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them to the electroweak scale, where we match them to effective dimension-six, -seven,

and -nine operators. In the next step, after renormalization group evolution to the QCD

scale, we construct the chiral Lagrangian arising from these operators. We develop a

power-counting scheme and derive the two-nucleon 0νββ currents up to leading order in

the power counting for each lepton-number-violating operator. We argue that the leading-

order contribution to the decay rate depends on a relatively small number of nuclear matrix

elements. We test our power counting by comparing nuclear matrix elements obtained by

various methods and by different groups. We find that the power counting works well for

nuclear matrix elements calculated from a specific method, while, as in the case of light

Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by

factors of two to three between methods. We calculate the constraints that can be set

on dimension-seven lepton-number-violating operators from 0νββ experiments and study

the interplay between dimension-five and -seven operators, discussing how dimension-seven

contributions affect the interpretation of 0νββ in terms of the effective Majorana mass mββ .
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1 Introduction

The neutrino oscillation experiments of the last two decades have shown that neutrinos

are massive particles, requiring an extension of the minimal version of the Standard Model

(SM) of particle physics. Neutrinos could have a Dirac mass term, as all other fermions in

the SM. This would require including sterile, right-handed neutrinos in the SM Lagrangian,

whose only purpose is to generate a neutrino mass. Yet neutrinos are the only observed

fundamental and charge-neutral fermions, so they could instead have a Majorana mass.

In the SM, a Majorana mass term is forbidden by the neutrino SU(2)L × U(1)Y quantum

numbers, making it impossible to construct a gauge-invariant, renormalizable mass opera-

tor in terms of left-handed νL fields. Thus, in the SM one can distinguish neutrinos from

antineutrinos, and define a quantum number, lepton number (L), which is conserved at

the classical level. L is, however, an accidental symmetry of the SM. As soon as one in-

troduces non-renormalizable operators, which parameterize physics at energy scales much

larger than the electroweak scale, L is broken [1], and neutrinos acquire a Majorana mass,

inversely proportional to the scale of new physics Λ. The smallness of the neutrino mass

might therefore offer a unique window on high-energy physics.

Neutrinoless double beta decay (0νββ) experiments are the most sensitive probe of

lepton number violation (LNV). In this process two neutrons in a nucleus turn into two

protons, with the emission of two electrons and no neutrinos, violating L by two units.

The observation of 0νββ would have far reaching implications: it would demonstrate

that neutrinos are Majorana fermions [2], shed light on the mechanism of neutrino mass

generation, and give insight on leptogenesis scenarios for the generation of the matter-

antimatter asymmetry in the universe [3]. The current experimental limits on the half-

lives are already impressive [4–13], at the level of T 0ν
1/2 > 5.3 × 1025 y for 76Ge [12] and

T 0ν
1/2 > 1.07 × 1026 y for 136Xe [13], with next generation ton-scale experiments aiming at

a sensitivity of T 0ν
1/2 ∼ 1027−28 y.

By itself, the observation of 0νββ would not immediately point to the underlying

physical origin of LNV. While 0νββ searches are commonly interpreted in terms of the

exchange of a light Majorana neutrino, in generic beyond-the-SM (BSM) models, 0νββ

receives contributions from several competing mechanisms (for a review see ref. [14]). Well-

studied examples are left-right symmetric models [15–17], which contain an extended gauge

and Higgs sector, as well as heavy right-handed Majorana neutrinos. In these models light

Majorana neutrinos acquire mass via the type-I see-saw (via right-handed neutrinos) and

/ or the type-II see-saw (Higgs triplet) and can mediate 0νββ. In addition, however, 0νββ

receives contributions from the exchange of heavy right-handed neutrinos, mediated by the

gauge boson of the additional SU(2)R gauge group, from the mixing of light- and -heavy

neutrinos or from the exchange of Higgs triplets [14, 18–20]. Depending on the masses of

the right-handed neutrinos and gauge boson, and on the Yukawa couplings of the left- and

right-handed neutrinos to the Higgs, 0νββ can be dominated by light-neutrino exchange,

heavy-neutrino exchange, or receive several contributions of similar size.

Keeping explicit model realizations in mind, in this paper we investigate 0νββ in the

framework of the SM Effective Field Theory (SM-EFT) [1, 21]. In this framework, the
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SM is complemented by higher-dimensional operators, expressed in terms of SM fields and

invariant under the SM gauge group. The coefficients of these operators are suppressed

by powers of the scale Λ at which new physics arises. There is a single gauge-invariant

dimension-five operator [1]. This operator violates L by two units, and, as already men-

tioned, provides the first contribution to the neutrino Majorana mass. Going further,

there are no ∆L = 2 dimension-six operators [21, 22], but there are several at dimension-

seven [23], and -nine [24, 25], and higher [26].1 Notice that here we are not extending the

SM field content with a light right-handed neutrino, but the construction of the effective

operators can be generalized to include it [28].

We systematically study the constraints on SU(2)L×U(1)Y -invariant dimension-seven

operators from 0νββ. After defining the operator basis in section 2, in section 3 we integrate

out heavy SM degrees of freedom, such as the Higgs and the W boson, and match onto a

low-energy ∆L = 2 Lagrangian that only contains leptons and light quarks, suitable for the

descriptions of low-energy processes such as double-beta decay. The resulting Lagrangian

contains the neutrino Majorana mass and transition magnetic moments, dimension-six

and -seven semileptonic four-fermion operators, as well as dimension-nine six-fermion op-

erators. Of these operators, those of dimension-six and -seven give rise to non-standard

∆L = 2 single beta decay and to long-range neutrino-exchange contributions to 0νββ not

proportional to the neutrino mass. Instead, the dimension-nine operators, which involve

four quarks and two electrons, induce new 0νββ contributions without the exchange of

a neutrino.

In section 4 we match the quark-level ∆L = 2 Lagrangian onto Chiral Perturbation

Theory (χPT), the low-energy EFT of QCD, and we discuss the hadronic input needed to

constrain dimension-seven operators. In section 5 we introduce a power counting and derive

the neutrino potentials in χPT up to the first non-vanishing orders. The power counting

reduces the number of matrix elements that are relevant at leading order in the chiral

counting. The contribution of dimension-six ∆L = 2 operators to 0νββ was considered

in refs. [18, 29–32], while six-fermion dimension-nine were studied in refs. [24, 30–36]. In

section 5 we discuss similarities and differences between the neutrino potentials we obtain

and the existing literature.

In section 6 we obtain our main result which is the derivation of the master formula for

0νββ half-life up to dimension-seven in the SM-EFT expansion and the first non-vanishing

order in χPT. For earlier versions of such formula see, for example, refs. [29, 35]. The

master formula includes the following important effects:

• QCD renormalization group evolution of the dimension-seven operators from the

high-energy scale to the weak scale, followed by the QCD evolution of the induced

dimension-six, -seven, and -nine operators from the weak scale to the QCD scale.

• Up-to-date hadronic input for the low-energy constants, which are becoming increas-

ingly under control. We find that nine low-energy constants are needed. Six of

these are well-known from either experimental or lattice QCD (LQCD) input, while

1All L = 2, B = 0 operators have odd dimension [27].
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we estimate the remaining three with naive dimensional analysis. The reader is re-

ferred to table 2 as well as figure 5 which illustrates the impact of the uncertainty

on the unknown low-energy constants on the constraints on a particular ∆L = 2

Wilson coefficient.

• Consistent power-counting in the chiral effective theory for the neutrino potentials

induced by the dimension-seven operators, see table 4. For some operators we find

the first non-zero contributions in 0+ → 0+ transitions to arise at next-to- or next-

to-next-to-leading order in the chiral expansion.

• Long-distance contributions arising from either neutrino or pion exchange. When

the latter is chirally suppressed, subleading short-range pion-nucleon and contact

4-nucleon contributions are considered. The full interference of all effects is included.

We find the master formula to depend on only a handful of nuclear matrix elements,

a smaller set than typically considered, and we perform comparisons of calculations of the

nuclear matrix elements already existing in the literature (see table 5 and figures 3 and 4).

We test our power counting explicitly by comparing the sizes of different matrix elements

and by comparing matrix elements related by symmetry. Bounds on the induced dimension-

six, -seven, and -nine operators, as well as the original dimension-seven operators, are

obtained in section 7 and presented in tables 6 and 7 and range from tens to hundreds

of TeV, assuming a single dimension-seven operator (tables 7 and 6) or single induced

operator (table 6) turned on at a time. In section 8 we discuss scenarios in which both

a light Majorana neutrino mass and a dimension-seven operator contribute to the 0νββ

rate. We study what additional experimental input can be used to disentangle the various

∆L = 2 contributions to 0νββ . We summarize, conclude, and give an outlook in section 9.

2 Dimension-seven SM-EFT operators

The complete list of dimension-seven ∆L = 2 operators, invariant under the gauge group

of the Standard Model, was built in ref. [23], and it is summarized in table 1. A subset

of the operators was published in refs. [37, 38], and a few redundancies were eliminated in

ref. [39]. At the scale of new physics, Λ, we have the following ∆L = 2 Lagrangian

L(∆L=2) = εklεmn(LTk C(5)CLm)HlHn +
∑
i

CiOi , v3Ci = O
(
v3

Λ3

)
, (2.1)

where the first term is the dimension-five Weinberg operator, with C(5) a 3 × 3 matrix

in flavor space. Furthermore, i runs over the labels of the operators defined in table 1.

In table 1, L and Q denote the left-handed quark and lepton doublets, L = (νL, eL)T ,

Q = (uL, dL)T , while uR and dR are right-handed quarks, singlet under SU(2)L. H denote

the scalar doublet

H =
v√
2
U(x)

(
0

1 + h(x)
v

)
, (2.2)
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Class 1 ψ2H4 Class 5 ψ4D

OLH εijεmn(LTi CLm)HjHn(H†H) O(1)

LLd̄uD
εij(d̄γµu)(LTi C(DµL)j)

Class 2 ψ2H2D2 Class 6 ψ4H

O(1)
LHD εijεmn(LTi C(DµL)j)Hm(DµH)n OLLēH εijεmn(ēLi)(L

T
j CLm)Hn

O(2)
LHD εimεjn(LTi C(DµL)j)Hm(DµH)n O(1)

LLQd̄H
εijεmn(d̄Li)(Q

T
j CLm)Hn

Class 3 ψ2H3D O(2)

LLQd̄H
εimεjn(d̄Li)(Q

T
j CLm)Hn

OLHDe εijεmn(LTi Cγµe)HjHm(DµH)n OLLQ̄uH εij(Q̄mu)(LTmCLi)Hj

Class 4 ψ2H2X O
Leud̄H

εij(L
T
i Cγµe)(d̄γ

µu)Hj

OLHB εijεmng
′(LTi Cσ

µνLm)HjHnBµν

OLHW εij(ετ
I)mng(LTi Cσ

µνLm)HjHnW
I
µν

Table 1. Basis of ∆L = 2 baryon-number-conserving dimension-seven operators derived in ref. [23].

where v = 246 GeV is the scalar field vacuum expectation value (vev), h(x) is the Higgs

field, and U(x) is a SU(2) matrix that encodes the three Goldstone bosons. The covariant

derivative Dµ is defined as Dµ = ∂µ − igst
aGaµ − g τ

I

2 W
I
µ − g′Y Bµ, where ta and τ I/2

are SU(3) and SU(2) generators, in the representation of the field on which the derivative

acts. Y is the hypercharge quantum number, Y = −1/2 for L and Y = 1/2 for H. ε is

a completely antisymmetric tensor, with ε12 = +1. C is the charge conjugation matrix,

C = iγ2γ0, which, in this basis, satisfies C = −CT = −C† = −C−1.

All the couplings Ci have lepton flavor indices, which we omit unless explicitly needed,

while the couplings of the four-fermion operators in Classes 5 and 6 also carry indices

for the quark flavors. Here we are only concerned with couplings to the first generation

of quarks.

There are a few special cases in the above operator basis. Firstly, the dimension-five

operator and OLH trivially contribute to 0νββ as they simply gives rise to a Majorana

mass term below the electroweak scale, C(5)O(5) +CLHOLH → v2

2 (C(5) + v2

2 CLH)νTCν. The

operator OLHB, and the component of OLHW that is antisymmetric with respect to the

lepton flavor indices, do not give rise to 0νββ at tree level, but are well constrained by

the transition magnetic moments of the neutrinos, as we discuss further in section 7.1.2.

Also, both O(2)
LHD and OLLēH do not induce 0νββ at tree level. For these two operators,

in section 7.1.1 we consider radiative corrections, such as the one-loop mixing onto the

neutrino mass (OLH) and magnetic moment (OLHB and OLHW ) operators. The effects of

OLLēH are however suppressed by three and one power of the electron Yukawa coupling,

respectively. Alternatively, one can study ∆L = 2 decays such as µ+ → e+ν̄eν̄µ [40]. We

briefly discuss bounds on CLLēH arising from muon decay in section 7.1.3.

The remaining operators in table 1 –namely, the following 8 operators O(1)
LHD, OLHDe,

OLHW , O(1)

LLd̄uD
, O(1),(2)

LLQd̄H
, OLLQūH and OLeud̄H — induce tree-level corrections to 0νββ.

