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1 Introduction

The smallness of the measured Cosmological Constant1 (CC), Λ4
obs ' 26meV4, is considered

to pose one of the deepest conundrums (for reviews, see e.g. [1, 2]) in physics. In fact the
smallness of the CC introduces three intriguing questions, with (widely) varying levels of
severity:

1Here and below we denote the CC using a dimension-1 parameter Λ, while its observed value is Λobs.
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1. Why is Λ4
obs so small? Indeed, its measured value is roughly 120 orders of magnitude

below the naive estimate of Λ4 ' M4
Pl, with MPl ' 1.2 × 1019 GeV the Planck

scale, and roughly 48 orders of magnitude below the QCD scale. In the absence
of a dynamical explanation, the CC must be severely fine tuned to agree with the
observed value. This is known as the CC problem [3].

2. Why is ΩΛ,0 ' 2 Ωm,0? A priori, one expects the measured CC energy density, ΩΛ,0,
and the matter energy density today, Ωm,0, to be unrelated. Consequently, the ratio
of these two quantities could have been many orders of magnitude above or below one,
while in practice it is measured to be close to unity. This is the so called coincidence
problem [4]. Within the standard cosmological model, the above implies that the CC
energy density comes to dominate the universe only at very low redshift, and hence
this problem is often referred to as the why now? problem.

3. Is the CC related to the TeV scale? Numerically, one finds that Λobs ' TeV2/M̄Pl
with M̄Pl ' 2.4 × 1018 GeV the reduced Planck scale. While this relation could be
nothing more than a numerical coincidence, it may be viewed as an intriguing hint
towards a possible relation between the solution to the CC problem and new physics
at the weak scale (see for example [5]).

In this paper we discuss a solution which naturally addresses all of the above conundrums
at once.

Several approaches for explaining the smallness of Λ4
obs have been considered (for re-

views, see e.g. [1, 6–12]). For example, one approach is to use some (softly broken) sym-
metry to set the CC close to zero (see e.g. [13–15]; for an interesting variation on this idea
see [16]). This approach has so far been unsuccessful due to the absence of a consistent
low-energy symmetry that can sufficiently suppress the value of the CC. Another approach
is to dynamically relax the CC, driving the system toward a small value (see e.g. [17, 18]).
However, the Weinberg no-go theorem [1] — stating that one cannot find a coupled scalar-
gravity system with a classical solution in which the CC vanishes without significant tuning
— severely restricts the possible adjustment mechanisms and solutions which circumvent
it often result in an empty universe. Other approaches include some form of violation of
the equivalence principle, such as non-local corrections to gravity (see e.g. [19]), alluding
to thermodynamics and the holographic principle (for a review see [20]), use of graviton
compositeness [21], sequestering of vacuum energy [22], unimodular gravity [23], and even
more exotic attempts (see e.g. [24]).

Many more attempts were made over the years to solve this problem, and yet perhaps
the only widely acceptable solution to the CC, originally introduced by Weinberg, invokes
the anthropic principle [1, 25]: living observers should only exist in a universe which al-
lows for structure to form and life to develop. Weinberg argued that if many regions of
space (a “multiverse”) with distinct values of the CC exist, observers would only be ex-
pected to live in domains which exhibit a sufficiently small CC. The anthropic solution
requires a theory that allows for a “landscape” of vacua as well as a dynamical mechanism
to populate the multiverse. Since the CC in a given patch starts to dominate after a while,
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eternal inflation seems inevitable. Therefore, the solution suffers from two shortcomings.
First, by construction there are no observable experimental consequences for the presence
of the multiverse. Second,the anthropic solution generally implies eternal inflation [26, 27],
i.e. despite inflation ending in many patches, there are always some where it continues
indefinitely. Eternal inflation has an inherent measure problem (see e.g. [28–30]) of cal-
culating probabilities across infinite causally disconnected regions, crucially impeding its
predictive power.

In this paper we propose a new direction to address the CC problem. We assume the
population of many regions of space, each with a different CC, similarly to the standard
anthropic approach. However, in sharp contrast with this approach, we also add dynamics
that render all regions metastable. Any region which goes through the phase transition to
the true vacuum undergoes a drop in its energy density down to a large negative value. This
expanding FRW region has therefore a negative CC, and hence the expansion will eventually
turn into contraction which ends in a second big bang singularity, or “big crunch” [31].
The temperature-dependent decay rate depends on the cosmological evolution which in
turn depends on the value of the CC in that region. Large CC comes to dominate the
energy density early, triggering a secondary phase of inflation and rapidly driving the
region down to the nucleation temperature, below which the phase transition proceeds
efficiently. Conversely, in regions with smaller CC values, the temperature drops slowly as
the universe expands and thus those regions live longer. Only domains with a small CC
survive until today, which explains why we have observed such a small value of the CC
around us.

Since all the domains crunch, the secondary phase of inflation is only temporary,
thereby evading eternal inflation and its accompanied measure problem. Moreover, as we
shall see, a long period of inflation is unnecessary for the population of the landscape, and
only a small number of e-folds are required. Meanwhile, the Weinberg no-go theorem is
not violated as no special deference is given in the Lagrangian to small values of the CC.

The solution not only addresses the CC problem but also the coincidence problem.
Indeed, had the CC dominated the energy density in our universe much earlier, it would
have driven our Hubble patch to an early secondary phase of inflation followed up by a
phase transition and subsequent crunch long before today. Smaller values of the CC are
possible, however those are presumably sparse in the multiverse.

Remarkably, this dynamical solution is falsifiable, with two major phenomenological
implications. Firstly, we find a limit on the maximal CC in the landscape, beyond which
we cannot apply the crunching mechanism. The scale of this CC turns out to be (for a
more accurate estimate see section 5),

Λmax ∼ O(
√
T0M̄Pl) ' O(TeV) , (1.1)

suggesting that the TeV scale should emerge as a special scale, above which the CC would
have to be canceled by some other mechanism, for example via supersymmetry. We view
this as a “CC miracle” in analogy to the WIMP miracle. Secondly, we will show that the
sector responsible for the crunching dynamics contributes to the effective number of rela-
tivistic degrees of freedom, Neff , which is expected to show up in future CMB experiments.
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The absence of new physics at the LHC and the strong constraints on Neff [32] already
introduce some tension with our scenario, suggesting a mild little hierarchy problem for
the CC, analogous to the little hierarchy problem for the MSSM which was identified at
the end of LEP and followed from the direct searches and indirect precisions measurements
at the time [33].

We present a concrete dynamical model that allows for the crunching of patches with
large Λ4. At the core of the model is a spontaneously broken hidden conformal field theory
(CFT) which does not contribute to the CC in the unbroken (high temperature) phase,
while having a large negative CC in its broken phase. In the gravity dual, the CFT can
be described via a stabilized Randall-Sundrum (RS) construction. After inflation, the
visible and hidden sectors are reheated, driving the CFT to its high temperature phase.
The crunching mechanism corresponds to the subsequent supercooled phase transition of
the CFT, which takes place at temperatures lower than the current temperature of our
observable universe.

The paper is organized as follows. In section 2 we present the basic concept of our
crunching mechanism and explain the three sectors needed together with their associated
energy scales. In section 3 we introduce the hidden spontaneously broken CFT which will
be used for the crunching sector, explain the two phases and their effective descriptions.
We discuss the most important aspects of the crunching phase transition in section 4
including both the O(3) and O(4) symmetric bubbles. For the O(3) symmetric bounce
action we can use different approximations, while for the O(4) symmetric one relevant
at low temperatures we rely on dimensional estimates. We show in section 5 how the
various cosmological constraints limit the maximal CC that can be crunched away. The
phenomenological consequences of our mechanism are discussed in section 6, while we
comment on the basic properties of the scanning and inflationary sectors in section 7.
Our conclusions as well as future prospects can be found in section 8. The appendices
contain a summary of the Goldberger-Wise stabilization mechanism of the RS construction
(appendix A), the discussion of the effects of an additional bulk gauge group on the dilaton
potential (appendix B), and more details on the various estimates of the bubble nucleation
rate (appendix C).

2 Basic concept

In this section we describe the basic idea to address the CC problem. We circumvent
Weinberg’s no go theorem by taking a similar approach to the anthropic solution [1, 25],
namely we assume that a large number of Hubble patches, each with a different value for
the cosmological constant, are generated during inflation. As opposed to the original idea,
however, additional dynamics act to remove any patch with a large CC by causing it to
crunch early during the cosmological evolution. Consequently, only patches with small CC
survive until today. As a corollary, inflation need not be eternal or even last very long (see
section 7). We shall further see that several observational consequences follow. During an
initial inflationary period, different Hubble patches admit distinct values of the CC due to
the presence of a scanning dynamics. Once inflation ends, the universe with all its patches
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is reheated. In a given patch, the presence of a vacuum energy density of size Λ4, triggers
a phase transition at time of order H−1

Λ ∼
(
Λ2/
√

3MPl
)−1

, changing its value to be large
and negative and subsequently driving the patch to crunch. The smaller the value of the
CC, the longer the patch survives before crunching. All patches crunch at finite time.

Three somewhat independent modules of the theory, depicted in figure 1, are needed
to achieve this scenario:

1. An inflationary sector with scale Λinf . This sector drives a primary phase of inflation
for a finite time, before reheating our universe. During inflation, the inflaton’s energy
density is of order Λinf .

2. A scanning sector with scale Λmax. Responsible for varying the CC during the initial
inflationary period, thereby generating a multitude of domains with a landscape of
contributions to the CC with a range Λmax.

3. A crunching sector with a scale ΛCFT. The dynamics in this sector reacts to the
presence of a large CC and acts to lower its value, thereby driving the relevant
patch to crunch. In this paper this sector is a CFT spontaneously broken at low
temperatures and with a vacuum energy density of order −Λ4

CFT.

The sectors are not necessarily disconnected. For example, in the model we describe
below the crunching sector is assumed to couple to the inflaton which reheats it at the
end of inflation. In order to trigger the crunching of every large CC region we assume
Λmax < ΛCFT. Conversely, to allow for the primary phase of inflation (which occurs at zero
temperature when the CFT is spontaneously broken), we must have ΛCFT < Λinf . Thus,
all in all we assume the (possibly mild hierarchy), Λmax < ΛCFT < Λinf (see the right
of figure 1). Note further, that the contribution of the inflationary sector to the energy
density after inflation, is assumed to be smaller than Λ4

max, so that the observed value of
the CC lies well within the landscape of vacua.

