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1 Introduction

The Bern-Carrasco Johansson (BCJ) double copy [1, 2] is a relation between the scattering
amplitudes of two different theories. The BCJ relation, or colour-kinematics duality, states
that in a gauge theory, one can always represent kinematic factors of scattering amplitudes
so that they satisfy an analogue relation to the gauge group colour factors. Replacing the
colour factors by kinematic factors in a given theory, leads to new scattering amplitudes
describing other theories.
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The first and most important example is the relationship between Yang-Mills theory
and gravity amplitudes [2]. The origin of this relation can be understood from the string
theory point of view by considering how open and closed string amplitudes are related,
and looking at the low energy effective field theories of the two string theories. This is
encapsulated by the KLT relations [3]. However the ‘double copy’ paradigm has been
found to be more general, and there are known examples of extensions of double copy
relations between two non-gravitational theories for example non-linear sigma model and
DBI or special Galileon theories [4–12] as well as extended gravitational relations such as
that between super Yang-Mills and supergravity theories [13–15]. Recently the double copy
paradigm was extended for gauge theories with massive matter fields [16–19].

The physical applications of double copy extend beyond calculations of scattering am-
plitudes in Minkowski spacetime. For example, double copy is used for UV considerations of
effective field theories [20–23], efficient gravitational wave calculations [24–29] and relations
between classical solutions in different theories (known as classical double copy) [30–51].
The double copy has been shown to apply for scattering amplitudes around more general
backgrounds [52, 53].

In this paper we initiate the application of the double copy paradigm to the scattering
amplitudes of massive Yang-Mills theory, i.e. the low energy effective field theory of Yang-
Mills coupled to a heavy Higgs field (with the Higgs integrated out) which spontaneously
breaks the gauge symmetry in a way that all of the gauge bosons acquire the same mass.
On the gauge theory side, the act of spontaneously breaking symmetries is well understood
and is a major component of the standard model. Double copy of gauge theories with
spontaneously broken gauge symmetries have been studied in [54–56], however the case
where both of the copies of gauge theory have completely broken gauge symmetry (i.e.
with only massive gauge bosons) has not been explored. On the gravitational side, the
broken gauge symmetries (by virtue of the mass for the bosons) imply if the double copy
procedure is still valid, broken diffeomorphism symmetries. The latter are in the purview
of massive gravity theories,1 and so we may naturally expect massive gravity in some form
to arise from the double copy procedure.

Since a massive spin-1 particle has 3 degrees of freedom in four dimensions, the double
copy theory contains 9 propagating states, which decompose into a single massive spin-2
particle, a single massive spin-1 particle and a massive scalar. The interactions of massive
spin-2 particles are well known to be highly constrained. Generic interactions are expected
to lead to a breakdown of perturbative unitarity at the Λ5 = (m4MPl)1/5 scale [58], wherem
is the spin-2 mass. Special tunings can be made that raise this scale to the Λ3 = (m2MPl)1/3

scale which is the highest possible scale in four dimensions [59, 60]. An explicit nonlinear
effective theory exhibiting this scale is the so-called ghost-free massive gravity or de Rham-
Gabadadze-Tolley (dRGT) model [60].

Remarkably, we find that the double copy paradigm automatically leads to a theory
in which the interactions of the massive spin-2 field are described by the dRGT massive
gravity [60], at least to quartic order. In fact we will find that the free coefficients in the

1See for example [57] for an extensive review of recent work in this area.
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dRGT Lagrangian are fixed by the double copy prescription to this order. We further
find that the interactions of the additional spin-1 and spin-0 states are also at the scale
Λ3 strongly suggesting that this is the controlling scale of the EFT at all orders. Since
massive Yang-Mills is itself an EFT with the highest possible cutoff for a coloured spin-1
particle, namely Λ = m/g, we may regard this as a natural double copy relation between
two highest cutoff effective theories.

This connection is emphasized when we recognize that the leading helicity-0 inter-
actions of a massive graviton are dominated in the decoupling limit (defined by taking
m→ 0 for fixed Λ3) by the double copy of the leading helicity-zero interactions of the mas-
sive spin-1 gluon. Since the decoupling limit of massive Yang-Mills is a nonlinear sigma
model, as encoded in the Goldstone equivalence theorem, we may reasonably expect that
the interactions for the helicity-0 spin-2 states are determined by the double copy of the
nonlinear sigma model.2 It is known that double copy of a non-linear sigma model is the
special Galileon [5–7, 11, 12] and that the decoupling limits of massive gravity theories are
also Galileon-like theories [58–60, 62]. However, the latter are nevertheless more compli-
cated and include in particular non-trivial vector scalar interactions that survive even in
the decoupling limit [62, 63]. Even projecting onto the scalar sector, the massive gravity
decoupling limit is not equivalent to a special Galileon, and so we find that the decoupling
limit procedure does not commute with the double copy procedure.

The origin of this is that there are terms needed in the kinematic factors to satisfy
colour-kinematics duality that are singular in the decoupling limit but nevertheless can-
cel out of the gauge amplitudes. However when we construct the gravity amplitudes by
squaring these kinematic factors, they no longer cancel and give additional non-zero contri-
butions that are finite in the decoupling limit. To be precise, the kinematic factors which
satisfy colour-kinematics duality ns + nt + nu = 0 take the form

ns= s−m2

m3 Σ(s,t,u)+ 1
m2 n̂s, nt=

t−m2

m3 Σ(s,t,u)+ 1
m2 n̂t, nu= u−m2

m3 Σ(s,t,u)+ 1
m2 n̂u ,

(1.1)
where Σ(s, t, u) (triple crossing symmetric) and n̂i are finite as m → 0. Here Σ arises
in a manner similar to the generalized gauge transformations in the massless case, a fact
which is crucial to understanding why its contribution is finite. The explicit expressions
for Σ and n̂i are given in eqs. (E.12), (E.13), (E.14) and (E.15). Since in the massive case
s+ t+ u = 4m2 we have n̂s + n̂t + n̂u = −mΣ and so in the limit m→ 0, n̂i by themselves
satisfy colour-kinematics duality. The 1/m3 behaviour in ni comes from helicity 0, 0, 0,±1
interactions since the polarization tensor for a massive helicity-0 gluon scales as 1/m but
that for helicity-1 is finite asm→ 0. The term Σ cancels out of the gauge theory amplitudes

AmYM
4 = g2

(
csns
s−m2 + ctnt

t−m2 + cunu
u−m2

)
= 1

Λ2

(
csn̂s
s−m2 + ctn̂t

t−m2 + cun̂u
u−m2

)
, (1.2)

by virtue of the colour relation cs+ ct+ cu = 0, demonstrating the natural decoupling limit
scaling.

2This was for example explicitly proposed in [61].

– 3 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
0

By contrast, when we square to construct the gravity amplitudes, Σ survives as a
contact term. For instance the naive leading 1/m6 term enters in the gravity amplitudes
in the combination

1
M2

Pl

(
nsn

′
s

s−m2 + ntn
′
t

t−m2 + nun
′
u

u−m2

)
∼ ΣΣ′

M2
Plm

6

(
(s−m2)+(t−m2)+(u−m2)

)
+···∼ ΣΣ′

Λ6
3

+... ,

(1.3)
and hence it contributes at the Λ3 scale. Specifically this will show up as a non-zero spin-2,
helicity 0, 0, 0,±2 interaction. Similarly the naive 1/m5 term is suppressed by virtue of the
kinematic relation n̂s + n̂t + n̂u = −mΣ and we have in full as an exact statement

1
M2

Pl

(
nsn

′
s

s−m2 + ntn
′
t

t−m2 + nun
′
u

u−m2

)
= −ΣΣ′

Λ6
3

+ 1
Λ6

3

(
n̂sn̂

′
s

s−m2 + n̂tn̂
′
t

t−m2 + n̂un̂
′
u

u−m2

)
. (1.4)

Since Σ does not contribute to the gauge theory amplitudes, first taking the decoupling
limit of them (giving a non-linear sigma model) and performing the double copy procedure
(giving a special Galileon) will lead to a different result in which the ΣΣ′

Λ6
3

term is absent.3

The kinematic factors inferred from the decoupling limit n̂i(m = 0) will necessarily be finite
in the decoupling limit, and these do not correspond to the decoupling limit of the above
kinematic factors (1.1) which are singular. Indeed in the decoupling limit, the gauge theory
kinematic factors come purely from helicity-0 gluons by the Goldstone equivalence theorem.

It is worth noting that if we give up strict colour-kinematics duality in the massive case,
then an acceptable choice of kinematic factors that reproduce the gauge theory amplitudes
are ñi = n̂i/m

2. However they no longer sum to zero. Using these in a double copy
prescription will give a gravity amplitude given by the second term on the r.h.s. of (1.4),
whose decoupling limit correctly reproduces the special Galileon. However, since

∑
i ñi 6= 0

we have no reason to trust that the double copy prescription is meaningful in this context.
Indeed, there is no clear recipe to generalize this to higher amplitudes. It is for this reason
that throughout this paper we assume that the colour-kinematics duality holds in tact in
the massive case in the same manner as the massless.

The paper is organised as follows: first we briefly introduce massive Yang-Mills in
section 2 and dRGT massive gravity theories in section 3, then describe the double copy
prescription and give the action obtained from squaring massive Yang-Mills in section 4.
In particular we find that the colour-kinematics duality holds for 2-2 scattering amplitudes
and the resulting theory has Λ3 = (m2MPl)1/3 cutoff scale which is known to be the highest
possible cutoff for massive spin-2 fields [58]. Having determined the gravity Lagrangian up
to quartic order, we specify the decoupling limit in section 5 and clarify its inequivalence
to a special Galileon. The precise quartic interactions are given in appendix A and our
conventions are give in appendix B. Appendix C contains a brief explanation of why giving

3It is of course technically true that if we only compute amplitudes in which the spin-1 helicity-1 po-
larizations are set to zero, then Σ = Σ′ = 0 and we will recover the special Galileon amplitudes in the
decoupling limit. But this is an inconsistent procedure from the point of view of the gravity theory, and has
no relation to the massive gravity theory whose decoupling limit is a special Galileon. There may however
exist an extension of the recipe along the lines discussed in [24, 29, 64, 65] which allows for a consistent
removal of additional degrees of freedom.
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a mass to a two form potential (which arises naturally in the massless double copy story) is
equivalent to a massive spin-1 Proca theory, as we find the latter formulation more useful
in constructing the interacting Lagrangian. In appendix D we complement section 5 and
give the explicit decoupling limit of the gravity amplitudes, while in appendix E we do the
same for the Yang-Mills amplitudes and clarify why the double copy procedure does not
commute with the decoupling limit.

Note added. In preparing this work for submission we became aware of results obtained
by Laura Johnson, Callum Jones and Shruti Paranjape which also reproduce the quartic
double copy interactions [66].

2 Massive Yang-Mills

The action of massive Yang-Mills theory comes from the low energy effective action of
Yang-Mills theory with a Higgs field in which the Higgs particles are integrated out. We
consider the gauge symmetry to be broken in such a way that all of the gauge bosons
acquire the same mass, m. Then the leading terms in the effective Lagrangian in unitary
gauge are as follows:

LmYM = −1
4tr(FµνF

µν)− 1
2m

2tr(AµAµ), (2.1)

where g is the coupling constant. This is the simplest unitary gauge Lagrangian which can
describe a massive coloured spin-1 particle. Since the resulting theory is not renormalizable,
it should be understood as an effective theory, and to this Lagrangian we may add an
infinite number of interactions. For instance, we may further consider a quartic interaction
tr(AµAµ)2. The structure of the effective Lagrangian is best understood by reintroducing
Stückelberg fields (Goldstone modes) by replacing

Aµ →
√

2i
g
V (x)−1DµV (x) (2.2)

where Dµ = ∂µ − ig√
2Aµ is the covariant derivative and V (x) = exp

[
i√
2ΛT

aφa(x)
]
where

φa(x) are the Stückelberg fields, so that the gauge invariant form of the Lagrangian is

LmYM = −1
4tr(FµνF

µν)− Λ2tr(DµV D
µV −1), (2.3)

where Λ = m/g. This Lagrangian is manifestly gauge invariant under Dµ →
U(x)−1DµU(x) under which the Stückelberg fields transform as V (x)→ U(x)−1V (x) where
U(x) = exp

[
i√
2ΛT

aξa(x)
]
and ξa(x) is the gauge transformation parameter. The unitary

gauge Lagrangian is recovered by fixing the gauge φa = 0.
The resulting effective theory has a cutoff of at most Λ = m/g which is the Goldstone

mode decay constant. Additional interactions in the effective action could further lower
this scale, but for now we assume that Λ is the controlling scale. Taking the decoupling

– 5 –
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limit g → 0 for fixed Λ results in a free massless spin-1 theory and an interacting non-linear
sigma model

LDL = lim
g→0,Λ fixed

LmYM = −1
4
∑
a

(∂µAaν − ∂νAaµ)2 − Λ2tr(∂µV ∂µV −1). (2.4)

This encodes straightforwardly the content of the ‘Goldstone equivalence theorem’ that the
leading interactions for the helicity-0 modes of the massive spin-1 particle are determined
by the effective theory for the Goldsones described by (2.4). From a classical perspective,
the form of the Lagrangian (2.3) is clearly preferred due to its two derivative nature and it
is for the reason that we will focus on the tree level amplitudes derived from this form in
what follows. Were we to include additional unitary gauge interactions such as tr(AµAµ)2,
etc. it is transparent in the Stückelberg formulation that these correspond to higher order
operators, and they are expected to be suppressed by the scale Λ. In the decoupling
limit, these extensions just correspond to the addition of further irrelevant operators to the
nonlinear sigma model Lagrangian, which have been considered in the double copy context
for example in [20–23].

