3 + 1

1 + λv
v B7 := v,1∂1 + v,2∂2

with ω ∈ C∞
0 (R2) such that ω ≡ 1 on supp v. We define a pair of operators

Cλ,D : L2(Ω0)→ L2(Ω0)⊗ C
7 by

ϕ → (Cλϕ)n :=
{

Anϕ n = 1, 2, 3
λAnϕ n = 4, . . . , 7

ϕ → (Dϕ)n := Bnϕ n = 1, . . . , 7

then (2.6) finally becomes Hλ = H0 + λC∗
λD.

2.3 Weak coupling analysis

First we note that since the our layer is deformed only locally, we have

σess(−∆Ωλ

D ) = σess(−∆Ω0
D ) = [κ2

1,∞) .

This is easy to see, for instance, by using a bracketing to show that inf σess(−∆Ωλ

D )
= κ2

1 – cf. [DEK] – while the opposite inclusion is obtained by constructing an
appropriate Weyl sequence. We use the notation κ2

j := (πd j)
2 for the eigenvalues

of the transverse operator (−∂2
3)D; the corresponding eigenfunctions are denoted

by χj , and their explicit form is

χj(u) =

√
2
d

sinκnu .

Next we define Kα
λ := λD(H0 − α2)−1C∗

λ. We are interested in (positive) eigen-
values E(λ) =: α2 of Hλ below the lowest transverse mode, hence we choose
α ∈ [0, κ1). Our basic tool is the following classical result – cf. [BGRS, Lemma 2.1]:
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Proposition 2.1 (Birman-Schwinger principle)

α2 ∈ σdisc(Hλ)⇐⇒ −1 ∈ σdisc(Kα
λ )

Proof. If Kα
λψ = −ψ, then ϕ := −λ(H0 − α2)−1C∗

λψ is easily checked to satisfy
Hλϕ = α2ϕ. Conversely, if Hλϕ = α2ϕ, we have ϕ ∈ Q(Hλ) ⊂ D(D), so ψ := Dϕ
is in L2(Ω0) and Kα

λψ = −ψ. ✷

To make use of the above equivalence, we have to analyze the structure of
Kα

λ . Let R0(α) := (H0−α2)−1 be the free resolvent corresponding to H0. Using the
transverse-mode decomposition and the fact that H0 = −∆R

2 ⊗ I1 + I2⊗ (−∂2
3)

D,
we can express the integral kernel of R0,

R0(x, u, x′, u′;α) =
∞∑
j=1

χj(u) rj(x, x′;α)χj(u′)

where rj(x, x′;α) is the kernel of (−∆R
2
+κ2

j−α2)−1 inL2(R2). We define kj(α)2 :=
κ2
j − α2. The free kernel rj can be expressed in terms of Hankel’s functions –
cf. [AGH, Chap. I.5] – which are related to Macdonald’s functions by [AS, 9.6.4],
so finally we arrive at the formula

R0(x, u, x′, u′;α) =
1
2π

∞∑
j=1

χj(u)K0 (kj(α)|x− x′|) χj(u′) .

Now we want to split the singular part of Rα
0 ; we write Kα

λ = L̂λ + M̂λ where
L̂λ := λDLαC

∗
λ contains the singularity:

Lα(x, u, x′, u′) := − 1
2π

χ1(u) ln k1(α)χ1(u′)

diverges logarithmically as α→ κ1−. The regular part M̂λ = λDMαC
∗
λ consists of

two terms, Mα = Nα +R⊥
0 (α), where the operator R⊥

0 is defined as the projection
of the resolvent on higher transverse modes

R⊥
0 (x, u, x′, u′;α) :=

1
2π

∞∑
j=2

χj(u)K0(kj(α)|x− x′|)χj(u′),

and the remaining term is therefore

Nα(x, u, x′, u′) :=
1
2π

χ1(u)
(
K0(k1(α)|x− x′|) + ln k1(α)

)
χ1(u′).