The inflationary and scanning sectors have been thoroughly studied in the literature
(see e.g. refs. [34–42]) and in this paper we are not adding anything new to that discussion.
In section 7 we shortly discuss these sectors and derive a lower bound on the number of
e-folds produced during the initial phase of inflation. We remain agnostic to the precise
nature of the initial inflationary period and the inflaton dynamics that governs it — our only
assumption is that it doesn’t lead to eternal inflation and is not excluded by cosmological
probes such as the CMB and LSS.

Several approaches to the dynamics that drive the crunching regions may be taken.
Quite broadly such dynamics arise from either a CC-dependent field potential, or a CC-
dominated cosmology which can turn the CC negative. In this paper we take the latter
approach. At the end of inflation the crunching sector is assumed to be reheated and
thereby driven into a long-lived false vacuum. We then utilize the secondary phase of
inflation triggered by the CC in a given patch, setting off a phase transition. Indeed,
during inflation the temperature drops rapidly, going within a few Hubble times well below
the critical temperature. The decay of the (supercooled) false vacuum in the crunching
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Figure 1. Left: our model assumes three different sectors in addition to the SM. The inflationary
sector is responsible for driving inflation at a scale Λinf . Inflation need not be eternal or have a large
number of e-folds (see section 7 for the discussion on a lower bound). The scanning sector may be
independent of all other sectors and is responsible for producing a variety of Hubble patches with
varying CC values. The crunching sector, which takes the focus in this paper, is responsible for
the dynamics that drives each patch with a large CC, Λ4 ≤ Λ4

max to crunch within a time of order
H−1

Λ ∼ (Λ2/
√

3MPl)−1 from the end of the inflationary period. In the scenario discussed below,
this sector is a CFT, spontaneously broken at low temperature with a vacuum energy −Λ4

CFT.
Right: the three scales are assumed to be (possibly very mildly) hierarchical: Λmax < ΛCFT < Λinf .
During inflation the crunching sector sits in the true vacuum and the inflaton dominates the energy
density. A variety of Hubble patches with energy densities lying around the scale Λ4

inf −Λ4
CFT and

with a range of order Λ4
max, are populated during this epoch. After reheating, the crunching sector

sits in the false vacuum and does not contribute to the CC. The patches’ energy densities are then
distributed (possibly non-symmetrically) around zero with the same range of order Λ4

max. Those
with large negative cosmological constant will crunch independently of the crunching sector while
those with positive (or small negative) crunch only once the CFT phase transition is completed,
thereby reducing their energy density by Λ4

CFT and driving it to negative values. Eventually, at
late times, all patches go through the phase transition and crunch.

sector decreases the CC to a negative value, driving to a short crunching period. An
exploration of a different scenario using the first approach is deferred for future work.

The crunching sector itself has non-trivial requirements which make it quite unique.
First, it needs to turn a large CC negative — so that the contribution to the CC from this
dynamics should be large. However our patch of the Universe should not have crunched
yet, hence the dynamics has to be such that the metastable vacuum remains stable down
to a very low temperature of order meV. This means that the crunching sector in our
patch is currently in a metastable state, and the difference in the vacuum energy between
the metastable and stable minima is much larger than the characteristic temperature and
energy scales in the universe when the transition occurs. This implies that the crunching
sector must contain a supercooled phase in which the phase transition happens at a much
lower temperature than the critical temperature.

The outline for the history of the desired supercooled phase transition can be summa-
rized in the following. The crunching sector is reheated above the critical temperature and
remains in the false vacuum even below it. The transition occurs through bubble nucle-
ation, with the nucleation temperature chosen to be below the current temperature of our
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observable universe. In areas with a large CC, the universe re-enters a secondary phase of
inflation early on and the temperature of this sector drops exponentially with time until it
reaches the nucleation temperature and triggers the transition. As a result, the CC turns
negative within several Hubble times for every patch of the universe that re-enters inflation
— and the lifetime of each patch after exiting the initial inflationary period is inversely
related to the value of its CC. Note that in our model, our local patch has undergone the
standard cosmological history so far and the CFT sector behaves as a dark sector with
only minor effects on any cosmic observables. Of course, this will no longer be true when
our patch crunches as well.

Our proposed dynamics solves all of the three dark-energy related questions discussed
in the introduction. In the realization of the crunching dynamics we describe below, the
coincidence problem (a.k.a. the “why now?” puzzle) is solved by ensuring our universe lies
close to a critical point, predicting our observable universe (and most others) to be on a
verge of a catastrophic phase transition. Most importantly, our mechanism predicts new
physics at the weak scale, hinting at a connection between the CC and the TeV scale. At
the same time it avoids eternal inflation with its pitfalls, since all patches in the universe
are predicted to crunch thereby naturally circumventing the measure problem. As we shall
see, unlike the standard anthropic approach, our scenario is predictive and falsifiable. We
now move on to explain these statements in detail.

3 The crunching sector

The essential new ingredient in our setup is the crunching sector that will effectively turn a
large positive CC into a negative one. As discussed above, this sector is subject to two es-
sential requirements: (i) an unstable supercooled phase with a low nucleation temperature,
and (ii) a true minimum with a large and negative energy density, −Λ4

CFT.
It is well-known that spontaneously broken conformal field theories (CFT’s) feature

exactly such a supercooled phase transition (at least for large N) [43, 44]. In addition, the
CFT contribution to the CC from the unbroken phase vanishes, while in the broken phase
it will be large and negative, providing the necessary jump in the CC to induce the crunch.
The first order phase transition occurs via bubble nucleation [45–47]. For a successful
model, the tunneling probability from the metastable high-T vacuum to the true vacuum
with broken scale invariance has to remain negligibly small down to T ∼meV, but allow
for a transition not too far below it. Thus at that temperature the tunneling probability
should rapidly increase, thereby facilitating the phase transition with a large change in the
vacuum energy. We note that an RS-type gravity dual of a large-N non-supersymmetric
CFT [48] satisfies (almost) all requirements and in particular, it features a first order
phase transition that is strongly supercooled. As we shall see below, the shortcoming of a
minimal RS model is that the bounce action (which controls the tunneling probability), is
only mildly temperature-dependent, implying a slow change in the probability. To achieve
a strong dependence we introduce an explicit breaking of the CFT through a hidden QCD-
like gauge theory in the bulk (along the lines of [49, 50]), allowing for a phase transition
soon below the meV scale.
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3.1 RS at zero temperature

For the concrete model of the supercooled phase transition in cosmology we use a minimal
RS model with Goldberger-Wise (GW) stabilization [51], which is dual to a spontaneously
broken conformal field theory (CFT). In this model we have a slice of AdS5 space described
by the metric

ds2 = 1
k2z2

(
dt2 − dz2 −

∑
i

dx2
i

)
, (3.1)

where k is the AdS curvature. The AdS space is truncated at z = 1/k by the UV brane while
at zero temperature there is an IR brane at z = zIR � 1/k. The position of this IR brane
(in the absence of stabilization) is arbitrary, corresponding to the dilaton, χ ≡ 1/zIR, the
pseudo-Goldstone boson (pGB) of broken scale invariance. We stress that with our choice
of parametrization, the dilaton is non-canonical,

L ⊃ −3(N2 − 1)
4π2 (∂µχ)2 , (3.2)

where N is the number of colors in the dual (unbroken) CFT, which is related to the RS
parameters via, N2 − 1 = 16π2(M∗/k)3 = 4c/π with c its central charge and M∗ the 5D
Planck scale.

The GW stabilization mechanism involves adding a massive bulk scalar field, φ, with
boundary potentials on the two branes. These potentials together with the bulk mass,
forces a non-trivial 5D profile for the scalar, which in turn results in the stabilization of
the radion. For more details see appendix A and [51, 52]. We analyze the theory assuming
that the dilaton is light compared to all other composite degrees of freedom, and restrict
ourselves to the effective potential of a stabilized dilaton (after integrating out the bulk
scalar and graviton modes) of the form,

Veff(χ) = −λχ4 + λ1
kε1

χ4+ε1 − λ2
k−ε2

χ4−ε2 . (3.3)

Here we have chosen the arbitrary normalization scale to be k for simplicity. The χ4 term
is expected to appear in the scale invariant theory, while the terms with powers 4 ± ε1,2
correspond to explicit breaking of scale invariance. For the case of the GW stabilization,
the λ coefficients are smaller than one but not necessarily hierarchically so, while εi � 1,
thereby generating the UV-IR hierarchy (also in that case ε2 ' −2ε1). As we show in sec-
tion 4, a supercooled phase transition, (from a hot CFT phase to the spontaneously broken
one), with a bounce action that quickly drops around some temperature, T∗, requires, for
example, ε2 to be O(1) and positive. Demanding further that T∗ � k implies that λ2 � 1,
(see eqs. (3.5) and (4.11)). With this choice, the third term in eq. (3.3) is negligible except
for very small χ and in particular, it does not influence the location of the minimum which
is given by

χmin ' k
( 1

(1 + ε1/4)
λ

λ1

)1/ε1
. (3.4)
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The role of the third term in eq. (3.3) is nonetheless crucial due to its domination at low
values of χ. For χ below the critical value, χ∗,

χ∗ ≡
(

2π2(4− ε2)(3− ε2)λ2
3(N2 − 1)

)1/ε2
k � χmin , (3.5)

the mass of the dilaton becomes larger than the IR scale and the effective theory breaks
down as the dilaton is no longer lighter than the other KK-states. Around χ∗ the third
term therefore dominates the potential and affects crucially the nucleation rate and its
dependence on the temperature. We describe this effect in the next section.

A more detailed explanation of the setup for this model is presented in appendices A
and B. As was shown in [49, 50] and reviewed in appendix B, the third term of eq. (3.3)
with the properties discussed above (i.e. ε2 of order unity and λ2 � 1), can originate from
an additional gauge group in the bulk of the AdS. In particular, the RG flow of the gauge
group, and correspondingly the confining scale, Λ′, are influenced by the CFT degrees
of freedom. When the confinement occurs below the CFT breaking scale, Λ′ becomes
dependent on the dilaton (which parametrizes the CFT breaking), Λ′ = Λ′(χ). As a result,
the confinement energy density, which is an explicit breaking of the CFT, introduces the
necessary effective potential for the dilaton. This setup also shows that λ2 � 1 (which
is needed for χ∗ ∼ meV) can be easily achieved without any tuning. As explained in
appendix B λ2 is set by the dynamical scale of the additional bulk gauge group, which
arises via dimensional transmutation and is naturally much smaller than the UV scale
corresponding to the bulk curvature k.

