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1 Introduction

The Majumdar-Papapetrou solutions [1, 2] of the 4D Einstein-Maxwell equations show
that gravitational attraction and electro-magnetic repulsion may be balanced in order to
support multiple black holes in static equilibrium. In [3], Myers generalized these solutions
to higher dimensions, and also showed that such balancing is also possible for vacuum black
holes in 4 dimensions if an infinite number are aligned properly in a periodic fashion along
an axis of symmetry; these 4-dimensional solutions were later rediscovered by Korotkin
and Nicolai in [4]. Although the Myers-Korotkin-Nicolai solutions are not asymptotically
flat, but rather asymptotically Kasner, they play an integral part in an extended version of
static black hole uniqueness given by Peraza and Reiris [5]. It was conjectured in [3] that
these vacuum solutions could be generalized to higher dimensions, possibly with black holes
of nontrivial topology. One of the aims of the current paper is to confirm this to be the case.
Namely, a variety of examples are produced of 5D space-periodic static vacuum solutions
having combinations of the ring S! x 2 and sphere S3 horizon cross-sectional topologies.

Typically multiple black holes in static vacuum require conical singularities in order to
remain in equilibrium, with the singularity being interpreted as a force holding the black
holes apart. A detailed analysis of this situation was originally carried out by Bach and
Weyl [6] for the 4-dimensional case. In 5 dimensions the situation is complicated by the
fact that multiple axes may be separated by corner points, where two linearly independent
Killing fields vanish. Moreover we note that, unlike in 4D, the force along an axis is not
necessarily constant in higher dimensions. Nevertheless, balancing is shown to hold for our
examples due to periodicity and symmetry.

An asymptotically flat stationary vacuum solution which is geodesically complete, and
in particular devoid of horizons, must be Minkowski space. In 4 dimensions this is a classical
result of Lichnerowicz [7]. A modern treatment, which holds in all dimensions, shows that



this follows from the rigidity statement of the positive mass theorem [8-10] combined with
the Komar expression for mass and Stokes’ theorem. Similar results hold for the Einstein-
Maxwell equations when D = 4. However, in higher dimensional supergravity theories,
horizonless soliton solutions can possess nontrivial 2-cycle ‘bubbles’ that are supported
by magnetic flux supplied by Maxwell fields [11]. Here, a gravitational soliton refers to
a nontrivial, globally stationary, geodesically complete spacetime. In the 4-dimensional
vacuum case, it turns out that the no-solitons result above essentially holds even without
the assumption of asymptotic flatness [12, Theorem 0.1], the only difference being that the
resulting spacetime may be a nontrivial quotient of Minkowski space instead of Minkowski
space itself. It may then seem surprising that vacuum solitons do exist in 5 dimensions. In
fact, we will show that there are geodesically complete non-flat space-periodic solutions to
the bi-axisymmetric static vacuum equations. These examples may be constructed so that
the time slices have topology given by the connected sums

#* 5% % 52, (1.1)

for any k£ > 1 including k = co. Furthermore, as a corollary of these results we are able to
produce new examples of complete Riemannian manifolds of nonnegative Ricci curvature
in dimension 4, and zero Ricci curvature in dimension 5, having arbitrarily large as well as
infinite second Betti number.

This paper is organized as follows. In the next section background material needed to
state the main results is given, while section 3 is dedicated to the statement of the main
results and further discussion. In section 4, higher dimensional generalizations of the Myers-
Korotkin-Nicolai solutions are given, answering a conjecture of Myers. The construction
of space-periodic soliton solutions is also detailed in this section. Lastly, analysis of the
regularity and asymptotic properties of the solutions is given in section 5.

2 Background

Let M5 be the domain of outer communication of a stationary bi-axisymmetric
5-dimensional spacetime. The orbit space M?/[R x U(1)?], with mild hypotheses [13],
is homeomorphic to the right half plane {(p,z) | p > 0}. The vacuum Einstein equations
in this setting reduce to an axisymmetric harmonic map, with domain R? \ {z — axis}
parameterized by the cylindrical coordinates (p, z,¢). The z-axis is decomposed into an
exhaustive sequence of intervals referred to as rods, and denoted by {I';};c; for some in-
dex set I which may be infinite. Rods are divided into two types, axis rods and horizons
rods. Each axis rod T'; is defined by the vanishing of a linear combination p;dy1 + q042 of
the generators dy1, d42 of the U(1)? symmetry, where the tuple (p;, q;) of relatively prime
integers is called the rod structure of I';. By contrast a horizon rod I'j, is an interval of
the z-axis where no closed-orbit Killing field degenerates, that is p, = gn = 0, but where
0r + Q1041 + Q20,2 vanishes with J; representing the stationary Killing field, and €,
Q5 denoting angular velocities of the horizon. The intersection point of two neighboring
axis rods is called a corner and has the property that both rotational Killing fields vanish,
while the intersection point of an axis rod with a horizon rod is called a pole. In order to



avoid orbifold singularities at corner points, neighboring axis rod structures must satisfy

det ( bro ) = 1. (2.1)

Di+1 qi+1

the admissibility condition

The collection of rods and associated rod structures completely determines the topology
of horizons and the domain of outer communication, see [14] for a detailed analysis. In
particular, if the two axis rods surrounding a horizon rod have rod structures (1,0), (0,1)
then the horizon topology is that of a sphere S3, whereas (1,0), (1,0) yields a ring S* x S2,
and (1,0), (¢g,p) produces the lens space L(p,q). These are the only possible topologies for
horizon cross-sections in the 5D stationary bi-axisymmetric setting.