Before discussing the effects generated by these operators at the electroweak scale, we
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briefly comment on the QCD running between the scale Λ and µ ∼ mW . As the majority

of the dimension-seven operators do not involve quarks, or only involve a quark vector

or axial current, most of these operators do not run under QCD at one loop. The only

exceptions are O(1,2)

LLQd̄H
and OLLQ̄uH . The latter runs like a scalar current, while the former

two operators can be written as combinations of tensor and scalar currents,

2∑
i=1

C(i)

LLQd̄H
O(i)

LLQd̄H
=

2∑
i=1

[
C

(i)
S O

(i)
S + C

(i)
T O

(i)
T

]
, (2.3)

with O
(1)
S = 1

2εijεmn(d̄Qj)(L
T
i CLm)Hn and O

(1)
T = 1

8εijεmn(d̄σµνQj)(L
T
i CσµνLm)Hn and

O
(2)
S,T can be obtained by replacing εijεmn → εimεjn. The couplings of these operators are

given by,

C
(1),ij
S,T = −

C(1),ij

LLQd̄H
± C(1),ji

LLQd̄H

2
, C

(2),ij
S,T = −

C(1),ij

LLQd̄H
∓ C(1),ji

LLQd̄H

4
−
C(2),ij

LLQd̄H
∓ C(2),ji

LLQd̄H

2
.

(2.4)

Here the i and j indicate the generation of the left- and right-most lepton fields, respectively.

The running is then given by

d

d lnµ
CLLQ̄uH = −6CF

αs
4π
CLLQ̄uH ,

d

d lnµ
C

(1,2),ij
S = −6CF

αs
4π
C

(1,2),ij
S ,

d

d lnµ
C

(1,2),ij
T = 2CF

αs
4π
C

(1,2),ij
T , (2.5)

where CF = (N2
c − 1)/2Nc, and Nc = 3 is the number of colors. The analytic solutions

to these equations are discussed in appendix B, where we also give numerical relations

between Ci(Λ) and Ci(mW ).

Note that eq. (2.5) only takes into account the QCD running, which should be the dom-

inant contribution to the RG up to scales, µ ∼ 10 TeV. For larger renormalization scales,

which one is sensitive to if Λ is significantly above the electroweak scale, electroweak con-

tributions could become relevant as well (since α2(µ) ' 1
2αs(µ) for µ ' 10 TeV). However,

as the largest RG effects result from relatively low scales, µ <TeV, and the electroweak

RGEs are currently not known in the literature, we neglect their effects here.

3 Low-energy Lagrangian

After the breaking of electroweak symmetry, the low-energy ∆L = 2 Lagrangian contains

neutrino Majorana masses and transition magnetic moments. In addition, there appear sev-

eral dimension-six and -seven four-fermion operators as well as dimension-nine six-fermion

operators, which give long- and short-distance contributions to 0νββ decay, respectively.

We write

L∆L=2 = −1

2
(mν)ijν

T
L, iCνL, j + µij ν

T
L, iCσ

µννL, j eFµν +L(6)
∆L=2 +L(7)

∆L=2 +L(9)
∆L=2 . (3.1)

We choose to work in the mass basis of the charged leptons, but the flavor basis of the neu-

trinos. This implies that the charged-current interaction and the charged-lepton Yukawa

– 6 –
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matrix are flavor diagonal, while the neutrino Majorana mass matrix in eq. (3.1) is not.

Thus the flavor indices i, j in eq. (3.1), and in what follows, run over the charged lep-

tons, i, j ∈ {e, µ, τ}.
The neutrino mass and magnetic moment terms are discussed in section 7, and here

we focus on the operators that mediate 0νββ. Below the electroweak scale the gauge-

invariant dimension-seven operators of table 1 induce the following dimension-six, -seven,

and -nine operators

L(6)
∆L=2 =

2GF√
2

{
C

(6)
VL,ij ūLγ

µdL ēR,i γµCν̄
T
L,j + C

(6)
VR,ij ūRγ

µdR ēR,i γµCν̄
T
L,j (3.2)

+C
(6)
SR,ij ūLdR ēL,iCν̄

T
L,j + C

(6)
SL,ij ūRdL ēL,iCν̄

T
L,j

+C
(6)
T,ij ūLσ

µνdR ēL,iσµν Cν̄
T
L,j

}
+ h.c.

L(7)
∆L=2 =

2GF√
2v

{
C

(7)
VL,ij ūLγ

µdL ēL,iC i
←→
∂ µν̄

T
L,j

+C
(7)
VR,ij ūRγ

µdR ēL,iCi
←→
∂ µν̄

T
L,j

}
+ h.c. (3.3)

L(9)
∆L=2 =

ēL,iCē
T
L,j

v5

{
C

(9)
1,ij ūLγ

µdL ūLγµdL + C
(9)
4,ij ūLγ

µdL ūRγµdR

+C
(9)
5,ij ū

α
Lγ

µdβL ū
β
Rγµd

α
R

}
+ h.c. (3.4)

The coefficients C
(6,7,9)
ij are all defined to be dimensionless.

Keeping the lepton flavor structure, the matching coefficients for the dimension-six

operators at the electroweak scale are given by2

1

v3
C

(6)
VL,ij = − i√

2
VudC∗LHDe,ji + 4Vud

me

v
C∗LHW,ji ,

1

v3
C

(6)
VR,ij =

1√
2
C∗Leud̄H,ji ,

1

v3
C

(6)
SR,ij =

1

2
√

2

(
C(2)

LLQd̄H,ij
− C(2)

LLQd̄H,ji
+ C(1)

LLQd̄H,ij

)∗
+
Vud
2

md

v

(
C(1)
LHD,ij − C

(1)
LHD,ji − C

(2)
LHD,ji

)∗
− i

2

mu

v

(
C(1)

LLd̄uD,ij
− C(1)

LLd̄uD,ji

)∗
,

1

v3
C

(6)
SL,ij =

1√
2
C∗LLQ̄uH,ij

−Vud
2

mu

v

(
C(1)
LHD,ij − C

(1)
LHD,ji − C

(2)
LHD,ji

)∗
+
i

2

md

v

(
C(1)

LLd̄uD,ij
− C(1)

LLd̄uD,ji

)∗
,

1

v3
C

(6)
T,ij =

1

8
√

2

(
C(2)

LLQd̄H,ij
+ C(2)

LLQd̄H,ji
+ C(1)

LLQd̄H,ij

)∗
. (3.5)

For the dimension-seven operators we have

1

v3
C

(7)
VL,ij = −Vud

2

(
C

(1)
LHD,ij + C(1)

LHD,ji + C(2)
LHD,ji + 8CLHW,ji

)∗
,

1

v3
C

(7)
VR,ij = − i

2

(
C(1)

LLd̄uD,ij
+ C(1)

LLd̄uD,ji

)∗
, (3.6)

2Note that the operators in eqs. (3.2), (3.3), and (3.4) are defined to give rise to d → u transitions,

whereas the opposite convention is used for the dimension-seven operators in table 1.
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while the matching conditions for the dimension-nine operators are

1

v3
C

(9)
1,ij = −2V 2

ud

(
C(1)
LHD,ij + 4CLHW,ij

)∗
,

1

v3
C

(9)
4,ij = −2iVud C

(1)∗
LLd̄uD,ij

,
1

v3
C

(9)
5,ij = 0 . (3.7)

Although we explicitly kept the lepton flavors in the matching coefficients, only one of the

elements will actually contribute to 0νββ. This is due to the fact that we require two

electrons in the final state, which for the dimension-nine operators implies only the C
(9)
i, ee

element can contribute. In addition, this means that the long-range contributions of the

dimension-six and -seven operators have to be mediated by νe (since the SM weak current

has to produce an electron), implying that only the C
(6),(7)
i, ee component can contribute as

well. In the following we therefore drop the flavor indices and use the shorthand, Ci, ee → Ci.

The coefficients in eqs. (3.5), (3.6), and (3.7) need to be evolved from the matching

scale µ ∼ mW to scales µ ∼ 2 GeV, where the matching to chiral perturbation theory and

LQCD calculations is performed. The vector operators, C
(6)
VL, VR and C

(7)
VL, VR, consisting

of quark non-singlet axial and vector currents, do not run in QCD.3 The renormalization

group equations (RGEs) of the scalar and tensor operators below µ = mW are given by

d

d lnµ
C

(6)
SL (SR) = −6CF

αs
4π
C

(6)
SL (SR) ,

d

d lnµ
C

(6)
T = 2CF

αs
4π
C

(6)
T .

Here we have suppressed the flavor indices as the QCD running is independent of them.

The above RGEs correct the anomalous dimensions derived in ref. [43]. The RGEs of the

dimension-nine operators are given by [44, 45]

d

d lnµ
C

(9)
1 = 6

(
1− 1

Nc

)
αs
4π
C

(9)
1 ,

d

d lnµ

(
C

(9)
4

C
(9)
5

)
=
αs
4π

(
6/Nc 0

−6 −12CF

)(
C

(9)
4

C
(9)
5

)
. (3.8)

The analytic (and numerical) relations between Ci(mW ) and Ci(2 GeV) that result from

the above RGEs are discussed in appendix B.

4 Chiral perturbation theory

Having obtained the relevant ∆L = 2 interactions around 2 GeV, we want to study their

manifestation at even lower energies. We do so by applying the framework of chiral per-

turbation theory (χPT) [46–48], and its generalization to multi-nucleon systems, chiral

EFT (χEFT) [49–52]. χPT is the low-energy EFT of QCD and consists of the interactions

among the relevant low-energy degrees of freedom (mesons, baryons, photons, and leptons)

that incorporate the symmetries of the underlying microscopic theory: QCD supplemented

by electroweak four-fermion interactions and, in our case, ∆L = 2 operators.

3In the MS scheme, the renormalization factor of the non-singlet axial current ZA
MS

receives non-vanishing

contributions starting at two loops [41]. It is however always possible to introduce a finite renormalization

that restores the non-renormalization of the flavor non-singlet current [42].
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A particularly important role at low energy is played by the approximate symmetry of

QCD under the chiral group SU(2)L × SU(2)R. Since it is not manifest in the spectrum,

which instead exhibits an approximate isospin symmetry, chiral symmetry must be sponta-

neously broken down to the isospin subgroup SU(2)I . The corresponding Goldstone bosons

can be identified with the pions. Chiral symmetry and its spontaneous breaking strongly

constrain the form of the interactions among nucleons and pions. In particular, in the limit

of vanishing quark masses and charges, when chiral symmetry is exact, pion interactions

are derivative, allowing for an expansion in p/Λχ, where p is the typical momentum scale

in a process and Λχ ∼ mN ∼ 1 GeV is the intrinsic mass scale of QCD. These constraints

are captured by χPT.

The χPT Lagrangian is obtained by constructing all chiral-invariant interactions be-

tween nucleons and pions. In principle, an infinite number of interactions exist, but they

can be ordered by a power-counting scheme. We use the chiral index ∆ = d + n/2 − 2,

where d counts the number of derivatives and n counts the number of nucleon fields [46].

The higher the chiral index, the more suppressed the effects of a coupling are by factors

of p/Λχ ∼ mπ/Λχ ∼ εχ, where we introduced εχ = mπ/Λχ. Chiral symmetry is explicitly

broken by the quark masses and charges, and, in our case, by electroweak and ∆L = 2 op-

erators, but the explicit breaking is small, and can be systematically included in the power

counting by considering mq ∼ m2
π ∼ p2. Because the ∆L = 2 interactions are associated

with very small parameters, we only consider operators linear in the ∆L = 2 couplings.

The coupling constants of the effective interactions in χPT, usually called low-energy

constants (LECs), are not fixed by symmetry, and they capture the nonperturbative nature

of low-energy QCD. In principle these LECs are unknown but their sizes can be estimated

from naive dimensional analysis (NDA) [53], or, preferably, fitted to data or calculated

from QCD directly for instance by using lattice simulations. As we discuss below, for 0νββ

processes most LECs are relatively well known although there are some exceptions.

In the mesonic and single-nucleon sector, all momenta and energies are typically ∼ p.
The perturbative expansion of the χPT Lagrangian then implies that the scattering am-

plitudes can also be expanded in p/Λχ, with every loop (using 4πFπ ∼ Λχ, where Fπ is

the pion decay constant) or insertions of subleading terms in the χPT Lagrangian causing

further suppression.

For system with two or more nucleons, in addition to the momentum p, the energy scale

p2/2mN becomes relevant. Nucleon-nucleon amplitudes therefore do not have an homoge-

neous scaling in p, and the perturbative expansion of the χPT interactions does not guar-

antee a perturbative expansion of the amplitudes [49, 50]. In figure 1 we show two types of

contributions to the amplitude. Diagram (c) represents the so-called “reducible” diagrams,

in which the intermediate state consists purely of propagating nucleons. In these diagrams

the contour of integration for integrals over the 0th components of loop momenta cannot

be deformed in way to avoid the poles of the nucleon propagators, thus picking up energies

∼ p2/mN from nucleon recoil, no longer a subleading effect, rather than ∼ p. These dia-

grams are therefore enhanced by factors of mN/p with respect to the χPT power counting

and need to be resummed, typically by solving a Schrödinger equation. The resummation

leads to the appearance of shallow bound states in systems with two or more nucleons.
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(a) (b) (c)

Figure 1. Examples of irreducible (diagrams (a) and (b)) and reducible (diagram (c)) two-nucleon

LNV diagrams. Double and single lines denote, respectively, nucleon and lepton fields. The black

square denotes an insertion of the neutrino Majorana mass. Notice that diagram (c) is non planar,

i.e. the pions “go around” the neutrino line. The first two diagrams respect the χPT power counting,

and their scaling is determined by the chiral index ∆ of the vertices and by the number of loops.