3.2 RS at finite temperature

So far, we have discussed the GW stabilization which describes the true vacuum of the
theory. This corresponds to the stable phase of the system at low temperatures. A second
phase of the theory is apparent at finite temperature. This phase corresponds to the
symmetric CFT phase and is described on the 5D side by the Euclidean AdS-Schwarzschild
(AdS-S) solution given by the metric [44]

ds2 =
(

1
k2z2 −

z2

k2z4
h

)
dt2 +

(
1

k2z2 −
z2

k2z4
h

)−1
dz2

k4z4 + 1
k2z2

∑
i

dx2
i , (3.6)

where zh corresponds to the location of a black brane (BB) horizon. For zh →∞ the AdS
metric, eq. (3.1), is recovered. A corresponding Hawking temperature of the BB can be
defined and is given by

Th = 1
πzh

. (3.7)

At equilibrium, Th is set by the temperature of the system, which also defines the periodicity
of the Euclidean time direction, Th = T . For other choices of Th, the system is out
of equilibrium (or equivalently, away from the minimum of the potential), and a conical
singularity at the horizon appears.

The transition between the two space-times is known as the Hawking-Page phase tran-
sition [53]. The properties of this phase transition are easier to understand from the CFT
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side. At low temperatures the theory describes a spontaneously broken conformal symme-
try, while at high temperatures, the symmetry is restored. The critical temperature of the
phase transition is defined by the equality of the free energies of the two phases. The free
energy of the broken, low temperature phase, is dominated by potential energy,

Fbroken(χ, T ) ' V (χ) , (3.8)

and in particular the minimum has Λ4
CFT ' −Fbroken(χmin) ' ε1λ

4 χ4
min. Here ΛCFT is the

relevant energy scale of the crunching sector discussed in section 2. The hot conformal
phase is simply black-body radiation with free energy

Fconformal = −π
2

8 N
2T 4 . (3.9)

The critical temperature is therefore found to be

Tc = χmin

( 2ε1λ
π2N2

)1/4
(3.10)

As we discuss in the next section, the phase transition occurs at temperatures much below
the critical one.

To describe the phase transition, one must identify the relevant degrees of freedom
in each of the phases. In the broken phase, and sufficiently far from the origin, χ ∼>
T max[1, k/M∗], no KK states are dynamical and quantum gravity corrections are sub-
dominant and therefore the system is adequately described by the light dilaton (after
canonically normalizing) with V (χ) given by eq. (3.3). For χ . T max[1, k/M∗] however,
the effective potential will get large T-dependent non-calculable corrections and additional
degrees of freedom are expected to be needed for the description of the theory. Meanwhile,
in the absence of scales in the hot CFT, the effective potential in the unbroken phase is
unknown, and again many degrees of freedom are expected to be dynamical. On the grav-
ity side one can identify the inverse location of the BB horizon or equivalently its Hawking
temperature, Th, as a degree of freedom which controls the free energy of the system at
the minimum (as well as the height of the barrier). We stress, however, that Th is non-
canonical and may be accompanied by many other degrees of freedom. Nonetheless we use
Th as a convenient illustrative parametrization of the physics of the hot CFT phase.

3.3 The potential at small χ

Before moving on to the dynamics of the phase transition we would like to discuss the shape
of the dilaton potential, and in particular its behavior for small values of χ. A one- and a
two-dimensional illustration of the potential as parametrized by χ and Th are presented in
figures 2 and 3. The 1D illustration of figure 2 was obtained by gluing the dilaton potential
to a finite temperature potential for the BB horizon, where the gluing is done at the point
where both are taken to infinity. This is the approach taken in [44], where the authors use
the value of the free energy for an unbroken CFT at zero temperature as their reference,
setting it to zero. In [44], the 1D parameterization correctly reproduces the size of the
barrier and shows that the potential is much steeper on the BB side. A slightly more
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Veff

Figure 2. A 1D illustration of the potential describing the two phases of the crunching CFT sector.
The potential is obtained by gluing together the zero temperature dilaton potential, V (χ) (on the
right of the vertical line at χ = Th = 0) and the thermal potential of the black brane as a function of
its Hawking temperate, Th (on the left). The gluing is done when both the IR brane and the black
brane horizons are taken to infinity. At large χ, the Goldberger-Wise potential is dominating. At
χ ' χ∗ and below, the explicit breaking of the conformal symmetry becomes sizeable and deforms
the potential, introducing a barrier with a typical scale χ∗. In our scenario, the explicit breaking
arises from an additional confining gauge group in the bulk of the AdS.

informative description is given by a two dimensional plot in figure 3, where we illustrate
the potential as a function of the IR brane and the horizon location.

Our analysis here differs from [44] in one important detail. We have seen that at a value
of the dilaton χ = χ∗ the additional term ∝ χ4−ε2 in eq. (3.3) will become dominant. In
the CFT language this implies that the effect of an explicit breaking term is becoming O(1)
and one expects the RG flow to be driven to a different fixed point. In the 5D AdS language
this would be described by a domain wall at a position around χ = χ∗ that will separate the
AdS space from whatever space arises as a result of the backreaction (possibly another AdS
space asymptotically). While we do not know much about the details of the behavior of the
theory below χ∗, we do expect that there will be a term in the potential set by χ∗, which
can be understood either as a threshold correction in the CFT language or the contribution
of the domain wall sitting at χ∗ in the 5D language. An illustration of this effect is given
in figure 2, taking either a negative or positive tension for the domain wall. This effect
generates a barrier of order χ4

∗ in the dilaton potential, implying that the non-calculable
regime χ < χ∗ will be dominated by the energy scale χ∗, and consequently dimensional
analysis suggest that the bubble nucleation probability is also set by the same scale.

4 A crunching phase transition

4.1 Preliminaries

The essence of our crunching mechanism is the Hawking-Page phase transition [53] corre-
sponding to the decay of the metastable high-temperature CFT (described by the black
brane of the AdS-S metric [44]) to the spontaneously broken minimum (described by the
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Figure 3. A 2D illustration of the effective potential describing both phases of the CFT: the
spontaneously broken phase parametrized by the dilaton, χ, and the hot conformally-restored phase
parametrized by the horizon Hawking temperature of the 5D black brane dual. χ = 0 corresponds in
the RS picture (i.e. the spontaneously broken phase) to the IR brane at infinity. Conversely, the AdS-
S geometry, dual to the hot CFT phase, is truncated at the horizon and the IR brane can be thought
of sitting there and contributing no energy due to the vanishing warp factor. We stress that Th is
not a canonical degree of freedom nor is it parametrically lighter than any other excitation in that
phase. Consequently the (multi-dimensional) potential is unknown in this regime. Furthermore, in
the spontaneously broken phase, the effective theory breaks down for χ < T max[1, k/M∗], where
additional KK modes are expected to enter and/or non-calculable quantum gravity corrections
must be taken into account. Below the critical temperature, the spontaneously broken phase lies
parametrically farther from the origin in field space compared with the hot CFT minimum, since
the relevant scale in the latter phase is the temperature T . This fact plays a role in the calculation
of the bounce action, which for sufficiently large temperatures is dominated by the semi-classical
contribution from the broken phase. The red line shows the path of an effective euclidean particle
tunneling from the false vacuum to the true one. The solid part describes the dominant and
calculable contribution while the dotted part illustrates the non-calculable but subdominant part
of the action for χr > T max[1, k/M∗], where χr is the release point of the bounce. The green line
illustrates the Lorentzian-time path of the field, as it rolls down to the minimum of the broken
phase after tunneling.

RS with the GW solution [51]). Usually two contributions to the bubble nucleation rate
play a role: an O(4)-invariant action [46], S4, and an O(3)-invariant finite-temperature
contribution, S3(T )/T [47]. Here we set the stage to the estimation of both.

The O(3) action. To calculate S3(T ), one needs to solve the 4-dimensional Euclidean
classical EOM, where it is assumed that the solution is independent of the compactified
Euclidean time, and spherically symmetric in the other three. For a canonically normalized
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field φ, the EOMs in terms of the 3D radius is,

φ′′ + 2
r
φ′ − V ′(φ, T ) = 0 , (4.1)

where V (φ, T ) is the potential describing the system. This equation can be understood
as describing the classical motion of a point particle in an inverted potential −V and a
friction term, with r playing the role of time. The corresponding bounce action is then
given by,

S3(T ) = 4π
∫ ∞

0
dr · r2

[
φ̄′2

2 + V (φ̄, T )
]
, (4.2)

where V (φ, T ) is the potential shifted to vanish in the false vacuum and φ̄ is the solution
to the equation of motion, eq. (4.1), with the boundary conditions φ̄′(r = 0) = 0 and
φ̄(r → ∞) = φfalse(T ). The value at the origin φ̄(r = 0) ≡ φr(T ) is referred to as
the release value of the field φ, which sits on the true vacuum side of the barrier, while
φfalse(T ) is the value of the field at the false vacuum, corresponding to the hot CFT phase
in our case.

As we have seen, our system exhibits two different phases with very distinct sets of
degrees of freedom. What should one use for the corresponding field, φ? In [44] the bounce
was estimated by gluing the potential in the AdS-S solution with the horizon at infinity,
to the GW potential in the RS solution with the IR brane at infinity. The instanton
trajectory would correspond to the motion of the AdS-S horizon, parametrized by Th,
from the false vacuum to infinity, followed by the motion of the IR brane (described by
its location zIR = 1/χ), from infinity (χ = 0) to the release point χr. In figure 3 this
transition would be seen with the solid red line reaching all the way to the origin, followed
by a path along the Th = χ line to the minimum associated with the hot CFT phase. It
is however unlikely to be the precise path describing the minimal bounce action since the
dilaton effective potential breaks down for χ < T max[1, k/M∗] while the CFT potential is
unknown and likely multi-dimensional. The bounce action therefore consists of a calculable
and a non-calculable contribution,

S3(T ) = Scalc
3 (T ) + Snon−calc

3 (T ) . (4.3)

The solid red line in figure 3 illustrates the calculable part of the bounce action while the
dotted red line shows the non-calculable part.

Since the minimum of the broken phase lies far from the origin, χmin � T max[1, k/M∗]
[see eq. (3.4)], while the field space of the unbroken phase spans a distance of order T , one
expects the calculable part of S3(T ) to dominate over the non-calculable part. Below we
show that as the temperature drops, the release point, χr(T ), associated with the boundary
condition at the center of the bubble, moves towards the origin. Once χr(T ) ≤ χ∗, the
calculable part of the action vanishes. As we argue below and in appendix C.3, the absence
of a small parameter suggests that the (now dominating) non-calculable part of the action
for such low temperatures is of order N2, Snon−calc

3 (T )/T = O(N2).2 A similar statement
2Strictly speaking, this N-dependence ignores non-perturbative corrections which may be large.
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is true for the S4 action discussed below. We will use this fact when estimating the largest
possible CC that can be crunched away using the dynamics discussed here.