These tree amplitudes are however most conveniently computed in unitary gauge (2.1).
This is because the off-shell vertices for massive Yang-Mills are identical to their massless
counterparts, and the only difference is the massless propagator is replaced by the massive
one with structure

−iη̂µν
p2 +m2 , (2.5)

where η̂µν = ηµν + pµpν/m
2. Our goal is to follow as closely as possible the double copy

paradigm for massless Yang-Mills theory [2] and with this in mind we express the tree level
n-point scattering amplitudes of this theory as:

An = gn−2∑
i

cini∏
αi(−p2

αi −m2) , (2.6)

where ci are colour factors i.e. products of the structure constants of the gauge group, ni
are the kinematic factors, i labels distinct Feynman graphs and αi labels all internal prop-
agators in a given graph. The only difference between this and the standard double copy is
the replacement of massless propagators p2

αi by massive p2
αi +m2. The resulting kinematic

factors ni are not the same as those that arise in the massless case since they absorb the
information from the massive polarization structure encoded in η̂µν , and furthermore the
on-shell external momenta now satisfy p2

i = −m2. Given this it is not automatic that the
colour-kinematics duality still holds. We will nevertheless show that it continues to hold
up to quartic order.

2.1 Three-point amplitude

In terms of polarization and momentum vectors the three-point on-shell vertex for massive
Yang-Mills is exactly same as that of massless Yang-Mills:4

A3(1a, 2b, 3c) =
√

2gfabc(−ε1 · ε2 ε3 · p1 + ε1 · ε3 ε2 · p1 − ε1 · p2 ε2 · ε3). (2.7)
4All of our scattering amplitudes are given as the momentum space delta function stripped amplitudes

of 〈{kf}|Ŝ − 1̂|{ki}〉. i.e. we forgo the introduction of an i as in Ŝ = 1̂ + iT̂ .

– 6 –
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The difference is that now the on-shell momenta satisfy p2
i = −m2 and there are 3 possible

polarization states. Our conventions for these are given in appendix B.

2.2 Four-point amplitude

We express the four-point amplitude in the form given in eq. (2.6) by defining the colour
factors to be:

cs = fabefcde (2.8)
ct = fcaefbde (2.9)
cu = fbcefade. (2.10)

so that
A4(1a, 2b, 3c, 4d) = g2

(
csns
s−m2 + ctnt

t−m2 + cunu
u−m2

)
, (2.11)

where the kinematic factors are

ns = − i

2(ε1 ·ε2p1 ·ε3p1 ·ε4 +4ε2 ·ε4p1 ·ε3p2 ·ε1−2ε2 ·ε3p1 ·ε4p2 ·ε1 +3ε1 ·ε2p1 ·ε4p2 ·ε3

+4ε2 ·ε4p2 ·ε1p2 ·ε3−4ε1 ·ε4p1 ·ε2(p1 ·ε3 +p2 ·ε3)−3ε1 ·ε2p1 ·ε3p2 ·ε4−2ε2 ·ε3p2 ·ε1p2 ·ε4
−ε1 ·ε2p2 ·ε3p2 ·ε4 +4ε3 ·ε4p1 ·ε2p3 ·ε1−4ε3 ·ε4p2 ·ε1p3 ·ε2
+2ε1 ·ε3p1 ·ε2(p1 ·ε4 +p2 ·ε4−p3 ·ε4)+ε1 ·ε2p1 ·ε3p3 ·ε4 +2ε2 ·ε3p2 ·ε1p3 ·ε4
−ε1 ·ε2p2 ·ε3p3 ·ε4 +ε1 ·ε4ε2 ·ε3(m2−s)+ε1 ·ε3ε2 ·ε4(−m2 +s)+ε1 ·ε2ε3 ·ε4t
−ε1 ·ε2ε3 ·ε4u), (2.12)

nt = i

2(ε1 ·ε3p1 ·ε2p1 ·ε4 +4ε2 ·ε4p1 ·ε3p2 ·ε1 +ε1 ·ε3p1 ·ε2p2 ·ε4 +4ε3 ·ε4p1 ·ε2p3 ·ε1

−2ε2 ·ε3p1 ·ε4p3 ·ε1−4ε2 ·ε4p2 ·ε3p3 ·ε1 +2ε2 ·ε3p2 ·ε4p3 ·ε1 +3ε1 ·ε3p1 ·ε4p3 ·ε2
−ε1 ·ε3p2 ·ε4p3 ·ε2 +4ε3 ·ε4p3 ·ε1p3 ·ε2−4ε1 ·ε4p1 ·ε3(p1 ·ε2 +p3 ·ε2)−3ε1 ·ε3p1 ·ε2p3 ·ε4
−2ε2 ·ε3p3 ·ε1p3 ·ε4−ε1 ·ε3p3 ·ε2p3 ·ε4 +2ε1 ·ε2p1 ·ε3(p1 ·ε4−p2 ·ε4 +p3 ·ε4)
+ε1 ·ε3ε2 ·ε4s+ε1 ·ε4ε2 ·ε3(m2− t)+ε1 ·ε2ε3 ·ε4(−m2 + t)−ε1 ·ε3ε2 ·ε4u), (2.13)

nu = − i

2(4ε1 ·ε4p1 ·ε2p2 ·ε3−4ε2 ·ε4p2 ·ε1p2 ·ε3−4ε2 ·ε4p2 ·ε3p3 ·ε1 +4ε2 ·ε3p2 ·ε4p3 ·ε1

−4ε1 ·ε4p1 ·ε3p3 ·ε2 +4ε3 ·ε4p2 ·ε1p3 ·ε2 +4ε3 ·ε4p3 ·ε1p3 ·ε2−4ε2 ·ε3p2 ·ε1p3 ·ε4
+4ε1 ·ε2p2 ·ε3(p2 ·ε4 +p3 ·ε4)−4ε1 ·ε3p3 ·ε2(p2 ·ε4 +p3 ·ε4)+ε1 ·ε4ε2 ·ε3s−ε1 ·ε4ε2 ·ε3t
+ε1 ·ε3ε2 ·ε4(m2−u)+ε1 ·ε2ε3 ·ε4(−m2 +u)), (2.14)

where the Mandelstam variables are defined as standard:

s = −(p1 + p2)2, t = −(p1 + p3)2, u = −(p1 + p4)2, (2.15)

with all incoming momenta. These expressions for kinematic factors are very similar to
those obtained from massless Yang-Mills theory but there are two differences: the relation
between Mandelstam variables is now s + t + u = 4m2 rather than s + t + u = 0 and the
locations of the poles now are at s, t, u = m2. Because of that the terms coming from
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quartic Yang-Mills vertex now have to be multiplied by s−m2, t−m2 and u−m2 in order
to recast the amplitude into the form (2.6).

In general, kinematic factors of a given scattering amplitude are not unique. They
are not invariant under field redefinitions. However in massless Yang-Mills theory for
any choice of kinematic factors of four-point amplitude, the colour-kinematics duality,
cs + ct + cu = 0 → ns + nt + nu = 0, is satisfied [67]. In our case of massive Yang-Mills
theory, it is not immediately clear whether this is still true. However, explicit calculation
shows that our colour and kinematic factors (directly calculated from usual Feynman rules)
in (2.12), (2.13) and (2.14) still obey ns + nt + nu ∝ p4 · ε4 = 0 and cs + ct + cu = 0. The
fact that this still holds for the massive theory can be understood by noticing that the
only difference between massive and massless kinematic factors is coming from the terms
proportional to m2 in (2.12), (2.13) and (2.14) (in fact we do not need to use the relation
between s, t and u here). It is easy to see that these six terms add to zero, therefore the
value of ns + nt + nu is the same for massless and massive theory and colour-kinematics
duality for four-point amplitude still holds in the massive case.

3 dRGT massive gravity

In the dRGT theory of massive gravity, the diffeomorphism symmetry is broken by the
non-dynamical reference metric, fµν , which appears in the action. It can be written in
unitary gauge in terms of the variables [60]

Kµν (f, g) = δµν −
(√

g−1f

)µ
ν
. (3.1)

This unusual square root metric structure is what is needed to build a Λ3 effective theory
as it has a straightforward decoupling limit as we shall see in section 5. The full dRGT
Lagrangian for a single spin-2 field can then be constructed in unitary gauge as [57]

L = M2
Pl

2
√
−gR+ m2M2

Pl
4
√
−g

4∑
n=0

κn Un [K] (3.2)

where we set κ0 = κ1 = 0 and κ2 = 1 and the terms in the potential are defined as

U2(K) = 2
(
[K]2 − [K2]

)
, (3.3)

U3(K) = [K]3 − 3[K][K2] + 2[K3] , (3.4)
U4(K) = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4] . (3.5)

The squared brackets denote the traces, and the two coefficients κ3 , κ4 are the free pa-
rameters of the theory together with the graviton mass m2. The potential terms can be

– 8 –
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written in terms of the flat space Levi-Civita tensor5

U2(K) = εµναβε
µνα′β′Kαα′Kββ′ ,

U3(K) = εµναβε
µν′α′β′Kνν′Kαα′Kββ′ ,

U4(K) = εµναβε
µ′ν′α′β′Kµµ′Kνν′Kαα′Kββ′ .

(3.6)

In this paper we will consider fµν to be Minkowski metric, ηµν as we shall be largely
concerned with scattering amplitudes in Minkowski spacetime. The terms in (3.2) are the
unique interactions which lead to second order equations of motion for all 5 propagating
degrees of freedom. However from the EFT perspective it is natural to view them as the
leading terms in an EFT expansion, controlled by the scale Λ3. Possible higher derivative
operators will arise schematically as

∆L = Λ4
3
√
−g F

[
gµν ,Kµν ,

∇µ
Λ3

,MPlRµνρσ

]
. (3.7)

where F denotes the sum of all diffeomorphism invariant scalar operators6 constructed out
of its arguments with dimensionless Wilson coefficients.

Just as for a massive Yang-Mills field we can write this same Lagrangian in a manifestly
covariant way via the introduction of Stückelberg fields. Since (3.2) is written an a manner
in which it would be manifestly covariant if Kµ

ν (f, g) itself transforms as a tensor, then
this tells us how to introduce Stückelberg fields. Since the only part of Kµ

ν (f, g) that does
not transform appropriately as a tensor is the reference metric fµν = ηµν , it is sufficient to
write this metric in an arbitrary coordinate system

fµν → ∂µΦA∂νΦBηAB . (3.8)

The four diffeomorphism scalars ΦA(x) may then be split as ΦA(x) = xA + πA(x). The
πA(x) are then the Stückelberg fields we need to reintroduce manifest diffeomorphism
invariance and play the analogue of the φa(x) in V (x) (2.3), so that unitary gauge is
πA(x) = 0. We will make explicit use of this decomposition in section 5. For the purposes of
calculating scattering amplitudes it is sufficient to work with the unitary gauge Lagrangian.

3.1 Three-point amplitude

The three-point amplitude in dRGT massive gravity is as follows:

M3 ∝ ε1µνε2ρσε3αβΓµνρσαβ3 (3.9)

5We use Euclidean coventions so that for flat spacetime ε0123 = ε0123 = 1, i.e. in the Lorentzian εµναβ =
−ηµµ′ηνν′ηαα′ηββ′εµ

′ν′α′β′
. As long as we are clear that we use one of them with all indices up and the

other with all indices down together with εi1...ikik+1...idε
i1...ikjk+1...jd = k!δjk+1...jd

ik+1...id
with the generalized

Kronecker delta expressed as a determinant of a matrix built out of δ’s.
6All breaking of diffeomorphism invariance can be captured by the tensor Kµν , hence all terms in the

Lagrangian are diffeomorphism invariant when Kµν itself is viewed to transform as a tensor.
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where Γ3 is the cubic vertex from Einstein-Hilbert term plus the cubic potential term
U3(K). It is expressed as follows:

M3 = iκ

(
(εµν1 ε3µνε2αβp

α
1 p

β
1 + 2ε1µνεµα2 εν3βp1αp2β + cyclic permutations of 1,2,3)

+ 3
2(1 + κ3)εµν1 ε2ναε

α
3µm

2
)
,

(3.10)

where the coupling constant κ = 2/MPl. The first term is already proportional to the square
of Yang-Mills three-point colour-stripped amplitude if we write the polarization tensors as
products of two spin-1 polarization vectors, (εi)µν = (εi)µ(εi)ν ,7 M3. Therefore, in order
for double copy to work we need to choose κ3 such that the second term vanishes, i.e.
κ3 = −1. We see that already at cubic level the double copy construction picks a particular
one parameter (κ4) subset of theories from 2-parameter family of massive gravity theories.

4 Double copy of massive Yang-Mills

4.1 Degrees of freedom

In the double copy construction the asymptotic states in the gravitational theory are iden-
tified with the tensor products of gauge theory asymptotic states, ignoring their colour
indices. For example, the double copy of pure Yang-Mills theory gives the following states:

Aµ ⊗Aν = hµν ⊕Bµν ⊕ φ, (4.1)

i.e. we decompose the tensor product of two massless vector representation into irreducible
representations of Lorentz group: hµν is the graviton, Bµν is a massless antisymmetric 2-
form field and φ is a massless scalar field (dilaton). In four dimensions the massless Bµν is
dual to a pseudo-scalar, i.e. axion. In terms of degrees of freedom we have 2×2 = 2+1∗+1.