Put w−1 := ln k1(α). The next step in the BS method is to show the boundedness
and the analyticity (w.r.t. w) of the regular part of Kα

λ . A more difficult part of
this task concerns the operator containing Nα where we have to take a different
route than that used in [BGRS].
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First we note that while the Hilbert-Schmidt norm is suitable for estimating
the operator Nα, it fails when the latter is sandwiched between λD and C∗

λ. More
specifically, using the regularity and compact support of the functions involved one
could transform λDNαC

∗
λ into an integral operator via integration by parts, but

the obtained kernel has a singularity which is not square integrable. Hence we use
instead the “continuous” version of the Schur-Holmgren bound. Since it seems to
be less known than its discrete analogue [AGH, Lemma C.3], [Mad, Thm. 7.1.9],
we present it here with the proof.

Lemma 2.2 Suppose thatM is an open subset of R
n and let K : L2(M)→ L2(M)

be an integral operator with the kernel K(·, ·). Then

‖K‖ ≤ ‖K‖SH :=
(

sup
x∈M

∫
M

|K(x, x′)|dx′ sup
x′∈M

∫
M

|K(x, x′)|dx
) 1

2

.

Proof. The claim follows from the inequality

‖K‖p,p ≤ ‖K‖1/p1,1 ‖K‖1/q∞,∞ , (2.7)

where K is now an integral operator on Lp(M), p−1 + q−1 = 1, and

‖K‖∞,∞ := sup
x∈M

∫
M

|K(x, x′)| dx′, ‖K‖1,1 := sup
x′∈M

∫
M

|K(x, x′)| dx.

If K is bounded for p = 1,∞, we can prove (2.7) for the other p by an interpolation
argument adapted from the discrete case [Mad]. By Hölder’s inequality∣∣∣∣

∫
M

K(x, x′)ψ(x′)dx′
∣∣∣∣ ≤
∫
M

|K(x, x′)| 1p |K(x, x′)| 1q |ψ(x′)| dx′

≤
(∫

M

|K(x, x′)||ψ(x′)|pdx′
) 1

p
∫
M

|K(x, x′)| dx′ ,

so we can easily estimate the Lp-norm of Kψ,

‖Kψ‖pp =
∫
M

dx

∣∣∣∣
∫
M

K(x, x′)ψ(x′) dx′
∣∣∣∣
p

≤ ‖K‖p/q∞,∞

∫
M

dx

∫
M

|K(x, x′)||ψ(x′)|p dx′

≤ ‖K‖p/q∞,∞

∫
M

dx′ |ψ(x′)|p
∫
M

dx |K(x, x′)|

≤ ‖K‖p/q∞,∞‖K‖1,1‖ψ‖pp ,

which yields the result. ✷

Recall that ‖ · ‖SH is not a norm and that it simplifies for the symmetric ker-
nels, ‖K‖SH = supx∈M

∫
M
|K(x, x′)| dx′. We are now ready to prove the following

key result.
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Lemma 2.3 w → M̂(α(w)) is a bounded and analytic operator-valued function,
which can be continued from {w ∈ C |Rew < 0} to a region that includes w = 0.

Proof. As in [BGRS, Lemma 2.2], let H1 ⊂ L2(Ω0) be the space of L2(Ω0) func-
tions of the form ϕχ1, where ϕ ∈ L2(R2). Let further P1 be the projection
onto this subspace, and P⊥

1 := I − P1 the projection onto its orthogonal com-
plement in L2(Ω0). Then R⊥

0 (α) ≡ R0(α)P⊥
1 has an analytic continuation into

the region {α ∈ C |α2 ∈ C \[κ2
2,∞)} since the lowest point in the spectrum of

H0P⊥
1 � P⊥

1 L2(Ω0) is κ2
2. This region includes the domain [0, κ1) actually consid-

ered. To accommodate the extra factors D,C∗
λ, we introduce the quadratic form

bα(φ, ψ) := (φ,DR⊥
0 (α)C∗

λψ) = (R⊥
0 (α)