Recall that the stationary bi-axisymmetric vacuum Einstein equations [15, 16] reduce
to solving the following harmonic map equations

Afij — [V fin Vi fin + f Vw0 Vw; =0,

. i (2.2)
Awi — f”mV fmvkwm — f"mv fnmvsz = 0,

where F' = (f;;) is a 2 x 2 symmetric matrix which is positive definite away from the axes,
f =detF, and w = (w1, ws)! are twist potentials associated with the U(1)? symmetry.
The spacetime metric on M?® can be constructed from these quantities and expressed in
Weyl-Papapetrou coordinates by

g = e*¥(dp* + dz%) — f1p%dt? + fi;(de" + v'dt)(dg’ + vidt). (2.3)

Note that this exhibits the interpretation of rod structures as vectors (p;, q;)! lying in the
(1-dimensional) kernel of the matrix F at an axis rod I';. The functions v* and o may be
obtained by quadrature, in particular they are obtained by integrating the equations

oh=pf T fwge,  vh=—pf T gy, (2.4)
and
) - - ~ ~ 4 2
ap:8[(1og D= (og N2 Atr F E, Py tr P P P (log b 2 (wp—w2) |
B B 2 2
aZ:Z[(logf)p(logf)ertrF 'F,F 1Fz—;(10gf)z+?F Hwpws | (2:5)

where we have used the notation F~lvw := v F~'w for vectors v and w. The integrability
conditions for (2.4) and (2.5) correspond to the harmonic map equations (2.2). If I" denotes
the union of all axis rods, then the relevant harmonic map ® : R3\ I' — SL(3,R)/SO(3)
is built from (F,w) and is represented by a 3 x 3 symmetric positive definite unimodular
matrix [17, 18]. Boundary conditions are imposed on the axis in order to achieve the
desired rod structures, and the potentials w are prescribed to be constants ¢; € R? on each
axis rod I';, such that the values of the constants agree on consecutive axis rods. Hence,
the potential constants only change across horizon rods, and the difference determines the
horizon angular momentum.



Due to the axisymmetries, it is possible that conical singularities form on the axes
when constructing the spacetime metric (2.3). The conical singularity at a point (0, zg) on
an axis rod I';, with rod structure v = (v!,v?) = (p;, ¢), is measured by the angle defect
§ € (—oo,2m) associated with the 2-dimensional cone formed by the orbits of v/ Oy over
the line z = zy. This may be expressed as

27 . 27 - Radius J§ Ve pre’

—— = lim = lim —
— ] . . .lny]
2r — 0  p—0 Circumference  p—0 Fijvivd p—0\ fiv'v

(2.6)

A zero angle defect indicates the absence of a conical singularity. In this case, with the
ald of a change of coordinates from polar to Cartesian, it is straightforward to check
that this condition is necessary and sufficient for the metric to be extendable across the
axis, assuming that analytic regularity has been established. We denote by b; the value

of log (2510 on the axis rod I';, and will refer to this quantity as the logarithmic angle

defect. This is well defined since the angle defect is constant on each axis rod [19, 20]. The
conical singularity on I'; is said to exhibit an angle deficit if b; > 0, and an angle surplus
if by < 0.

3 Statement of results

The Myers-Korotkin-Nicolai solutions [3, 4] are axisymmetric static 4-dimensional space-
times balancing an infinite number of nondegenerate black holes, which are strung along
the axis of rotation at periodic intervals. The domain of outer communication (DOC)
has topology M* = R x M? with M3 = R3\ U, B3, where each 3-ball B} represents a
single black hole. These solutions are space-periodic, namely the group Z acts by isome-
tries through translations in the z-direction of the Weyl-Papapetrou coordinate system.
By taking quotients with different subgroups, solutions are obtained on DOCs having slice
topology M3 = S3\ (Sl x B? Uﬁozl Bf’) where ip > 1 is finite and B? denotes the 2-
dimensional disk. We note that this is equivalent to the complement of iy disjoint 3-balls
in a solid 3-torus.

In [3] Myers conjectured that analogues of these static vacuum solutions are possible
in higher dimensions, perhaps with black holes of nontrivial topology. Here we show that
indeed this is the case, by exhibiting a variety of such solutions. The notion of an infinite
connected sum plays a role. Without further clarification this concept can be ambiguous,
and so in section 4 a precise definition is provided.

Theorem 1. There exist reqular bi-axisymmetric solutions of the 5D static vacuum FEin-
stein equations, balancing an infinite number of spherical S® and ring S* x S? black holes

in various combinations. These solutions are space-periodic, asymptotically Kasner, and
have DOC topology M> = R x M* where

M* = #° 8% x §2\ [uﬁngf 2 (82 x BQ)]} , (3.1)

and g, jo € {0,00}, with 0 indicating the absence of the summands. Furthermore, taking
quotients with appropriate subgroups of 7 gives rise to solutions on DOCs having slice



topology
M*/~ = M\ [(T? x B) UL, Bf U, (82 x B?);], (3:2)

where 0 < ig, jo < 00 and M,;1 is either S* or #* 52 x S2% depending on whether k = 0 or
1 <k <oo. The summands of (3.1) and (3.2) are all mutually disjoint.