In the case of massive Yang-Mills, all the fields in (4.1) are massive: hµν is a massive
spin-2 field, Bµν is a massive 2-form field which is dual to a massive spin-1 field in four
dimensions and φ is a massive scalar field. In terms of degrees of freedom we now have
3 × 3 = 5 + 3 + 1. In this paper we will consider four dimensions and write the action
obtained from double copy of massive Yang-Mills in terms of massive spin-2 (hµν), massive
spin-1 (Aµ) and massive spin-0 (φ) fields. We see that there is an interesting physical
difference between the field content of the double copy of massless and massive Yang-Mills
theories: in the massless case the B field is a spin-0 field while in massive case it is spin-1.

4.2 Double copy construction of scattering amplitudes

In order to double copy massless Yang-Mills theory the representation for the amplitude
in (2.6) must satisfy the colour-kinematics duality [1], i.e. whenever three of the colour
factors, ci, cj and ck are related by the Jacobi identity, ci + cj + ck = 0, the corresponding

7Note that only polarization tensors for helicity ±2 can be written as (εi)µν = (εi)µ(εi)ν , for helicities
±1, 0 we need to sum over the products of different helicities weighted by Clebsch–Gordan coefficients
ελµν =

∑
λ′λ′′ C

λ
λ′λ′′ελ

′
µ ε

λ′′
ν .
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kinematic factors must obey the same relation i.e. ni + nj + nk = 0. It is conjectured [1]
that it is always possible to choose a representation for the amplitude for which kinematic
factors satisfy this by choosing a gauge and performing field redefinitions. In the massive
case that is not guaranteed to be true but we have checked that the kinematic factors of
four-point amplitude calculated directly from (2.1) satisfy the colour-kinematics duality.

In the usual double copy procedure, once the correct representation for (2.6) is chosen,
the colour factors can be replaced with kinematic factors in order to obtain an amplitude of
a gravitational theory [2]. We follow the same procedure and conjecture that the following
expression gives an amplitude in a massive gravity theory:

Mn = i

(
κ

2

)n−2∑
i

niñi∏
αi(−p2

αi −m2) , (4.2)

where ñi are the kinematic factors of the second massive Yang-Mills. The products of Yang-
Mills polarization tensors in ni and ñi, εµ and ε̃ν respectively, are decomposed into polar-
ization tensors of the fields in the gravitational theory. This corresponds to decomposition
of a tensor product of two vector representations of the little group (for massive particles
in 4d it is SO(3)) into irreducible representations. Schematically this is done as follows:

ε((jµ ε̃κ)) → ε(h)jk
µν (4.3)

ε[jµ ε̃
k]
ν → ε(B)jk

µν , (4.4)

εjµε̃
κδjk ∝ ε(φ)

µν . (4.5)

where j, k are little group indices, (()) denotes the symmetric traceless part corresponding
to the graviton polarization, ε(h), and the antisymmetric part denoted as [] corresponds to
the spin-1 polarization in terms of the B field, ε(B). However instead of working with the
massive Bµν field in this paper, we construct the action in terms of the vector field Aµ
which is dual to Bµν . The dualization procedure is explained in appendix C. We define
the map between B field polarization tensor and A polarization vector to be:

ε(B)
µν = i√

2m
εµνρσp

ρε(A)σ, (4.6)

where pσ is the four-momentum of the external state and the factor of
√

2 is required
for the correct normalization. The trace part of the tensor product, given in (4.5), is
the polarization tensor corresponding to the scalar, φ. As we show in B.3 from explicit
calculation in helicity basis we find it to be

ε(φ)
µν = 1√

3

(
ηµν + pµpν

m2

)
, (4.7)

which up to a sign could equally have been fixed by the requirement that it is a tracefull,
transverse and normalized.

4.3 Double copy of three-point amplitudes

We apply (4.2) to three-point amplitudes explicitly giving the following relation:

M3 = i
κ

2A3Ã3, . (4.8)
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where the 3 point amplitudes have their structure constants, fabc, stripped off. By sub-
stituting (2.7) and (4.3), (4.6) and (4.7) we get the following three-point vertices in a
gravitational theory:

MAAh = i
κ

2

(3
2m

2εµ1 ε
ν
2ε3µν−pα1 p

β
2 ε
µ
1 ε
µ
2 ε3αβ+pµ1p

ν
2ε
ν
1ε
α
2 ε3µα+pµ1p

ν
2ε
α
1 ε2µε3να

)
(4.9)

MAAφ =−i κ

8
√

3

(
15m2εµ1 ε2µ+2p1νp2µε

µ
1 ε
ν
2

)
(4.10)

Mφhh =−i
√

3κ
4 m2ε2µνε

µν
3 (4.11)

Mφφh =−i3κ4 p1µp2νε
µν
3 (4.12)

Mφφφ =−i11
√

3
16 κm2 (4.13)

Mhhh = iκ
(
(εµν1 ε3µνε2αβp

α
1 p

β
1 +2ε1µνεµα2 εν3βp1αp2β+cyclic permutations of 1,2,3)

)
(4.14)

As mentioned before, Mhhh matches three graviton amplitude of massive gravity if we
choose κ3 = −1 (or c3 = 1/4 using the parametrization of the theory as in [59, 68]). The
MAAh and Mφφh amplitudes are different from those obtained from vector and scalar ki-
netic terms minimally coupled to gravity (for example a minimally coupled scalar would give
Mφφh = −iκε3µνpµ1pν2 . This is expected, since we know theories containing massive spin-2
field do not have diffeomorphism symmetry, and we allow couplings between our fields and
the reference metric which in this case is the Minkowski metric. In this way we evade the
usual equivalence principle requirements for a massless spin-2 particle. As already men-
tioned we see that Mhhh matches the 3 point amplitude of massive gravity with κ3 = −1.

4.4 Double copy of four-point amplitudes

We start with hh → hh amplitude which is calculated using (2.12), (2.13), (2.14), (4.2)
and (4.3). By comparing it with hh → hh amplitude calculated using dRGT massive
gravity action, MmGr

4 , we find the following:

M4 = MmGr
4 − i 3

16κ
2m4

(
ε1µνε

µν
2 ε3αβε

αβ
4

s−m2 + ε1µνε
µν
3 ε2αβε

αβ
4

t−m2 + ε1µνε
µν
4 ε3αβε

αβ
2

u−m2

)
, (4.15)

with the free coefficients in the massive gravity action chosen to be κ3 = −1 and κ4 = 7
24

(c3 = 1
4 and d5 = − 7

192 using the parametrization of [59]). The second term on the right
hand side of (4.15) corresponds to a scalar exchange with three-point vertex given in (4.11).

Having fixed the spin-2 interactions, we then construct the scattering amplitudes for all
other 2-2 scattering processes (for example hφ→ AA) from the double copy prescription,
and make an ansatz for the action which gives these amplitudes. A couple of general
features emerge. We find that all 3 and 4 point amplitudes containing odd numbers of
A are zero as one would expect since A is a vector. Furthermore we find that none of
the amplitudes scale with energy more that E6 at high energies. Since all of them have
κ2 = 4/M2

Pl in front (can be seen from (4.2)), the lowest scale appearing in the resulting
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theory to this order is Λ3 =
(
MPlm

2)1/3, the well-known highest possible scale for a Lorentz
invariant theory of massive gravity.

As already stated, from (4.14) and (4.15) we see that the self interactions of h up to
quartic order in h can be described by dRGT massive gravity action. Anticipating that the
n-point scattering amplitudes are controlled by the scale Λ3 to all orders, it is natural to
write the interactions for all the fields in the dRGT form, taking particular care to choose
combinations which are natural from the point of view of the decoupling limit effective
theory, namely those that automatically lead to Λ3 interactions to all orders. This process
is somewhat labourious, and we quote only our final form for the action which is

S=
∫
d4x
√
−g
(

2
κ2R[g]+m2

κ2

4∑
n=2

κnUn [K]− 1
2∇µφ∇

µφ− 1
2m

2φ2− 1
4FµνF

µν− 1
2m

2AµA
µ

− 1
2K

µνFναF
α
µ + 1

8K
µ
µFναF

να− 1
4∇µφ∇νφ(Kµν−gµνKαα)

−
√

3
2
m2

κ
φ
(
KµνKµν−KµµKνν

)
+ 1

24
√

3
κ

m2φ
(
[Φ]2−[Φ2]

)
(4.16)

+ −3
8
√

3
κm2φ3− κ√

3
m2AµAµφ−

κ

16
√

3
FµνFµνφ+quartic contact terms

)
,

where gµν = ηµν + κhµν is the dynamical metric, ηµν is the reference metric, Kµν = δµν −
(
√
g−1η)µν , Φµν = ∇µ∇νφ and the crucial contact terms which fix the form of the 2-2 scat-

tering amplitude are given in appendix A. The indices are raised/lowered with g. The self
interactions of the scalar, φ, contain galileon interactions (the cubic term in (4.16) and the
quartic one in (A.1)), φ3 term and two additional two and four derivative contact terms to
this order. The action has been intentionally written in a manner which is diffeomorphism
invariant in terms of K. The reference metric η that breaks diffeomorphism invariances only
enters through K, and in this sense K is a ‘spurion’ field for the breaking of diffeomorphisms.

Since the S-matrix is invariant under field redefinitions, the cubic φ interactions are
ambiguous since we may for example use field redefinitions to trade the cubic Galileon term
for a potential φ3 and vice versa without changing the on-shell vertex. A similar story
holds for the φK2 and (∇φ)2K terms. However changing the off-shell structure in this
way also changes the form of the quartic interactions. Anticipating that the decoupling
limit is a Galileon-like theory (which is implicit in the Λ3 scale), we have intentionally
chosen to put the cubic interactions in a form for which the quartic interactions are also
manifestly Galileon-like. In other words the desire to have a Galileon-like decoupling limit
theory gives us guidance in writing the nonlinear off-shell structure of the theory that goes
beyond what is immediately inferred from the on-shell scattering amplitudes, even though
the diffeomorphism symmetry is broken by the mass term. That is the decoupling limit for
the Stückelberg fields/Goldstone modes gives us an indication of the best way to structure
the interacting Lagrangian and this explains many of our choices of interactions in (4.16)
and appendix A. Although we have not calculated beyond four-point level, the implicit
nonlinearly realized diffeomorphism symmetry present in the Stückelberg formulation fixes
a set of interactions at all orders as is familiar in effective theories with broken symmetries.
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5 Λ3 decoupling limit

Having successfully constructed the interaction Lagrangian for the double copy effective
theory, at least to quartic order, it is useful to understand its decoupling limit. This will give
us insight into the interactions that arise beyond 2-2 scattering, and the overall structure of
the effective theory, but it will also allow us to understand better the connection between
the massive Yang-Mills decoupling limit and that for the double copy massive gravity
theory. We have intentionally written the interacting Lagrangian (4.16) in as covariant
form as possible, so that the decoupling limit is easily derived. Following the standard
recipe (see for example [57] for a review), after denoting the reference metric from which
Kµν is constructed by

fµν = ∂µΦA∂νΦBηAB , (5.1)

we further decompose
ΦA = xA − 1

mMPl
V A − 1

Λ3
3
ηAB∂Bπ . (5.2)

so that we may identify V A as the helicity-1 and π as the helicity-0 modes of the spin-2
particle. Further for the massive spin-1 state Aµ we replace it by

Aµ → Aµ + 1
m
∂µχ , (5.3)

where χ is the original Stückelberg scalar, the helicity-0 state of the spin-1. The normal-
izations, which are standard, are chosen so that all the additional Stückelberg fields have
a finite (and non-zero) kinetic term in the decoupling limit. The metric may be denoted
gµν = ηµν+κhµν . Remembering that κ = 2/MPl, the decoupling limit is defined by m→ 0,
κ→ 0 in such a way that Λ3

3 = m2MPl is kept finite. The Lagrangian has been written in
a judicious way to ensure that no term diverges in this limit.

Crucially, we have

lim
m→0,Λ3fixed

Kµν = Πµν

Λ3
3

:= ∂µ∂νπ

Λ3
3

, (5.4)

which explains the emergence of the Galileon symmetry for π in the decoupling limit, since
Πµν is invariant under π → π+c+vµxµ, and our choice of K as the building block. Hence for
all terms in the Lagrangian for which the coefficients are finite in the Λ3 limit, it is sufficient
to replace Kµν by Πµν and the metric gµν by ηµν . The decoupling limit Lagrangian is found
to be (keeping track only of those terms which contribute to quartic order)

LDL = 1
2h

µνEhµν + hµνX
µν − 1

2(∂µφ)2 − 1
2(∂χ)2 + LA,V −

1
4Λ3

3
∂µφ∂νφ (Πµν − ηµν [Π])

−
√

3
4

1
Λ3

3
φ
(
ΠµνΠµν −Πµ

µΠν
ν

)
+ 1

12
√

3
1

Λ3
3
φ
(
[Φ]2 − [Φ2]

)
+ 11

864
1

Λ6
3
φ
(
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

)
+ 7

48Λ6
3
εµναβε

µ′ν′α′βΦµ
µ′ Πν

ν′Πα
α′φ

+ 11
8
√

3
1

Λ6
3
εµναβε

µ′ν′α′βΠµ
µ′Φν

ν′Φα
α′φ−

11
24
√

3
1

Λ6
3
φ
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
, (5.5)
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where all indices are raised and lowered with ηµν . We have separated out the spin-2
and spin-1 helicity-1 contributions which even in the case of standard massive gravity is
particularly complicated [62], and they are schematically

LA,V = −1
4FµνK

µναβFαβ − 1
4FµνK

µναβFαβ (5.6)

where Fµν = ∂µVν − ∂νVµ, Fµν = ∂µAν − ∂νAµ, and the kinetic term coefficients Kµναβ

and Kµναβ are tensors constructed from Πµν/Λ3
3 and Φµν/Λ3

3. Since Vµ and Aµ are not
sourced, classically it is consistent to set them to zero. They would of course contribute
in loop processes.