1
2P⊥

1 D
∗φ,R⊥

0 (α)
1
2P⊥

1 Cλψ) .

To check boundedness of this form, it is therefore sufficient to verify that R⊥
0 (α)

1
2

P⊥
1 D

∗ and R⊥
0 (α)

1
2P⊥

1 C
∗
λ are bounded operators. We shall check it for their ad-

joints. To this purpose, it is enough to show that CλP⊥
1 and DP⊥

1 are (R⊥
0 (α)−

1
2

P⊥
1 ) -bounded, i.e., that there exist positive a, b such that

∀ψ ∈ Q(Hλ) : ‖CλP⊥
1 ψ‖ ≤ a‖R⊥

0 (α)−
1
2P⊥

1 ψ‖+ b‖ψ‖ ,

and similarly for DP⊥
1 . However,

‖∇P⊥
1 ψ‖2 = ‖(H0 + 1)

1
2P⊥

1 ψ‖2 − ‖P⊥
1 ψ‖2

‖(H0 + 1)
1
2P⊥

1 ψ‖ ≤ ‖(H0 − α2)
1
2P⊥

1 ψ‖+
√

1 + α2‖P⊥
1 ψ‖

≤ ‖R⊥
0 (α)−

1
2P⊥

1 ψ‖+
√

1 + α2‖ψ‖ .

Here ∇ means the gradient in the variables (x, u) through which all the actions
of Cλ,D can be estimated, e.g., |(Cλψ)1| ≡ |A1ψ| ≤ 2‖v‖∞|∇ψ|, etc. In the same
way, one verifies the analyticity of the operator-valued function DR⊥

0 (α)C∗
λ, which

is equivalent to the analyticity of the complex-valued function α → bα(·, ·).
Consider next the regular part of R0(α)P1 containing the operator Nα. Let h

be a C∞-function of compact support in R
2. As pointed out above, using inte-

gration by parts and the explicit form of the operators Cλ,D one sees that it is
sufficient to check the boundedness and analyticity of hnαh and hnα,µh, where

nα(x, x′) :=
1
2π

K0(k1(α)|x− x′|) + ln k1(α) ,

nα,µ(x, x′) = − 1
2π

xµ − x′
µ

|x− x′| k1(α)K1(k1(α)|x− x′|) ;

recall that ,µ means the derivative w.r.t. xµ and K ′
0 = −K1 holds true – cf. [AS,

9.6.27]. We will use the following estimates which are valid for the Macdonald
functions [AS, 9.6–7] with any z ∈ (0,∞):

|(K0(z) + ln z)e−z| ≤ c1 , |K1(z)− z−1| ≤ c2 ,

|[K1(z)− z(K0(z) +K2(z))/2]| ≤ c3 , |zK1(z)| ≤ 1 .
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Passing to the polar coordinates,

xµ − x′
µ = (ρ cosϕ, ρ sinϕ) , ρm := sup

x,x′∈supph
|x− x′| ,

we check the finiteness of the Schur-Holmgren bounds:

‖hnαh‖SH = sup
x∈R

2
|h(x)|

∫
R

2
|m1(x, x′;α)h(x′)| dx′

≤ c1‖h‖2∞
∫ ρm

0
ek1(α)ρρ dρ+

∫ ρm

0
| ln ρ| ρ dρ

≤ c1‖h‖2∞ ρm
(
ρme

κ1ρm + max{e−1, ρm ln ρm}
)
,

‖hnα,µh‖SH ≤ ‖h‖2∞
∫ ρm

0

ρ dρ

ρ
= ‖h‖2∞ ρm.