At sufficiently high temperature, the bounce action discussed above governs the rate
of thermal bubble nucleation per unit volume which is given by [47]

Γ3(T )
V

= Γ(3)
0 · T

4
(
S3(T )
2πT

)3/2
e−S3(T )/T for T � T∗ , (4.4)

where Γ(3)
0 is an O(10−3−103) pre-factor, as discussed in appendix C.3. The T 4 prefactor is

easily understood: for high T the theory is approximately conformal and the only explicit
scale in the theory is T . As the temperature drops and the release point for the bounce
solution, χr, reaches χ∗, conformality is explicitly broken and the characteristic scale is
set by χ∗. At those low temperatures we expect the O(4)-invariant bubble to become
dominant, but since we have seen that the bounce action is no longer large nor calculable,
the prefactor is expected to be on dimensional grounds be of order χ4

∗, Γ(T . T∗)/V ∝ χ4
∗.

The O(4) action. So far, we have discussed the finite-temperature O(3)-symmetric con-
tribution to the bounce action. We now discuss the properties of the O(4)-symmetric
solution. To understand its importance, let us first note that the S4 bounce action be-
comes dominant only when two conditions are met [47], (i) RbubbleT ≤ 1 with Rbubble the
size of the bubble, and (ii) S4 ≤ S3(T )/T . Indeed, at some low temperature T , the bubble
radius plateaus due to the finite χ∗-scale barrier, and as we continue to lower the temper-
ature, RbubbleT → 0. Additionally, as the temperature is sufficiently lowered, S3 plateaus
as well, while T continues to decrease, thus for some low temperature we will clearly have
S3(T )/T > S4. Therefore, one finds that the O(4)-invariant solution will dominate the
bubble nucleation rate.

As in the O(3) case, the O(4)-symmetric action is given by

S4 = 2π2
∫
r3dr

[
φ
′2

2 + V (φ)
]
, (4.5)

where as before, φ denotes the solution to the Euclidean EOM (this time for a 4D invariant
solution)

φ′′ + 3
r
φ′ − V ′(φ, T ) = 0 (4.6)

and V denotes the potential shifted to zero in the false vacuum. Once again, the field φ̄

will be taken to be the dilaton in the broken phase. Finally, the corresponding rate can
be estimated using the characteristic scale, χ∗, which is the only dimensionful parameter
relevant for the O(4) bounce solution [45]

Γ4(T )
V

= Γ(4)
0 χ4

∗

(
S4
2π

)2
e−S4 . (4.7)

As with Γ(3)
0 , here Γ(4)

0 parametrizes our ignorance and following [47] taken to be of order
O(10−3 − 103) and O(10−4 − 104) respectively (see appendix C.3).
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4.2 Estimates for the O(3) and O(4) actions

In order to gain intuition and identify the interesting regions of parameter space, it is useful
to derive approximate expressions for the parametric dependence of S3(T )/T and S4. In
this section we find a back-of-the-envelope estimate, while a more careful treatment of the
S3(T )/T is given in appendix C where we numerically calculate the bounce action.

We begin by identifying a characteristic temperature scale, T∗ (which we mentioned
already in section 3.1), at which the phase transition takes place. This scale can be defined
as the temperature such that

χr(T = T∗) = χ∗ . (4.8)

Recall that χ∗ defines the value of χ for which the explicit breaking of conformal symmetry
is sizable and the dilaton is no longer the only relevant degree of freedom. Thus at and
below T∗ the bounce solution runs along χ < χ∗ and the action is fully non-calculable.
In accordance with the discussion above (and derivation below), due to the absence of
small parameters, at this value S3(T∗)/T∗ ' O(N2) and the decay rate is sizable. As we
show momentarily, at around T∗, S4 becomes dominant and bubble nucleation proceeds
via the zero-temperature solution, with similar scaling of the bounce-action. The above
implies that at around T∗ the decay rate peaks and is indeed sizable, and therefore bubble
nucleation can occur allowing for the phase transition to take place.

Another important scale is the size of the nucleated bubble, Rbubble. The typical
distance scale associated with the solution of eq. (4.1) [for φ →

√
3(N2 − 1)/(2π2)χ and

V → Veff(χ)], gives a good estimate for the size of the bubble3 and scales as

Rbubble ∼
√

3
2π N [V ′′eff(χr)]−1/2 = 1√

2
Nχ−1

r

[
N2

(
χ∗
χr

)ε2
+ 8π2λ

]−1/2
, (4.9)

where χ∗ is defined in eq. (3.5). From the above we see that the last term of eq. (3.3)
will start to dominate for χr ' (λ/N2)−1/ε2 χ∗ > χ∗. Below we use Rbubble to show that
around T∗, the phase transition proceeds via nucleation of O(4)-symmetric bubbles.

O(3) estimate. Next, let us present a back-of-an-envelope estimation for S3(T )/T . χr
can be estimated using energy considerations: as χ rolls down the inverted Veff potential
from χr to the origin, it gains kinetic energy. This kinetic energy must then be used to
climb up to the peak of the inverted potential corresponding to the false vacuum of the
hot CFT of order VCFT ∼ π2

8 N
2T 4. Neglecting the friction term in eq. (4.1), and equating

the two energies Veff ∼ VCFT one finds

χr ∼ χ∗ min

( T
T∗

) 1
1−ε2/4

,

(
3N2

2π2(4− ε2)(3− ε2)λ

)1/4
T

T∗

 , (4.10)

where we use an estimate,

T∗ ∼
( 12

(4− ε2)(3− ε2)π4

)1/4
χ∗ . (4.11)

3T -dependence will only enter through the boundary conditions.
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With the above, we can infer the contribution to the action from the kinetic term in
eq. (4.2), by taking φ′2 ∼ (3N2)/(2π2)χ2

r/R
2
bubble, and

∫
r2dr ∼ R3

bubble. Using integration
by parts and the EOM, eq. (4.1), we can rewrite the action only using the kinetic term,
S3 = (4π/3)

∫
r2drφ′2. We therefore approximate the action as,

S3(T )
T

∼ min

((4− ε2)(3− ε2)
3

)1/4
N2

(
T

T∗

) 3ε2/4
1−ε2/4

,
N7/2

2

( 1
2π2λ

)3/4
 . (4.12)

We stress that this estimate is for the action integrated all the way to zero, hence it in-
cludes a contribution from the non-calculable regime which should not be trusted. This
contribution is however O(1) of the total action when the action is large — making the
back-of-the-envelope calculation a reasonably accurate estimate to the numerical calcula-
tion presented in appendix C.1, which excludes the non-calculable region. Conversely, at
around T∗, when the non-calculable contribution dominates, the above can significantly
overestimate the true action and should not be trusted, especially for small ε2. The lower-
bound numerical calculation of appendix C.1 without the non-calculable regime, is then
expected to give a closer estimation of the true bounce action.

Two comments are in order. First, we see that at high enough temperatures, when
the bounce action is dominated by the λχ4 term, it no longer depends on T , as expected
in a conformal theory. Second, as the temperature drops towards T∗, the release point χr
is driven to χ∗ from above. Hence at T � T∗ our leading order estimation may indeed be
trusted.

O(4) estimate. Moving to estimate S4, recall that the effective action is non-calculable
for χ < χ∗ and the corresponding back reaction of the scale-invariant breaking source on
the AdS geometry is expected to be sizable. As a consequence we can not directly calculate
the O(4)-symmetric rate, however we can build on the simple dimensional analysis used
for eq. (4.7) to estimate it.

Using integration by parts and the EOMs, we find that the dynamics of the bounce
solution admits virialization, that is (for O(4) symmetric bubbles)

∫
V (φ) ∼ −

∫
φ
′2
/4.

Therefore, in a similar fashion to the S3(T )/T back-of-an-envelope result, we can estimate
S4 ∼ 2π2(3N2)/(4π2)R2

bubbleχ
2
r/4. Plugging our estimate for Rbubble from eq. (4.9), we find

S4 = 3c0
16 N

2
(
χr
χ∗

)ε2
∼<

3c0
16 N

2 , (4.13)

where c0 is a fudge factor parameterizing our ignorance. Since in this regime the theory has
no small parameters, the prefactor c0 in the above is expected to be order one. In figure 5
we illustrate this uncertainty by showing the maximal CC under the assumption of the
prefactor above to lie anywhere between 0.5 < c0 < 2. Using eq. (4.7), the corresponding
rate can therefore be approximated as

Γ4(T )
V

∼ 3π2

4096(4− ε2)(3− ε2)N4T 4
∗ e
−3N2/16 . (4.14)

As with Γ(3)
0 , here Γ(4)

0 parametrizes our ignorance and following [47] taken to be of order
O(10−3 − 103) and O(10−4 − 104) respectively (see appendix C.3).
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4.3 Dynamics of the phase transition

We are now ready to understand the dynamics of the phase transition. The rate benefits
from both the O(3)- and O(4)-symmetric contributions, each dominating at different tem-
peratures with the transition taking place at T = 1/Rbubble. Using eqs. (4.9) and (4.11),
one finds RbubbleT∗ ∼ O(1) and therefore at around T = T∗ the S4 action comes to dom-
inate. We arrive at the conclusion that the phase transition is guaranteed to complete
near T∗ via the O(4) bounce, assuming a sufficiently small expansion rate. This condition,
together with our estimates in eqs. (4.13) and (4.7), are used in the next section to derive
the maximal CC value for which the crunching mechanism works.

At temperatures above T∗ the O(3) bounce dominates, and the bounce action is cal-
culable and large. The corresponding rate is falling as we dial up the temperature until it
becomes comparable to H0 in our universe. We choose the parameters in our model, and
specifically χ∗, so that this temperature corresponds to the temperature of the CFT in our
universe today, T 0

CFT [for the approximate relation see eqs. (4.4), (4.11) and (4.12)]. This
ensures that our universe has not decayed yet.