The sum of two-nucleon irreducible diagrams defines the 0νββ two-nucleon transition operator, or

“neutrino potential”. In the third diagram the nucleons can be close to their mass shell, and the

diagram is enhanced by mN/p with respect to the χPT power counting. This diagram is included by

taking the matrix element of the neutrino potential between the nuclear bound-state wavefunctions.

Diagrams (a) and (b) exemplify “irreducible” diagrams, whose intermediate states

contain interacting nucleons and pions. These diagrams do not suffer from this infrared

enhancement, and here nucleon recoil remains a small effect. Irreducible diagrams involving

pions and nucleons follow the χPT power counting [49, 50] (commonly called “Weinberg

power counting”), while the situation is more complicated for contact interactions, where

different schemes exist such as “KSW” [54] or pionless EFT [55], where the NN interactions

become relatively enhanced.

Reducible diagrams are then obtained by patching together irreducible diagrams with

intermediate states consisting of A free-nucleon propagators. This is equivalent to solving

the Schrödinger equation with a potential V defined by the sum of irreducible diagrams.

Notice, in particular, that the potential is only sensitive to the scale p, and does not depend

on properties of the bound states such as the binding energy. For external currents, such as

the electromagnetic and weak currents, one can similarly identify irreducible contributions,

that can be organized in an expansion in p/Λχ, and separate them from the effects that

arise from the iteration of the strong-interaction potential. For example, diagrams such as

figure 1(c) are taken into account by taking the matrix element of the neutrino-exchange

potential, induced by the irreducible diagrams, between the wavefunctions of the nuclear

bound states.

In the following subsections we construct the chiral Lagrangian relevant for 0νββ pro-

cesses, and discuss the hadronic input needed to determine its couplings. The Lagrangian

contains charged-current operators with an electron and an explicit neutrino, which is

later exchanged between two nucleons (see figure 2(b)) to give rise to long-range neutrino-

exchange contributions to 0νββ. For these operators the hadronic input consists of the vec-

tor, axial, scalar, pseudoscalar, and tensor nucleon form factors, which, with the exception

of a subleading LEC in the tensor form factor, are well determined either experimentally

or via LQCD calculations.
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2 GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2 MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C

(6)
SL (τ+) ēLCν̄

T
L + C

(6)∗
SR (τ−) νTLCeL

]
,

s− ip = −2GF√
2

[
C

(6)
SR (τ+) ēLCν̄

T
L + C

(6)∗
SL (τ−) νTLCeL

]
,

lµ =
2GF√

2v
(τ+)

[
− 2vVudēLγµνL + v C

(6)
VL ēRγµCν̄

T
L + C

(7)
VL ēLCi

←→
∂ µν̄

T
L

]
+ h.c. ,

rµ =
2GF√

2v
(τ+)

[
v C

(6)
VR ēRγµCν̄

T
L + C

(7)
VR ēLCi

←→
∂ µν̄

T
L

]
+ h.c. ,

tµνR =
2GF√

2
(τ+)C

(6)
T ēLσ

µνCν̄TL , (4.2)

where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR
†, lµ → LlµL

†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C
(9)
1 and C

(9)
4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C
(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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4.2 Mesonic sector

In the meson sector the interactions that are responsible for long-range neutrino-exchange

contributions arise from the standard leading-order (LO) chiral Lagrangian

Lπ =
F 2

0

4
Tr
[
(DµU)†DµU

]
+
F 2

0

4
Tr
[
U †χ+ Uχ†

]
, (4.3)

where

DµU = ∂µU − ilµU + iUrµ, χ = 2B(M + s− ip), M = diag(mu,md) . (4.4)

B is the quark condensate, related to the pion mass by m2
π = B(mu + md). We use

(mu +md)/2 = (3.5+0.7
−0.3) MeV [58], such that B ' 2.8 GeV. The dimension-six and -seven

operators enter through the external sources, lµ, rµ, s, and p. Contributions from the

dimension-six tensor operator require two additional derivatives which increase the chiral

index by two. As such, the dominant contribution from C
(6)
T comes from the pion-nucleon

sector which is discussed below.

One of the advantages of the chiral notation is its compactness, which, however, has

the downside of making it more difficult to see to which processes the operators contribute.

Here we expand the ∆L = 2 interactions in eq. (4.3) up to terms linear in the pion field

which provide the main contribution to 0νββ processes

Lπ = −iF0GFB
(
π−
) [(

C
(6)
SL − C

(6)
SR

) (
ēLCν̄

T
L

)]
(4.5)

−F0GF
(
∂µπ−

) [(
C

(6)
VL − C

(6)
VR

) (
ēRγµCν̄

T
L

)
+

1

v

(
C

(7)
VL − C

(7)
VR

)(
ēLCi

←→
∂ µν̄

T
L

)]
+h.c.

In addition, the dimension-nine operators give rise to contributions that do not involve

the exchange of a neutrino. In this case, the higher-dimensional operators induce interac-

tions that convert two pions (π−) into two electrons. Following refs. [24, 56, 59] we write

the chiral representations of these interactions as

L(9)
π =

F 4
0

4

[(
g8×8C

(9)
4 + gmix

8×8C
(9)
5

)
Tr
[
Uτ+U †τ+

]
+

5

3
g27×1C

(9)
1 Lµ21L21µ

]
ēLCē

T
L

v5

=
F 2

0

2

[(
C

(9)
4 g8×8 + C

(9)
5 gmix

8×8

)
π−π− +

5

3
C

(9)
1 g27×1 ∂µπ

−∂µπ−
]
ēLCē

T
L

v5
+ . . . , (4.6)

where Lµij = i
(
U∂µU †

)
ij

and the dots stand for terms involving more than two pions. By

dimensional analysis the low-energy constants g
(mix)
8×8 scale as O(Λ2

χ), while g27×1 = O(1).

We follow the notation of ref. [56], in which these three low-energy constants were estimated

using SU(3)-χPT relations and LQCD calculations. The values of the LECs we use are

given in table 2, and are in reasonable agreement with naive dimensional analysis.

4.3 Nucleon sector

The LO nucleon Lagrangian responsible for long-range neutrino exchange is given by

L(1)
πN = iN̄v · DN + gAN̄S · uN + c5 N̄ χ̂+N −

(
2gT εµναβv

α N̄Sβ(u†tµνR u†)N + h.c.
)
. (4.7)
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g27×1 0.38± 0.08 [56] gA 1.272± 0.002 [58]

g8×8 −(3.1± 1.3) GeV2 [56] gS 0.97± 0.13 [60]

gmix
8×8 −(11± 4) GeV2 [56] gT 0.99± 0.06 [60]

|gπN27×1| O(1) — |g′T | O(1) —

|gNN27×1| O(1) —

Table 2. Hadronic input for the LECs gS , gT , g27×1, g8×8, and gmix
8×8, at the scale µ = 2 GeV.

Currently we lack experimental or LQCD input for the LECs gNπ27×1, gNN27×1, and g′T , and we follow

naive dimensional analysis.

Here vµ and Sµ are the nucleon velocity and spin, vµ = (1,0) and Sµ = (0,σ/2) in the

nucleon rest frame, and χ̂+ = χ+ −Tr(χ+)/2 where χ± is defined below. We have applied

the heavy-baryon framework to remove the nucleon mass from the LO Lagrangian [61].

The values of the couplings gA and gT are given in table 2. The LEC c5 is related to the

strong proton-neutron mass splitting and we give its value below. The chiral covariant

derivative is defined as DµN = (∂µ + Γµ)N , where

Γµ =
1

2

[
u† (∂µ − ilµ)u+ u (∂µ − irµ)u†

]
,

uµ = −i
[
u† (∂µ − ilµ)u− u (∂µ − irµ)u†

]
,

χ± = u†χu† ± uχ†u . (4.8)

The first two terms in eq. (4.7) involve contributions from the vector operators C
(6,7)
VL(VR),

while the last two terms involve contributions from the scalar couplings C
(6)
SL(SR). The

last term is generated by the tensor interaction C
(6)
T . Eq. (4.7) turns out to capture the

dominant contributions from C
(6)
SL(SR) and C

(7)
VL(VR). However, for both the dimension-

six vector and tensor operators, the LO terms do not contribute to the 0νββ 0+ → 0+

transitions and non-vanishing interactions only appear at next-to-leading order (NLO).

The relevant NLO corrections can be written as follows

L(2)
πN =

1

2mN
(vµvν−gµν)

(
N̄DµDνN

)
− igA

2mN
N̄{S · D, v · u}N− gM

4mN
εµναβvα N̄Sβf

+
µνN

−
(
gT
mN

εµναβ N̄Sβ{u†tµνR u†, iDα}N −
g′T
mN

vµ N̄
[
u†tµνR u†, Dν

]
N + h.c.

)
, (4.9)

where the coefficients of the first two and fourth operators are fixed by reparametrization

invariance [62] in terms of the LO nucleon Lagrangian, gM = 1 + κ1 with κ1 ' 3.7 the

anomalous isovector nucleon magnetic moment, and g′T is the only unknown LEC at this

chiral order,4 which by NDA scales as g′T = O(1). Furthermore, f±µν = u†Lµνu ± uRµνu†,

4That is, to NLO the tensor matrix element depends on only two form factors. This counting agrees with

the general relativistic expression for the matrix element 〈p|uσµνd|n〉, which depends on four form factors.

However, one of these form factors vanishes in the isospin limit and the other involves two derivatives and

appears at N2LO in the chiral expansion. In the notation of ref. [63], which is commonly used in the
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with

Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ] , Rµν = ∂µrν − ∂νrµ − i[rµ, rν ] . (4.10)

This is the most general chiral-invariant Lagrangian at this order, that is also hermitian,

as well as reparametrization, parity, and time-reversal invariant.

Apart from long-range neutrino-exchange contributions, the nucleon sector mediates

short-range contributions induced by the dimension-nine operators. These can involve a

single pion exchange, through vertices of the form p̄n π−ee, or through nucleon-nucleon

interactions of the form p̄n p̄n ee. For the C
(9)
4,5 couplings, the short-range contributions

to 0νββ are suppressed in the chiral power counting with respect to the long-range pion-

exchange terms from eq. (4.6). However, for the C
(9)
1 coupling, the πN and NN interactions

contribute at the same level as the ππ terms of eq. (4.6) [24, 25]. Thus, for C
(9)
1 all three

mechanisms have to be considered.

Starting with the chiral realization of the pion-nucleon couplings there is one relevant

operator,

LπN27×1 = gAg
πN
27×1C

(9)
1 F 2

0

[
N̄Sµu†τ+uN Tr

(
uµu

†τ+u
)] ēLCēTL

v5

=
√

2gAg
πN
27×1C

(9)
1 F0

[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ . . . , (4.11)

where the dots stand for terms involving additional pions and gπN27×1 is a LEC of O(1).

For later convenience we have pulled out a factor of gA in our definition of gπN27×1. For the

nucleon-nucleon interactions we also find a single relevant operator

LNN27×1 = C
(9)
1 g2

V g
NN
27×1 (N̄u†τ+uN)(N̄u†τ+uN)

ēLCē
T
L

v5

= C
(9)
1 g2

V g
NN
27×1 (p̄n) (p̄n)

ēLCē
T
L

v5
+ . . . , (4.12)

where the dots again stand for terms involving additional pions, and gNN27×1 ' O(1) is

another unknown LEC. As for the previous LEC, we have pulled out a factor of g2
V in

our definition of gNN27×1. Additional structures, such as p̄Sµn p̄Sµn, can be eliminated using

Fierz identities and are not independent.

We note here that the distinction between long- and short-distance contributions loses

its meaning as one goes to sufficient high order in the construction of the χPT Lagrangian.

For example, the operators in eqs. (4.11) and (4.12) receive a contribution from the neutrino

Majorana mass, proportional to mββ/Λ
2
χ, induced by the exchange of hard neutrinos, with

momentum |q| > Λχ, which are integrated out in χPT [65]. Similarly, the operators C
(6)
i

and C
(7)
i in eqs. (3.2) and (3.3) will induce ∆L = 2 operators without neutrinos in the

χPT Lagrangian. These contributions appear at N2LO, and we neglect them here.

literature [29, 30, 64], we can identify g′T = 2T̂
(3)
2 − T (3)

1 . Using the estimates of ref. [63], T̂
(3)
2 = −0.62 and

T
(3)
1 = 1.38, we would find g′T = −2.62, compatible with the NDA estimate of table 2. Some literature uses

T̂
(3)
2 = −4.54, which, however, does not appear in ref. [63].

– 14 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

4.4 One-body currents for β decays

We now summarize the single β decay amplitude, which provides the building blocks nec-

essary to construct the full 0νββ amplitude. The single β decay amplitude involves two

types of diagrams, which either involve a single vertex or a single pion exchange between

the lepton and nucleon line. Using the Lagrangians constructed in the previous sections,

we write the amplitude as

An→pe−ν = N̄τ+

[
lµ + rµ

2
JµV +

lµ − rµ
2

JµA − s JS + ip JP + tRµν J
µν
T

]
N , (4.13)

with the sources given in eq. (4.2). As discussed in section 4.3, for some operators we will

need expressions through NLO in the chiral expansion. Up to NLO, the currents become

JµV = gV (q2)

(
vµ +

pµ + p′µ

2mN

)
+
igM (q2)

mN
εµναβvαSβqν ,

JµA = −gA(q2)

(
2Sµ − vµ

2mN
2S · (p+ p′)

)
+
gP (q2)

2mN
2qµ S · q ,

JS = gS(q2) ,

JP = B
gP (q2)

mN
S · q ,

JµνT = −2gT (q2)εµναβ
(
vα +

pα + p′α
2mN

)
Sβ − i

g′T (q2)

2mN
(vµqν − vνqµ) . (4.14)

Here p and p′ stand for the momentum of the incoming neutron and outgoing proton,

respectively, and qµ = (q0, q) = pµ − p′µ. Furthermore, εµναβ is the totally antisymmetric

tensor, with ε0123 = +1. At LO in χPT the form factors are given by

gV (q2) = gV = 1 , gA(q2) = gA = 1.27 , gM (q2) = 1 + κ1 ,

gS(q2) = − 4Bc5 =
(mn −mp)str

md −mu
, gP (q2) = − gA

2mN

q2 +m2
π

,

gT (q2) = gdT − guT ' 1 , g′T (q2) ' 1 , (4.15)

where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32 MeV [70] and md−mu = 2.5 MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2 GeV, in very good agreement with
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the direct LQCD calculation of ref. [60]. For the isovector tensor charge gT (0) we use the

results of ref. [60, 71]. The numerical input we use is listed in table 2.