Concerning the analyticity, one should investigate the complex-valued functions
w →

(
φ, hnα(w)hψ

)
and w →

(
φ, hnα(w),µhψ

)
, where φ, ψ are arbitrary vectors

of L2(Ω0). Using the Schwarz inequality, it is sufficient to check the finiteness
of norms of the complex derivative w.r.t. w of the corresponding operator-valued
functions. Since K ′

1 = −(K0 +K2)/2 by [AS, 9.6.29] and k1(α(w)) = ew
−1

, we put
z := k1(α(w))|x− x′| and write

dnα(w)

dw
(x, x′) =

1
2π

z

w2

(
K1(z)−

1
z

)
,

dnα(w),µ

dw
(x, x′) =

1
2π

xµ − x′
µ

|x− x′|
ew

−1

w2

[
K1(z)−

z

2
(
K0(z) +K2(z)

)]
.

Using now the inequality w−2ew
−1 ≤ c4 for w ∈ (−∞, 0), we are able to estimate

the Schur-Holmgren bounds:∥∥∥∥hdnα(w)

dw
h

∥∥∥∥
SH
≤ c2c4‖h‖2∞ ρ2

m ,

∥∥∥∥hdnα(w),µ

dw
h

∥∥∥∥
SH
≤ c3c4‖h‖2∞ ρ2

m .

Thus the derivatives are bounded for w ∈ (−∞, 0), and since the limits as w tends
to zero make sense, we can continue the function analytically to w = 0. ✷

Now we are in position to follow the standard Birman-Schwinger scheme to
derive the weak-coupling expansion. Eigenvalues of Hλ correspond to singularities
of the operator-valued function (I +Kα

λ )−1 which we can express as

(I +Kα
λ )−1 =

[
I + (I + M̂λ)−1L̂λ

]−1
(I + M̂λ)−1. (2.8)

Owing to Lemma 2.3, ‖M̂λ‖ is finite and we can choose λ sufficiently small to have
‖M̂λ‖ < 1; then the second term at the r.h.s. of (2.8) is a bounded operator. On



Vol. 2, 2001 Bound States in Weakly Deformed Strips and Layers 563

the other hand, (I + M̂λ)−1L̂λ is a rank-one operator of the form (ψ, ·)ϕ, where

ψ̄(x, u) := − λ

2π
ln k1(α)χ1(u)C∗

λ ,

ϕ(x, u) :=
[
(I + M̂λ)−1Dχ1

]
(x, u) ,

so it has just one eigenvalue which is

(ψ,ϕ) = − λ

2π
ln k1(α)

∫ d

0

∫
R

2
χ1(u)C∗

λ

[
(I + M̂λ)−1Dχ1

]
(x, u) dxdu .

Putting it equal −1 we get an implicit equation, F (λ,w) = 0, with

F (λ,w) := w − λ

2π

∫ d

0

∫
R

2
χ1(u)C∗

λ

[
(I + M̂λ)−1Dχ1

]
(x, u) dxdu , (2.9)

where M̂λ has to be understood as a function both of λ and w. Expanding
(I + M̂λ)−1 into the Neumann series we find

F,w(0, 0) = 1 �= 0 , F,λ(0, 0) = − 1
2π

(χ1, C
∗
0Dχ1) ,

and by Lemma 2.3 we know that F (λ,w) is jointly analytic in λ,w. In view of
the implicit function theorem w = w(λ) is then an analytic function and we can
compute the first term in its Taylor expansion:

dw

dλ
(0) = −F,λ(0, 0)

F,w(0, 0)
=

1
2π

(χ1, C
∗
0Dχ1) .

But (C0)n = 0 for n = 4, . . . , 7, B3χ1 = 0, and (A2χ1, B2χ1) = 0 since
∫

R
2 ∆v = 0.

It follows that

dw

dλ
(0) =

1
2π

(A1χ1, B1χ1) = − 1
π

∫ d

0
χ′

1(u)
2 du

∫
R

2
v(x) dx = −κ

2
1

π
〈v〉, (2.10)

where we have employed the symbol 〈v〉 :=
∫

R
2 v(x) dx.