The above behavior of the action is shown in figure 4 for the case of ε2 = 2. The
thick solid line corresponds to the numerical calculation (outlined in appendix C) of the
calculable part of the action only, thereby serving as a lower bound for the full action.
The T∗ calculated with this method agrees with our estimation in eq. (4.11). This is
because eq. (4.11) is derived by neglecting the friction term in the EOM while the numerical
calculation, which ignores the non-calculable regime, is equivalent to taking that part of the
bounce action to be frictionless. At T = T∗, only the non-calculable regime contributes and
hence the two methods coincide. The thick dashed line corresponds to a similar numerical
calculation but carried instead all the way to χ = 0, and thus including a region where
such a calculation is invalid. This is a relatively good approximation for sizable ε2 and
when T � T∗. Under those conditions, the T∗ calculated this way varies by O(1) from
the previous numerical calculation. Conversely for ε2 � 1 one expects this calculation to
result with a lower bound for T∗. To see this, we note that for ε2 → 0 the friction term can
be shown (by simply solving the EOM) to diverge, requiring χr → ∞ and consequently
T∗ → 0. Finally, the thin dashed line corresponds to the back of the envelope estimate
outlined above. We see that this fits well to the calculation up to χ = 0 (thick dashed),
when appropriately scaled by an O(1) factor which cannot be derived from the dimensional
analysis. We conclude that the behavior of all three estimations is similar (for ε2 ∼ O(1)),
showing that at temperatures close to T∗ the O(3)-symmetric bounce action drops rapidly.
Below we use the two different estimates for T∗ to establish a rough uncertainty band for
our predictions.

As a final comment, we would like to reiterate that when we dial down ε2, the depen-
dence of the bounce action on T above T∗, S3(T )/T , becomes weaker. Consequently, for a
fixed T∗ [or roughly equivalently, fixed χ∗ — see eq. (4.11)], the decay rate reaches values
consistent with the stability of our observable universe only at significantly higher temper-
atures. In other words, T∗/T 0

CFT drops together with ε2 thereby postponing the crunching
process to low temperatures and implying a lower decay rate [which is proportional to T 4

∗
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Figure 4. Estimates of the thermal tunneling bounce action, S3(T )/T , as a function of the tem-
perature T , in units of the CFT temperature today, T 0

CFT. We compare three different estimates
discussed in section 4.2 and appendix C. The solid line shows our numerical evaluation of the cal-
culable part of the S3(T )/T bounce action. Since we discard the non-calculable contribution, this
should be understood as a lower bound on the total action. The corresponding temperature T∗,
indicated by the arrow, should be viewed as a rough upper bound. As discussed in the text, this
value of T∗ agrees with our back-of-the-envelope estimate, eq. (4.11). The dashed line is another
numerical calculation, obtained by integrating the bounce action all the way to χ = 0, using the
potential of eq. (3.3). The corresponding T∗ is shown next to that line. We expect the physical T∗
to lie around the above two values. The thin dashed line shows the behavior of the rates using our
back-of-the-envelope analytical understanding (See eq. (4.12)). These results show that at around
T∗ the bounce action rapidly falls (and correspondingly the decay rate skyrockets) as expected.
For this plot we fixed ε2 = 2, λ = 1/30 and N = 5. Furthermore, we choose χ∗ to be such that
S3(T )/T |T =T 0

CFT
= 280 for the numerical calculation depicted by the solid line.

— see eq. (4.14)]. As we show next, the faster the decay rate, the larger the CC which
can be crunched away. The success of this model therefore relies on sizable ε2 and as
discussed earlier, this can be obtained with the introduction of an additional (QCD-like)
asymptotically free gauge theory which explicitly breaks the CFT by order one at χ ' χ∗.

5 Maximal CC

Having estimated the bounce action, we now turn to find the maximal CC, Λmax, which
can be crunched away using our mechanism. The main limitation arises from the condition
of completing the phase transition. If one finds the decay rate, which peaks at around
T∗ and is dominated by the O(4)-invariant bubble, to be small with respect to a region’s
Hubble rate, that region of space will never complete the crunching transition and we will
be left with an eternally inflating universe.
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Recall that we assume that the CFT sector is reheated at the end of inflation, and its
temperature is initially above the critical temperature Tc. It is therefore in the symmetric
phase of the CFT after reheating and remains there until T ∼ T∗ at which point the decay
rate suddenly increases to its maximal value. To ensure stability of our own patch, we
require that around us the temperature of the CFT is above T∗. Other patches, specifi-
cally those with larger CC values, re-enter inflation early on and their temperature drops
exponentially until reaching T ∼ T∗. At this point, the CFT transitions into the broken
phase, contributing a large negative CC to the energy density and subsequently causing
the patch to crunch.

Three constraints determine Λmax:

1. Our patch should survive until today. This requirement translates to

Γ
V

∣∣∣∣
TCFT≥T 0

CFT

< H4
0 , (5.1)

and ensures that in our observable Hubble patch the CFT is still in the hot unbroken
phase. Since the O(3)-invariant bubble nucleation dominates, this constraint can be
rewritten using (4.4) (see also appendix C.2) as,

S3(T )
T

∣∣∣∣
TCFT=T 0

CFT
∼> 280 . (5.2)

In particular, within our construction this means that the nucleation temperature,
which is around T∗, must be below the current temperature of the CFT, T 0

CFT. By
choosing T 0

CFT such that the bounce action saturates the lower limit, eq. (5.2), one
obtains, for a given ε2 and λ, a precise relation between the CFT’s temperature and
T∗ [see eq. (4.12)].

2. Neff . Since the CFT in our Hubble patch is in the hot conformal phase, it con-
tributes to the effective number of relativistic degrees of freedom. As a consequence,
it is constrained by measurements of Neff [32] which place an upper bound on its
temperature. As we show in appendix C.2, the 95% C.L. bound on the relativistic
degrees of freedom implies the upper bound on the CFT temperature

T 0
CFT ≤ 0.034 meV

(
N

4.5

)−1/2
. (5.3)

A lower bound onN from naive dimensional analysis and also requiring T∗ to be larger
than the temperature at which quantum gravity becomes important, is N & 4.47 [54]
(see also appendix C.1). Saturating the above limit implies that the SM temperature,
T0, must be larger than the CFT temperature today, T 0

CFT. Thus together with the
first condition we have: T∗ . T 0

CFT . T0.

3. No eternal inflation. One of the main virtues of our solution is that no eternal
inflation is needed to populate the variety of regions with varying CC. While we
assume that the initial inflationary period, which solves the horizon problem and
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allows time to fill the scanning sector’s vacuua is finite, it is not trivial that the
same holds true for the secondary inflationary period. An important constraint is
therefore to ensure that the secondary phase of inflation, which begins once the
CC in a given patch starts to dominate, always ends via the coalescence of true-
vacuum bubbles. We should emphasize that it is this secondary inflationary period
which is often eternal in standard anthropic solutions to the CC problem, and thus
introducing a mechanism which gives it a finite lifetime is a crucial new component
our model introduces. In de-Sitter space, the temperature never drops below the
Hawking-Gibbons temperature of order HΛ ' Λ2/

√
3M̄Pl (where Λ is the CC in a

given patch), and thus the condition for the coalescence of true-vacuum bubble can
be written as,

Γ
V

∣∣∣∣
TCFT=HΛ

> H4
Λ . (5.4)

When HΛ � T∗, the above decay rate is dominated by the O(4)-symmetric bounce
action and using eqs. (4.13) and (4.14), we find,

Λ . Λmax ≡
√
NT∗M̄Pl e

−3N2/128 . (5.5)

In the opposite limit, HΛ & T∗, the curvature of space, H−1
Λ , is non-negligible, in-

troducing another dimensionful parameter to the theory and thereby precluding our
ability to estimate S4 on dimensional grounds. Consequently, HΛ . T∗ is taken as an
independent constraint in our theory and plays a role when T∗ is small which occurs
for ε2 � 1. We additionally check that the classical rolling is dominant over quantum
fluctuations at the release point, which is satisfied for HΛ . χ∗.

Putting all the constraints together, one arrives at the maximal CC that can be can-
celed,

Λmax .
√
T0M̄Pl

√
Ne−3N2/128 . 1.2TeV , (5.6)

where in the last inequality we used T0 ' 2.73 kelvin and the lower bound on N , N & 4.47.
A more accurate maximal value of the CC, using the correct numerical factors and imposing
the above constraints is shown on figure 5 as a function of ε2 (left) and N (right). In
those plots the numerical bounce action is used and systematic uncertainties discussed in
appendix C.3 are shown. We can see that for reasonable choices of the parameters, CCs
slightly below one TeV may be crunched away. This scale Λmax, displayed in figure 5, is
where the appearance of new physics would be expected. Remarkably, this scale is nothing
more than the geometric mean of T0 and M̄Pl, coinciding with the weak scale

Λmax ∼ O(
√
T0M̄Pl) ' O(TeV) , (5.7)

This “CC miracle” is reminiscent of the well-known WIMP miracle, providing a whole
new argument for new physics at the weak scale, unrelated to the Higgs hierarchy problem.
This CC miracle also gives rise to the relation Λobs ' TeV2/MPl discussed in the introduc-
tion, since the longest lived universes are those where the CC is comparable to or smaller
than the phase transition temperature Λobs ' T0. This provides a dynamical explanation
underlying the well-known numerical relation.
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Figure 5. An estimate for the highest value of the CC, Λmax, below which the CFT sector
dynamically triggers the crunching of the corresponding region of space, shown with a black solid
line as a function of ε2 (left) and the number of colors in the CFT, N (right). Λmax satisfies
the constraints discussed in section 5 and is calculated using our numerical methods laid out in
appendix C. The gray region shows an uncertainty band which aims to take into account our
ignorance when estimating the decay rate. In particular, we vary T∗ in accordance to our two
numerical estimates discussed in section 4.3 and illustrated in figure 4, and take Γ(4)

0 to be in the
range 10−4 − 104 while S4 = (0.5 − 2) · 3N2/16. See appendix C.3 for more details. For the left
plot we fix λ = 1/100 and take N to be the minimal value allowed by perturbativity and by our
requirement that quantum gravity corrections do not start dominating before T∗ [in accordance
with eq. (C.4)]. For the right plot we fix ε2 = 2, and λ = 1

60 (N/4.47)14/3. In that plot, the blue
vertical region lies beyond our calculable regime.

6 Phenomenological implications

The essence of our proposal is a mechanism that by today destroys every patch of the
universe with a Λ higher than the measured value in our observable domain. The timescale
for this crunch is O

(
Λ2/M̄Pl

)−1
, i.e. shorter than the age of the universe for such Λ.

Therefore, the mechanism implies a relation, shown in figure 6, between the maximal CC
one might measure, and the time elapsed since the Big Bang. Therefore, since our universe
is old, we should expect to measure a small value of the CC, as all patches with values
larger than the observable one have decayed already.