The expression of the currents in eq. (4.14) in terms of the form factors gV,A,M,S,P,T (q2),

while traditional, somewhat blurs the χPT expansion of the various contributions. For

instance, at LO in χPT only the pseudoscalar form factor gP (q2) has non-trivial momentum

dependence, due to the pion propagator, while all other form factors are purely static.

Furthermore, the standard notation in eq. (4.14) makes the power counting less apparent

by artificially hiding a factor of mN in gP . This means q2 gP (q2)/mN = O(1) is actually

a LO contribution, while the magnetic contribution, gM/mN , is suppressed by 1/Λχ, such

that pieces proportional to gM are higher order in the chiral counting. Thus, at LO in χPT,

we could drop the magnetic contributions in eq. (4.14) and use eq. (4.15) for gV,A,P (q2).

The form factors gV,A(q2) and gA(q2) acquire momentum dependence at N2LO in χPT.

At this order this momentum dependence is encoded in the nucleon isovector charge and

axial radii, respectively, rV = 0.76 fm [58] and rA = 0.49 fm [72], corresponding to vector

and axial masses ΛV = 0.9 GeV and ΛA = 1.4 GeV in a dipole parameterization of the form

factors. This subset of N2LO corrections is usually taken into account in the calculation

of 0νββ matrix elements by including a dipole form factor for gV and gA, with different

vector and axial masses [66]. While including such corrections does not formally improve

the accuracy of the calculation, as other N2LO contributions, such as pion-neutrino loops or

short-range nucleon-nucleon contributions, are not considered, the numerical impact of the

axial and vector form factors is not negligible, giving an O(10−20%) correction [67, 73, 74].

This suggests that it might be important to consistently include all N2LO corrections

to 0νββ.

While the momentum dependence of the gV,A,S,T form factors only enters at N2LO

in the chiral expansion, the magnetic form factor has a correction at NLO with respect

to eq. (4.14), due to pion loops5 [48]. The treatment of the magnetic form factor gM (q2)

in the 0νββ decay literature is at odds with this result, as it is often assumed gM (q2) =

gM (0)gV (q2), which is not justified in χPT [48].

To conclude this section, we stress that while most of the currents in eq. (4.14) have

been studied up to N2LO, here we do not include these corrections in the construction of the

two-nucleon operators that mediate 0νββ, as consistency requires the inclusion of other,

unknown, contributions, such as the pion-neutrino loops mentioned above. Thus, even

when we use calculations that include partial N2LO corrections, our results are formally

valid at LO in χPT.

5 0νββ operators

The ingredients derived in the previous section allow us to construct the two-nucleon op-

erators that mediate 0νββ decays. Figure 2 shows three possible contributions. The first

diagram depicts the standard contribution proportional to the neutrino Majorana mass.

The second diagram depicts long-range neutrino-exchange contributions that arise from

5Since the magnetic moment itself appears at NLO, the momentum dependence of the magnetic FF

enters at the same order as that of the vector and axial FF.
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Figure 2. Schematic representation of the diagrams contributing to the neutrino potentials. Double

and single lines denote, respectively, nucleon and lepton fields. The black square denotes an insertion

of the neutrino Majorana mass, while the gray squares denote the ∆L = 2 interactions between

nucleons, pion, and leptons induced by the dimension-seven operators discussed in section 4.1. The

gray circle denotes SM interactions between nucleons, pion, and leptons.

the ∆L = 2 charged current interactions in eqs. (3.2) and (3.3). These contributions are

obtained by combining the one-body currents of the previous section. Finally, operators

such as O(1)
LHD and OLLd̄uD induce six-fermion dimension-nine operators at the GeV scale,

whose contribution to 0νββ decays is represented by the third diagram in figure 2. These

diagrams do not involve the exchange of a neutrino.

For each operator, we will construct the dominant contribution to 0+ → 0+ transitions,

within the framework of chiral EFT. The application of chiral EFT is justified by the

separation of the scales involved in 0νββ where the typical momentum exchange between

the nucleons is of similar size as the Fermi momentum within nuclei q ∼ kF ∼ mπ =

O(100 MeV), which is much larger than the reaction Q value, typically around a few MeV.

For the diagrams in figure 2(a) and (b), the LO neutrino potential is obtained by

tree-level neutrino exchange. This involves the single-nucleon currents, represented by

the gray circle and square in figure 2, at the lowest order that yields non-vanishing results.

Analogously to the strong-interaction potential, the two-body transition operators in chiral

EFT are only sensitive to the momentum scale q ∼ kF , and are therefore independent of

the properties of the bound states. In particular this implies that the transition operators

do not depend on the often used “closure energy” Ē, which encodes the average energy

difference between intermediate and initial states. This can be understood from figure 2.

An insertion of the strong-interaction potential between the emission and absorption of the

neutrino in figure 2(a) or (b) would generate a diagram which, in the language of section 4,

is irreducible. That is, it is always possible to choose the contour of integration such that

the energy and momentum of the nucleons in the loop have to be ∼ kF , and the nucleon

is far from on-shell. Insertions of the strong interaction potential between the emission

and absorption of the neutrino, which would give rise to intermediate nuclear states, are

therefore suppressed and can be ignored at LO. Instead, in chiral EFT the dependence on

the intermediate states arises from the region where the neutrino momentum is very soft

q0 ∼ |q| � kF . The exchange of soft neutrinos gives rise to effects that are suppressed

by Ē/kF [65]. Notice that the situation is different from 2νββ decay, where insertions of

the strong interaction potential between the two points where the neutrinos are emitted

are not suppressed (in between the first and second neutrino emission, there are only

propagating nucleons and the diagrams are “reducible”), and the intermediate states do

need to be considered.
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For neutrino-exchange contributions, the LO chiral EFT potential is very similar to

standard results. In fact, as we will see, the chiral EFT potential reduces to results in

the literature in the limit where the closure energy vanishes, Ē → 0. The advantage of

chiral EFT is that it is possible to systematically consider subleading corrections. These

consist of corrections to single-nucleon currents, which are often included in the literature

via momentum-dependent form factors, but also genuine two-body effects, such as loop

corrections to figure 2(a) and (b), which induce short-range neutrino potentials even for

the standard mechanism [65], and three-body effects [75].

Diagram 2(c) does not involve the exchange of a neutrino. In this case the resulting

LO potential is of pion range, ∼ 1/mπ, or shorter range, ∼ 1/Λχ. We work at LO in this

case as well, but it is straightforward to include subleading corrections in chiral EFT.

In deriving the neutrino potential we take advantage of the fact that the Q value and

the electron energies E1,2 have typical size O(5 MeV) and are thus much smaller than kF .

We assign the scaling Q ∼ E1,2 ∼ mπε
2
χ such that these scales can be incorporated in the

standard χEFT power counting. The assigned counting generally allows us to neglect the

lepton momenta, nuclear recoil, and soft-neutrino exchange, except in a few cases where

the matrix element of the LO operator vanishes for 0+ → 0+ transitions. In these cases we

consider subleading contributions in the χPT power counting.

Before discussing the contributions in figure 2(b) and (c) from the dimension-six,

-seven, and -nine operators, we first recall the potential generated by light Majorana-

neutrino exchange to establish our notation. For definiteness, we define the neutrino po-

tentials as −A, where A is the amplitude for the process nn→ ppe−e−.

5.1 Light Majorana-neutrino exchange

In momentum space, the neutrino potential induced by light Majorana-neutrino exchange is

Vν(q) = −(τ (1)+τ (2)+)(4 g2
AG

2
FV

2
ud)

mββ

q2

×
{
−
g2
V

g2
A

hF (q2) + σ(1) · σ(2) hGT (q2) + S(12) hT (q2)

}
ū(k1)PRCū

T (k2) , (5.1)

where k1,2 ∼ Q are the electron momenta, q̂ = q/|q|, and the tensor operator is given by

S(12) = −
(
3σ(1) · q̂σ(2) · q̂− σ(1) · σ(2)

)
. In addition, mββ = (mν)ee =

∑
mνiU

2
ei where

mνi are the neutrino mass eigenvalues and U is the PMNS matrix. The Fermi (F) function

only receives contributions from the vector currents at leading order. In contrast, the

Gamow-Teller (GT) and tensor (T) functions receive contributions from the nucleon axial

current, including the induced pseudoscalar contribution dominated by the pion pole, and,

at higher order, from the nucleon magnetic moment. Here we follow refs. [67, 73, 74, 76]

and separate the direct axial, induced pseudoscalar, and magnetic contributions. We then

have the following expressions for hF , hGT , and hT

hF (q2) =
g2
V (q2)

g2
V

,

hGT (q2) = hAAGT (q2) + hAPGT (q2) + hPPGT (q2) + hMM
GT (q2) ,

hT (q2) = hAPT (q2) + hPPT (q2) + hMM
T (q2) . (5.2)
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For the GT and T functions, we have

hAAGT,T (q2) =
g2
A(q2)

g2
A

, hAPGT (q2) =
gP (q2)

g2
A

gA(q2)
q2

3mN
, hPPGT (q2) =

g2
P (q2)

g2
A

q4

12m2
N

,

hMM
GT (q2) = g2

M (q2)
q2

6g2
Am

2
N

, (5.3)

and hAPT (q2) = −hAPGT (q2), hPPT (q2) = −hPPGT (q2), and hMM
T (q2) = hMM

GT (q2)/2. In order to

compare with the 0νββ literature, we express the long-range neutrino-exchange potentials

in terms of gV,A,P,M (q2) where it is implied that they follow the χPT relations in eq. (4.15).

5.2 Neutrino exchange without mass insertion

5.2.1 O(6)
SR,SL and O(7)

V R,V L

The dimension-six scalar operators C
(6)
SL and C

(6)
SR , and dimension-seven vector operators,

C
(7)
VL and C

(7)
VR, give a potential that is very similar to the one that is induced by light

Majorana-neutrino exchange. At LO in χPT

V (q2) = τ (1)+τ (2)+ 4g2
AG

2
FVud

(
B
(
C

(6)
SL − C

(6)
SR

)
+
m2
π

v

(
C

(7)
VL − C

(7)
VR

))
× 1

q2
ū(k1)PRCū

T (k2) (5.4)

×
{
σ(1) · σ(2)

(
1

2
hAPGT (q2) + hPPGT (q2)

)
+ S(12)

(
1

2
hAPT (q2) + hPPT (q2)

)}
.

Here we used eq. (4.15) to rewrite the potential that is induced by the dimension-seven

operators, hGT,7(q2), as follows

hGT, 7(q2) ≡ − q2

3m2
π

(
gA(q2) +

q2

2mN
gP (q2)

)2

= −g2
A

q2

3

m2
π

(q2 +mπ)2
, (5.5)

which is equal to 1
2h

AP
GT (q2) + hPPGT (q2) at LO in χPT.

The vector component C
(7)
VL +C

(7)
VR does not contribute at LO because of vector current

conservation. The scalar current C
(6)
SL + C

(6)
SR , combined with the standard model axial

current, gives a contribution that is suppressed by q/Λχ, and, in addition, is parity odd

and does not contribute to 0+ → 0+ transitions. The first non-vanishing contributions

from the scalar current appear at O(ε2χ).

The pseudoscalar contribution in eq. (5.4) has been considered in the literature [29,

30, 32, 64], while the C
(7)
V L,V R terms have not, even though they appear at the same chiral

order. In these works, the neutrino potential is derived by considering the pseudoscalar

form factor at q = 0, and by neglecting the induced pseudoscalar component of the axial

current. For the pseudoscalar density at zero momentum the value F
(3)
P = 4.4 is used,

which is obtained from a quark-model calculation [63]. These approximations have two

consequences. First of all, as pointed out already in ref. [63], the value F
(3)
P = 4.4 fails

to reproduce the pion pole dominance of the pseudoscalar density, which in χPT gives

the much larger F
(3)
P = 2gABmN/m

2
π ' 300. The value of ref. [63] thus corresponds to
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using a pion mass of 1100 MeV such that mπ ∼ Λχ. Secondly, neglecting the momentum

dependence of the pion propagator in eqs. (5.4) and (5.5) implies that the neutrino potential

is of much shorter range than the typical pion range, affecting the value of the nuclear

matrix elements.