We note that α2 → κ2
1− holds as λ→ 0+, and consequently, k1(α) → 0+.

Thus w(0) = 0 is well defined because w = (ln k1(α))−1 by definition. Furthermore,
the solution α2 clearly represents an eigenvalue if and only if w is strictly negative
for λ small. A sufficient condition for that is that the first term of the expansion
of w(λ) is strictly negative; due to (2.10) it happens if 〈v〉 is strictly positive.
Summing up the discussion, we get the announced three-dimensional analogue to
Theorem 1.2 in [BGRS]:

Theorem 2.4 Let Ωλ be given by (2.1), where v ∈ C∞
0 (R2) satisfies 〈v〉 > 0. Then

for all sufficiently small positive λ, −∆Ωλ

D has a unique eigenvalue E(λ) in [0, κ2
1),

which is simple and can be expressed as E(λ) = κ2
1 − e2w(λ)−1

, where λ → w(λ) is
an analytic function. Moreover, the following asymptotic expansion is valid:

w(λ) = −λ κ2
1

π
〈v〉+O(λ2) .



564 D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčǐŕık Ann. Henri Poincaré

3 An alternative method

Now we will derive the weak-coupling expansion by constructing the asymptotics
for singularities in a particular boundary value problem. This approach enables
us to derive easily higher terms of the expansion. At the same time it allows a
unified treatment for different dimensions; in this way we will be able to amend
the existing results concerning deformed strips.

First we introduce a unifying notation. Let n = 2, 3 be the dimension of the
considered deformed region, i.e., the perturbed planar strip or layer, respectively.
We set x = (x1, . . . , xn−1) ∈ R

n−1 and (x, u) ∈ Ω0 := R
n−1×(0, d) for the un-

perturbed domain. From technical reasons it is convenient to change the setting
slightly, in comparison with (2.1) and [BGRS], [EV3], and to deform the “lower”
boundary of Ω0 what we certainly can do without loss of generality. We denote
therefore in this section

Ωλ := {(x, u) ∈ R
n : −λdv(x) < u < d} (3.1)

with v ∈ C∞
0 (Rn−1). We denote by −∆′ the (n− 1)-dimensional Laplacian, while

−∆ stands for the n-dimensional one. We also use

〈f〉 :=
∫

R
n−1

f(x) dx ,

‖ · ‖ as the norm in L2(Rn−1), and

α(m) :=
{

m
(lnm)−1 β(t) :=

{
t if n = 2
ln t if n = 3

3.1 The asymptotic expansion

Let us now construct the asymptotics of the eigenvaluesmλ of the following bound-
ary value problem:

(∆ + κ2
1)Ψλ = m2

λΨλ in Ωλ

Ψλ (x, λdv(x)) = Ψλ(x, d) = 0

as they approach zero. We will seek it in the form

mλ =



∑∞

i=1 λ
imi if n = 2

exp
(
−
(∑∞

i=1 λ
imi

)−1
)

if n = 3
(3.2)

where the existence of such expansions follows from [BGRS] and Theorem 2.4,
respectively. Notice that this corresponds to the expansion of E(λ) = κ2

1 − m2
λ,

the ground-state eigenvalue of −∆Ωλ

D in the problem discussed above, because the
mirror transformation of Ωλ on (3.1) does not affect the spectral properties.
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Suppose that a function f ∈ C∞
0 (Rn−1), supp f ∩ supp v = ∅, and 〈f〉 �= 0

is given. If we manage to construct a solution ψλ(x, u;m) of the boundary value
problem

(∆ + κ2
1)ψλ = m2ψλ + (α(m)− α(mλ)) fχ1 in Ωλ (3.3)

ψλ = 0 on ∂Ωλ

which is bounded and non-vanishing w.r.t. m for small nonzero m, then Ψλ(x, u) =
ψλ(x, u;mλ). We shall look for the asymptotics of ψλ in the following form,