While our idea shares many similarities with the anthropic solution, there are signifi-
cant conceptual differences. First, the mechanism avoids eternal inflation and its measure
problem (assuming that it can be completed into a theory of non-eternal inflation, which
seems entirely plausible; see e.g. [55]). Second, it has rather sharp experimental implica-
tions, contrary to the original landscape solution. Here we shortly mention some of those,
postponing a more detailed exploration to future work:

1. A measurable Neff . The hot CFT contributes to Neff , resulting in the bound on the
temperature in that sector, eq. (5.3). Meanwhile, T 0

CFT is related to T∗ through the
requirement that our Hubble patch survived till today, and therefore to Λmax due to
eq. (5.6) and the relation T 0

CFT < T0. As a consequence, one is led to a prediction of
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Figure 6. The age of a given patch as a function of the CC value in it (in units of the observed
CC). For this plot we take N = 5, ε2 = 2, and λ = 1/30, which leads to T∗ ' 0.8T (0)

CFT, with
other parameters at their nominal values (see appendix C.3). The plot shows that as time passes,
only patches with increasingly smaller values of the CC survive. For the parameters taken here, by
t ' 17Gyr all patches are predicted to crunch regardless of their CC value.

the form,

∆Neff ' 0.23
( Λmax

260GeV

)8
, (6.1)

where ∆Neff = Neff −NSM
eff , with NSM

eff = 3.046. Given the current 95% C.L. limits,
∆Neff < 0.23 [32], the value for Λmax is in the 100–300GeV range.

2. New physics at the weak scale. Our mechanism predicts the scale where new physics
has to appear in order to cancel the UV contributions to the CC above Λmax. Re-
markably this scale turns out to be around the EW scale (since the highest value
for Λmax is around ∼ 300GeV), independently of any considerations related to elec-
troweak symmetry breaking, the Higgs hierarchy or the WIMP miracle. An example
of the new physics that could cancel the UV contributions to Λ is SUSY with a low
breaking scale.

3. Our patch is about to crunch. We hope this prediction will not be verified anytime
soon.

Barring additional modifications to the theory, the Neff constraint together with the
absence of new physics at the LHC, already implies some mild tension for our mechanism.
Upcoming measurements for Neff in CMB-S4 are therefore expected to find deviations
from the SM prediction. Conversely, if this constraint becomes more severe with future
measurements, the tension will grow. For instance, assuming that no new physics has been
found up to ∼ 2TeV, we can calculate the amount of tuning necessary,

1
∆ ∼

(Λmax
MNP

)4
∼ 0.03%

√
0.23

∆Neff
. (6.2)
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This is reminiscent of the Little Hierarchy problem for the Higgs, and sub-percent fine
tuning seems necessary for this realization of our paradigm.

7 The scanning and inflationary sectors

In addition to the inflationary period which happens as each patch cools after it reheats
(which we have discussed in details in previous sections), our model admits an initial,
primary inflationary period as specified in section 2. This inflationary period is controlled
by fields in the in the unspecified inflationary sector which we have briefly mentioned
before. Before concluding, let us shortly discuss a requirement on the number of e-folds
during the primary inflationary epoch, arising from a need to feel out the landscape of the
scanning sector during the primary inflationary period.

The existence of a landscape of vacua, i.e. different values for the CC in different Hubble
patches of the universe, plays a crucial role in our mechanism. In this section we wish to
show that the landscape can be populated without eternal inflation. Various mechanisms
for the scanning of the CC have been identified and studied extensively in the context
of the anthropic approach (see e.g. [37–42]). Here we will not revisit these mechanisms,
nor will we discuss the precise model of (non-eternal) inflation, which we assume to exist.
Instead, we limit our discussion to showing that with a finite and relatively small number
of e-folds, a sufficiently dense population of the landscape may be produced.

In our discussion we think of the landscape as a large collection of vacua separated by
barriers, and with a fixed value for the tunneling rate Γland/V . Other scenarios of rolling
fields may be envisioned. Moreover, one may relax the constant decay rate assumption
without changing the conclusions, as our results only depend logarithmically on the rate.
To ensure that the vacuum in our observable patch remains stable, the only constraint on
the rate reads

Γland
V

< H4
0 , (7.1)

where H0 is the Hubble constant today.
There is a lower bound on the number of e-folds needed in order to populate the

universe with a multitude of different values of the CC. To calculate it, we separate inflation
into two periods: the last ∼ 60 e-folds of inflation which correspond to the period where a
single Hubble patch gets stretched to become our observable universe today, and the first
N that precede them. To calculate the number of vacua populated throughout the first N
e-folds, we assume we start with a single Hubble patch of radius 1/Hinf at the beginning of
inflation. Inflation lasts N/Hinf , and during this time our initial volume grows by a factor
Npatch = e3N . Hence the average number of decays, and consequently number of different
CC values in our universe, is roughly given by

〈Ndec〉 = NpatchPdec ' e3N Γland
V

N
H4

inf
< e3NN H4

0
H4

inf
, (7.2)

where Pdec = [1−exp(−Γlandt/V H
3
inf)] ' ΓlandN/V H4

inf is the probability of a single patch
to decay in N Hubble times, and we used (7.1) for the last inequality.
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A viable model of the landscape offers a sufficiently dense set of minima. In order to
find in such a model some patches with a CC as low as ours, Λobs ' 2×10−3 eV, we need to
make sure that the number of populated patches cover everything between Λobs and Λmax,

Ndec >
Λ4

max
Λ4

obs
' 4× 1058

(Λmax
TeV

)4
. (7.3)

Using (7.2) we find the minimal number of e-folds to be

N & 133 + 1.3 log
(

ΛmaxΛ2
inf

TeV3

)
, (7.4)

where Λinf '
√
HinfM̄Pl is the scale during inflation. As mentioned above, through eq. (7.1),

this lower bound depends only logarithmically on the tunneling rate Γland/V . Thus, we
conclude that a relatively short period of inflation can be sufficient to populate the land-
scape and scan over the CC at the level needed for our model.

8 Discussion and outlook

In this paper we have proposed a new approach to addressing the CC problem. Much like
the anthropic solution, a landscape of different vacua is assumed and the measured value
of the CC around us has no special properties within it. However the paradigm discussed
in this paper requires no eternal inflation and the mechanism for the selection of the CC
is novel and introduces a new form of cosmological dynamics.

Our scenario assumes that at zero temperature the landscape covers a range of strictly
negative (and large) vacuum energies. During the thermal history of the universe and
after reheating, a hidden sector is driven to a metastable vacuum, which raises the vacuum
energies of the landscape to stretch from a large negative to a large positive CC. The
average time spent in the metastable vacuum within a given patch depends on the local
thermal history, which in turn depends on the value of the vacuum energy in that given
patch. In particular, this time is longest when the CC is extremely small, so that the only
patches that survive in this phase all the way to the current age of the universe, have CC
values smaller or comparable to the one measured in our patch. Once the metastable state
decays in a given patch, the negative dark energy dominates, causing the patch to crunch.

This metastable state was realized in this paper as the hot conformally symmetric
phase of a spontaneously broken CFT. This phase is known to be super-cooled, which
postpones the phase transition to a very low temperature. The associated lifetime of this
phase therefore depends on how long it takes the temperature to fall to the nucleation
temperature associated with the phase transition. Any patch with a large CC re-enters
dark energy domination early, leading to an exponential drop of the temperature. The
lifetime of the patch is therefore determined by the onset of dark energy domination,
shortly after which the patch crunches. Since a very small value of the CC is needed to
delay dark energy domination to times comparable to the age of our universe, the measured
value of the CC is not surprising, nor is it surprising that our vacuum energy only recently
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came to dominate; had it done so much earlier, our observable universe would not have
survived that long. It is important to note that the bleak fate of vacuum decay is also
predicted for our future.

The main advantage of this approach is twofold. First, the finite lifetime of any pos-
itive vacuum energy allows us to avoid eternal inflation. This means that the validity of
our approach is not reliant on unambiguously defining a probability measure in eternal
inflation [29], which is yet to be achieved. The requirement that the phase transition com-
pletes (thereby evading eternal inflation), turns out to be very restrictive for our model
leading us to the second major advantage — predictivity. This condition together with
Neff constraints on the radiation energy density in the CFT sector, places an upper bound
on the maximal value of the CC in the landscape that may be addressed using our mech-
anism. For theories with a higher cutoff, distinct new physics (such as supersymmetry)
must appear to remove UV contributions from the CC. Miraculously this scale turns out to
be around the weak scale, which arises as the geometric mean of T0 and MPl and without
any connection to the Higgs hierarchy problem. Moreover, the lack of new physics at the
LHC already requires a little hierarchy between the weak scale and the landscape scale.
Finally, a second related prediction is an excess in Neff in future CMB experiments.

Future prospects for this idea may focus on a construction of more realizations which
can stand in for the broken CFT in this paper. Our own realization did not allow for a
full calculation of the phase transition rates, which we circumvented by introducing fudge
factors with associated uncertainties and using dimensional analysis estimates where all
else failed. It is possible that different models will allow for a straightforward calculation
of the rates and may give rise to new experimental predictions in colliders or in the sky.
Additionally, it is interesting to consider concrete UV-complete models that would allow
for the cutoff to be taken parametrically larger than the weak scale, and potentially explain
the little hierarchy required in our realization.