The tensor Xµν , which is characteristic of the massive gravity decoupling limit, needs
to be identically conserved to ensure that hµν preserves spin-2 gauge invariance (linear
diffeomorphisms) hµν → hµν + ∂µξν + ∂νξµ. This is the decoupling limit remnant of full
diffeomorphism invariance. Explicitly its form is

XaA = εabcdεABCD

[1
2δ

B
b δ

C
c ΠD

d −
1

4Λ3
3
δBb ΠC

c ΠD
d + 1

24Λ6
3
ΠB
b ΠC

c ΠD
d + 1

24Λ6
3
ΦB
b ΦC

c ΠD
d

− 1
72
√

3Λ6
3
ΦB
b ΦC

c ΦD
d −

1
8
√

3Λ6
3
ΦB
b ΠC

c ΠD
d

]
(5.7)

The tensor (5.7) is indeed identically conserved by virtue of the double ε structure.
The full decoupling limit action (5.5) is invariant under two separate Galileon symmetries
π → π + vµx

µ, φ → φ + uµx
µ and thus describes a bi-Galileon theory [69] coupled to

a massless spin-2 field. Indeed it may be put in a more manifest bi-Galileon form by
performing a ‘demixing’ transformation that removes the mixed hπ and hππ terms, namely

hµν = h̃µν + 1
2πδµν −

1
4Λ3

3
πΠµν . (5.8)

We may make use of the fact that up to total derivatives
1
2h

µνEhµν = −1
2ε

abcdεABCDδ
A
a h

B
b ∂c∂

ChDd (5.9)

The resulting Lagrangian then takes the form

LDL = 1
2 h̃

µνE h̃µν −
3
4(∂π)2 − 1

2(∂φ)2 − 1
2(∂χ)2 + Lint

bi-Galileon(φ, π)

+ 1
24Λ6

3
εabcdεABCDh̃

A
a Π̃B

b Π̃C
c Π̃D

d + LA,V , (5.10)

where Π̃ab = ∂a∂bπ̃ and π̃ = π − 1√
3φ. The term Lint

bi-Galileon contains standard cubic and
quartic8 bi-Galileon interactions:

Lint
bi-Galileon=a0π(εεδ2Π2)+φ

3∑
n=1

an(εεδ2Φn−1Π3−n)+b0π(εεδΠ3)+φ
4∑

n=1
bn(εεδΦn−1Π4−n),

(5.11)
8Strictly speaking there are also quintic interactions, however since we have only fixed the Lagrangian by

reproducing the 2− 2 scattering amplitude, we cannot take seriously the inferred coefficients of the quintic
interactions.
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where we have used the shorthand εεXY ZW = εabcdεABCDX
A
a Y

B
b Z

C
c W

D
d and the

coefficients are given by (a0, a1, a2, a3) = (−1
8 ,
√

3
8 ,−

1
8 ,

1
24
√

3) and (b0, b1, b2, b3, b4) =

( 5
96 ,−

25
√

3
144 ,

1
6 ,

197
√

3
432 , 11

864).
The quartic interactions of the form h̃Π̃3 cannot be removed with a local field redefini-

tion, as is well known from the standard massive gravity case. This is as it should be since
it is precisely these interactions that describe the nonzero helicity 0, 0, 0,±2 amplitudes
that arise from the ΣΣ′ contact term in the decoupling limit, as described in equation (1.4)
and implicit in the full answer (D.3) and explicit in (D.4). Indeed the combination π̃ is
exactly the combination which identifies the diagonalized parts of π and φ that correspond
to the spin-1 helicity-0 polarization tensor squared εµ0 εν0 .9

As noted in the introduction, since the decoupling limit of massive Yang-Mills is a
nonlinear sigma model and the double copy of the latter is the special Galileon, we might
have expected the massive gravity theory to be that corresponding to a special Galileon.
Interestingly however, this was never possible since the decoupling limit of dRGT massive
gravity never gives rise to a special Galileon. This is easily seen by the manner in which the
Galileon interactions arise from mixing with hµν . The decoupling limit of dRGT massive
gravity for general κ3 and κ4 is (ignoring helicity-1 contributions)

LDL = −1
2ε

abcdεABCDδ
A
a h

B
b ∂c∂

ChDd + hµνX
µν , (5.12)

where

Xµν = εabcdεABCD

[1
2δ

B
b δ

C
c ΠD

d + 1
4Λ3

3
(2 + 3κ3)δBb ΠC

c ΠD
d + 1

4Λ6
3
(4κ4 + κ3)ΠB

b ΠC
c ΠD

d

]
.

(5.13)
Since the special Galileon in four dimensions is a pure quartic Galileon, we need that after
performing the demixing

hµν = h̃µν + 1
2πηµν + 1

4Λ3
3
(2 + 3κ3)πΠµν , (5.14)

there is no cubic Galileon term. This requires (2 + 3κ3) = 0 which does not correspond to
the value obtained from double copy. Even with this choice, we then have

LDL = −1
2ε

abcdεABCDδ
A
a h̃

B
b ∂c∂

C h̃Dd + 1
8Λ6

3
εabcdεABCD(4κ4 + κ3)πδAa ΠB

b ΠC
c ΠD

d

+ 1
4Λ6

3
(4κ4 + κ3)εabcdεABCDh̃Aa ΠB

b ΠC
c ΠD

d , (5.15)

and so we only have a non-vanishing quartic Galileon term when there is also a non-zero
hπππ interaction which cannot itself be removed with a field redefinition since it contributes
to the ±2, 0, 0, 0 scattering amplitude. Furthermore higher order n-point amplitudes will
receive contributions from intermediate graviton exchange which do not arise in the pure
quartic Galileon theory. Hence the special Galileon does not strictly speaking arise in
standard massive gravity in any form.

9To see this, note that at leading order in the decoupling limit Kµν ∼ 1
Λ3

3
∂µ∂νπ ∼ −

√
3/2 1

MPl
ελ=0
µν π.

Since in unitary gauge Kµν = 1
MPl

hµν+O(h2), the canonically normalized unitary gauge helicity-zero mode
is in effect −

√
3/2π, whence the combination arising in (D.5) is 2√

6 (−
√

3/2π + 1√
2φ) = −π + 1√

3φ = −π̃.
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6 Discussion

In this paper we explored the possibility of constructing an interacting massive spin-2
theory, i.e. massive gravity, as a double copy of massive Yang-Mills theory. Our prescription
for doing this is to demand that the kinematic factors for the massive theory, defined by
normalizing by the massive scalar propagator (2.6), satisfy the same colour/kinematics
duality as the massless case. This is a nontrivial requirement even at the level of 2-2
scattering, we nevertheless find that it remains intact to this order. Interestingly the
ambiguity that arises in the massless case (e.g. the ability to shift ns to ns +αs etc. — the
so-called generalized gauge transformations) is fixed in the massive case by the requirement
that colour kinematics holds. Furthermore the manner in which it is fixed is such that the
kinematic factors contain a term which is singular in the decoupling limit, but nevertheless
leads to finite contributions to the gravity amplitudes. One consequence of this is that
the decoupling limit and double copy procedures do not commute, a result which could
not have been anticipated from the decoupling limit theories alone. Hence the by now
well known relations between the scattering amplitudes of nonlinear sigma models, special
Galileons etc [5, 7, 11, 12] which appear to be part of a large web of interconnected theories,
are non-trivially lifted by the presence of a mass term.

It is beyond the scope of this paper to consider higher n-point amplitudes which are
needed to check whether the double copy procedure remains intact at all orders, however
it was shown in [66] that at 5 points the double copy of massive Yang-Mills amplitude
gives spurious poles and therefore that cannot be matched with an amplitude calculated
from a local Lagrangian. The reason for such poles is that at 5 point the massive Yang-
Mills kinematic factors, ni, calculated directly from Feynman rules do not satisfy Jacobi
identities, so they need to be shifted as ni → ni + ∆i so that the amplitude remains
unchanged. As it turns out for generic theories such shifts are non local, i.e. they have
poles in kinematic invariants, sij . For, example in massive Yang-Mills case these shifts
contain the following polynomial of sij in the denominator

320m8 + 36m6(9s12 + 4(s13 + s14 + s23 + s24))

+m4
(
117s2

12 + 108s12(s13 + s14 + s23 + s24) + 4 (s13(13s14 + 4s23 + 17s24)

+4s2
13 + 4s2

14 + 17s14s23 + 4s14s24 + 4s2
23 + 13s23s24 + 4s2

24

))
+ 2m2

(
9s3

12 + 13s2
12(s13 + s14 + s23 + s24) + s12 (s13(10s14 + 6s23 + 17s24)

+4s2
13 + 4s2

14 + s14(17s23 + 6s24) + 2(2s23 + s24)(s23 + 2s24)
)

+2
(
s2

13(s14 + 2s24) + s13
(
s2

14 + s14(s23 + s24) + s24(s23 + 2s24)
)

+s23
(
s24(s14 + s23) + 2s14(s14 + s23) + s2

24

)))
+ 2s24

(
s23

(
s2

12 + s12(s13 + s14)− s13s14
)

+ s12(s12 + s13)(s12 + s13 + s14)
)

+ (s12(s12 + s13 + s14) + s23(s12 + s14))2 + s2
24(s12 + s13)2, (6.1)

which has some complicated expressions of zeros which are the locations of unphysical poles
when the shifted ni’s are squared. In [66] the conditions on the spectrum of the theory for
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avoiding such poles are derived and it was shown that massive Yang-Mills theory does not
satisfy them. Therefore, the double copy of massive Yang-Mills amplitudes can only be
matched with amplitudes calculated from the gravitational action in (4.16) only at three
and four points. While this result is clearly negative in terms of the naive application of
the conjecture (4.2), we do not regard this as necessarily terminal for several reasons. It is
worth noting that in the present context there is more freedom that the conventional story
because both sides of the double copy are effective theories. We are free to add irrelevant
operators suppressed by the scale Λ or a parametrically lower scale on the Yang-Mills side,
for the sole purpose of ensuring the colour/kinematics relation remains intact even when the
spectral conditions of [66] are not satisfied. One reasonable conjecture is that this should be
possible in such a manner to ensure that the gravitational theory remains a Λ3, or similarly
at a parametrically lower scale, theory to all orders. Some support for this comes from
the fact that if we only focus on those amplitudes that arise from helicity-0 modes of the
spin-1, then the double copy procedure is known to work to all orders since it gives a special
Galileon for which all interactions arise at the scale Λ3. Since as we have seen the decoupling
limit and double copy procedures do not commute, this does not constitute a proof.

Perhaps more importantly though, the rules of the double copy paradigm for massive
theories, even if they apply, are not well established and it may not be meaningful to impose
the conjecture (4.2) strictly to all orders. Since nearly all cases in which the double copy
has been well established are for massless theories, it is not unreasonable to suppose that
something like equation (4.2) may only be true at leading order in an expansion in powers
of m, i.e. at leading order in the decoupling limit. What we have been able to construct, as
outlined in section 5, is a local Λ3 effective theory whose interactions match with the double
copy prescription with massive Yang-Mills up to 4-point order. The effective theory whose
leading terms are given in (4.16) is consistent to all orders (from the low energy point of
view) and we may use it to compute arbitrary local (analytic) n-point functions at a given
order in an EFT expansion, even if these n-point functions do not precisely match those
implied by the double copy conjecture (4.2). That is we can infer the leading contributions
to the higher point interactions in (4.16) from the decoupling limit rather than double
copy. That this is possible despite having only computed up to 4-point order is due to the
role played by the nonlinearly realized symmetry, from the underlying symmetry breaking
in giving mass, and how it determines the leading interactions of the low energy theory,
organizing the structure of the EFT. It remains possible that the effective theory outlined
in (4.16), or some close relative to it, does have a role to play in an appropriately double
copied spontaneously broken gauge theory.

It is also worth remembering that the de Rham-Gabadadze-Tolley model of massive
gravity is really just one example of large family of interacting effective theories which may
contain any number of massive spin-2 and lower states just as massive Yang-Mills is just
one example of an effective theory for a spontaneously broken gauge symmetry. It would
be interesting to explore extensions on both sides to understand to what extent the double
copy paradigm may be preserved either fully in the sense of a strict relation along the lines
of (4.2), or at least partially in a weaker form. The present work serves as a starting point
for such an analysis and for establishing the relation between the decoupling limits on each
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side. What is interesting to note is that the class of Galileon effective theories emerge
ubiquitously in decoupling limits of these theories. Indeed the original Galileon model
was first noted to arise in a diffeomorphism invariant five dimensional theory, the Dvali-
Gabadadze-Porrati model [70] which is superficially quite different to ghost-free massive
gravity. There the effective four dimensional graviton emerges as a resonance, i.e. may
be viewed as a continuum of massive states. The intimate connection between the NLSM
and the special Galileon, and the similar emergence of the bi-Galileon effective theory in
our present discussion suggest that there may be an analogous double copy prescription
to (4.2) which could be applied to soft massive theory in which the mass for the spin-1
field on the gauge side emerges from a resonance. In this manner the spurious pole issue
identified for higher n-point functions in [66] may be resolved by satisfying constraints
on the interactions of the continuum modes without needing to satisfy specific spectrum
conditions since the spectrum itself is continuous.