Each of the B} and (S? x B?); in (3.1), (3.2) represent S3 and S! x S? black hole
cross-sections, respectively, whereas T2 x B? represents an asymptotic end in a time slice
having topology R x 3. The statement of this theorem, and in particular (3.1) and (3.2), is
based on examples explicitly constructed in section 4. However, the exact fashion in which
the excisions of B*, S? x B2, and T? x B? are performed, is intentionally left ambiguous
for now.

The spacetime metrics of Theorem 1 have the following asymptotic structure in a
modified Weyl-Papapetrou coordinate system

g~ dr? 4+ 7P — PR 4 T (A1) T (dg?)?, (3:3)

where the exponents satisfy the Kasner conditions > ,p; = >,p7 = 1. For this reason,
in analogy with the Myers-Korotkin-Nicolai metrics, the solutions of Theorem 1 are re-
ferred to as asymptotically Kasner. In addition, each black hole is balanced by ensuring
that the total force exerted by all the bodies to either side along the axes sums to zero.
Mathematically, we achieve this by showing that conical singularities do not form on the
axes, due to the symmetry and periodicity of the resulting spacetime metrics. Interestingly,
these constructions can be used to show that regular horizonless static vacuum (nontrivial)
solutions exist in 5 dimensions. As discussed in the introduction, this is surprising since
similar results do not hold in 4 dimensions and all previously known 5D soliton solutions
require certain types of matter fields to support their equilibrium state.

Theorem 2. There exist regular complete bi-axisymmetric solutions of the 5D static vac-
uum Einstein equations, which are devoid of black holes. These solutions are space-periodic,
asymptotically Kasner, and have DOC topology M> = R x M* where

M* = #%° 6% x 52, (3.4)

Furthermore, given a nonnegative integer k, a quotient may be taken by kZ to obtain
solutions on DOCs having slice topology

M*/~ = M\ (T? x B?), (3.5)
where M,;l is either S* or #% 5% x 52 depending on whether k=0 or 1 < k < co.

These soliton solutions may be parlayed into new examples of complete Riemannian
manifolds of nonnegative Ricci curvature in dimension 4, and zero Ricci curvature in dimen-
sion 5, having arbitrarily large, as well as infinite second Betti number. Previous examples
with positive Ricci curvature have been constructed by Sha and Yang [21] on related topolo-
gies, via different methods. In our setting, consider a static spacetime (R x M*, —w?dt>+g)

satisfying the vacuum Einstein equations
_ Vijw

Rij o Agw = 0. (3.6)



The conformal metric § = wg then has nonnegative Ricci curvature. To see this, recall
how the Ricci tensor changes under a conformal deformation. Namely, if § = e?*#g then

Rij = Rij — 2 (Vige — pios) — (Bgp + 2|Vl i (3.7)

Setting ¢ = %logw produces

Ri; = ;(log w);(logw);. (3.8)

This may then be applied to the solitons of the previous section, where the function w is
smooth, space-periodic, and strictly positive. The conformally deformed time slice metrics
of the solitons then provide examples of nonnegative Ricci curvature on the topologies
#>°52% 8% and #* 5% x S\ (T?x B?) for any k > 0. Lastly, consider the soliton spacetimes
and perform a Wick rotation ¢ + /—1s, where identifications are then instituted along
the s-coordinate so that it may be viewed as parameterizing a circle. This transformation
preserves the Ricci flat condition. We then obtain complete Ricci flat metrics on St x
#>82 x §2 and S' x [#k S% x §%\ (T? x Bz)] for any k > 0. The following corollary
summarizes this discussion.

Corollary 3. (i) There exists a smooth complete bi-axisymmetric Riemannian metric of
nonnegative Ricci curvature on the following manifold of infinite topological type #°° S? x
S2. Furthermore the metric is periodic, so that taking quotients as in Theorem 2 produces
metrics of the same type on

#k 52 5 82\ (T% x B?), (3.9)

for any k > 0.

(ii) There exists a smooth complete tri-axisymmetric Riemannian metric of zero Ricci
curvature on the following manifold of infinite topological type S* x #°° 5% x S?. Further-
more the metric is periodic, so that taking quotients as in Theorem 2 produces metrics of

the same type on
St [#E 57 x S2\ (1% x B2, (3.10)

for any k > 0.

4 Space-periodic solutions

In this section we will present a series of examples illustrating Theorems 1 and 2. All of
the examples presented below are 5-dimensional bi-axisymmetric static vacuum solutions
expressed in Weyl-Papapetrou coordinates (2.3). The metric along the torus fibers will be
given by a diagonal matrix function F' = (f;;), namely

e 0
e (50) o
where v and v are harmonic functions on R3\ I" so that the harmonic map equations (2.2)
are satisfied (note that |w| = 0 in the static setting). This ansatz implies that the axes
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Figure 1. Rod structure for Example 1. Here, as in future rod diagrams, the z-axis is drawn
horizontally and the zigzag lines indicate horizon rods. The z-coordinates of the end points of the
horizon rod in the fundamental domain are indicated above the z-axis, while the rod structures of
the axis rods are indicated below.

can only exhibit the two rod structures (1,0) or (0,1). For an axis rod I'y having the
rod structure (1,0), and an axis rod I'y having the rod structure (0,1) we find that the
corresponding logarithmic angle defects (2.6) are given by