5.2.2 O(6)
T

At lowest order in χPT, the tensor operator O(6)
T induces two operators whose matrix

elements vanish in 0+ → 0+ transitions. Including the NLO corrections to the tensor,

axial, and vector currents outlined in section 4.3, we obtain

V (q2) = 4g2
Aτ

(1)+τ (2)+ 2G2
FVudmNC

(6)
T

1

q2
ū(k1)PRCū

T (k2) (5.6)

×
{
g′T (q2)gV (q2)

g2
A

q2

m2
N

− 4
gT (q2)

gM (q2)

(
hMM
GT (q2)σ(1) · σ(2) + hMM

T (q2)S(12)
)}

.

In addition we find a recoil piece (see appendix C), which we neglect in our results below.

These contributions involve 0νββ operators that depend on the nucleon momenta and

whose nuclear matrix elements are unknown. We expect these unknown contributions to

be small, however, with respect to eq. (5.6) because they are not enhanced by the large

isovector nucleon magnetic moment.

Our expressions for the neutrino potentials induced by tensor currents disagree with

the literature in two respects. First of all, together with O(6)
T , another tensor structure

is commonly considered, O(6)′
T = ūRσ

µνdL ēL,iσµν Cν̄
T
L,j [29, 30, 36, 64]. This operator

however is identically zero (see appendix A). This is in disagreement with refs. [29, 30, 64]

that find a non-zero neutrino potential for this tensor structure. Secondly, the first term

in eq. (5.6) is sometimes erroneously associated with O(6) ′
T [29, 30, 64].

5.2.3 O(6)
V L,V R

The LO operators induced by C
(6)
VR and C

(6)
VL also turn out to give vanishing contributions

to 0+ → 0+ transitions. By employing the NLO vector and axial currents in eq. (4.14) and

taking into account the electron momenta and the equations of motion for the electrons,

we obtain

V (q2) = τ (1)+τ (2)+ g2
AG

2
FVud

1

q2

{
ū(k1)γ0Cū

T (k2) (k0
1 − k0

2)
[
C

(6)
VLM

(1)
L + C

(6)
VRM

(1)
R

]
+2me ū(k1)CūT (k2)

[
C

(6)
VLM

(2)
L + C

(6)
VRM

(2)
R

]
(5.7)

+ū(k1)γ0γ5Cū
T (k2)C

(6)
VL 8mN

gA(q2)

gM (q2)

[
hMM
GT (q2)σ(1) · σ(2) + hMM

T (q2)S12
]}

,

where

M
(1)
L,R = −4

3

g2
V

g2
A

hF (q2)∓ 8

9
hAAGT (q2)σ(1) · σ(2) ∓ 4

9
hAAT (q2)S(12) ,

M
(2)
L,R =

1

3

g2
V

g2
A

hF (q2)∓
(

1

9
hAAGT + hAPGT (q2) + hPPGT (q2)

)
σ(1) · σ(2)

±
(

4

9
hAAT − hAPT (q2)− hPPT (q2)

)
S(12) . (5.8)
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These expressions agree with ref. [18, 77], in the limit |q| � Ē, where Ē is the closure

energy, Ē = O(10 MeV). In principle there is an additional recoil contribution for the

left-handed current C
(6)
VL, see appendix C. We neglected this term in the above as it turns

out to be suppressed with respect to the magnetic-moment contributions contained in the

hMM
GT,T terms [77].

For C
(6)
VR, the first tree-level two-body contribution is proportional to the electron mass

or energy and thus of order O(ε2χ) in the power counting. At the same order one should

consider pion-neutrino loops, i.e. the contributions of C
(6)
VR to short-range ∆L = 2 operators

without neutrinos, and three-body operators. While we leave a more detailed study for

future work, we stress that the limits we obtain on C
(6)
VR, and, consequently, on CLeud̄H ,

should be taken as order-of-magnitude estimates, rather than rigorous bounds.

5.3 Dimension-nine operators

Finally, we discuss the contributions from the dimension-nine operators. In the case of C
(9)
4,5 ,

the most important operators are the pionic ones, while the pion-nucleon and nucleon-

nucleon interactions are suppressed by two powers of εχ. In contrast, the pionic, pion-

nucleon, and nucleon-nucleon couplings all enter at the same order for the operator C
(9)
1 .

The relevant terms are included in the Lagrangians of eq. (4.6), (4.11), and (4.12), which

give rise to the following potential

V (q2) = −τ (1)+τ (2)+ g2
A

4G2
F

v
ū(k1)PRCū

T (k2)

{
−
C

(9)
4 g8×8 + C

(9)
5 gmix

8×8

2m2
π

×
[(

hPPGT (q2) +
hAPGT (q2)

2

)
σ(1) · σ(2) +

(
hPPT (q2) +

hAPT (q2)

2

)
S(12)

]
+C

(9)
1

[
2gNN27×1

g2
V

g2
A

hF (q2)− 1

2
gπN27×1

(
hAPGT (q2)σ(1) · σ(2) + hAPT (q2)S(12)

)
−5

6
g27×1

(
hPPGT (q2)σ(1) · σ(2) + hPPT (q2)S(12)

)]}
. (5.9)

The above potential disagrees with parts of the existing literature in several aspects.

In refs. [30, 35] the dimension-nine operators defined in eq. (3.4) appear as a subset of

the most general set of dimension-nine four-quark two-electron operators. The conversion

between C
(9)
1,4,5 and the coefficients ε defined in refs. [30, 35] is given in appendix A. When

considering the low-energy manifestations of these quark-level operators, the authors of

refs. [30, 35] only take into account four-nucleon operators, which are of the same form

as the one in eq. (4.12), and estimate their coefficients by assuming factorization. This

approach should provide a reasonable estimate for the bounds on εLLR3 as this coupling is

related to C
(9)
1 , whose neutrino potential receives contributions of similar size from ππ, πN ,

and N̄N operators. On the other hand, the contributions of the operators O
(9)
4,5, and thus

the bounds on εLRR3 and εRLR1 , are severely underestimated. In these cases, the neutrino

potential is dominated by the ππ contribution, given in eq. (5.9), and the N̄N pieces are

suppressed by ε2χ. Thus, for O
(9)
4,5, the neutrino potentials of refs. [30, 35] miss the dominant

contributions to 0νββ.
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The importance of the pion-exchange contributions for certain BSM mechanisms has

long been recognized [34, 78]. Usually, however, pion exchange is included for the scalar-

pseudoscalar operators εLLR1 and εRRR1 [34, 78], while its contribution for vector and axial

operators, εLRR3 and εRLR1 , has been largely ignored [30, 32, 34, 35, 78]. These issues were

already addressed in refs. [24, 25], which performed a systematic power counting in χPT.

The above expression is in agreement with the results of refs. [24, 25].

Finally we comment that in the literature the low-energy constants that describe the

hadronization of the four-quark operators have often been estimated using the vacuum

insertion approximation [30, 34, 78]. While, in those cases in which all the relevant hadronic

channels are included, this leads to acceptable results, we remark that for the ππ channel

more rigorous estimates exist, based on direct LQCD calculations [57] and on SU(3) χPT

and LQCD [56].

6 Master formula for decay rate and nuclear matrix elements

Using the potentials in the previous sections we can write down an expression for the

inverse half-life for 0+ → 0+ transitions [18, 79](
T 0ν

1/2

)−1
=

1

8 ln 2

1

(2π)5

∫
d3k1

2E1

d3k2

2E2
|A|2F (Z,E1)F (Z,E2)δ(E1 + E2 + Ef −Mi) , (6.1)

where E1,2 are the energies of the electrons, and Ef and Mi are the energy and mass of the

final and initial nuclei in the rest frame of the decaying nucleus. The functions F (Z,Ei)

take into account the fact that the emitted electrons feel the Coulomb potential of the

daughter nucleus and are therefore not plane waves. They take the following form

F (Z,E) =

[
2

Γ(2γ + 1)

]2

(2|k|RA)2(γ−1)|Γ(γ + iy)|2eπy ,

γ =
√

1− (αZ)2 , y = αZE/|k| , |k| =
√
E2 −m2

e , (6.2)

where RA = 1.2A1/3 fm and Z are, respectively, the radius and atomic number of the

daughter nucleus. This procedure of calculating the Coulomb corrections assumes a uniform

charge distribution in the nucleus and only the lowest-order terms in the expansion in r,

the electron position, factor, is taken into account. More precise calculations of the phase

space factors apply exact Dirac wave functions [80] and the effect of electron screening [81].

The use of exact wave functions leads to somewhat smaller phase space factors (up to 30%

for the heaviest nuclei) while the effects of electron screening are at the percent level [80].

In what follows we do not use eq. (6.2) to calculate the phase space factors but instead use

the more accurate results of ref. [32] (see table 3) which were found to be close to those of

ref. [80]. We only use eq. (6.2) when calculating differential decay rates in section 8.1.

The Fourier-transformed amplitude is given by6

A = 〈0+|
∑
m,n

∫
d3q

(2π)3
eiq·rV (q2)|0+〉 , (6.3)

6V (q2) takes into account diagrams where the two nucleons are interchanged, which implies that the

unrestricted sum in eq. (6.3) counts each of these graphs twice. We correct for this double counting by

inserting a factor of 1/4 in the prefactor of eq. (6.1). An additional factor 1/2 appears because of the two

identical electrons in the final state, leading to an overall factor of 1/8.
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where V (q2) is the sum of the potentials discussed in section 5, and r = rn − rm is the

distance between the mth and nth nucleon.

Organizing the amplitude in eq. (6.3) according to the different leptonic structures,

the contributions of a light Majorana neutrino mass and dimension-seven operators are

given by

A =
g2
AG

2
Fme

πRA

[
Aν ū(k1)PRCū

T (k2) +AE ū(k1)γ0Cū
T (k2)

E1 − E2

me

+Ame ū(k1)CūT (k2) +AM ū(k1)γ0γ5Cū
T (k2)

]
. (6.4)

Here we factored out the leptonic structures such that the Ai only depend on nuclear (and

hadronic) matrix elements and the Wilson coefficients of the ∆L = 2 operators. These are

discussed in much more detail below.

With the definitions in eq. (6.4), the final form of the inverse half-life can be written as(
T 0ν

1/2

)−1
= g4

A

{
G01 |Aν |2 + 4G02 |AE |2 + 2G04

[
|Ame |2 + Re

(
A∗meAν

)]
+G09 |AM |2

−2G03 Re (AνA∗E + 2AmeA∗E) +G06 Re (AνA∗M )
}
, (6.5)

where the G0i are phase space factors given by

G0k =
1

ln 2

G4
Fm

2
e

64π5R2
A

∫
dE1dE2|k1||k2|d cos θ b0k F (Z,E1)F (Z,E2)δ(E1 + E2 + Ef −Mi) .

(6.6)

Here θ is the angle between the electron momenta and we followed the standard normal-

ization of ref. [18]. The b0k factors are obtained from the electron traces that result from

taking the square of eq. (6.4). They are given by

b01 = E1E2 − k1 · k2 , b02 =

(
E1 − E2

me

)2 E1E2 + k1 · k2 −m2
e

2
,

b03 = (E1 − E2)2 , b04 =
(
E1E2 − k1 · k2 −m2

e

)
,

b06 = 2me (E1 + E2) , b09 = 2
(
E1E2 + k1 · k2 +m2

e

)
. (6.7)

Here we kept terms proportional to k1 · k2, which are odd in cos θ and therefore do not

contribute to the total decay rate, but can potentially be observed in measurements of

angular distributions. The definitions in eq. (6.7) follow for the most part the existing

literature [18]. For G06 and G09, in order not to cloud the chiral scaling of the matrix

element, we did not extract a factor of (RAme)
−1 from AM , as commonly done in the

literature [18]. The phase space factors G06 and G09 defined in eqs. (6.6) and (6.7) are

obtained by multiplying the results in ref. [18, 32] by (meRA)/2 and (meRA/2)2, respec-

tively. In addition, we removed a factor of 2/9 from the definition of G04 in order to avoid

small dimensionless factors.

The phase space factors are summarized in table 3. These are extracted from the

calculation of ref. [32], with the trivial rescalings discussed above. With the definitions of
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[32] 76Ge 82Se 130Te 136Xe

G01 0.22 1. 1.4 1.5

G02 0.35 3.2 3.2 3.2

G03 0.12 0.65 0.85 0.86

G04 0.19 0.86 1.1 1.2

G06 0.33 1.1 1.7 1.8

G09 0.48 2. 2.8 2.8

Q/MeV [82] 2.04 3.0 2.5 2.5

Table 3. Phase space factors in units of 10−14 yr−1 taken from ref. [32] apart from a rescaling of

G04, G06, and G09 discussed in the text. In addition the table shows the Q values for the different

isotopes, where Q = Mi −Mf − 2me.

eq. (6.7), the different phase space factors for a given isotope are all of similar size, with

no parametric enhancements or suppressions, such that the relative importance of different

contributions is determined by the matching coefficients and by the nuclear matrix ele-

ments. With the modified phase space factors, we can now apply the χPT power counting

purely on the level of nuclear matrix elements.

6.1 Nuclear matrix elements

To describe the nuclear parts of this amplitude, we follow standard conventions, e.g. those

of ref. [76], and define the following neutrino potentials7

hijK(r) =
2

π
RA

∫ +∞

0
d|q|hijK(q2)jλ(|q|r) , hijK,sd(r) =

2

π

RA
m2
π

∫ +∞

0
d|q|q2 hijK(q2)jλ(|q|r) ,

(6.8)

where K ∈ {F,GT, T} and hijK(q2) are defined in eq. (5.2). The hijK(r) functions describe

long-range contributions, while the hijK,sd(r) indicate short-range contributions. jλ(|q|r)
are spherical Bessel functions, with λ = 0 for F and GT, and λ = 2 for the tensor. The

factors of RA and mπ have been inserted so that the neutrino potentials are dimensionless.