Before closing, we would like to comment on the anthropic aspect of this idea. Even
though our solution predicts our universe to be eventually dominated by regions with small
CC, the presence of observers is never mentioned. It is therefore tempting to think that
this solution is not anthropic. However, since we never explain why our universe is so old,
some (albeit weak) anthropic reasoning is needed. Curiously, in the spirit of the Doomsday
argument, we expect our universe to soon be destroyed and indeed our model predicts our
demolition to be right around the corner.
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A Goldberger-Wise stabilization of the RS model

In this appendix we review the essential aspects of the GW stabilization mechanism for
warped extra dimensions needed for the discussion of our model. As explained in section 3,
we start with the RS warped 5D theory [48] with metric (3.1) and add a bulk scalar field φ
to stabilize [51] the dilaton, which in the 5D picture is identified with the radion field [56],
setting the size of the extra dimension. The full action of the RS-GW model is given by:

S =
∫
d4xdz

√
g
(
gMN∂Mφ∂Nφ+ Λ5

bulk −m2
bulkφ

2
)

−
∫
d4x

√
gind(zUV)VUV(φ(zUV))−

∫
d4x

√
gind(zIR)VIR(φ(zIR))) (A.1)

where the localized potentials are

VIR = −λIR
v2

IR
zIR

φ2 + λIRz
2
IRφ

4 −
√

Λ5
bulkM

3
∗ + δIR

VUV = −λUV
v2

UV
zUV

φ2 + λUVz
2
UVφ

4 +
√

Λ5
bulkM

3
∗ + δUV (A.2)

The constant terms, i.e. the brane tensions, are separated into the tuned piece ±
√

Λ5
bulkM

3
∗

(the terms needed for a static solution without stabilization) and the detuning δUV,IR. The
UV mistuning simply contributes to the 4D CC and does not play a role in the stabilization
dynamics, up to a Hubble scale mass for the radion, which we neglect. The bulk solution
to the EOMs, assuming a small bulk mass m2

bulk = 4ε/z2
UV, is given by

φ(z) = C1

z
3/2
UV

(z/zUV)4+ε + C2

z
3/2
UV

(z/zUV)−ε . (A.3)

Taking for convenience the limit of large λIR, λUV, the boundary conditions are φ(zUV) =
vUV
z

3/2
UV

and φ(zIR) = vIR
z

3/2
IR

and the full solution is:

C1 ' vIR

(
zUV
zIR

)11/2+ε
− vUV

(
zUV
zIR

)4+2ε
, C2 ' vUV . (A.4)
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Integrating out φ by plugging this solution back into the action we find that the energy
has the following dependence [57, 58] on the inter-brane separation χ = 1/zIR

V (χ) '
(
δIR/k

4 + 4v2
IR

)
χ4− 8

kε
vIRvUVχ

4+ε+ 4v2
UV
k2ε χ

4+2ε ≡ λχ4−λεk−εχ4+ε+λ2εk
−2εχ4+2ε

(A.5)
where the λ’s are taken to be positive and ε negative.4 We will take λ > λε > λ2ε, while
keeping all of them O(1). For values of χ satisfying

χ > χ̂ =
(
λ2ε
λε

)− 1
ε

k , (A.6)

the χ4+2ε term can be neglected. For small ε, χ̂ can be arbitrarily small hence we can use
the following expression for the dilaton potential of the RS-GW model:

V (χ) ' λχ4 − λεk−εχ4+ε (A.7)

The χ scalar is identified via the AdS/CFT correspondence with the Goldstone boson of
the spontaneous breaking of the conformal symmetry — the dilaton [58, 59]. On the CFT
side RS-GW is a theory of a spontaneously broken conformal symmetry in the presence a
near marginal deformation with dimension ∆ = 4 + ε, explicitly breaking the conformal
symmetry. The leading order dilaton potential given by eq. (A.7) accounts for the first two
terms used in our model, Eq (3.3).

B Effects of an additional bulk gauge group

While the RS-GW model reviewed in appendix A produces the first two terms in (3.3),
we have seen that an additional term is needed in order to enhance the bubble nucleation
rate at low temperatures. To achieve this we can use the recent proposal of von Harling
and Servant [49] who were investigating possible scenarios for facilitating the RS phase
transition. They noticed that the additional scale dependence introduced into the RS
model when the effects of QCD are taken into account, can significantly affect the nucleation
probabilities of the broken phase at temperatures around the QCD scale (and well below the
EWSB scale). Their assumption was that QCD lives in the bulk of the extra dimension
(corresponding to a “partially composite” gluon field). Hence we will also assume the
presence of an additional bulk G = SU(N) gauge group (unrelated to QCD which is
elementary in this picture and lives on the UV brane). The running of the coupling of G
will be given by [60]

1
g2(Q,χ) =

log k
χ

kg2
5
− bUV

8π2 log k

Q
− bIR

8π2 log χ
Q

+ τUV + τIR , (B.1)

where Q is the running scale and the dependence on χ is introduced due to the finite size
of the extra dimension. In this equation k = 1/zUV is the AdS curvature, τUV,IR are the
brane localized kinetic terms on the two branes and bUV,IR are the 4D beta functions of the

4Note that once we introduce QCD, we will be interested with a positive ε instead.
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fields localized on the UV/IR branes. Note that (B.1) is valid only for Q . χ. Nominally
for Q > χ the coupling will be independent of χ. We will get back to this issue later.
Using (B.1) we can find the scale Λ(χ) where the coupling diverges [49]:

Λ(χ) =
(
kbUVχbIRe−8π2τ

(
χ

k

)−bCFT
) 1
bUV+bIR

= Λ0

(
χ

χmin

)n
, (B.2)

where
n = bIR − bCFT

bUV + bIR
. (B.3)

Λ0 is the dynamical scale when the dilaton is at its minimum, χmin, and bCFT = −8π2

kg2
5
.

The expression (B.2) for Λ(χ) is valid only when χ ∼> Λ(χ), corresponding to the fact
that the scale of spontaneous symmetry breaking happens before the condensation in this
additional gauge group. The physics behind this requirement is to make sure that the
explicit breaking introduced by the scale Λ can be treated as a small perturbation on the
approximately conformal theory. Otherwise the explicit breaking will be larger than the
spontaneous breaking, and one should not be using the original dilaton χ as the low-energy
degree of freedom. There may be another low-energy effective theory in terms of branes
and another dilaton field, however its description strongly depends on the details of the
dynamics. Hence the regime χ < Λ(χ) is model dependent and not calculable within our
framework. In our calculation for the tunneling probability we will have to clearly separate
the contributions that can be reliably obtained from the calculable region, and provide
estimates for the corrections from the non-calculable regime.

The contribution of the extra dynamics to the dilaton potential is expected to be of
the form

VG = −αΛ4
G(χ) , (B.4)

where α is an O(1) coefficient that depends on the exact matter content and dynamics of
this new confining SU(N) theory. For example [49] found that for the contribution of the
gluon condensate in QCD, α = βQCD

17 . Using (B.2) we find that the form of the induced
dilaton potential will be

VG = −αΛ4
0

(
χ

χmin

)4n
. (B.5)

From eq. (B.5), we can see that n is identified with (1− ε2/4) from eq. (3.3).

C Detailed derivation of the bubble nucleation rate

In this appendix, we elaborate on the bubble nucleation-rate calculation presented in sec-
tion 4. In appendix C.1 we present our methods to calculate the O(3)-symmetric action,
for a given set of model’s parameters. In appendix C.2 we show how to choose the param-
eters of the theory using the constraints of section 5. We finish in appendix C.3, where we
describe in detail the various uncertainties in our calculations, and our estimates for them.
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C.1 Numerical calculation of the bounce action

To find the O(3)-symmetric bounce action, S3, we first need to find the O(3)-symmetric
bounce solution. This bounce solution is described by the solution to the 1D EOM, eq. (4.1),
with φ =

√
3(N2 − 1)/(2π2)χ and V (χ) taken from eq. (3.3). However, the change in the

field χ does not cover the entire route taken in field space during the tunneling (see figure 3).
Therefore, our first step in this calculation is to understand exactly what is the region in
which χ is the correct degree of freedom.

The second step is to find the dependence of the release point, χr ≡ χ(r = 0) on the
temperature. The dependence of χr on the temperature is through the boundary condi-
tions. To solve a second order differential equation, one needs two boundary conditions.
The first boundary condition is χ′(0) = 0, while the second requires that the false vacuum
is reached at r → ∞. However, as χ is no longer a valid degree of freedom at r → ∞, we
need to find a method for estimating the effect of the non-calculable regime. Therefore this
second boundary condition will be only approximately satisfied, sourcing an uncertainty
on our calculation. In practice, rather than imposing the second boundary condition, we
solve the equation of motion for an arbitrary χ(0) = χr, and later use the second boundary
condition to derive χr(T ).

Finding the region of validity. In section 4, we had two methods of calculating
S3(T )/T , one which only includes the calculable region and serves as a lower bound, and
one that contains an estimate for the action in the non-calculable region as well. For the
lower bound calculation we restrict our integration to the calculable region. The calculable
region has to satisfy the following two conditions:

1. χ ∼> T max[(k/M∗), 1]. For smaller values of χ, additional KK modes are excited
and/or the local Planck scale on the IR brane drops below the temperature, and
quantum gravity corrections become important [44].

2. χ > χ∗. This condition ensures that the back-reaction due to the explicit breaking
of the conformal symmetry is small [49]. Once violated, non-calculable corrections to
the effective potential dominate and, equivalently, corrections to the AdS metric on
the gravity side, which arise from back-reaction, are large.

To derive the calculable contribution to the bounce action, one uses eq. (4.2) with the
upper limit replaced by rmax, which is the maximal r for which χ reliably describes the
theory. We stress that this restriction of the integration region implies that our calculation
should be viewed as a lower bound on the bounce action and therefore an upper bound on
the rate. This is conservative since S3(T )/T controls the decay rate of our visible yet-to-
decay unstable Hubble patch and since we require this rate to be sufficiently low to ensure
our universe’s survival till today. We thus determine rmax as a function of χr, T and the
parameters of the potential, through the condition

χ̄(r = rmax;χr) = max

χ∗, T,
(

16π2

N2 − 1

)1/3

T

 . (C.1)
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We remind the reader that χ̄(r;χr) is the solution to the EOM which in turn depends on
the boundary condition, χr.

At high temperatures, the first argument in the max of eq. (C.1) is negligible to the
other two. To simplify our discussion we will now impose a lower bound on N that will
ensure that as the temperature is lowered, the backreaction condition takes over at T = T∗
or above.

Comparing the effects of explicit conformal breaking and high temperature
effects. When defining T∗ in eq. (4.8) we were careful to evaluate the bounce solution
over the calculable region where the backreaction of the metric is negligible by making
sure χ > χ∗. However, as we discussed in this appendix, a theory of quantum gravity
might also be needed in order to describe the region χ < T k/M∗ and additional KK states
must be introduced for χ < T . We thus define χQG(T ) ≡ T max(1, k/M∗) and act to
ensure that χQG(T∗) ≤ χ∗, or else the theory at T∗ is already out of control. To ensure
this, we define the temperature TQG=BR for which the χ∗ yielding the regime of validity
due to backreaction is the same as the χQG. For now let us assume that k/M∗ > 1, and
χQG(T ) = Tk/M∗, and we return to the case for χQG = T below. We therefore define
TQG=BR by,

k

M∗
TQG=BR = χ∗ . (C.2)

In particular we should check that this temperature is higher than T∗, defined in eq. (4.11).
If that is indeed true, then χQG(T∗) < χQG(TQG=BR) = χ∗. Therefore, the condition we
examine is,

TQG=BR
T∗

=

(
N2−1
16π2

)1/3

(
12

(4−ε2)(3−ε2)π4

)1/4 > 1 . (C.3)

We therefore restrict the region of N (for a given ε2) to be

N ∼> 2.26
( 12

(4− ε2)(3− ε2)

)3/8
. (C.4)

While the expression used for T∗ here was found using simple back of an envelope calcula-
tion, this minimal value of N is only approximate, but the main point is that by restricting
N we can always ensure that the region of calculability is also within the regime of validity
for the effective theory.