1 1
b1 = lim (logp—l— a— u) on Iy, by = lim <logp +a— v) on I's.
p—0 2 p—0 2
(4.2)
In the examples below, the functions u and v will be periodic in the z-direction by con-
struction. The function «, obtained by quadrature from (2.5), will then be shown to also
possess the same periodicity, yielding the desire space-periodic static vacuum spacetimes.
Geometric regularity of the solutions is established by eliminating the possibility of conical
singularities along the axes. This is achieved by utilizing the three degrees of freedom

obtained by adding constants to u, v, and a.
Let 2z, = z — a and r, = \/p? + 22. In what follows, the potential

Ur =log(rq — zq) — log(ry — 2p) (4.3)

for a uniform charge distribution along a finite interval I = [a,b] of the z-axis, will be
utilized repeatedly. Observe that this function satisfies the properties

Ur <0, U ~2logp mear I, Ur = (a=b)/r+0(r%) as 1 — oco. (4.4)

Furthermore, due to the diagonal structure of F', the equations (2.5) defining a simplify to

a, = g [uz —u? + vg — 02 upv, — U, — Z(up + vp)] ,
, ) (4.5)
=7 [2upuz + 20,0, + upv; + uzv, — ;(uz + vz)] )

Example 1 (String of black rings). We begin with a direct generalization of the Myers-
Korotkin-Nicolai construction. It represents an infinite string of identical black rings
equally spaced along the z-axis. For each j € Z consider axis rods I'; = [(2j—2)L+m, 2jL—
m| with rod structure (1,0) along the z-axis, and horizon rods I; = [2jL — m,2jL + m],

see figure 1. Set

j=—n

: “ m
u= lim (Z Ur, —|—2(1—L) logn) , v =0, (4.6)



and note that for (p, z) fixed and large j we have by (4.4) that Ur, ~ %‘LL, so that the
additional term 2(1 — *)log n renormalizes the divergent series of harmonic functions to
yield a finite harmonic limit away from I'. Near each I'; the asymptotics for this function
are u ~ 2log p, so that the desired rod structure is exhibited by F in (4.1). The functions
u and v are 2L-periodic with a fundamental domain |z| < L. The fundamental domain
contains a single horizon rod [—m, m] where m < L, representing horizon topology S* x 52.
Next observe that since v and v are even in z with respect to the origin, the right-hand

side of the second equation of (4.5) is odd in z which yields

/L a,dz =0. (4.7)
L
It follows that « is periodic in z with period 2L. Moreover, by periodicity of the resulting
spacetime metric, if the angle defect of a single axis rod vanishes, it will vanish for all. In
light of (4.2), we may then add a constant to « if necessary to achieve this balancing at
all axis rods.

In section 5 it will be shown that this solution is asymptotically Kasner. In order to
aid with the proof of this statement, here we compute the asymptotics of the harmonic
function

u~2<1—TZ>logp as  p— 00. (4.8)

To see this, first note that v may be expanded in terms of modified Bessel functions of order
zero. It may then be shown that the coefficients of those that have exponential growth
must vanish, since basic estimates using the definition (4.6) imply that exponential growth
is not possible. From the expansion, we then have that the leading order term is a multiple
of log p. Consider now the average of u in the z-direction

1
u=o7 /—L udz. (4.9)

This is a function of the single variable p and satisfies

1

o+ ;apa =0, (4.10)
and so is interpreted as a radial harmonic function in 2-dimensions. It follows that u =
a + blog p, for some constants @, b. Taking the limit p — 0, and using that u ~ 2logp
upon approach to the axis rods I'j, we obtain pd,u — 2(1 — 7*) which yields the desired

conclusion. It then follows from (4.5) that
aw—% (1—?) logp as p— oo. (4.11)
Following [14] we may compute the topology of the domain of outer communication.
First note that by filling in each horizon rod with an auxiliary axis rod having rod structure
(0,1), we obtain an orbit space with an infinite string of alternating (1,0) and (0, 1) rods.
As will be described in Example 2 below, this is the orbit space for an infinite connected
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Figure 2. Rod structure for Example 2.

sum #>° 5% x S2. Since each horizon fill-in corresponds to an S? x B2, it follows that the
DOC slice topology is given by

M* = #°82 x §2\ U2, (52 x BY)]. (4.12)

Furthermore, we may use periodicity to take quotients and obtain DOCs having the follow-
ing slice topologies. If the quotient is associated with a single fundamental domain, as in
figure 1, then upon identifying sides (with the horizon filled in) the orbit space becomes an
annulus with outer boundary consisting of two axis rods of rod structure (1,0) and (0, 1).
This represents S*\ (T? x B?). If the fundamental domain contains two horizons, then
the corresponding slice topology, with horizons filled in, is S? x S2\ (T? x B?). Increasing
the number of horizons in a fundamental domain increases the number of factors in the
connected sum of S? x S? with itself. Finally, removing the horizon fill-ins leads to DOC
slice topologies

M4/~ = M [(T% x B UEE! (82 x BY)] (4.13)

where M,;l is S*if k =0, and #k5'2><52 ifk>1. O

Remark 1. Since v = 0, it is clear that the space-periodic solution constructed in Example
1 is simply the product of the 4D Myers-Korotkin-Nicolai solutions [3, 4] with a circle of
constant length.