Having defined the neutrino potentials, we express the nuclear matrix elements (NMEs) as

MF,(sd) = 〈0+|
∑
m,n

hF,(sd)(r)τ
+(m)τ+(n)|0+〉 ,

M ij
GT,(sd) = 〈0+|

∑
m,n

hijGT,(sd)(r)σ
(m) · σ(n) τ+(m)τ+(n)|0+〉 ,

M ij
T,(sd) = 〈0+|

∑
m,n

hijT,(sd)(r)S
(mn)(r̂) τ+(m)τ+(n)|0+〉 , (6.9)

where the tensor in position space is defined by S(mn)(r̂) =(
3σ(m) · r̂σ(n) · r̂− σ(m) · σ(n)

)
. In the χPT power counting, the matrix elements

7Note that we normalized hijK,sd(r) with a factor of m−2
π instead of (mNme)

−1 as done in ref. [76]. Apart

from this rescaling, these definitions agree with the literature once we drop the energy of the intermediate

states, which is a subleading correction in χPT.
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defined in eq. (6.9) are all expected to be O(1), with the exception of MMM
GT and MMM

T ,

which are suppressed by O(ε2χ). The latter suppression, however, is softened by the large

isovector magnetic moment of the nucleon which numerically scales as (1 + κ1)εχ ' O(1).

TheAi that appear in eq. (6.4) can be obtained from the potentials in section 5, and, for

completeness, we give them explicitly in this section. Aν has the same leptonic structure

as the amplitude induced by light Majorana-neutrino exchange. We can divide it in a

component which is proportional to the Majorana mass mββ , a long-distance component

Mν, ld arising from the dimension-six and -seven operators in eqs. (3.2) and (3.3), and a

short-distance component Mν, sd, proportional to the coefficients of low-energy dimension-

nine operators

Aν =
mββ

me
V 2
udMν +

mN

me
VudMν, ld +

m2
N

mev
Mν, sd . (6.10)

The nuclear matrix element for light Majorana-neutrino exchange has the well-known form

Mν = −
(
−
g2
V

g2
A

MF +MGT +MT

)
, (6.11)

where the GT and T matrix element are, respectively, MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT

and MT = MAP
T +MPP

T +MMM
T .

The long-distance component Mν, ld receives contributions from the scalar operators

C
(6)
SL, SR, the tensor operator C

(6)
T , and the dimension-seven vector operators C

(7)
VL,VR. The

contributions of these operators are not proportional to the neutrino mass, which is replaced

by a nuclear scale. We take this into account by factoring one power of the nucleon mass

out of the nuclear matrix element in eq. (6.10). Combining the results of sections 5.2.1

and 5.2.2, we obtain

Mν, ld =

(
B

mN
(C

(6)
SL − C

(6)
SR) +

m2
π

mNv

(
C

(7)
VL − C

(7)
VR

))
MPS + C

(6)
T gTMT6 , (6.12)

where

MPS =
1

2
MAP
GT +MPP

GT +
1

2
MAP
T +MPP

T , (6.13)

MT6 = 2
g′T gV
gT g2

A

m2
π

m2
N

MF, sd −
8

gM

(
MMM
GT +MMM

T

)
. (6.14)

We see that C
(6)
SL, SR give the largest contributions to Mν, ld, followed by the tensor oper-

ator C
(6)
T whose effects are formally suppressed by m2

π/Λ
2
χ, but again this suppression is

somewhat mitigated by the large value of gM . The dimension-seven operators are severely

suppressed by the Yukawa couplings of the light quarks (since the relative factor can be

written as m2
π/Bv = (mu +md)/v).

The short-distance component arises from the dimension-nine operators in eq. (3.4),

which always involve an additional power of 1/v with respect to the contribution from

light Majorana-neutrino exchange. To compensate for this factor, and for the absence of
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the neutrino mass, we factored two powers of mN out of the short-distance nuclear matrix

element in eq. (6.10). We then have

Mν, sd =

(
g8×8

2m2
N

C
(9)
4 +

gmix
8×8

2m2
N

C
(9)
5

)
Msd, 1 +

m2
π

m2
N

gNN27×1C
(9)
1 Msd, 2 , (6.15)

where we defined

Msd, 1 =
1

2
MAP
GT,sd +MPP

GT,sd +
1

2
MAP
T,sd +MPP

T,sd , (6.16)

Msd, 2 = −2
g2
V

g2
A

MF, sd +
1

2

gπN27×1

gNN27×1

(
MAP
GT,sd +MAP

T,sd

)
+

5

6

gππ27×1

gNN27×1

(
MPP
GT,sd +MPP

T,sd

)
. (6.17)

In eq. (6.17) we factored the LEC gNN27×1 out of Msd, 2 as to make the NME independent

of the renormalization scale. With the scaling of the LECs discussed in section 4.1, the

left-right operators C
(9)
4,5 give the largest contribution to Mν, sd, while contributions from

the purely left-handed operator C
(9)
1 are suppressed by ε2χ.

The dimension-six vector and axial operators C
(6)
VL,VR induce the additional leptonic

structures in eq. (6.4). AM is generated through the nucleon magnetic moment and is

proportional to C
(6)
VL

AM =
mN

me
VudC

(6)
VLMM , MM = 2

gA
gM

(
MMM
GT +MMM

T

)
. (6.18)

The terms proportional to the electron energies and to the electron mass receive con-

tributions from both C
(6)
VL and C

(6)
VR, and are given by

AE = VudC
(6)
VLME,L + VudC

(6)
VRME,R ,

Ame = VudC
(6)
VLMme,L + VudC

(6)
VRMme,R , (6.19)

where

ME,L = −1

3

(
g2
V

g2
A

MF +
1

3

(
2MAA

GT +MAA
T

))
,

ME,R = −1

3

(
g2
V

g2
A

MF −
1

3

(
2MAA

GT +MAA
T

))
,

Mme,L =
1

6

(
g2
V

g2
A

MF −
1

3

(
MAA
GT − 4MAA

T

)
− 3

(
MAP
GT +MPP

GT +MAP
T +MPP

T

))
,

Mme,R =
1

6

(
g2
V

g2
A

MF +
1

3

(
MAA
GT − 4MAA

T

)
+ 3

(
MAP
GT +MPP

GT +MAP
T +MPP

T

))
. (6.20)

One of the NME combinations is redundant as we can write Mme,R = −(ME,L + ME,R +

2Mme,L)/2. We choose to eliminate Mme,R in the sections below.

6.2 Chiral power counting

With these definitions we have introduced nine independent combinations of nuclear matrix

elements that determine the 0νββ rate at LO in χPT arising from dimension-5 and -

7 operators in the SM EFT. The combination of matrix elements Mν , MPS , Msd,{1,2},
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ν C
(6)
SL, SR C

(6)
T C

(6)
VL C

(6)
VR C

(7)
VL,VR C

(9)
1 C

(9)
4,5

meAν mββ Λχ Λχε
2
χ − − Λ2

χ

v ε2χ
Λ2
χ

v ε2χ
Λ2
χ

v

meAM − − − Λχε
2
χ − − − −

meAE − − − Λχε
3
χ Λχε

3
χ − − −

meAme − − − Λχε
3
χ Λχε

3
χ − − −

Table 4. Power-counting estimates of the contribution of low-energy dimension-six, -seven, and

-nine operators, as well as mββ to the amplitudes in eq. (6.4). Here ν stands for the contribution of

the light Majorana-neutrino exchange mechanism. Furthermore, εχ ≡ mπ/Λχ, where Λχ ∼ mN ∼
1 GeV is the symmetry-breaking scale. For the power counting, we consider the electron mass and

energies and to scale as E1 ∼ E2 ∼ me ∼ Λχ ε
3
χ.

ME,{L,R}, Mme,L are all expected to be O(1), while MM , MT6 scale as O(m2
π/Λ

2
χ) but are

enhanced by a factor of gM . Not all matrix elements contribute equally to the decay rate

because of factors of mN/me and m2
π/m

2
N that appear in the definitions of the amplitudes

Ai in eqs. (6.12), (6.18), and (6.19).

The power-counting estimates of the amplitudes are summarized in table 4. As dis-

cussed in section 5, the smallness of the electron’s mass and energy is accounted for in

the power counting by assigning the scaling E1 ∼ E2 ∼ me ∼ mπε
2
χ = Λχ ε

3
χ. The power

counting suggests that C
(6)
SL, SR give the largest contribution to the inverse half-life, and thus

are the most constrained from 0νββ experiments. This expectation is verified in section 7.

C
(6)
T and C

(6)
VL give contributions of similar size, suppressed by two powers of εχ. In both

cases, the large nucleon isovector magnetic moment enhances the matrix elements leading

to somewhat stronger bounds than expected. C
(6)
VL induces contributions to AE and Ame,

which arise at O(ε3χ), and thus can be neglected compared to AM . This expectation is

very well confirmed when using realistic values of the nuclear matrix elements. In the case

of C
(6)
VR, there is no contribution to AM , and thus the first correction to the half-life is of

O(ε3χ). As a consequence, the bound on this coefficient, which is particularly interesting

for left-right symmetric models, is weaker than for the remaining dimension-six operators

as is explicitly found in section 7.

Dimension-seven and -nine operators are further suppressed due to inverse powers of

the electroweak scale. Contributions from C
(9)
4,5 are suppressed by Λχ/v, while contributions

from C
(9)
1 and the dimension-seven operators C

(7)
VL,VR by Λχε

2
χ/v.

Having discussed the χPT power-counting expectations, in table 5 we list the numerical

values of the NMEs, which are obtained from the calculations of refs. [32, 76, 83–85]. It

is interesting that, with the exception of MAA
T , all the NMEs that are needed to constrain

the contributions of dimension-seven operators can be lifted from existing calculations

of 0νββ mediated by light and heavy Majorana neutrino exchange, provided that these

calculations include the contributions of weak magnetism and of the induced pseudoscalar

form factor, and the results for the various components of MGT and MT in eq. (6.11) (and

in the analogous expression for heavy-neutrino exchange) are listed separately, as done for
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NMEs 76Ge 82Se 130Te 136Xe

[76] [32] [83] [84, 85] [76] [32] [83] [76] [32] [83] [76] [32] [83]

MF -1.74 -0.67 -0.59 -0.68 -1.29 -0.63 -0.55 -1.52 -0.44 -0.67 -0.89 -0.40 -0.54

MAA
GT 5.48 3.50 3.15 5.06 3.87 3.29 2.97 4.28 1.85 2.97 3.16 1.68 2.45

MAP
GT -2.02 -0.25 -0.94 -0.92 -1.46 -0.23 -0.89 -1.74 -0.19 -0.97 -1.19 -0.17 -0.79

MPP
GT 0.66 0.33 0.30 0.24 0.48 0.31 0.28 0.59 0.21 0.31 0.39 0.19 0.25

MMM
GT 0.51 0.25 0.22 0.17 0.37 0.24 0.20 0.45 0.17 0.23 0.31 0.15 0.19

MAA
T − − − − − − − − − − − − −

MAP
T -0.35 0.01 -0.01 -0.31 -0.27 0.01 -0.01 -0.50 -0.01 0.01 -0.28 0.01 0.01

MPP
T 0.10 0.00 0.00 0.09 0.08 0.00 0.00 0.16 0.01 -0.01 0.09 -0.01 -0.01

MMM
T -0.04 0.00 0.00 -0.04 -0.03 -0.00 0.00 -0.06 0.00 0.00 -0.03 0.00 0.00

MF, sd -3.46 -1.55 -1.46 -1.1 -2.53 -1.44 -1.37 -2.97 -1.02 -1.61 -1.53 -0.92 -1.28

MAA
GT, sd 11.1 4.03 4.87 3.62 7.98 3.72 4.54 10.1 2.67 5.31 5.71 2.40 4.25

MAP
GT, sd -5.35 -2.37 -2.26 -1.37 -3.82 -2.19 -2.09 -4.94 -1.61 -2.51 -2.80 -1.45 -1.99

MPP
GT, sd 1.99 0.85 0.82 0.42 1.42 0.79 0.77 1.86 0.60 0.92 1.06 0.53 0.74

MAP
T, sd -0.85 0.01 -0.05 -0.97 -0.65 0.02 -0.05 -1.50 -0.07 0.07 -0.92 0.08 0.05

MPP
T, sd 0.32 0.00 0.02 0.38 0.24 -0.01 0.02 0.58 0.03 -0.02 0.36 -0.03 -0.02

Table 5. Comparison of the different NMEs of refs. [32, 76, 83–85], for the nuclei relevant for

the GERDA [12], NEMO [86], CUORE [7], and KamLAND-Zen [13] experiments. To obtain MF ,

MAA
GT , MMM

GT , MF, sd, and MAA
GT, sd we used, respectively, MF , MGTω, MGT ′ , MFN , and MGTN of

ref. [32], see appendix D and table 9.

examples in refs. [73, 74, 76].8 In appendix D we discuss how to convert the nuclear matrix

elements of the original references to the notation of eqs. (6.8) and (6.9) (see table 9).

The NME MAA
T does not contribute to the light Majorana exchange mechanism, and thus

requires a dedicated calculation. This matrix element is important only for C
(6)
VR and, as

we argue in appendix D, even in this case its contribution is numerically small. Therefore,

in section 7 we set MAA
T to zero.