ψλ(x, u;m) =
∞∑
i=0

λiψi(x, u;m) . (3.4)

Substituting (3.4) and (3.2) into (3.3), we obtain a family of the boundary value
problems:

(∆ + κ2
1)ψ0 = m2ψ0 + α(m)fχ1 in Ω0 i = 0 (3.5)

ψ0 = 0 on ∂Ω0

(∆ + κ2
1)ψi = m2ψi + (−1)n−1mifχ1 in Ω0 i ≥ 1 (3.6)

ψi = 0 if u = d

ψi = −
i∑

j=1

dj(−v)j
j!

∂jψi−j

∂uj
if u = 0

One can check easily that ψ0 = −α(m)(−∆′ +m2)−1fχ1 solves (3.5) and has the
asymptotics

ψ0(x, u;m) =
(−1)n−1

2πn−2 χ1(u)

[
〈f〉

+(−1)n−1α(m)
(∫

R
n−1

β(|x− x′|)f(x′) dx′ + δ3
n(γ − ln 2)〈f〉

)

+O
(
α(m)2

) ]
(3.7)

as m→ 0, where γ is the Euler number and δjn the Kronecker delta.

Lemma 3.1 Suppose that F ∈ C∞(Ω0) with a bounded support and H ∈ C∞
0

(Rn−1) have the expansions

F (x, u;m) =
∞∑
i=0

α(m)iFi(x, u) , H(x;m) =
∞∑
i=0

α(m)iHi(x)
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as m→ 0. Define Fi,k :=
∫ d

0 Fi(·, u)χk(u) du . Let φ0 be the solution of the bound-
ary value problem

(∆ + κ2
1)φ0 = F0 in Ω0 , (3.8)

φ0 = 0 if u = d ,

φ0 = H0 if u = 0 ;

then the condition

〈F0,1〉 =
√

2
d
κ1 〈H0〉 (3.9)

is necessary and sufficient for existence of a solution of the boundary value problem

(∆ + κ2
1)φ = m2φ+ F in Ω0 ,

φ = 0 if u = d ,

φ = H if u = 0 ,

which is bounded as m→ 0. If it is satisfied, the solution has the asymptotics

φ(x, u;m)

= φ0(x, u) +
(−1)n−1

2πn−2 χ1(u)

(
〈F1,1〉 −

√
2
d
κ1 〈H1〉

)
+O (α(m)) .

Proof. The statement is obvious if H = 0. In particular, the solution φ is con-
structed by the Fourier method in the explicit form

φ(x, u;m) =
∞∑
i=1

φ̃i(x;m)χi(u).

By a direct calculation it is easy to see that φ̃i are bounded functions for m ≥ 0
so long as i ≥ 2. The problem arises for i = 1, because in general φ̃1 tends to
infinity as m→ 0. The condition (3.9) guarantees that the explicit solution φ has
no such pole. This proves the sufficiency. To see that the condition is necessary at
the same time, one integrates by parts in the scalar product equation(

χ1, (∆ + κ2
1 −m2)φ

)
= (χ1, F )

and puts m = 0 afterwards. In the opposite case, H �= 0, we use the replacement

φ(x, u;m) = ϕ(x, u;m) +
(
1− u

d

)
H(x;m)

and expand the r.h.s. of the equation for ϕ in the Fourier series, which reduces the
task to the previous situation. ✷

Corollary 3.2 φ ∈ C∞(Q) holds for any bounded domain Q ⊂ Ω0.
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It follows from Lemma 3.1 that the recursive system of the boundary value prob-
lem (3.6) has solutions which are continuous with respect to m in the vicinity of
m = 0 and decay as |x| → ∞ for m > 0, provided the mi’s satisfy the following
recursive relations:

mi = (−1)n
√

2
d

κ1

〈f〉

i∑
j=1

〈
dj(−v)j

j!
∂jψi−j

∂uj
(·, 0; 0)

〉
. (3.10)

In particular, owing to (3.7) and Lemma 3.1 we get

m1 =
κ2

1

πn−2 〈v〉 , (3.11)

which agrees with the leading term obtained by the Birman-Schwinger method in
the previous section – cf. Theorem 2.4 and (3.2) – as well as with the corresponding
result (1.1) in the strip case.