Example 2 (String of corners, the soliton). To construct the rod structure place a corner at
z = jL for each j € Z along the z-axis. The rod structure will be (1,0) on I'y; = [25L, (25 +
1)L] and (0,1) on I'gjy1 = [(25 + 1)L, (25 + 2)L] for all j € Z, see figure 2. In order to
realize this set of rod structures with the fiber metric F' of (4.1), define harmonic functions

u= lim (Z Ur,, + log n) , v= lim (Z Ury, ., + log n) . (4.14)

Jj=—n J=n

As in Example 1, the logn term renormalizes the sum to ensure convergence. Observe that
these functions are periodic in the z-direction with period 2L. Within the fundamental
domain of figure 2, there are two axis rods. It suffices to resolve the conical singularity on
these two rods, since this will then be propagated to the remaining rods by periodicity. In
order to achieve this, we can arrange for by = by = 0 in (4.2) simply by adding appropriate
constants to v and v. Furthermore, note that the functions v and v are even with respect to
the line z = L/2, and hence the analogue of (4.7) holds here, showing that the function «



0,1)

Figure 3. Rod diagram for the connected sum of $*\ 72 x B% and 5% x S2.

is 2L-periodic in the z-direction. It follows that we obtain a regular space-periodic solution
of the static vacuum Einstein equations without horizons.

Let us now analyze the topology of the DOC time slice M*. Consider the discrete
isometry group Z acting on M* by n : z — z + 2nL. This action is clearly properly
discontinuous, hence the quotient M* / ~ is a Riemannian manifold. The fundamental
domain of the covering map M* — M*/ ~ corresponds in the pz-half-plane to the horizontal
strip —L/2 < z < 3L/2, having with two corners. This is topologically a closed disk with
two corners on the outer boundary, with a smaller central disk removed. The closed disk
with two corners is the orbit space of S* under the 72 action. Therefore the topology of
the quotient space is M*/~ = §*\ T? x B2 This is the case k = 0 in (3.5).

We can also take a quotient by any subgroup (k + 1)Z with & > 1. The fundamental
domain will have 2k 4+ 2 corners. Next, it will be shown that the act of adding 2 corners
corresponds topologically to taking the connected sum with S? x S2. To see this, first note
that the rod diagram of S? x S? is a disk with 4 corners, with alternating (1,0), (0,1)
rod structures. Moreover, the connected sum operation between two 4D toric manifolds
may be described within the orbit space as follows. Namely, excise a corner from each rod
diagram so that the cutting curves lift to S® boundaries and then glue along these cuts,
see figure 3. Performing this operation on the two rod diagrams of the figure yields a disk
with 4 corners, with a central disk removed. This orbit space arises from the fundamental
domain of the group action with k& = 1. Clearly this process can be repeated indefinitely
by induction, and corresponds to (3.5) with k& > 1.

To obtain (3.4) we need to clarify the definition of an infinite connected sum, since there
seems to be some ambiguity on this topic in the literature. Consider an increasing sequence
of Riemannian manifolds Ny C No C ---. Then N = U;N;, endowed with the natural
topology, namely the smallest topology which makes every inclusion N; < N continuous,
is a Riemannian manifold. This construction may be applied to infinite connected sums as
follows. Let M, be manifolds of the same dimension, and set

Nj = (#_, M) \ B, (4.15)

~10 -
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Figure 4. Rod diagram for #°° 52 x S2.

where B is a ball. Then N gives rise to an increasing sequence and we can define #:°, M; =
N. Note that with this definition, the infinite connected sum of S?’s is a plane. To get the
punctured plane, we would have to carry out this process twice.

Now consider the original time slice M* and its rod diagram, the pz-half-plane with
corners at integer multiples of L on the z-axis. Draw concentric half circles centered at the
origin with radii 1/2+j, j = 1,2,.... These cut the half-plane into infinitely many regions
Aj, 7 = 1,2,..., as in figure 4. The first one, A;, has three corners and its boundary
corresponds to an S3. Therefore it represents (S? x S?)\ B. Each of the next A;’s, j > 2
has two corners and two S% boundaries. Hence, as described above N; = (#7/ 5% x S$2)\ B.
We conclude that the whole half-plane is the quotient space of #°° 52 x S? under the
T? action.

The space-periodic soliton solution constructed here is asymptotically Kasner. This
will be established in the next section. Here, as in Example 1, we simply record the
asymptotics of the coefficient functions that appear in the spacetime metric (2.3). Namely,
following the arguments given in the previous example shows that

1
u ~ log p, v ~ log p, a~—7 log p as p — 0. (4.16)
]

Example 3 (String of spheres). Consider now the rod structure of figure 5. All horizon
rods (zigzag lines) are of length 2m and border two axis rods on both sides, with each axis
rod having length L — m. The period is then 2L, and a fundamental domain is shown
shaded in grey. The given rod structures imply that the horizon rods represent S horizon
cross-sections. Thus, this rod diagram described an infinite collection of spherical horizons
evenly spaced along the z-axis. As in Examples 1 and 2, we can define appropriate 2L-
periodic harmonic functions u and v, as renormalized series involving the functions Ur,, in
order to realize the desired rod structures. Observe that within the fundamental domain
there are precisely two axis rods, one with rod structure (1,0) and the other with rod
structure (0,1). Therefore we may use the free constants available within the definitions
of u and v, in order to resolve the possible conical singularities on these axes by ensuring
that by = by = 0 in (4.2).
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| |
| |
: Fundamental domain :
| |
| |
| |

—92L —-m +m 2L
(1,0) (0,1) (1,0) (0,1) (1,0)  (0,1) (1,0) (0,1)

Figure 5. Rod structure for Example 3.