For 1 > k/M∗, increasing N no longer reduces χQG(T ) for a fixed temperature. We
thus cannot find N for which our theory is valid at T = T∗. By examining eq. (C.3), we
can see that when ε2 ∼> 2.9, indeed this problem arises. We therefore restrict ourselves only
to ε2 ≤ 2.9.

The Euclidean energy. χr and the temperature, T , are related through the boundary
conditions of the EOM. To see this, consider the Euclidean energy, the analog of energy
for a particle in an inverted potential,

EE(r) = 3(N2 − 1)
4π2 χ′(r)2 − V [χ(r)] . (C.5)
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One has EE(r → 0) = −Veff(χr) and EE(r → ∞) = −VCFT ' −(π2/8)N2T 4. In the
absence of friction, (the second term of eq. (4.1)), the Euclidean energy is conserved and
the relation between χr and T follows trivially. With friction included, this energy is
monotonically decreasing and using eq. (4.1), can be shown to obey,

dEE
dr

= −3(N2 − 1)
π2

χ′2

r
. (C.6)

In the BB region, the only scale is the temperature. Since the energy lost per unit distance
is ∝ 1/r, eq. (C.6) implies that the energy lost in the BB region would be ∝ T 3/(Rbubble).
For T > T∗, we expect that region to be O(1) of the route taken in field space for r > rmax.
We therefore estimate

EE(r →∞)− EE(rmax)) ∝ − 1
RbubbleT

· T 4 . (C.7)

At T � T∗, using eq. (4.9) and eq. (4.10), we see that RbubbleT � 1, so we expect
that |EE(r → ∞) − EE(rmax)| � T 4. Since EE(r → ∞) = −VCFT(T ) ∝ T 4, we can
neglect this friction compared with the remaining energy. As T approaches T∗, we have
T ∼ T∗ ∼ χ∗ ∼ χr and so all dimensionfull scales of the theory are of the same order.
Therefore, we expect at that point that the lost energy would be ∼ T 4 from dimensional
considerations. Consequently we parametrize the energy lost to friction at any temperature
T > T∗ after exiting the region of validity as

EE(rmax) + VCFT(T ) = α(T )T 4 . (C.8)

The above equation relates the CFT potential which depends on T , to EE(rmax) which
depends on χr. As we have outlined above, we expect α(T )� 1 at high temperatures, and
α(T ) ∼ O(1) at low temperatures.

In this discussion, we did not find the N dependence of α. Since we work in the large
N limit, this could significantly affect our estimate for α — so the claims made in the
previous paragraph should be taken with a grain of salt. For the (rather conservative)
lower bound we take α(T ) = 0.

Virialization of the kinetic and potential terms. The final additional ingredient
is more of a technicality, and is only needed to increase the numerical accuracy of the
integration over the Euclidean Lagrangian. Generally, derivatives of numerical functions
are often calculated with a much lower precision than the original functions themselves,
so that numerically integrating the kinetic term can introduce sizable numerical errors.
A mathematical trick which is often employed, is to integrate eq. (4.2) by parts, and use
eq. (4.1), to relate the integral over the potential and the integral over the kinetic term.
This implies an effective “virialization” of the kinetic and potential terms, for the entire
integration region. The common use for this is done for the entire [0,∞) region of r, so
that the boundary term at r →∞ is 0. However, for our integration region, 0 to rmax, the
boundary term at rmax cannot be ignored, and one finds

Scalc
3 (T ) = 4π

[
r3

max

(2VCFT(T )
3 − EE(rmax)

)
− 2

∫ rmax

0
r2Veff [χ(r)]dr

]
. (C.9)
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With this we are finally able to find the action S3(T )/T for any temperature which has a
non-zero valid region. The final step in finding S3(T )/T is to add the non-calculable action
to the calculable one, as discussed before.

C.2 Evaluation of the cosmological constraints

Having discussed the procedure for obtaining S3(T )/T , we are now ready to present the
details of the three cosmological constraints presented in section 5. The first two conditions
are required in order for our theory to be experimentally viable, while the third constraint
ensures the phase transition completes in all patches of the universe, thereby evading eternal
inflation. Since we have already thoroughly discussed the third constraint in section 5, we
do not discuss it here again. Instead, in this appendix we carefully examine the implications
of the first two constraints, deriving eqs. (5.2) and (5.3).

Our universe has not crunched yet. The first constraint in section 5, eq. (5.1), is
equivalent to a lower bound on the bounce action at the current temperature of the CFT,
S3(T 0

CFT)/T 0
CFT. For lower values of the bounce action our observable universe would not

have survived till today.
Using eq. (4.4), the measured value of H0 [32], and our upper limit for T 0

CFT in eq. (5.3),
we can derive the lower bound on S3(T )/T . The explicit form of the bound involves the
Lambert W function, W−1, which is the first negative solution for the equation, z =
W−1(z)eW−1(z),

S3(T 0
CFT)

T 0
CFT

= −3W−1
(
−4πH8/3

0 (Γ(3)
0 )−2/3(T 0

CFT)−8/3/3
)
/2 . (C.10)

In the relevant regime, W−1 is only logarithmically dependent upon its argument, so that
the dependence on the exact values of Γ(3)

0 and T 0
CFT is minimal. We thus find that for

reasonable values of the parameters

S3(T 0
CFT)

T 0
CFT

∼> 267± 7. (C.11)

Since we neglect the logarithmic correction, we have chosen the more conservative S3(T 0
CFT)/

T 0
CFT = 280 in eq. (5.2).

The Neff constraint. Next we focus on the second constraint eq. (5.3) discussed in
section 5. During the times of BBN and CMB, the CFT acts as a new contribution to the
radiation energy density. Since the experimental observations of the energy density from
relativistic degrees of freedom during CMB and BBN [32] agree with the SM predictions, we
will obtain a constraint on the energy density of the CFT at those times. The experimental
bounds are usually expressed in terms of a bound on the effective number of neutrinos [32],

ρrad = Neff ·
7
8

( 4
11

)4/3
ργ , (C.12)

– 32 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
1

where ργ = π2T 4
γ /15 is the energy density in ordinary photons, with Tγ the photon tem-

perature. The energy density of the CFT [44] is

ρCFT = −3VCFT = 3π2

8 N2T 4
CFT . (C.13)

The temperature of the CFT sector at any time t (after BBN) obeys,

TCFT(t) = Tγ(t)
T 0
γ

· T 0
CFT (C.14)

where the superscript 0 refers to the temperature measured today, and Tγ , TCFT are the
temperatures of ordinary photons and the hidden CFT respectively. By plugging eq. (C.14)
and eq. (C.13) in eq. (C.12), we derive the 95% C.L. bound on the temperature of the
CFT today,

T 0
CFT ≤

(
7∆Neff
45N2

( 4
11

)4/3
)1/4

T 0
γ , (C.15)

where ∆Neff = (Neff,95% −Neff,SM) = 0.23 [32]. Consequently,

T 0
CFT ≤ 0.034 meV

T 0
γ

0.23 meV

(
N

4.5

)−1/2
. (C.16)

As we have mentioned earlier, our model will be able to crunch away larger CC’s if the CFT
temperature is larger, hence we will always choose the maximal value of T 0

CFT consistent
with the above bound.

C.3 Uncertainties and caveats of the calculation

We have encountered several parameters and expressions which cannot be calculated using
our simple approach. These parameters affect (to varying degrees) the value of the max-
imal cosmological constant that can be crunched away. Here we will list each source of
uncertainty, how we have estimated them, and briefly discuss their effects.

• α(T ), the coefficient in eq. (C.8) determining the energy lost to friction after exiting
the region of validity in the O(3) bounce calculation. For the lower bound estimate
we take α = 0, and for the numerical estimate with χ (rmax) → 0 the calculation
is continued into the non-calculable regime which implies an effective α(T ) of order
O(1) for ε2 ∼ O(1).

• Γ(3)
0 , the coefficient for the rate of bubble nucleation in eq. (4.4) due to the O(3)-

symmetric action. There is an unknown functional determinant of dimension-3 that
multiplies the nucleation rate. As discussed in ref. [47], we estimate this functional
determinant to be the cube of a physical scale which we assumed to be O(0.1−10)T ,
at T > T∗. This is expressed in eq. (4.4) as an uncertainty of Γ(3)

0 ∼ 10−3 − 103, and
we use as the central value Γ(3)

0 = 1. As discussed in appendix C.2, even for Γ(3)
0 as

large as 103, S3(T 0
CFT)/T 0

CFT = 280 is a sufficient condition that our patch has not
yet decayed.
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• Γ(4)
0 , the coefficient for the rate of bubble nucleation in eq. (4.7) for the O(4)-

symmetric action. In nearly identical fashion to the discussion of Γ(3)
0 , a functional

determinant of dimension-4 multiplies the nucleation rate of O(4)-symmetric solution.
The only dimensionful scale at zero temperature is χ∗. Therefore it is reasonable to
assume that the functional determinant is χ4

∗ up to a factor of (O(0.1− 10))4. This
results in the range Γ(4)

0 = 10−4 − 104.

• Snon−calc
3 , the action for the region where the dilaton description breaks down. For the

lower bound calculation we have taken Snon−calc
3 = 0. This a conservative assumption

becuase Snon−calc
3 is typically positive, as one can easily see in a simple case without

troughs and peaks. It should be noted though that no general proof for the positivity
of this contribution exists. The numerical estimate with χ (rmax) → 0, effectively
includes a contribution to Snon−calc

3 , which is O(N2), for ε2 ∼ O(1).

• S4, the bounce action for O(4) symmetric bubbles. Our estimation S4 ∼ 3N2/16, is
purely based on dimensional analysis, and in fact we do not model the potential at
zero temperature at all for the entire range of the S4 calculation. We therefore vary
S4 between 3N2/32 and 3N2/8. Our Λmax ∝ e−S4/8 is exponentially sensitive to S4.
Therefore, among the parameters discussed here, S4 is the one to which we are most
sensitive.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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