3.2 The next-to-leading order

Let us now calculate m2. By virtue of (3.6), (3.7) and (3.11) the boundary value
problem for ψ1 together with the boundary condition for ψ2(x, u; 0) look as follows

(∆ + κ2
1)ψ1 = m2ψ1 + (−1)n−1 κ2

1

πn−2 〈v〉 fχ1 in Ω0 (3.12)

ψ1 = 0 if u = d

ψ1 = dv
∂ψ0

∂u
if u = 0

ψ2 = 0 if u = d

ψ2 = dv
∂ψ1

∂u
if u = d, m = 0

with
∂ψ0

∂u
(x, 0;m) =

(−1)n−1

2πn−2

√
2
d
κ1B(f) , (3.13)

where B(f) is the square bracket from (3.7). Hence

m2 = (−1)n−1

√
2
d

κ1d

〈f〉

〈
v
∂ψ1

∂u
(·, 0; 0)

〉
(3.14)

and it is sufficient to find ψ1. With eq. (3.12) and Lemma 3.1 in mind, we consider
the following boundary value problem

(∆ + κ2
1)φ0 = (−1)n−1 κ2

1

πn−2 〈v〉 fχ1 in Ω0 (3.15)

φ0 = 0 if u = d

φ0 =
(−1)n−1

2πn−2

√
2
d
κ1 d v 〈f〉 if u = 0
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and seek φ0 in the form

φ0(x, u) =
(−1)n−1

2πn−2

√
2
d
κ1

[(
1− u

d

)
〈f〉 d v(x) − ϕ(x, u)

]
; (3.16)

substituting it into (3.15), we arrive at the boundary value problem

(∆ + κ2
1)ϕ = −d 〈f〉

(
1− u

d

)
(∆′ + κ2

1)v + 2κ1

√
2
d
〈v〉 fχ1 in Ω0

ϕ = 0 on ∂Ω0.

The Fourier method gives

ϕ = −
√

2
d
d 〈f〉

∞∑
k=2

χk

κk
(−∆′ + κ2

k − κ2
1)

−1(−∆′ − κ2
1) v

−
√

2
d
d
χ1

κ1

[
〈f〉 v + κ2

1(−∆′)−1 (〈v〉 f − 〈f〉 v)
]
.

Lemma 3.1 an relations (3.12), (3.13), (3.15), and (3.16) together with the last
result imply that

∂ψ1

∂u
(x, 0; 0) =

(−1)n

2πn−2

√
2
d
κ1

×
{

κ2
1

πn−2

[ ∫
R

n−1 ×R
n−1

v(x)β(|x− x′|) f(x′) dxdx′

+〈f〉
∫

R
n−1

β(|x− x′|) v(x′) dx′ − 〈v〉
∫

R
n−1

β(|x− x′|) f(x′) dx′
]

+〈f〉
[
3 v(x) + 2

∞∑
k=2

[
(−∆′ + κ2

k − κ2
1)

−1(−∆′ − κ2
1) v
]
(x)

+δ3
n

κ2
1

π
(γ − ln 2) 〈v〉

]}
,

where we have employed also the implication

〈F 〉 = 0 ⇒ (−∆′)−1F =
−1

2πn−2

∫
R

n−1
β(| · −x′|)F (x′) dx′.
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Substituting this into (3.14) we get the sought coefficient:

m2 = − κ2
1

πn−2

{
3 〈v2〉+ κ2

1

πn−2

∫
R

n−1 ×R
n−1

v(x)β(|x− x′|) v(x′) dxdx′

+2

〈
v

∞∑
k=2

(−∆′ + κ2
k − κ2

1)
−1(−∆′ − κ2

1) v

〉

+δ3
n

κ2
1

π
(γ − ln 2) 〈v〉2

}
. (3.17)

3.3 The critical case

As we have pointed out in the introduction, the above result is most interesting in
the critical case, 〈v〉 = 0, when the first coefficient (3.11) equals zero and m2 given
by (3.17) determines the leading order. In this situation we have the following
result.