We now show that «, given by (4.5), is 2L-periodic in the z-direction. To do this note
that by construction of u and v, the following reflection symmetry about the line z = 0
is manifest

u(p,z) —v(p,—z) =c, (4.17)

for some constant c. It follows that

uP(ﬂ? Z) = vP(ﬂ? _Z>7 uz(p7 Z) = _Uz(p, _Z)' (418)

Thus we have

0 L 0 L
/ upu, dz + / Vv, dz =0, / Vv, dz + / upuydz =0 (4.19)
L 0 —-L 0

Adding these together produces
L
/ (upuz + vpv,) dz = 0. (4.20)
~L
Moreover, (4.17) implies that u + v is even in z, and hence u, + v, is even while u, + v, is
odd. Substituting into (4.5) yields

L L 2
/ o,dz = g/ [(up +vp) (us + v2) + (upus + vpv5) — ;(uz + vz)] dz=0, (4.21)
—L —L

which gives the desired periodicity in the z-direction for . The spacetime metric (2.3)
arising from wu, v, and « is then space-periodic. Furthermore, the following asymptotics hold

U~ (1—?) logp, v~ (1—72) log p, aw—i (1—1—321) <1—TZ) logp as p—o0.
(4.22)

These will be used in the next section to show that the metric is asymptotically Kasner.
To analyze the time slice topology of the domain of outer communication, observe that
each horizon rod may be filled-in by extending the two neighboring axis rods and adding
a corner in the middle. In the total space this is equivalent to filling-in the horizon with
a 4-ball B*. The resulting rod structure is an infinite sequence of alternating (1,0), (0,1)
rods, which was shown in the previous example to correspond to an infinite connected sum

of S§2 x S2. Therefore we find that the time slice topology is

M* = #° 5% x %\ (U, B}). (4.23)
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Fundamental domain

-m +m 2L
(1,0) (0,1) (1,0) (0,1)

Figure 6. Rod structure for Example 4.

Furthermore, using the periodicity we may take quotients by (k + 1)Z to obtain solutions
having slice topology
M4/~ = M [(T% x B2 UL B, (4.24)

where M,f is either % or #* 52 x S2 depending on whether k=0 or 1 < k < oc. O

Our last two examples are presented very briefly since by now the technique is clear.
They are very similar to the examples above, and are in fact somewhat simpler since they
contain no corners as in Example 1, and do not make use of the more complex symmetry
used in Example 3.

Example 4 (String of double spheres). The rod diagram for this example is very similar
to the one for Example 1. The only difference is that the rod structure of every other
axis rod is changed to (0,1). Consequently the horizons now have topology S%, and the
fundamental domain is —L < z < 3L, see figure 6. There are two axis rods in each
fundamental domain, and hence the conical singularities can be cured by choosing the free
constants within the definition of u and v appropriately. Furthermore, the functions v and
v are clearly symmetric in the z-direction across the line z = L. As in previous examples
this implies that
3L
/ adz =0, (4.25)
L
so that « is periodic with period, 4L, as exhibited by u and v. To compute the DOC
time slice topology, we can fill-in each horizon rod by extending the neighboring rods
and adding a corner in the middle. This leads to (4.23). Moreover, taking a quotient
by (k + 1)Z produces (4.24) with 2(k + 1) balls removed instead of k + 1. Lastly, the
asymptotics of the relevant functions agree with those of (4.22), which ensures that the

solution is asymptotically Kasner.
O

Example 5 (String of black Saturns). Consider the rod diagram of figure 7. The fun-
damental domain is |z| < 3L, so that the harmonic functions v and v are 6L-periodic in
the z-direction. Furthermore, these functions are clearly symmetric with respect to the
line z = 0, and hence « is periodic with the same period. There are three axis rods in a
fundamental domain. One can cure the conical singularities in two of these using the free
constants available in the definitions of u, v, and «, and use the symmetry to conclude
that the last axis rod is also regular. Horizon rods surrounded by (1,0) and (0,1) axes
correspond to S%’s, while horizon rods surrounded by (0,1) axes correspond to S' x $?’s.
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Fundamental domain

—92L —-m +m 2L
(1,0) (0,1) (0,1) (1,0)

Figure 7. Rod structure for Example 5.

Thus, we obtain an infinite collection of black Saturns, a spherical horizon together with a
ring horizon, aligned along the z-axis. The spherical horizons may be filled-in with 4-balls
and the ring horizons may be filled-in with B? x T?’s, resulting in an infinite connected
sum of S? x §%’s. Hence

M* = #° 8% x S2\ [UR B U2, (82 x BY),] . (4.26)
Moreover, taking a quotient by (k + 1)Z yields
M/~ = 182 5 820\ (12 % B?) UG B UM (5% % B),]. (4.27)
Lastly the asymptotics are given by

2(1—’")1 4(1—m)1 2 <2+7m) (1—m>1 =
un g (1= Jlogp, v~ g (1= Jlogp, an—g (24 T )logp as p—oo,
(4.28)

which guarantees that the solution is asymptotically Kasner.
O

Remark 2. Clearly, many more such examples can be construed. It would be interesting
to classify all possible examples in 5D. Furthermore, similar and even more convoluted
examples should be possible in higher dimensions. In order to use the same techniques as
presented here, for the higher dimensional setting the axisymmetry should be such that
the orbit space is still 2-dimensional.