There are many interesting future directions that these results suggest. For example,
is it possible to add irrelevant operators to (2.1) or new fields such that the double copy
procedure works for all n-point amplitudes, or is it only possible if the spectral conditions
of [66] are satisfied? If no extra fields or higher order operators can fix the spurious
poles then maybe this suggests that there is some problem of constructing such a massive
gravitational theory elsewhere. For example, as an anonymous referee pointed out, for
Yang-Mills theory with a single adjoint fermion the colour kinematics duality cannot be
satisfied in more than 10 dimensions because gravitational theory with more than 8 gravitini
and no supersymmetry cannot exist in 4 dimensions. Also, can we construct the double
copy of Yang-Mills action coupled to a Higgs field, which is the UV completion of massive
Yang-Mills considered here, and what is the resulting gravitational theory?10 Does this give
us any insight into UV completing massive gravity theories? Does the procedure outlined
hold at loop level in any way? Are there some simple extensions of the classical double copy
relations? The latter would be highly nontrivial given the known complicated nonlinear
dynamics of massive gravity theories exhibited by the Vainshtein mechanism. We leave
these various considerations to future work.
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A Contact terms

Below are the various contact terms needed in (4.16) to reproduce the desired quartic
interactions. All terms are written in a covariant form, with the understanding that they
enter the action with a

√
−g prefactor.

L(4)
φφφφ = 11

3456
κ2

m4φ
(
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

)
+ 21

128 κ
2∇µφ∇µφ φ φ+−1

96
κ2

m2∇
ρφ∇σφΦρσ φ

(A.1)
where we have used Φµν = ∇µ∇νφ.

L(4)
AAAA = −1

512
κ2

m2 (FµνFµν)2 + 3
256

κ2

m2F
µνFνρF

ρσFσµ (A.2)

L(4)
AAhh = −3

16 FµνFρσKµρKνσ+−1
4 FµνFµσKνρKρσ+−1

16 εµναβε
µ′ν′α′β′

Fµµ′F
ν
ν′Kαα′Kββ′ (A.3)

L(4)
hhφφ = 7

48 εµναβε
µ′ν′α′βΦµ

µ′ Kνν′Kαα′φ+ 3
8 εµναβε

µ′ν′α′β∇µφ∇µ′Kνν′Kαα′φ

+−17
48 m2 φφKµνKµν + 1

24
1
m2 εµναβε

µ′ν′α′β′∇µφ∇µ′φ∇νKαα′∇ν′Kββ′

+ 1
12

1
m2 εµναβε

µ′µα′β′∇ρφ∇νφ∇µ′Kαα′∇[ρK
β
β′]

+ 1
48

1
m2 εµναβε

µ′ν′α′β′Φµ
µ′Φν

ν′Kαα′Kββ′ (A.4)

L(4)
hφφφ = −1

144
√

3
κ

m4 εµναβε
µ′ν′α′β′Kµµ′Φν

ν′Φα
α′Φβ

β′ + −19
48
√

3
κKµν∇µφ∇νφφ

+ 11
16
√

3
κ

m2 εµναβε
µ′ν′α′βKµµ′Φν

ν′Φα
α′φ (A.5)

L(4)
hhhφ = 1

12
√

3
1
κ
εµναβε

µ′ν′α′β′Kµµ′Kνν′Kαα′Φβ
β′ + −2√

3
1
κ
∇[βKν]α∇[βKµ]αKµνφ

+ 8√
3

1
κ
RρσµνKµρKνσφ+ −11

12
√

3
m2

κ
φ
(
[K]3−3[K][K2]+2[K3]

)
(A.6)

with ∇[µAν]ρ = 1
2(∇µAνρ −∇νAµρ)

L(4)
AhAφ = 1

8
√

3
κm2AµAνKµνφ+ 1

16
√

3
κ

m2 F
µνF ρσKνρΦµσ + −1

16
√

3
κ

m2 ∇
ρFµν∇σFµνKσνφ

+ −1
4
√

3
κ

m2 ∇
νFµρFµσ∇ρKσνφ+ −1

8
√

3
κ

m2 ∇
ρF νσ∇ρFµσKµνφ

+ −1
8
√

3
κ

m2 FµνFρσ∇
µ∇σKνρφ (A.7)

L(4)
AφAφ = 1

384
κ2

m4 F
µνFµνΦρσΦρσ + 1

64 κ
2 FµνFµρφφ+ −1

48
κ2

m2 F
µνF ρν∇ρφ∇µφ

+ −11
32 κ2m2AµAµφφ+ 1

192 κ
2AµAν∇µφ∇νφ

+ −1
192

κ2

m4 ∇
ρFµν∇σFµν∇ρφ∇σφ+ 1

128
κ2

m2 ∇ρFµν∇
ρFµνφφ

+ −1
192

κ2

m4 ∇
ρFµν ∇µF σρ ∇νφ∇σφ+ 1

96
κ2

m4 ∇
ρFµν∇σF σν ∇ρφ∇µφ (A.8)
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B Conventions

B.1 Lie algebra generators of the gauge group

We use the following conventions for the generators, Ta:

Tr[TaTb] = δab. (B.1)

These are related to the usual generators (for example in [71]) as Ta =
√

2ta. We define
the structure constants, fabc as

[Ta, Tb] = ifabcTc, (B.2)

which again are larger by a factor of
√

2 than the structure constants in [71]. In terms of
these fabc the field strength tensor F aµν is written as:

F aµν = ∂µA
a
ν − ∂νAaµ + 1√

2
fabcA

b
µA

c
ν . (B.3)

B.2 Polarizations

The four momenta in the centre of mass frame with scattering angle θ and three momenta
p = 1

2
√
s− 4m2 is defined as:

pµ =
(√

s

2 , p sin θ, 0, p cos θ
)
. (B.4)

We define the polarization vectors in the helicity basis as follows:

εµλ=1 = 1√
2

(0,− cos θ,−i, sin θ) ,

εµλ=−1 = 1√
2

(0, cos θ,−i,− sin θ) ,

εµλ=0 = 1
m

(p,E sin θ, 0, E cos θ) .

(B.5)

where θ is the scattering angle in the centre of mass frame and p the three-momentum.
The polarizations clearly satisfy the transverse and completeness relations,i.e

pµε
µ
λ = 0 ,

3∑
λ=1

εµλ(ενλ)∗ = ηµν + pµpν

m2 ,
(B.6)

where (εµλ)∗ = (−1)λεµ−λ. The polarization tensors for the spin-2 field with different helici-
ties are constructed from the polarization vectors with appropriate Clebsch-Gordan (CG)
coefficients as (we review the construction in detail in B.3),

εµνλ=±2 = εµ±ε
ν
± ,

εµνλ=±1 = 1√
2

(εµ±εν0 + εµ0 ε
ν
±) ,

εµνλ=0 = 1√
6

(εµ+εν− + εµ−ε
ν
+ + 2εµ0 εν0) .

(B.7)
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The polarization tensors satisfy the transverse, traceless and completeness relations

pµε
µν
λ = 0 , εµµλ = 0 ,

2∑
λ=−2

εµνλ (εαβλ )∗ = 1
2

(
GµαGνβ +GµβGνα − 2

3G
µνGαβ

)
,

(B.8)

where Gµα = ηµν + pµpν

m2 .

B.3 Construction of gravity states from mYM

As mentioned in 4.1, from the tensor product of two massive spin-1 states we get a massive
spin-2, a massive spin-1 and a massive spin-0 on the gravity side. In this section we review
how the gravity on-shell states are constructed from such product, i.e, |1, λ1 > ⊗|1, λ2 >.
The polarization tensor of the particle of spin J with helicity λ is given as,

εJ,λµν =
∑
λ′λ′′

CJ,λλ′λ′′ε
λ′
µ ε

λ′′
ν , (B.9)

where λ = λ′+ λ′′. We start from the spin-0 state which is obtained from |0, λ >= |1, λ′ >
⊗|1, λ′′ >, with λ = 0 = λ′ + λ′′. This polarization state is obtained by considering the
following:

ε(φ)
µν ≡ ε0,0µν =

∑
λ′λ′′

C0,0
λ′λ′′ε

λ′
µ ε

λ′′
ν

= 1√
3

(
ε0µε

0
ν − ε+µ ε−ν − ε−µ ε+ν

) (B.10)

where C0
λ′λ′′ are the CG coefficients given in (B.15). By substituting (B.5), we can see

that (B.10) can be expressed as:

ε(φ)
µν = 1√

3

(
ηµν + pµpν

m2

)
. (B.11)

Hence, the factor of 1√
3 in (4.7) which follows from the CG coefficient.

The spin-2 state is obtained from |2, λ >= |1, λ′ > ⊗|1, λ′′ >, with −2 ≤ λ ≤ 2.

ε2,λµν =
∑
λ′λ′′

C2,λ
λ′λ′′ε

λ′
µ ε

λ′′
ν . (B.12)

To give an explicit example, the helicity λ = +2 is,

ε2,+2
µν =

∑
λ′λ′′

C2,+2
λ′λ′′ ε

λ′
µ ε

λ′′
ν ,

= C2,+2
+1+1ε

+1
µ ε+1

ν ,

= 1× ε+1
µ ε+1

ν .

(B.13)
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In this paper we use the polarization states to be a superposition of different helicities and
we do not focus on specific choices, for example for the graviton polarisation we have,

ε(h)
µν =

+2∑
λ=−2

αλε
2,λ
µν . (B.14)

Spin-2 : C2,2
++ = C2,−2

−− = 1,

C2,1
0+ = C2,1

+0 = C2,−1
−0 = C2,−1

0− = 1√
2
,

C2,0
+− = C2,0

−+ = 1√
6
, C2,0

00 =
√

2
3 ,

Spin-1 : C1,1
+0 = −C1,1

0+ = C1,−1
0− = −C1,−1

−0 = 1√
2

(B.15)

C1,1
++ = C1,1

++ = 1√
2
, C1,0

00 = 0

Spin-0 : C0,0
+− = C0,0

−+ = −1√
3
, C0,0

00 = 1√
3

C Dualization of the massive B field in 4d

We follow the dualization procedure explained in [72]. The Stückelberg action of free
massive 2-form field, B, is

S =
∫
−1

2dB ∧ ∗dB −
1
2(mB − dλ) ∧ ∗(mB − dλ), (C.1)

where λ is a 1-form Stückelberg field which is needed to restore the gauge symmetry which
acts on the fields as follows:

B → B + dΛ,
λ→ λ+mΛ.

The first step in the dualization procedure is to rewrite the action in terms of field strengths,
H = dB and G = mB − dλ. To do that we need to impose Bianchi identities,

dH = 0, (C.2)
dG−mdB = 0, (C.3)

with Lagrange multipliers. We first do it for G:

S =
∫
−1

2dB ∧ ∗dB −
1
2G ∧ ∗G+A ∧ d(G−mB), (C.4)

where A is a 1-form Lagrange multiplier imposing (C.3). By integrating the last term by
parts we can find the equation of motion for G to be

G = − ∗ dA. (C.5)
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Substituting this back to the action and integrating by parts the last term we get

S =
∫
−1

2dB ∧ ∗dB −
1
2dA ∧ ∗dA+A ∧mdB. (C.6)

Now we can replace dB by H and impose (C.2) with a scalar Lagrange multiplier, χ. This
gives the following

S =
∫
−1

2H ∧ ∗H −
1
2dA ∧ ∗dA+A ∧mH + χdH. (C.7)

Now again we integrate last term by parts and find the equation of motion for H to be

H = − ∗ (mA− dφ). (C.8)

Substituting this back in the (C.7) gives the Stueckelberg action for massive spin-1 field,
A, known as Proca action:

S =
∫
−1

2dA ∧ ∗dA−
1
2(mdA− dχ) ∧ ∗(mdA− dχ), (C.9)

where χ is now the Stückelberg scalar field. From (C.8) we can see that in unitary gauge,
χ = 0, the relation between the B and A fields is dB = − ∗mA which in coordinate basis
can be written as:

Aµ = − 1
2mεµνρσ∇νBρσ. (C.10)

This means that the relationship between the polarization vector of A, ε(A), and the po-
larization tensor of B, ε(B), will be of the form:

ε(A)
µ ∝ i

m
εµνρσp

νε(B)ρσ, (C.11)

where the overall constant can be found by requiring ε(A)
µ to be normalised (i.e. consistent

with (B.6)). This relation can be inverted by multiplying both sides by the ε tensor and
p, which using p2 = −m2 and imposing normalisation condition gives (4.6).