A few comments are in order. First of all, the neutrino potentials derived in χPT

are not sensitive to the closure energy Ē, where Ē ∼ 1 − 10 MeV is much smaller than

the typical Fermi momentum. The relations in table 9 are valid in the limit Ē → 0,

8We thank J. Menéndez and J. Barea for providing us with updated values of the NMEs for light- and

heavy-neutrino exchange [83, 85], with GT and T matrix elements separated in AA, AP , PP , and MM

components.

– 28 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

which should be a good approximation if the bulk of the nuclear matrix elements comes

from the region r ∼ 1/kF . Secondly, the momentum dependence of the axial and vector

form factors is an O(ε2χ) effect in χPT, and some of the relations in table 9 neglect the

difference between the axial and vector dipole masses, which is justified at leading order.

Refs. [32, 76], and [83] computed NMEs that, with these assumptions, should be equal,

up to higher-order corrections. By comparing these NMEs we can thus explicitly test the

validity of the chiral power counting.

As a first example, if the momentum dependence of gV (q2) and gA(q2) is neglected,

the short-distance matrix elements MF,sd and MAA
GT,sd are related by a Fierz identity

MAA
GT, sd = −3MF, sd . (6.21)

Table 5 shows that the results from ref. [76] obey eq. (6.21) up to corrections that range

from ∼ 10% for 76Ge and 82Se to ∼ 20% for 136Xe, while in refs. [32] and [83] the corrections

are roughly 15% and 10% for all the nuclei that were considered. The results of ref. [85] for
76Ge also respect eq. (6.21) at the 10% level. Once the momentum dependence of gV (q2)

and gA(q2) is no longer neglected, the relation in eq. (6.21) receives corrections at O(ε2χ)

in χPT, a size consistent with these numerical results.

Furthermore, using the identity q2 = (q2 + m2
π) −m2

π, and again neglecting the mo-

mentum dependence of gV (q2) and gA(q2), we can derive the following relations between

short- and long-distance matrix elements,

MPP
GT,sd = − 1

2
MAP
GT,sd −MPP

GT , MPP
T,sd = − 1

2
MAP
T,sd −MPP

T ,

MAP
GT,sd = − 2

3
MAA
GT,sd −MAP

GT , MMM
GT =

g2
Mm

2
π

6g2
Am

2
N

MAA
GT,sd , (6.22)

that are valid through NLO in the chiral counting.

The NMEs of refs. [76, 83] and [85] respect the first three relations to 5% accuracy,

the fourth to 10%. For ref. [32], MAP,PP
GT and MAP,PP

GT,sd were constructed from pion-range

NMEs using the relations of table 9, which make the first two and the fourth equations

in eq. (6.22) trivial identities. The third relation in eq. (6.22) is non-trivial, and it is well

respected by the NMEs in ref. [32]. These numerical results confirm that the relations in

eq. (6.22) are accurate up to (5-10)% corrections, which is of the same size as the expected

O(ε2χ) χPT effects.

The large number of NMEs computed in ref. [32] allows for additional consistency

checks, which we discuss in appendix D. In general, for the consistency checks performed

in appendix D, we observe that various relations between NMEs are respected up to 20%-

30% corrections, the level one would expect from LO χPT. We conclude that the power

counting is working satisfactory although stronger conclusions would require the explicit

inclusion of NLO corrections.

6.3 Matrix elements from different many-body methods

In figures 3 and 4 we show results for the nine combinations of NMEs that determine

the contribution of SM-EFT dimension-seven operators to 0νββ, obtained by combining
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Figure 3. Comparison of the NMEs obtained using the calculations of refs. [76] (blue triangles), [32]

(red squares), [83] (green circles) and [84, 85] (orange diamonds). To show the different NMEs,

Mi, on a similar scale we arbitrarily normalized the calculations to the results of ref. [76], i.e.

R(Mi) = Mi/M
[76]
i . For MPS we show the absolute value of the ratio. In this case, ref. [32] finds a

negative ratio, while for refs. [83] and [84, 85] we find positive values. The same finding holds for

Mme,L shown in figure 4.
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Figure 4. Continuation of the comparison between the NMEs of refs. [32, 76, 83–85]. Notation is

the same as in figure 3.
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the results of refs. [76] (blue triangles), [32] (red squares), [83] (green circles), and [84,

85] (orange diamonds). The calculation of ref. [76] is based on the quasiparticle random

phase approximation (QRPA) method. Refs. [32] and [83] are shell model calculations.

Refs. [84, 85] use the interacting boson model. Note that refs. [32, 76, 83] include short-

range correlations in various ways using CD-Bonn or AV-18 parameterizations. The choice

of parameterization has a non-negligible effect for the sd NMEs. In table 9 we have used

results using the CD-Bonn parameterization for [32, 76, 83].

In order to generate the results presented in figures 3 and 4 we made a few assumptions.

MT6 and Msd, 2 depend on the ratios of LEC g′T /gT and gππ, πN27×1 /gNN27×1. In figure 3, we

assumed the unknown LECs to follow NDA, g′T = gπN27×1 = gNN27×1 = 1, while gT and gππ27×1

are given in table 2. Varying the size of g′T has a limited effect on MT6, while Msd,2 is quite

sensitive to the precise values of the LECs. We discuss this in more detail below. In addition

ME,L, ME,R, and Mme,L depend on the matrix element MAA
T , which is not evaluated in any

of the references we use for the NMEs. Fortunately, this matrix element was computed in

ref. [77], which found MAA
T = {−0.92,−1.2,−0.86,−0.72} for 76Ge, 82Se, 130Te and 136Xe,

respectively. For these values of MAA
T , the effect on the mentioned NMEs is mild. In

addition, MAA
T mainly affects the limits on C

(6)
VR, since the constraint on C

(6)
VL is dominated

by MM . Nevertheless, it would be useful if MAA
T is included in future calculations.

Figures 3 and 4 show that the nonstandard NMEs computed with different many-

body methods differ by at most a factor of 2-to-3. This level of agreement is similar to

the one observed for the light-neutrino-exchange mechanism [66] — see the spread in Mν

— and leads to an uncertainty in the 0νββ rate of about one order of magnitude. The

calculation of ref. [32] yields values of MPS which have very similar size, but opposite sign

with respect to refs. [76, 83, 85]. The sign difference has no impact in the single-coupling

scenario explored in section 7. It will affect scenarios in which several operators are turned

on at the same time, but in this case the effect is mitigated by the ignorance of the relative

phase between the coefficients. A similar argument applies to Mme,L and Mme,R, which,

using the results of ref. [32] are found to have similar size, but different sign with respect

to the other calculations. The uncertainty on the short-distance NME Msd,2 is somewhat

larger than for the other NMEs. This is not unexpected as such matrix elements depend on

short-distance details of nuclear wave functions which are more model dependent then long-

range aspects. The relative sizes of the NME combination Msd,2 for various isotopes vary

strongly between refs. [32, 76, 83]. Although we do not understand this behaviour in detail,

it might be related to possible accidental cancellations between the various contributions

to Msd,2. In the next section we explore the consequences of these uncertainties on the

constraints on the scale of BSM lepton-number-violating physics.

It is possible to further reduce the set of relevant NMEs. MT6 depends in principle on

a linear combination of MF,sd and MMM
GT + MMM

T , but the latter numerically dominates

due to the large nucleon isovector magnetic moment. As such, the NME combinations MT6

and MM are related by MT6/MM ' −4/gA. This relation holds up to O(10%) corrections

for all sets of NMEs. Finally, the NME combination ME,{L,R} and Mme,{L,R} only appear

for the dimension-six vector operators C
(6)
VL,VR. However, the contributions to the 0νββ
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76Ge 82Se 130Te 136Xe

mββ(eV) 0.17 1.6 0.32 0.084

C
(6)
SL 270 130 220 350

C
(6)
SR 270 130 220 350

C
(6)
T 240 110 200 300

C
(6)
VL 180 83 150 220

C
(6)
VR 33 17 29 44

C
(7)
VL 8.1 3.8 6.8 11

C
(7)
VR 8.1 3.8 6.8 11

C
(9)
1 13 6.3 10 13

C
(9)
4 43 21 38 55

C
(9)
5 66 31 58 85

76Ge 82Se 130Te 136Xe

0.19 1.4 0.49 0.1

210 110 150 260

210 110 150 260

190 99 150 250

150 74 110 190

26 15 20 34

6.4 3.3 4.6 7.8

6.4 3.3 4.6 7.8

11 5.5 8.3 14

32 17 24 42

50 26 37 64

76Ge 82Se 130Te 136Xe

0.3 2.2 0.45 0.1

200 100 180 290

200 100 180 290

180 94 170 270

140 70 120 200

26 15 24 39

6 3.2 5.4 8.9

6 3.2 5.4 8.9

10 5.4 9.7 16

32 16 28 45

49 24 44 70

Table 6. The table shows the upper limits on |mββ | and lower limits on the scales, Λi, related to

the dimension-six, -seven, and -nine operators from the GERDA [87], NEMO [9, 11], CUORE [7],

and KamLAND-Zen [13] experiments, assuming Ci(µ = 2 GeV) = v3/Λ3
i . The left, middle, and

right tables correspond to the matrix elements of refs. [32, 76], and [83], respectively. The lower

limits on Λ are shown in units of TeV.

rate from Mme,{L,R} are numerically suppressed with respect to those from ME,{L,R}. This

suppression can be partially understood from phase space factors as the electron mass is

small with respect to the typical Q value (compare 2G02 to G04 in table 3). The above

considerations imply that seven combinations of NMEs dominate 0νββ in the SM-EFT.

7 Single-coupling constraints

In this section we discuss the constraints on the low-energy operators, as well as the fun-

damental dimension-seven operators that arise at the scale Λ. We start by considering

the bounds from 0νββ experiments and discuss other relevant observables in section 7.1.

Throughout this section we will assume that only one operator is present at a time. We

study scenarios involving multiple couplings in section 8. We apply the following experi-

mental limits [7, 12, 13, 86] (all at 90% c.l.)

T 0ν
1/2(76Ge) > 5.3 · 1025 yr , T 0ν

1/2(82Se) > 2.5 · 1023 yr ,

T 0ν
1/2(130Te) > 4.0 · 1024 yr , T 0ν

1/2(136Xe) > 1.1 · 1026 yr . (7.1)

By inserting the phase-space factors of table 3 and the NMEs in table 5 into eq. (6.5),

we obtain limits on the coefficients of the ∆L = 2 operators. In table 6 we show bounds

on mββ and the low-energy dimension-six, -seven, and -nine operators of eq. (3.4), which

were derived using the NMEs of refs. [32, 76], and [83] in the left, middle, and right

panels, respectively.
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Using NMEs from ref. [76] we find an upper bound mββ < 0.084 eV, and slightly weaker

bounds for the other NMEs. The limits we obtain are in agreement with, for example,

ref. [32]. All bounds are somewhat weaker than the most stringent bound reported in

ref. [13], mββ < 0.061 eV which is based on different NMEs than considered here.

For the non-standard operators, table 6 shows the constraints on the scale of new

physics, Λ, assuming that Ci(µ = 2 GeV) = v3/Λ3 and only one coupling is turned on at a

time. In addition, we assumed natural values for the unknown LECs, g′T = gπN27×1 = gNN27×1 =

1. As expected from the discussion of the previous section, the most stringent constraints

arise in the case of C
(6)
SL,SR, reaching scales of O(100 TeV). Although the power counting

of table 4 would predict the limit on C
(6)
T,VL to be weaker by ε

2/3
χ , the actual constraints

are somewhat stronger than expected due to the large isovector magnetic moment. For

most of the remaining couplings the limits closely follow what one would expect from the

power counting. For example, the limits on C
(7)
VL,VR and C

(6)
VR are weaker than the limits

on C
(6)
SL,SR by factors of (

Λχ
v ε

2
χ)1/3 ' 0.05 and εχ ' 0.15, respectively, which agrees with

table 4. Finally, we would expect the limits on C
(6)
VR to be weaker than the limit on C

(6)
VL

by roughly a factor (εχ/(1 + κ1)2)1/3 ' 0.2 which agrees fairly well with the actual results.

Here we took into account by hand the large nucleon magnetic moment.

The case of C
(9)
1 requires additional explanation. From the power counting we would

expect this coupling to contribute at the same order as C
(7)
VL,VR. However, the matrix

element Msd, 2 receives several contributions proportional to unknown LECs, gπN27×1 and

gNN27×1. As a result, the contribution of C
(9)
1 can vary substantially depending on the values

and signs of these LECs. This is illustrated in figure 5 where we show the constraint on C
(9)
1

as a function of gπN27×1 and gNN27×1. By varying the LECs in a natural range, the bound on

C
(9)
1 can decrease or increase by a factor of O(10). In fact, there exists a small, fine-tuned,

region where the limit on C
(9)
1 disappears. Although such a near-exact cancellation is not

expected, and is sensitive to higher-order corrections, the limits on the scale Λ for C
(9)
1

appearing in table 6 should be taken as an order-of-magnitude estimate, at least until the

values of gπN,NN27×1 are further constrained. In contrast, varying the sign of the only other

unknown LEC, g′T , only leads to O(10%) effects in the limits on Λ for C
(6)
T .

Although the above constraints are useful to test the power counting, the fundamental

∆L = 2 operators of interest are the dimension-seven operators of table 1. We present the

limits on these couplings in table 7, where the left, middle, and right panels again employ

the NMEs of [32, 76], and [83], respectively. The bounds on the scale of new physics are

obtained by assuming a single coupling is present at the high scale, and Ci(µ = Λ) = 1/Λ3.