5 Regularity and asymptotics

In this section, we show that the solutions we construct in section 4 are geometrically reg-
ular. This means that the apparent metric singularities that occur on the axes, corners,
and poles are simply coordinate singularities, so that after an appropriate change of coor-
dinates the metric is smooth. This will follow from the balancing of conical singularities on
the axes. Furthermore, in this section we will show that the solutions constructed exhibit
Kasner asymptotics. In addition, the soliton example will be transformed into Rieman-
nian manifolds of nonnegative and zero Ricci curvature, having arbitrarily large second
Betti number.
Recall that the relevant spacetime metrics take the form

g = —e "TVprdt? + 2 (dp?® + d2?) + edg? + eVdi?, (5.1)

on the DOC R x M* where M* has topology given by Theorems 1 and 2. Here the two
rotational Killing fields are d4 and 0y.
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5.1 Regularity

The metric (5.1) is clearly static and bi-axisymmetric, and since u and v are harmonic with
« satisfying (4.5) this is a solution of the vacuum Einstein equations. Since u and v remain
bounded on any horizon rod I'y,, we have that J; becomes null there, and hence each such
rod represents a Killing horizon. To examine regularity on the interior of horizon rods,
observe that integrating (4.5) implies & = —3(u + v) — logc on Ty, for a constant ¢ > 0
that coincides with the horizon surface gravity [13, appendix]. It follows that

— e UPAE + X (dp? + d2?) = o e (= p2de + dp? + 7). (52)

Introducing Kruskal-like coordinates X,Y > 0 defined by XY = p?, X/Y = €2 then
produces
g=c2e v (dXdY + sz) + etdp? + eV du)? (5.3)

on the interior of I'y. It follows that conical type singularities do not occur on horizon rods
and the metric is smooth there, as a consequence of the Einstein equations (and scaling of
the time coordinate), rather than the balancing of certain parameters. Regularity of the
solution at axis rods, corners, and poles, however, does rely on the balancing of parameters
to relieve singularities, as we show below. It should be noted that for general metrics,
solid (higher dimensional) cone angles can simultaneously occur independently of whether
internal axis conical singularities are present. On the other hand, since the metric (5.1)
satisfies the Einstein equations, in particular due to the relation between o and wu, v, this
independence of the two types of cone angles does not occur. That is, balancing of the axis
cones implies balancing of the solid cones for the solutions we consider.

Theorem 4. The static vacuum spacetimes constructed in Examples 1-5 are geometrically
reqular. More precisely, any degeneracy appearing in the Weyl-Papapetrou expression of
the metric (5.1), arises solely as a coordinate singularity.

Proof. It remains to check regularity at the interior of axis rods, and in neighborhoods of
corners and poles. Consider first a small neighborhood V, € M®/[R x U(1)?] of an interior
point to an axis rod I';, with the property that ¥V does not intersect the endpoints of I7;.
We may assume without loss of generality that the rod structure of I'; is (1,0). Then
u = 2log p + u within V, \ I';, where u and v are smooth within V,. Indeed, this is clear
for v since V, does not intersect axis rods where v blows-up, and the statement is valid for
u since u — 2log p is bounded and harmonic on V, away from a set of codimension 2 [22,
Lemma 8]. Substituting u = 2log p + u into (4.5) produces

1 P
_ _= ~2 _ =2 2 2, = =
ozp—fup+f(upfuz+vpfvz+upvpfuzvz>,

% ;1) (5.4)
a, = iaz + 1 (2ﬂpﬂz + 20,v,u,v, + ﬂz“p) .

It follows that a = $u+ c+ O(p?) in V,, for some constant c. The spacetime metric within
the lift of V, may then be expressed as

g = —e TVt 4 2tTTOW) (g2 4 422 4 p2etdg? + eVdip?. (5.5)
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Since there is no conical singularity present on I';, we must have ¢ = 0. Furthermore, the
change of coordinates © = pcos ¢, y = psin ¢ yields

O 42 4 p2etdg? = e (dSL'2 + dy2) +0(1) (zdx + ydy)* . (5.6)

It follows that the metric (5.1) is smooth within the interior of axis rods.

Next consider V. € M5/[R x U(1)?] be a neighborhood of a corner, which separates
two axis rods: I'y to the north (without loss of generality) having rod structure (1,0),
and axis rod I'y to the south having rod structure (0,1). Let V. be small enough so that
u = log(r — z) + u, and v = log(r + z) + v where u and v are smooth. The origin of the
coordinate system is centered at the corner point. Insert these expressions into (4.5) to find

o H) =z e
Qp = 2r2+ 1 Up + ™ vp+4r(uz v,) + O(p), -
oz 42 (=2 p, , :
Ay = 22 + Ar Uy + dr Uy Ar (Up Up) =+ O(p )
On V. we then have
[ S 5 P (e P 2
a——zlogr—l- e (w—u(0)) + i (v—20(0)) + c+ O(p*), (5.8)

for some constant ¢ and where %(0), v(0) denote these functions evaluated at the corner.
Using these expansions the spacetime metric then becomes

g=—e VAt 4 (r — 2)e"d¢® + (r + 2)e"dip?

+rlexp (20 + (r;z) (@ — u(0)) + (""2_762) (@ —0(0)) + O(p2)) (dp? + d2?).