D Double copy of the 4-point scattering amplitude in the decoupling
limit

We take the Λ3 decoupling limit,

m→ 0, Mpl →∞, keeping Λ3 = (m2Mpl)1/3 fixed, (D.1)

of the full scattering amplitude obtained from double copy with external states arbitrary
superpositions of h and φ fields defined as: (setting the vectors to zero for simplicity)

ε1µν =αT1ε
2,+2
µν (p1)+αT2ε

2,−2
µν (p1)+αT3ε

2,+1
µν (p1)+αT4ε

2,−1
µν (p1)+αT5ε

2,0
µν (p1)+αSε

0,0
µν (p1),

ε2µν =βT1ε
2,+2
µν (p2)+βT2ε

2,−2
µν (p2)+βT3ε

2,+1
µν (p2)+βT4ε

2,−1
µν (p2)+βT5ε

2,0
µν (p2)+βSε

0,0
µν (p2),

ε3µν = γT1ε
2,+2
µν (p3)+γT2ε

2,−2
µν (p3)+γT3ε

2,+1
µν (p3)+γT4ε

2,−1
µν (p3)+γT5ε

2,0
µν (p3)+γSε

0,0
µν (p3),

ε4µν =σT1ε
2,+2
µν (p4)+σT2ε

2,−2
µν (p4)+σT3ε

2,+1
µν (p4)+σT4ε

2,−1
µν (p4)+σT5ε

2,0
µν (p4)

+σSε
0,0
µν (p4). (D.2)
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This gives the following amplitude:

M4 → i
stu

2304
(
6αT3βT3γSσS − 6αT4βT3γSσS − 6αT3βT4γSσS + 6αT4βT4γSσS

+ 10αT5βT5γSσS − 6αT3βSγT3σS + 6αT4βSγT3σS − 6
√

2αT5βT3γT3σS

− 6
√

2αT3βT5γT3σS + 6αT3βSγT4σS − 6αT4βSγT4σS − 6
√

2αT5βT4γT4σS

− 6
√

2αT4βT5γT4σS + 10αT5βSγT5σS − 6
√

2αT4βT3γT5σS − 6
√

2αT3βT4γT5σS

− 2
√

2αT5βT5γT5σS + 11αT5βSγS
√

2σS + 6αT5βT4γT3
√

2σS + 6αT4βT5γT3
√

2σS
+ 6αT5βT3γT4

√
2σS + 6αT3βT5γT4

√
2σS + 6αT3βT3γT5

√
2σS + 6αT4βT4γT5

√
2σS

+ 2αT2βSγS
√

3σS + 4αT5βT5γT1
√

3σS + 4αT5βT5γT2
√

3σS + 4αT5βT1γT5
√

3σS
+ 4αT5βT2γT5

√
3σS + 4αT2βT5γT5

√
3σS + 2αT5βT1γS

√
6σS + 2αT5βT2γS

√
6σS

+ 2αT2βT5γS
√

6σS + 2αT5βSγT1
√

6σS + 2αT5βSγT2
√

6σS + 2αT2βSγT5
√

6σS
− 6αT3βSγSσT3 + 6αT4βSγSσT3 − 6

√
2αT5βT3γSσT3 − 6

√
2αT3βT5γSσT3

+ 12αT5βT5γT3σT3 − 6
√

2αT5βSγT4σT3 − 12αT5βT5γT4σT3 − 6
√

2αT3βSγT5σT3

− 12αT5βT3γT5σT3 + 12αT5βT4γT5σT3 − 12αT3βT5γT5σT3 + 12αT4βT5γT5σT3

+ 6αT3βSγSσT4 − 6αT4βSγSσT4 − 6
√

2αT5βT4γSσT4 − 6
√

2αT4βT5γSσT4

− 6
√

2αT5βSγT3σT4 − 12αT5βT5γT3σT4 + 12αT5βT5γT4σT4 − 6
√

2αT4βSγT5σT4

+ 12αT5βT3γT5σT4 − 12αT5βT4γT5σT4 + 12αT3βT5γT5σT4 − 12αT4βT5γT5σT4

+ 10αT5βSγSσT5 − 6
√

2αT4βT3γSσT5 − 6
√

2αT3βT4γSσT5 − 2
√

2αT5βT5γSσT5

− 6
√

2αT3βSγT3σT5 − 12αT5βT3γT3σT5 + 12αT5βT4γT3σT5 − 12αT3βT5γT3σT5

+ 12αT4βT5γT3σT5 − 6
√

2αT4βSγT4σT5 + 12αT5βT3γT4σT5 − 12αT5βT4γT4σT5

+ 12αT3βT5γT4σT5 − 12αT4βT5γT4σT5 − 2
√

2αT5βSγT5σT5 + 12αT3βT3γT5σT5

− 12αT4βT3γT5σT5 − 12αT3βT4γT5σT5 + 12αT4βT4γT5σT5 − 28αT5βT5γT5σT5

− αS
(
− 11

√
2βT5γSσS − 2

√
6βT5γT1σS − 2

√
6βT5γT2σS + 6βT3γT3σS

− 6βT4γT3σS − 6βT3γT4σS + 6βT4γT4σS − 2
√

6βT2γT5σS − 10βT5γT5σS

− 2βT2γS
√

3σS − 2
√

6βT5γSσT1 − 4
√

3βT5γT5σT1 − 2
√

6βT5γSσT2

− 4
√

3βT5γT5σT2 + 6βT3γSσT3 − 6βT4γSσT3 − 6
√

2βT5γT3σT3 − 6
√

2βT4γT5σT3

− 6βT3γSσT4 + 6βT4γSσT4 − 6
√

2βT5γT4σT4 − 6
√

2βT3γT5σT4 − 2
√

6βT2γSσT5

− 10βT5γSσT5 − 4
√

3βT5γT1σT5 − 4
√

3βT5γT2σT5 − 6
√

2βT4γT3σT5

− 6
√

2βT3γT4σT5 − 4
√

3βT2γT5σT5 − βS
(
6γT3σT3 − 6γT4σT3 − 6γT3σT4 + 6γT4σT4

+ 10γT5σT5 − γS
(
− 17σS − 2

√
3σT1 − 2

√
3σT2 − 11

√
2σT5

)
+ 11γT5σS

√
2

+ 2γT1σS
√

3 + 2γT2σS
√

3 + 2γT5σT1
√

6 + 2γT5σT2
√

6 + 2γT1σT5
√

6

+ 2γT2σT5
√

6
)

+ 6βT5γT4σT3
√

2 + 6βT3γT5σT3
√

2 + 6βT5γT3σT4
√

2

+ 6βT4γT5σT4
√

2 + 6βT3γT3σT5
√

2 + 6βT4γT4σT5
√

2 + 2βT5γT5σT5
√

2

+ 2βT1
(
− γSσS −

√
2γT5σS −

√
2γSσT5 − 2γT5σT5

)√
3
)

+ 6αT5βT4γSσT3
√

2
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+ 6αT4βT5γSσT3
√

2 + 6αT5βSγT3σT3
√

2 + 6αT4βSγT5σT3
√

2 + 6αT5βT3γSσT4
√

2
+ 6αT3βT5γSσT4

√
2 + 6αT5βSγT4σT4

√
2 + 6αT3βSγT5σT4

√
2 + 6αT3βT3γSσT5

√
2

+ 6αT4βT4γSσT5
√

2 + 6αT4βSγT3σT5
√

2 + 6αT3βSγT4σT5
√

2 + 4αT5βT5γSσT1
√

3
+ 4αT5βSγT5σT1

√
3 + 4αT5βT5γSσT2

√
3 + 4αT5βSγT5σT2

√
3 + 4αT5βT1γSσT5

√
3

+ 4αT5βT2γSσT5
√

3 + 4αT2βT5γSσT5
√

3 + 4αT5βSγT1σT5
√

3 + 4αT5βSγT2σT5
√

3

+ 4αT2βSγT5σT5
√

3 + 2αT1
(
βT5

(
2γT5σS + γS

√
2σS + 2γSσT5 + 2γT5σT5

√
2
)

− βS
(
− γSσS −

√
2γT5σS −

√
2γSσT5 − 2γT5σT5

))√
3 + 2αT5βSγSσT1

√
6

+ 4αT5βT5γT5σT1
√

6 + 2αT5βSγSσT2
√

6 + 4αT5βT5γT5σT2
√

6 + 2αT2βSγSσT5
√

6
+ 4αT5βT5γT1σT5

√
6 + 4αT5βT5γT2σT5

√
6 + 4αT5βT1γT5σT5

√
6

+ 4αT5βT2γT5σT5
√

6 + 4αT2βT5γT5σT5
√

6
)
. (D.3)

This amplitude simplifies considerable if we focus on scattering processes of the form
+2XXX. We may easily see that X can only be a scalar mode and this amplitude then
takes the form

M4(+2XXX) = istu

96
√

6

(
βT5 + 1√

2
βS

)(
γT5 + 1√

2
γS

)(
σT5 + 1√

2
σS

)
. (D.4)

The combination βT5 + 1√
2βS is precisely the combination of polarizations that picks out

the helicity-0 squared term εµ0 ε
ν
0

βT5ε
µν
2,0 + βSε

µν
0,0 = 2√

6

(
βT5 + 1√

2
βS

)
εµ0 ε

ν
0 + 1√

6
(βT5 −

√
2βS)(εµ+εν− + εµ−ε

ν
+) . (D.5)

Since the helicity +2 mode has polarization tensor εµ+εν+ we recognize that M4(+2XXX)
is the double copy of the +1000 massive Yang-Mills amplitude and comes specifically from
the ΣΣ′ contact term (1.4).

E Decoupling limit of massive Yang-Mills amplitude

In this section we derive the decoupling limit of the massive Yang-Mills amplitude which
is expected to be the amplitude of NLSM, derive the kinematic factors and double copy it
to show that we recover the 4 point amplitude of a special Galileon. We also show that
taking the decoupling limit and performing the double copy do not commute. From (2.6),
the 4-point amplitudes of massive Yang-Mills is expressed as:

AmYM
4 = m2

Λ2

(
csns
s−m2 + ctnt

t−m2 + cunu
u−m2

)
, (E.1)

with the n’s given by (2.12), (2.13) and (2.14). By plugging the polarization vectors which
are arbitrary superpositions of all helicities given as:

ε1µ = α1ε
+1
µ (p1) + α2ε

−1
µ (p1) + α3ε

0
µ(p1),

ε2µ = β1ε
+1
µ (p2) + β2ε

−1
µ (p2) + β3ε

0
µ(p2),

ε3µ = γ1ε
+1
µ (p3) + γ2ε

−1
µ (p3) + γ3ε

0
µ(p3),

ε4µ = σ1ε
+1
µ (p4) + σ2ε

−1
µ (p4) + σ3ε

0
µ(p4),

(E.2)
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and four momenta into the n’s, they can be rearranged in the following form (as mentioned
in (1.1)):

ns= s−m2

m3 Σ(s,t,u)+ 1
m2 n̂s, nt=

t−m2

m3 Σ(s,t,u)+ 1
m2 n̂t, nu= u−m2

m3 Σ(s,t,u)+ 1
m2 n̂u ,

(E.3)
with ns + nt + nu = 0 and n̂s + n̂t + n̂u = −mΣ. The explicit expressions for the n̂’s and
Σ(s, t, u) are given in (E.12) and (E.13) (E.14) (E.15). The amplitude can be written as,

AmYM
4 = m2

Λ2

(
csns
s−m2 + ctnt

t−m2 + cunu
u−m2

)
, (E.4)

= 1
Λ2

(
csn̂s
s−m2 + ctn̂t

t−m2 + cun̂u
u−m2

)
+ 1
mΛ2 Σ(s, t, u) (cs + ct + cu) , (E.5)

and as mentioned in the introduction, the last term which seems at first ill defined in the
decoupling limit m → 0, Λ fixed, is zero by virtue of Jacobi identity. Focusing on the
non-zero term, the amplitude in the decoupling limit is as follows:

ADL
4 = lim

m→0, Λfixed

1
Λ2A

mYM,

= −i 1
12Λ2

(
cs(t− u) + ct(u− s) + cu(s− t)

)
α3β3σ3γ3.

(E.6)

We see that only helicity-0 polarization states remain interacting in this decoupling
limit. The kinematic factors of this amplitude are,

ns = − is12(t− u), nt = − it12(u− s), nu = − iu12(s− t). (E.7)

Note that in this limit we have s+ t+u = 0 and can see that the colour-kinematics duality
is satisfied.

Using the kinematic factors of this amplitude we double copy it and obtain the follow-
ing:

ADC = i
α2

3β
2
3γ

2
3σ

2
3

16Λ6
3

stu, (E.8)

which is equal to the scattering amplitude of a galileon theory.
It seems that we could have defined the kinematic factors of the full massive Yang-Mills

theory without the 1/m3 terms in (E.3) since they cancel in the full amplitude. However
without them the colour-kinematics duality is not satisfied. This is in contrast to the
massless double copy where at four-points any representation of kinematic factors satisfy
this duality. If we tried to double copy, i.e.

1
M2

Pl

(
nsn

′
s

s−m2 + ntn
′
t

t−m2 + nun
′
u

u−m2

)
= −ΣΣ′

Λ6
3

+ 1
Λ6

3

(
n̂sn̂

′
s

s−m2 + n̂tn̂
′
t

t−m2 + n̂un̂
′
u

u−m2

)
, (E.9)

without using Σ(s, t, u), we would have obtained a theory whose Λ3 decoupling limit is the
special galileon because only n̂ terms could have contributed to the double copy amplitude,
i.e. we would have obtained

ADCn̂2 = i

M2
pl

3∑
i=1

n̂in̂
′
i

m4si
= i

α2
3β

2
3γ

2
3σ

2
3

16Λ6
3

stu, (E.10)
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where i = 1, 2, 3 labels s, t, u respectively. However, in our case, when we square Σ(s, t, u)
, they sum to a 1/m4 contribution to the double copy scattering amplitude

ADCΣ2(s,t,u) = i
(α3β3γ3 (σ2−σ1)+α3β3 (γ2−γ1)σ3 +γ3σ3 (α3 (β1−β2)+(α1−α2)β3))2

8Λ6
3

stu,

(E.11)
which contains helicity ±1 polarizations and the decoupling limit of the resulting theory is
not the double copy of the decoupling limit of the massive Yang-Mills, i.e. the operations
of taking decoupling limit and performing double copy do not commute.