Theorem 3.3 Let V ∈ C∞
0 (Rn−1) be an arbitrary function such that 〈V 〉 = 0 and

v(x) = V
(x
σ

)
, σ > 0 .

Then the following inequalities hold,

− κ2
1σ

n−1

πn−2

(
8
2
‖V ‖2 +

3
2κ2

1σ
2 ‖V ‖‖∆

′V ‖ − 2κ2
1σ

2‖∇′(∆′)−1V ‖2
)

≤ m2 ≤ −
κ2

1σ
n−1

πn−2

(
3
2
‖V ‖2 − 2κ2

1σ
2‖∇′(∆′)−1V ‖2

)
.

Proof. In the first place, note that 〈V 〉 = 0 implies

− κ2
1

πn−2

∫
R
n−1 ×R

n−1

V (x)β(|x− x′|)V (x′) dxdx′ = ‖∇′(∆′)−1V ‖2 > 0 ,

because ∆′β(|x|) = 2πn−2δ(x) holds in the sense of distribution. Under the stated
assumptions, the formula (3.17) yields therefore

m2 = −κ
2
1σ

n−1

πn−2

(
3‖V ‖2 − 2κ2

1σ
2‖∇′(∆′)−1V ‖2 + 2A(σ)

)
,

where

A(σ) :=
∞∑
k=2

〈
V
(
−∆′ + (κ2

k − κ2
1)σ

2)−1
(−∆′ − κ2

1σ
2)V

〉
,

and it suffices to find suitable bounds on A(σ).
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Since the Fourier transformation together with the Plancherel theorem give
the estimate ∥∥∥(−∆′ + (κ2

k − κ2
1)σ

2)−1
F
∥∥∥ ≤ ‖F‖

(κ2
k − κ2

1)σ2 , (3.18)

we obtain the upper bound

A(σ) ≤ 3
4

(
‖V ‖2 +

1
κ2

1σ
2 ‖V ‖‖∆

′V ‖
)
,

where the numerical factor comes from
∑∞

k=2(k
2 − 1)−1 = 3

4 .
On the other hand, denoting

Uk(x;σ) :=
[(
−∆′ + (κ2

k − κ2
1)σ

2)−1
V
]
(x),

we see that 〈
V
(
−∆′ + (κ2

k − κ2
1)σ

2)−1
(−∆′ − κ2

1σ
2)V

〉
=
〈 (
−∆′ + (κ2

k − κ2
1)σ

2)Uk(−∆′ − κ2
1σ

2)Uk

〉
.

Integrating the r.h.s. by parts and using (3.18), we get the lower bound

A(σ) =
∞∑
k=2

(
‖∆′Uk‖2 + κ2

1(k
2 − 2)σ2‖∇′Uk‖2 − κ4

1(k
2 − 1)σ4‖Uk‖2

)

> −
∞∑
k=2

κ4
1(k

2 − 1)σ4‖Uk‖2 ≥ −‖V ‖2
∞∑
k=2

1
k2 − 1

= −3
4
‖V ‖2,

which concludes the proof. ✷

This theorem confirms the spectral picture we got from (1.2) and (1.3). More specif-
ically, m2 > 0 as σ → ∞ so the critical weakly bound state exists for sufficiently
smeared deformations, and vice versa. In contrast to (1.2) and (1.3), however, we
are able now to tell from (3.17) for any given zero-mean v the sign of m2.
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