(5.9)

The absence of a conical singularities on the two axis rods I'1, I'y implies that «(0) = v(0)
and 2e%¢ = ¢%(0) = ¢2(0) Observe that the geometric angle at the pole between the two
axis rods is 7/2, and not 7 as it is in the quotient space. This motivates the change to new
coordinates £, > 0 given by z + ip = %(5 +4n)?, or rather p = &, 2 = % (§2 — 772). We
then have

g:_e—ﬂ—ﬁdt2+n2€ﬁd¢2+§Qe’fjd¢2

2 2
+exp (u(O)

o n (5.10)
+W(U—U(O))+W

(9-0(0))+0 (W)) (dg? +dn?).

Next define two pairs of Cartesian coordinates x1 = 1 cos ¢, y; = nsin ¢, and xo = £ cos 1,
yo = Esiney with

dn® + n?de* = dol +dyi,  n*dn® = (w1dzy + yidyr)?, (5.11)
de? + E2dy? = dxd + dy?, E2dE? = (xadxy + yodyn)?. (5.12)
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It follows that

i . @ —v—u(0) + (0
g=—e "Udt* 4 " (n2d¢>2+dn2+0<u USQUJE;Q o )+£2> 772d772>

+ 61_) <§2dw2 + d§2 +0 (u — V= U(O) + U(O) + 772) €2d£2)
s
= — e TV 4 et (d:n% +dy? +0 <f2) (r1dxy + yldy1)2>

+eé° (dx% +dy + O (fQ) (wodxo + y2dy2)2) )

(5.13)

where 72 = (22 + y?) and we have used the fact that @ — v is smooth at the corner.
Therefore the metric (5.1) is regular near corner points.

Now let V, € M®/[R x U(1)?] be a neighborhood of a pole, separating an axis rod
I'; to the north (without loss of generality) having rod structure (1,0), and a horizon rod
I';, to the south. As before, the neighborhood V, may be chosen small enough so that
u = log(r — z) + u, where u and v are smooth. Here the origin of the coordinate system is
centered at the pole. Substituting this into (4.5) produces

b a (=P .
E—Y o T 2 z z b
a, 5,2 T 5, + p— + 4r( Uy +v;) + O(p) (5,10
z z_  (z—7) P ‘
0e = =gt g et g e g (2t 0) +0(7).
It follows that in V, we have
o= —Liogr+ Z(a—a(0) + Ew—v(0)) + e+ O(A) (5.15)
2 2r 4r ’

for some constant ¢ and where %(0), v(0) denote these functions evaluated at the pole.
With these expansions the spacetime metric then takes the form
2 ,—u—v B
g=—"———dt? + (r — 2)e"d¢? + e’ d)?

(z—1)
2r

(5.16)

z
+rtexp <20 + 2@ - () + (v — v(0)) + O(p2)> (do? + d22).
The absence of a conical singularity on the axis rod guarantees that 2¢2¢ = ¢%(©). As above
we are motivated to change to new coordinates &, > 0 given by z +ip = (£ + in)?, or
rather p = 2¢n, z = €2 — n?. This yields

g=—282e"Vdt? +2nPetdp® + eV dup? (5.17)
2 2
+2exp (u(O) + . (u—u(0))— ﬁ(ﬁ—i—v —u(0)—v(0))+0O (52772)> (d&? +dn?).

Next consider Cartesian coordinates x = ncos ¢, y = nsin ¢, and Kruskal-like coordinates
X,Y >0 with XY = €2, X/Y = exp (2156’@(0)’%”(0)), so that

d® +?d¢® = da® + dy?,  nPdnp? = (adz + ydy)?, (5.18)
] 1
de? — e 20— e2q42 — gX Y, £2de? = L (YdxX + Xdy)2 (5.19)
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It follows that
2u+v—2u(0) —v(0)
62 + n?
2u+v—2u(0) —v(0) 2> 2> 9
+ xdx +yd +evdip”.
1 &) ( ydy) Y
Since 2u+wv is a smooth function at the pole we find that the error terms above are regular,

g = 2eTmvH2u(0)+v(0) (dXdY +0 ( + 772) (YdX + XdY)Q)

(5.20)

+ 26" <dx2 +dy* +0 (

and hence the metric (5.1) is smooth near horizon poles. O

5.2 Asymptotics

Here we show that the solutions constructed in section 4 exhibit Kasner asymptotics. Recall
that the Kasner metric on R™! is given by

n
gk = —dt* + > _tPidx;. (5.21)
i=1

This satisfies the vacuum Einstein equations precisely when the Kasner conditions hold:

n n
> pi=1, dopi=1 (5.22)
i=1 =1

The space-periodic solutions that we produce have metrics of the form (5.1), where the
asymptotics of the coefficients as p — oo are given by

u ~ Alog p, v ~ Blogp, a~ Clogp, (5.23)
with A, B > 0 and
1
= (4% + B2+ AB - 2(A + B)). (5.24)
It follows that
g~ p?C(dp? + dz?) — p* A7 Bdt? + pAde? + pPdy?. (5.25)
Since g is a solution of the vacuum Einstein equations, it is not surprising that the powers
of p in the above expression satisfy the Kasner conditions. Indeed, set 7 = p¢*! and
observe that C' 4+ 1 > 0 together with
2 2C 2 2-A-B 2 _A 2 _B_ 2
g~ dr® 4+ 70 dz* — 77 CHT dt° + 7T+ dpT + TTH di)”. (5.26)

It may then be verified that the Kasner conditions (5.22) hold for any values of A and B,
as long as C is given by (5.24). In this way, the solutions of section 4 are asymptotically
Kasner. Note, however, that the role of ‘time’ is played here by the spatial variable p when
the metric is viewed within the Kasner context.
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