The explicit expressions for Σ(s, t, u), n̂s, n̂t, n̂u are given below:

Σ(s,t,u)= i

√
stu

2
√

2
×(α3β3γ3(σ1−σ2)+α3β3(γ1−γ2)σ3+γ3σ3(α3(β2−β1)+(α2−α1)β3)) (E.12)

n̂s=− i

4
(
4m2−s

)(16
(
α2
(
−β2γ1σ1+β2γ2σ2−β3γ3σ2+β3γ1σ3

)
+α1

(
β1γ1σ1−β3γ3σ1

−β1γ2σ2+β3γ2σ3
)
+α3

(
β2γ3σ1+β1γ3σ2−β1γ1σ3−β2γ2σ3

))
m6−4

(
4u
(
α1β1

+α2β2−α3β3
)(
γ1σ1+γ2σ2−γ3σ3

)
+t
(
−α3

(
β1−β2

)(
γ3
(
σ1−σ2

)
+
(
γ1−γ2

)
σ3
)

+α2β3
(
γ3
(
σ1−σ2

)
+
(
γ1−γ2

)
σ3
)
+4α3β3

(
γ1σ1+γ2σ2−γ3σ3

)
−2α2β2

(
3γ1σ1

+γ2σ2−2γ3σ3
)
+α1

(
β3γ3

(
σ2−σ1

)
+β3

(
γ2−γ1

)
σ3−2β1

(
γ1σ1+3γ2σ2−2γ3σ3

)))
+s
(
α1
(
5β1γ1σ1+9β3γ3σ1−5β1γ2σ2−11β3γ2σ3−16β1γ3σ3

)
+α2

(
−5β2γ1σ1

+5β2γ2σ2+9β3γ3σ2−11β3γ1σ3−16β2γ3σ3
)
+α3

(
−11β2γ3σ1−11β1γ3σ2

+9β1γ1σ3+9β2γ2σ3−4β3
(
4γ1σ1+4γ2σ2−9γ3σ3

))))
m4

+2
√

2
√
stu
(
α2β2

(
−9γ3σ1+7γ3σ2−9γ1σ3+7γ2σ3

)
+α1β1

(
−7γ3σ1+9γ3σ2

−7γ1σ3+9γ2σ3
)
+α2β3

(
−9γ1σ1−7γ2σ2+12γ3σ3

)
+α1β3

(
7γ1σ1+9γ2σ2

−12γ3σ3
)
+α3

(
β2
(
−9γ1σ1−7γ2σ2+12γ3σ3

)
+12β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
7γ1σ1+9γ2σ2−12γ3σ3

)))
m3+2s

(
t
(
α3β2

(
−6γ3σ1+5γ3σ2−6γ1σ3+5γ2σ3

)
+α2β3

(
−6γ3σ1+5γ3σ2−6γ1σ3+5γ2σ3

)
−2α2β2

(
3γ1σ1−γ2σ2+5γ3σ3

)
+α3β1

(
5γ3σ1−6γ3σ2+5γ1σ3−6γ2σ3

)
+α1β3

(
5γ3σ1−6γ3σ2+5γ1σ3−6γ2σ3

)
+2α1β1

(
γ1σ1−3γ2σ2−5γ3σ3

)
−2α3β3

(
5γ1σ1+5γ2σ2−13γ3σ3

))
+2u

(
α3β3

(
−3γ1σ1−3γ2σ2+5γ3σ3

)
+α1β1

(
γ1σ1+γ2σ2−3γ3σ3

)
+α2β2

(
γ1σ1

+γ2σ2−3γ3σ3
))

+s
(
α2
(
β3
(
9γ3σ2−14γ1σ3

)
−2β2

(
γ1σ1−γ2σ2+8γ3σ3

))
+α1

(
β3
(
9γ3σ1−14γ2σ3

)
+2β1

(
γ1σ1−γ2σ2−8γ3σ3

))
+α3

(
−14β2γ3σ1−14β1γ3σ2

+9β1γ1σ3+9β2γ2σ3−4β3
(
4γ1σ1+4γ2σ2−11γ3σ3

))))
m2

−2
√

2s
√
stu
(
α2β2

(
γ3
(
σ2−3σ1

)
+
(
γ2−3γ1

)
σ3
)
−α1β1

(
γ3
(
σ1−3σ2

)
+
(
γ1

−3γ2
)
σ3
)
−α2β3

(
3γ1σ1+γ2σ2−3γ3σ3

)
+α1β3

(
γ1σ1+3γ2σ2−3γ3σ3

)
+α3

(
3β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
−β2

(
3γ1σ1+γ2σ2−3γ3σ3

)
+β1

(
γ1σ1+3γ2σ2

−3γ3σ3
)))
m+4s3α3β3γ3σ3+s2(s(−2α2β3γ3σ2+4α2β3γ1σ3+4α2β2γ3σ3

+α1
(
−2β3γ3σ1+4β3γ2σ3+4β1γ3σ3

)
+α3

(
4β2γ3σ1+4β1γ3σ2−2β1γ1σ3−2β2γ2σ3
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+β3
(
4γ1σ1+4γ2σ2−17γ3σ3

)))
+2
(
u
((
α1β1+α2β2

)
γ3σ3+α3β3

(
γ1σ1+γ2σ2

−4γ3σ3
))

+t
(
3α1β1γ3σ3+3α2β2γ3σ3−α1β3

(
γ3
(
σ1−2σ2

)
+
(
γ1−2γ2

)
σ3
)

+α2β3
(
2γ3σ1−γ3σ2+2γ1σ3−γ2σ3

)
−α3

(
β2
(
−2γ3σ1+γ3σ2−2γ1σ3+γ2σ3

)
+β1

(
γ3σ1−2γ3σ2+γ1σ3−2γ2σ3

)
−3β3

(
γ1σ1+γ2σ2−3γ3σ3

))))))
(E.13)

n̂t=
i

4(s−4m2)2

(
−64

(
−α3

(
β3γ1σ1+4β2γ3σ1+β3γ2σ2+4β1γ3σ2

)
+α3

(
β1γ1+β2γ2

+4β3γ3
)
σ3+α1

(
3β2γ2σ1+β3γ3σ1+5β1γ2σ2−4β3γ2σ3−β1γ3σ3

)
+α2

(
5β2γ1σ1

+3β1γ1σ2+β3γ3σ2−4β3γ1σ3−β2γ3σ3
))
m8−16

(
t
(
α3
(
4γ3

(
β1σ1+β2σ2

)
+
(
3β1γ1

−7β2γ1−7β1γ2+3β2γ2
)
σ3−4β3

(
−2γ2σ1+γ2σ2+γ1

(
σ1−2σ2

)
+γ3σ3

))
−α2

(
β2
(
−16γ1σ1+5γ2σ1+5γ1σ2−2γ2σ2+4γ3σ3

)
+β3

(
7γ3σ1−3γ3σ2−4γ2σ3

)
+β1

(
5γ1σ1+6γ1σ2+5γ2σ2−8γ3σ3

))
+α1

(
β3
(
3γ3σ1−7γ3σ2+4γ1σ3

)
+β1

(
2γ1σ1

−5γ2σ1−5γ1σ2+16γ2σ2−4γ3σ3
)
−β2

(
5γ1σ1+6γ2σ1+5γ2σ2−8γ3σ3

)))
−2s

(
−2α3

(
β3γ1σ1+4β2γ3σ1+β3γ2σ2+4β1γ3σ2

)
+2α3

(
β1γ1+β2γ2+4β3γ3

)
σ3

+α1
(
7β2γ2σ1+2β3γ3σ1+9β1γ2σ2−8β3γ2σ3−2β1γ3σ3

)
+α2

(
9β2γ1σ1+7β1γ1σ2

+2β3γ3σ2−8β3γ1σ3−2β2γ3σ3
)))
m6−8

√
2
√
stu
(
α1
(
β3γ1σ1−5β3γ2σ1−β1γ3σ1

+5β2γ3σ1+4β3γ2σ2+4β1γ3σ2−
(
β1γ1−4β1γ2+5β2γ2+5β3γ3

)
σ3
)

+α3
(
β2
(
−4γ1σ1+5γ2σ1−γ2σ2+5γ3σ3

)
+5β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
4γ2σ2+γ1

(
σ1−5σ2

)
−5γ3σ3

))
+α2

(
−5β1γ3σ2+5β1γ1σ3+β2

(
−4γ3σ1+γ3σ2

−4γ1σ3+γ2σ3
)
+β3

(
−4γ1σ1+5γ1σ2−γ2σ2+5γ3σ3

)))
m5−4

((
−5α3

(
β3γ1σ1

+4β2γ3σ1+β3γ2σ2+4β1γ3σ2
)
+5α3

(
β1γ1+β2γ2+4β3γ3

)
σ3+α1

(
19β2γ2σ1

+5β3γ3σ1+21β1γ2σ2−5
(
4β3γ2+β1γ3

)
σ3
)
+α2

(
21β2γ1σ1+19β1γ1σ2+5β3γ3σ2

−5
(
4β3γ1+β2γ3

)
σ3
))
s2+t

(
−2α3

(
β2γ3

(
15σ1+σ2

)
+β1γ3

(
σ1+15σ2

)
+β3

(
5γ1σ1

+3γ2σ1+3γ1σ2+5γ2σ2
))

+α3
(
13β1γ1+5β2γ1+5β1γ2+13β2γ2+52β3γ3

)
σ3

+α1
(
−2β1γ1σ1+5β2γ1σ1+5β1γ2σ1+22β2γ2σ1+13β3γ3σ1+5β1γ1σ2−24β1γ2σ2

+5β2γ2σ2+5β3γ3σ2−2
(
β3γ1+15β3γ2+5β1γ3+3β2γ3

)
σ3
)
+α2

(
5β1γ1σ1

−24β2γ1σ1+5β2γ2σ1+5β3γ3σ1+22β1γ1σ2+5β2γ1σ2+5β1γ2σ2−2β2γ2σ2

+13β3γ3σ2−2
(
15β3γ1+β3γ2+3β1γ3+5β2γ3

)
σ3
))
s+t2

(
8α3β3

(
γ1−γ2

)(
σ1−σ2

)
−4α3

(
β1−β2

)(
γ3
(
σ1−σ2

)
+
(
γ1−γ2

)
σ3
)
+α2

(
β2
(
−21γ1σ1+5γ2σ1+5γ1σ2

−5γ2σ2+8γ3σ3
)
+4β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
5γ1σ1+3γ2σ1+3γ1σ2

+5γ2σ2−8γ3σ3
))

+α1
(
4β3

(
−γ3σ1+γ3σ2−γ1σ3+γ2σ3

)
+β1

(
5γ2σ1−21γ2σ2

+5γ1
(
σ2−σ1

)
+8γ3σ3

)
+β2

(
5γ1σ1+3γ2σ1+3γ1σ2+5γ2σ2−8γ3σ3

))))
m4

+2
√

2
√
stu
(
s
(
α1
(
β3γ1σ1−5β3γ2σ1−β1γ3σ1+5β2γ3σ1+4β3γ2σ2+4β1γ3σ2

−
(
β1γ1−4β1γ2+5β2γ2+5β3γ3

)
σ3
)
+α3

(
β2
(
−4γ1σ1+5γ2σ1−γ2σ2+5γ3σ3

)
+5β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
4γ2σ2+γ1

(
σ1−5σ2

)
−5γ3σ3

))
+α2

(
−5β1γ3σ2+5β1γ1σ3+β2

(
−4γ3σ1+γ3σ2−4γ1σ3+γ2σ3

)
+β3

(
−4γ1σ1
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J
H
E
P
1
2
(
2
0
2
0
)
0
3
0

+5γ1σ2−γ2σ2+5γ3σ3
)))

+t
(
α3
(
β2
(
−17γ1σ1+5γ2σ1+5γ1σ2−9γ2σ2+24γ3σ3

)
+24β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
9γ1σ1−5γ2σ1−5γ1σ2+17γ2σ2−24γ3σ3

))
+α2

(
β2
(
−17γ3σ1+9γ3σ2−17γ1σ3+9γ2σ3

)
+β3

(
−17γ1σ1+5γ2σ1+5γ1σ2

−9γ2σ2+24γ3σ3
)
+5β1

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

))
+α1

(
β1
(
−9γ3σ1+17γ3σ2

−9γ1σ3+17γ2σ3
)
+5β2

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β3

(
9γ1σ1−5γ2σ1−5γ1σ2

+17γ2σ2−24γ3σ3
))))

m3+2s
((
−α3

(
β3γ1σ1+4β2γ3σ1+β3γ2σ2+4β1γ3σ2

)
+α3

(
β1γ1+β2γ2+4β3γ3

)
σ3+α1

(
4β2γ2σ1+β3γ3σ1+4β1γ2σ2−4β3γ2σ3−β1γ3σ3

)
+α2

(
4β2γ1σ1+4β1γ1σ2+β3γ3σ2−4β3γ1σ3−β2γ3σ3

))
s2+t

(
α2
(
−4β2γ1σ1

−β3γ3σ1+8β1γ1σ2+12β3γ3σ2+β3
(
γ2−23γ1

)
σ3+

(
β1−11β2

)
γ3σ3

)
+α1

(
−4β1γ2σ2−11β1γ3σ3+β2

(
8γ2σ1+γ3σ3

)
+β3

(
12γ3σ1−γ3σ2+γ1σ3

−23γ2σ3
))

+α3
(
β2
(
−23γ3σ1+γ3σ2−γ1σ3+12γ2σ3

)
+β3

(
γ2σ1−11γ2σ2+γ1

(
σ2

−11σ1
)
+36γ3σ3

)
+β1

(
γ3σ1−23γ3σ2+12γ1σ3−γ2σ3

)))
s+t2

(
α1
(
−8β1γ2σ2

−9β1γ3σ3+β2
(
4γ2σ1+4γ1σ2+γ3σ3

)
+β3

(
7γ3σ1−11γ3σ2+7γ1σ3−11γ2σ3

))
+α2

(
β3
(
−11γ3σ1+7γ3σ2−11γ1σ3+7γ2σ3

)
+β1

(
4γ2σ1+4γ1σ2+γ3σ3

)
−β2

(
8γ1σ1+9γ3σ3

))
+α3

(
β2
(
−11γ3σ1+7γ3σ2−11γ1σ3+7γ2σ3

)
+β3

(
γ2σ1

−9γ2σ2+γ1
(
σ2−9σ1

)
+32γ3σ3

)
+β1

(
7γ3σ1−11γ3σ2+7γ1σ3−11γ2σ3

))))
m2

+st
√

2
√
stu
(
2α1β1

(
γ3
(
σ1−3σ2

)
+
(
γ1−3γ2

)
σ3
)
+α1β3

(
−2γ1σ1−6γ2σ2+7γ3σ3

)
+α3

(
−2β1γ1σ1+6β2γ1σ1−7β3γ3σ1−6β1γ2σ2+2β2γ2σ2+7β3γ3σ2+7

(
β3
(
γ2

−γ1
)
+
(
β1−β2

)
γ3
)
σ3
)
+2α2β2

(
3γ3σ1−γ3σ2+3γ1σ3−γ2σ3

)
+α2β3

(
6γ1σ1+2γ2σ2

−7γ3σ3
))
m+s2t

(
2s
(
−β3γ3

(
α1σ1+α2σ2

)
+
(
2α2β3γ1+2α1β3γ2+α1β1γ3

+α2β2γ3
)
σ3+α3

(
β3γ1σ1+2β2γ3σ1+β3γ2σ2+2β1γ3σ2−

(
β1γ1+β2γ2

+3β3γ3
)
σ3
))

+t
(
−2β3γ3

(
α2
(
σ2−2σ1

)
+α1

(
σ1−2σ2

))
−2β3

(
α2
(
γ2−2γ1

)
+α1

(
γ1

−2γ2
))
σ3+4

(
α1β1+α2β2

)
γ3σ3+α3

(
−2γ3

(
β1σ1−2β2σ1−2β1σ2+β2σ2

)
−2
(
β1γ1

−2β2γ1−2β1γ2+β2γ2
)
σ3+β3

(
4γ1σ1+4γ2σ2−11γ3σ3

)))))
(E.14)

n̂u=− i

4(s−4m2)2

(
192

(
α3
(
−β3γ1σ1+β2γ3σ1−β3γ2σ2+β1γ3σ2

)
+α1

(
β1γ1σ1

−β2γ2σ1+β3γ2σ3−β1γ3σ3
)
+α2

(
−β1γ1σ2+β2γ2σ2+β3γ1σ3−β2γ3σ3

))
m8

−16
(
2s
(
α2
(
−7β1γ1σ2+3β2γ2σ2−6β3γ3σ2+13β3γ1σ3

)
+α1

(
3β1γ1σ1−7β2γ2σ1

−6β3γ3σ1+13β3γ2σ3
)
+α3

(
13β2γ3σ1+13β1γ3σ2−6β1γ1σ3−6β2γ2σ3

−12β3γ3σ3
))

+t
(
α3
(
β2
(
−γ3σ1+5γ3σ2−8γ1σ3+4γ2σ3

)
+4β3

(
−3γ1σ1+2γ2σ1

+2γ1σ2−3γ2σ2+γ3σ3
)
+β1

(
5γ3σ1−γ3σ2+4γ1σ3−8γ2σ3

))
−α2

(
β2
(
−26γ1σ1

+5γ2σ1+5γ1σ2−8γ2σ2+12γ3σ3
)
+β3

(
8γ3σ1−4γ3σ2+γ1σ3−5γ2σ3

)
+β1

(
5γ1σ1

+6γ1σ2+5γ2σ2−8γ3σ3
))
−α1

(
β3
(
−4γ3σ1+8γ3σ2−5γ1σ3+γ2σ3

)
+β1

(
−8γ1σ1

+5γ2σ1+5γ1σ2−26γ2σ2+12γ3σ3
)
+β2

(
5γ1σ1+6γ2σ1+5γ2σ2−8γ3σ3

))))
m6

−8
√

2
√
stu
(
α3
(
β2
(
−13γ1σ1+5γ2σ1−8γ2σ2+19γ3σ3

)
+19β3

(
γ3σ1−γ3σ2+γ1σ3
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J
H
E
P
1
2
(
2
0
2
0
)
0
3
0

−γ2σ3
)
+β1

(
8γ1σ1−5γ1σ2+13γ2σ2−19γ3σ3

))
+α2

(
−5β1γ3σ2+5β1γ1σ3

+β2
(
−13γ3σ1+8γ3σ2−13γ1σ3+8γ2σ3

)
+β3

(
−13γ1σ1+5γ1σ2−8γ2σ2+19γ3σ3

))
+α1

(
β1
(
−8γ3σ1+13γ3σ2−8γ1σ3+13γ2σ3

)
+5β2

(
γ3σ1−γ2σ3

)
+β3

(
8γ1σ1

−5γ2σ1+13γ2σ2−19γ3σ3
)))
m5+4

((
α1
(
3β1γ1σ1−19β2γ2σ1−32β3γ3σ1

+59β3γ2σ3+17β1γ3σ3
)
+α2

(
−19β1γ1σ2+3β2γ2σ2−32β3γ3σ2+59β3γ1σ3

+17β2γ3σ3
)
+α3

(
59β2γ3σ1+59β1γ3σ2−32β1γ1σ3−32β2γ2σ3+17β3

(
γ1σ1+γ2σ2

−4γ3σ3
)))
s2+t

(
α2
(
β2
(
50γ1σ1−5γ2σ1−5γ1σ2+8γ2σ2+10γ3σ3

)
+β3

(
6γ3σ1

−22γ3σ2+41γ1σ3−7γ2σ3
)
−β1

(
5γ1σ1+22γ1σ2+5γ2σ2−6γ3σ3

))
+α1

(
β3
(

−22γ3σ1+6γ3σ2−7γ1σ3+41γ2σ3
)
+β1

(
8γ1σ1−5γ2σ1−5γ1σ2+50γ2σ2+10γ3σ3

)
−β2

(
5γ1σ1+22γ2σ1+5γ2σ2−6γ3σ3

))
+α3

(
β1
(
−7γ3σ1+41γ3σ2−22γ1σ3

+6γ2σ3
)
+β2

(
41γ3σ1−7γ3σ2+6γ1σ3−22γ2σ3

)
+2β3

(
5γ1σ1+3γ2σ1+3γ1σ2

+5γ2σ2−38γ3σ3
)))
s+t2

(
4α3

((
β1−β2

)(
γ3
(
σ1−σ2

)
+
(
γ1−γ2

)
σ3
)
−2β3

(
γ1

−γ2
)(
σ1−σ2

))
−α2

(
β2
(
−21γ1σ1+5γ2σ1+5γ1σ2−5γ2σ2+8γ3σ3

)
+4β3

(
γ3σ1

−γ3σ2+γ1σ3−γ2σ3
)
+β1

(
5γ1σ1+3γ2σ1+3γ1σ2+5γ2σ2−8γ3σ3

))
−α1

(
4β3

(
−γ3σ1+γ3σ2−γ1σ3+γ2σ3

)
+β1

(
−5γ1σ1+5γ2σ1+5γ1σ2−21γ2σ2+8γ3σ3

)
+β2

(
5γ1σ1+3γ2σ1+3γ1σ2+5γ2σ2−8γ3σ3

))))
m4+2

√
2
√
stu
(
t
(
α3
(
β2
(
−17γ1σ1

+5γ2σ1+5γ1σ2−9γ2σ2+24γ3σ3
)
+24β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
9γ1σ1

−5γ2σ1−5γ1σ2+17γ2σ2−24γ3σ3
))

+α2
(
β2
(
−17γ3σ1+9γ3σ2−17γ1σ3+9γ2σ3

)
+β3

(
−17γ1σ1+5γ2σ1+5γ1σ2−9γ2σ2+24γ3σ3

)
+5β1

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

))
+α1

(
β1
(
−9γ3σ1+17γ3σ2−9γ1σ3+17γ2σ3

)
+5β2

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β3

(
9γ1σ1−5γ2σ1−5γ1σ2+17γ2σ2−24γ3σ3

)))
+s
(
α3
(
β2
(
−25γ1σ1+5γ2σ1

−12γ2σ2+33γ3σ3
)
+33β3

(
γ3σ1−γ3σ2+γ1σ3−γ2σ3

)
+β1

(
12γ1σ1−5γ1σ2

+25γ2σ2−33γ3σ3
))

+α2
(
−5β1γ3σ2+5β1γ1σ3+β2

(
−25γ3σ1+12γ3σ2−25γ1σ3

+12γ2σ3
)
+β3

(
−12γ2σ2+5γ1

(
σ2−5σ1

)
+33γ3σ3

))
+α1

(
β1
(
−12γ3σ1+25γ3σ2

−12γ1σ3+25γ2σ3
)
+5β2

(
γ3σ1−γ2σ3

)
+β3

(
12γ1σ1−5γ2σ1+25γ2σ2

−33γ3σ3
))))

m3−2s
((
α1
(
−4β2γ2σ1−14β3γ3σ1+26β3γ2σ3+11β1γ3σ3

)
+α2

(
−4β1γ1σ2−14β3γ3σ2+26β3γ1σ3+11β2γ3σ3

)
+α3

(
11β3γ1σ1+26β2γ3σ1

+11β3γ2σ2+26β1γ3σ2−14β1γ1σ3−14β2γ2σ3−32β3γ3σ3
))
s2+t

(
α2
(
−β1

(
8γ1σ2

+γ3σ3
)
+β2

(
12γ1σ1+23γ3σ3

)
+β3

(
15γ3σ1−21γ3σ2+37γ1σ3−10γ2σ3

))
+α1

(
β3
(
−21γ3σ1+15γ3σ2−10γ1σ3+37γ2σ3

)
−β2

(
8γ2σ1+γ3σ3

)
+β1

(
12γ2σ2

+23γ3σ3
))

+α3
(
β1
(
−10γ3σ1+37γ3σ2−21γ1σ3+15γ2σ3

)
+β2

(
37γ3σ1−10γ3σ2

+15γ1σ3−21γ2σ3
)
+β3

(
23γ1σ1−γ2σ1−γ1σ2+23γ2σ2−72γ3σ3

)))
s

+t2
(
α2
(
−β1

(
4γ2σ1+4γ1σ2+γ3σ3

)
+β2

(
8γ1σ1+9γ3σ3

)
+β3

(
11γ3σ1−7γ3σ2

+11γ1σ3−7γ2σ3
))
−α1

(
β2
(
4γ2σ1+4γ1σ2+γ3σ3

)
−β1

(
8γ2σ2+9γ3σ3

)
+β3

(
7γ3σ1

−11γ3σ2+7γ1σ3−11γ2σ3
))

+α3
(
β1
(
−7γ3σ1+11γ3σ2−7γ1σ3+11γ2σ3

)
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H
E
P
1
2
(
2
0
2
0
)
0
3
0

+β2
(
11γ3σ1−7γ3σ2+11γ1σ3−7γ2σ3

)
+β3

(
9γ1σ1−γ2σ1−γ1σ2+9γ2σ2

−32γ3σ3
))))

m2−
√

2s(s+t)
√
stu
(
2α2β2

(
γ3
(
σ2−3σ1

)
+
(
γ2−3γ1

)
σ3
)

−2α1β1
(
γ3
(
σ1−3σ2

)
+
(
γ1−3γ2

)
σ3
)
+α2β3

(
−6γ1σ1−2γ2σ2+7γ3σ3

)
+α1β3

(
2γ1σ1+6γ2σ2−7γ3σ3

)
+α3

(
β2
(
−6γ1σ1−2γ2σ2+7γ3σ3

)
+7β3

(
γ3σ1

−γ3σ2+γ1σ3−γ2σ3
)
+β1

(
2γ1σ1+6γ2σ2−7γ3σ3

)))
m+s2(s+t)

(
s
(
2
(
α1
(
−β3γ3σ1

+2β3γ2σ3+β1γ3σ3
)
+α2

(
−β3γ3σ2+2β3γ1σ3+β2γ3σ3

))
+α3

(
4β2γ3σ1+4β1γ3σ2

−2β1γ1σ3−2β2γ2σ3+β3
(
2γ1σ1+2γ2σ2−5γ3σ3

)))
+t
(
4α1β1γ3σ3+4α2β2γ3σ3

−2α1β3
(
γ3
(
σ1−2σ2

)
+
(
γ1−2γ2

)
σ3
)
+2α2β3

(
2γ3σ1−γ3σ2+2γ1σ3−γ2σ3

)
+α3

(
β3
(
4γ1σ1+4γ2σ2−11γ3σ3

)
−2
(
β2γ3

(
σ2−2σ1

)
+β1γ3

(
σ1−2σ2

)
+β2

(
γ2−2γ1

)
σ3+β1

(
γ1−2γ2

)
σ3
)))))
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