The strongest limits are derived in the case of C(1)

LLQd̄H
and CLLQ̄uH because these operators

mainly induce the stringently constrained C
(6)
SL,SR. Instead, the weakest limits are obtained

in cases where only the low-energy dimension-seven and -nine operators are induced. This

is the case, for example, for C(1)
LHD and CLHW , which both mainly contribute to C

(7)
VL and

C
(9)
1 . Since these operators induce C

(9)
1 , the corresponding limits are sensitive to the values

of the unknown LECs, gπN,NN27×1 . In figure 6 we present the same information in a different

format, focusing on the bounds on the dimension-7 operators arising from the KamLAND-

Zen experiment [13].
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Figure 5. Constraints on the coupling C
(9)
1 (µ = 2 GeV) as a function of the unknown LECs gπN27×1

and gNN27×1. Here we show the constraints derived using the NMEs of ref. [76] and the experimental

limit on the half-life of 136Xe [13].

It should be noted that the Wilson coefficients will in general depend on a dimensionless

coupling, ci, in addition the scale Λ, i.e. Ci = ci/Λ
3. The presence of these ci implies that

the limits on Λ in table 7 (where we assumed ci = 1) do not necessarily correspond to

constraints on particle masses in any given BSM theory. In particular, in weakly coupled

BSM theories, ci < 1, the limits on the masses of particles could be significantly weaker

than those on Λ given in table 7. Thus, the stringent bounds on Λ derived above do not

necessarily imply that the responsible BSM physics is out of reach of collider searches.

Apart from a simple rescaling of the limits in figure 6, dimensionless couplings, ci 6= 1,

would change the starting point of the RGEs. However, the numerical impact of such a

change in Λ is rather minimal. For example, changing the starting point of the RG from

Λ = 50 TeV to Λ = 100 TeV, changes the running of the Ci by no more than 10%.

An alternative way to present the limits is shown in table 8, where we show the bounds

on the dimensionless couplings, ci = Λ3Ci(Λ). Here we picked the scale Λ to be 10 TeV, and

derived constraints using several calculations for the NMEs [32, 76, 83–85]. The bounds in

table 8 are inversely proportional to these NMEs, ci ∝M−1
i , while the limits on the scales

have a much weaker dependence, Λ ∝ M
1/3
i . As a result, the variation between different

nuclear calculations is more pronounced in table 8 than in table 7.

7.1 Other constraints

Although 0νββ leads to stringent constraints on the Ci couplings, reaching scales of

O(100 TeV), it is interesting to see how these compare to constraints from other probes.
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C(1)
LHD 15 6.9 11 13

CLHDe 160 73 130 200

CLHW 23 11 17 20

C(1)
LLduD 74 35 65 95

C(1)
LLQdH 240 110 200 320

C(2)
LLQdH 120 58 100 150

CLLQuH 310 150 260 410

CLeud̄H 29 15 26 39

76Ge 82Se 130Te 136Xe

13 6.6 9.9 16

130 65 98 160

20 11 16 26

56 29 42 72

200 100 140 250

99 51 77 130

250 130 180 300

24 14 18 30

76Ge 82Se 130Te 136Xe

12 5.9 11 17

120 61 110 180

18 9.4 17 28

54 27 49 78

180 93 160 270

94 48 85 140

230 120 210 340

23 13 22 35

Table 7. The table shows the lower limits on the scale of the dimension-seven couplings, from

the GERDA [87], NEMO [9, 11], CUORE [7], and KamLAND-Zen [13] experiments, assuming

Ci(µ = Λ) = 1/Λ3. The left, middle, and right tables correspond to the matrix elements of

refs. [32, 76], and [83], respectively. The limits on Λ are shown in units of TeV.

76Ge [76] [32] [83] [84, 85]

C(1)
LHD 3.3× 10−1 4.7× 10−1 6.5× 10−1 2.1× 10−1

CLHDe 2.6× 10−4 4.7× 10−4 5.5× 10−4 9.0× 10−4

CLHW 8.2× 10−2 1.2× 10−1 1.6× 10−1 5.3× 10−2

C(1)
LLduD 2.4× 10−3 5.8× 10−3 6.2× 10−3 5.2× 10−3

C(1)
LLQdH 8.1× 10−5 1.4× 10−4 2.0× 10−4 1.2× 10−4

C(2)
LLQdH 5.4× 10−4 1.0× 10−3 1.2× 10−3 2.4× 10−3

CLLQuH 3.8× 10−5 7.6× 10−5 9.0× 10−5 5.6× 10−5

CLeudH 4.0× 10−2 7.9× 10−2 7.7× 10−2 6.8× 10−2

136Xe [76] [32] [83]

4.9× 10−1 2.3× 10−1 1.9× 10−1

1.3× 10−4 2.3× 10−4 1.8× 10−4

1.2× 10−1 5.8× 10−2 4.7× 10−2

1.2× 10−3 2.7× 10−3 2.1× 10−3

3.7× 10−5 7.5× 10−5 6.2× 10−5

2.6× 10−4 4.5× 10−4 3.6× 10−4

1.7× 10−5 4.1× 10−5 2.8× 10−5

1.7× 10−2 3.5× 10−2 2.3× 10−2

Table 8. The table shows the limits on the dimensionless couplings, ci, of the dimension-seven

operators, from the GERDA [87] and KamLAND-Zen [13] experiments. Here we assume ci(µ =

Λ) = Ci(Λ) Λ3 and choose the scale of BSM physics to be Λ = 10 TeV. The columns from left to

right, correspond to the matrix elements of refs. [32, 76, 83], and, in the case of 76Ge, [84, 85],

respectively.

C(1)
LHD

CLHDe CLHW C(1)

LLd̄uD
C(1)

LLQd̄H
C(2)

LLQd̄H
CLLQ̄uH CLeud̄H

101

102

103

13

200

20

95

320
150

410

39
16

160

26

72

250
130

300

30
17

180

28

78

270
140

340

35

Λ
(T

eV
)

Hyvärinen et al. [76] Horoi et al. [32] Menéndez et al. [83]

Figure 6. Constraints from the KamLAND-Zen experiment [13] on the scale of the dimension-seven

operators. We assume Ci(µ = Λ) = 1/Λ3 and only turn on one operator at a time.
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In particular, all operators in table 1 induce radiative corrections to the neutrino masses.

In section 7.1.1 we therefore discuss the naturalness bounds that can extracted from the

neutrino masses. We find that for several operators they are stronger than the bounds

from 0νββ.

Considering additional probes is particularly important for the operators CLHB and

CLLēH , which do not induce 0νββ at tree level, and C(2)
LHD, whose contribution to 0νββ is

suppressed by the electron energy, and was not considered in sections 5 and 6. We address

the contributions of these operators to the neutrino masses in section 7.1.1, and take into

account bounds from the neutrino transition magnetic moments in section 7.1.2, and from

non-standard muon decays in section 7.1.3.

7.1.1 Neutrino mass

The operators in table 1 can generate neutrino masses. The tree-level contribution is

(δmν)ij = −v
2

(v3CLH,ij) . (7.2)

The other Ci do no contribute at tree level, but can contribute to CLH through RG effects

between µ = Λ and µ = mW . The complete neutrino mass is a combination of the

contributions of the dimension-seven operators and the Weinberg operator. In total we

have mν = m
(0)
ν + δmν , where m

(0)
ν is the contribution from the Weinberg operator. Since

m
(0)
ν is unknown we can only set constraints if we assume that the dimension-five and

-seven contributions are not unnaturally large compared to the total neutrino mass. That

is, we assume there is no large cancellation between m
(0)
ν and δmν . To get an idea of these

naturalness limits we will, somewhat arbitrarily, impose |δmν | . 1 eV.

From eq. (7.2), we can already estimate the constraint on CLH . Assuming CLH(µ =

Λ) = 1/Λ3, we get Λ > 1200 TeV. For the other dimension-seven operators that contribute

at loop level, we require the evolution between µ = Λ and µ = mW . The relevant one-loop

RGE is given by

dCLH
d lnµ

=
1

(4π)2

[
6g4 CLHW −

3

2
g4C(1)

LHD −
3

4
(3g4 + 2g2g′ 2 + g′ 4)C(2)

LHD

+3
√

2
me

v
g2 i CLHDe + 4

√
2NC

(md

v

)3
C(1)

LLQd̄H

−8
√

2NC

(mu

v

)3
CLLQ̄uH + 8

√
2
(me

v

)3
CLLēH

]
. (7.3)

The above expression provides us with CLH(µ = mW ), which together with eq. (7.2) and

|δmν | . 1 eV, leads to the constraints

C(1)
LHD : Λ > 280 TeV , C(2)

LHD : Λ > 350 TeV ,

CLHDe : Λ > 6 TeV , CLHW : Λ > 460 TeV , (7.4)

where we again assumed Ci = 1/Λ3. Contributions of the operators appearing in the

second line of eq. (7.3) are severely suppressed by three powers of small Yukawa couplings.

The corresponding limits are well below the electroweak scale such that we do not obtain

sensible constraints.
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Here we only considered contributions to the neutrino masses through corrections to

the dimension-seven coupling CLH . In principle, one could consider corrections directly to

the dimension-five coupling, C(5), in eq. (2.1) as well. Below the scale Λ, the SU(2)-invariant

dimension-seven operators do not mix with this dimension-five operator. However, assum-

ing the dimension-five term is not protected by symmetry considerations, one might expect

the BSM interactions that induce the Ci appearing in eq. (7.3), to contribute to C(5) as

well. These contributions would result from matching the BSM theory to the EFT and,

if they arise from loop diagrams, could in principle scale as C(5) ∼ 1
(4π)2

1
Λ , in which case

they would dominate over those in eq. (7.3) by a factor of Λ2/v2. Such contributions would

lead to more stringent limits than those in eq. (7.4). On the other hand, it is possible to

realize smaller contributions to the neutrino masses than those induced by eq. (7.3) if there

is a fine-tuned cancellation at work. Which of these scenarios is realized, as well as the

mentioned matching contributions, depend strongly on the specific BSM theory above the

scale Λ. Here we refrain from estimating such model-dependent effects and only consider

the terms that are calculable within the EFT framework. Nevertheless, one should keep

in mind that specific BSM theories could give larger contributions to the neutrino masses

than those captured by eq. (7.3).

It is certainly possible to avoid the above naturalness limits by allowing for some

amount of fine-tuning between, for example, dimension-five and -seven contributions to

the neutrino mass. Nevertheless, taken at face value, the contributions to δmν can lead to

very stringent constraints. This is certainly true for CLH and C(2)
LHD, for which the limits

reach O(100 TeV) or more, while these couplings would be left unconstrained by 0νββ.

Note that these naturalness limits even exceed the 0νββ constraints for CLHW and C(1)
LHD,

while 0νββ is more constraining for CLHDe (as well as for CLLQ̄uH and C(1)

LLQd̄H
).

Of the remaining operators, CLHB does not contribute at one loop as it is anti-

symmetric in flavor space, while C(2)

LLQd̄H
, CLLd̄uD, and CLeud̄H , mix with CLH at two loops

and require, respectively, one, two, and three Yukawa insertions. The 0νββ limits are more

stringent in these cases, and we do not consider the contributions to δmν .

7.1.2 Magnetic moments

Apart from neutrino masses, the operators in table 1 also induce contributions to the mag-

netic moment of the neutrinos. These magnetic moments can be constrained by neutrino-

electron scattering in solar and reactor experiments [38, 88, 89], or through astrophysical

limits from globular clusters [90]. As we are mainly interested in an order-of-magnitude

estimate, here we will employ the limits of ref. [89] from the scattering of solar neutrinos.

Tree-level contributions of the dimension-seven operators to the magnetic moments are

µij =
1

2v

(
v3CLHB,ij − v3CLHW,ij − CLHW,ji

2

)
, (7.5)

where µ and CLHB are anti-symmetric in flavor space. Following the notation of ref. [89],

the transition magnetic moments can be parametrized by three complex parameters, Λi,

as follows, (
UTµU

)
ij

= − 1

4e
εijkΛk , (7.6)
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where the PMNS matrix, U , appears due to the rotation to the mass basis. The constraints

derived in ref. [89] are

|Λ1| ≤ 5.6 · 10−11 µB , |Λ2| ≤ 4.0 · 10−11 µB , |Λ3| ≤ 3.1 · 10−11 µB . (7.7)

In principle, a detailed analysis should take into account the flavor structure of CLHB,LHW
as well as the unknown phases in U . As we are mainly interested the order-of-magnitude

of the limits, we take the following estimate

|CLHB − CLHW | .
1

4mev2
10−10 → Λ > 11 TeV . (7.8)

For CLHW this limit is weaker than both the limit from 0νββ as well as the naturalness

constraint from the neutrino mass. However, the neutrino magnetic moments do provide

the most stringent limit on CLHB, whose contributions to 0νββ and the neutrino mass are

suppressed.

7.1.3 Muon decay

The operator OLLēH does not contribute to 0νββ at tree level, and its contribution to the

neutrino mass in eq. (7.3) is suppressed by three powers of the electron Yukawa coupling,

leaving the coefficient CLLēH poorly constrained. In this section we discuss the constraints

on CLLēH from non-standard muon decays. After electroweak symmetry breaking, the

∆L = 2 Lagrangian relevant for muon decay is

L = −4GF√
2

{
CµeS µ̄ReL ν

T
L, eCνL, µ + CeµS ēRµL ν

T
L, eCνL, µ

+
1

4
CµeT µ̄Rσ

µνeL ν
T
L, eCσµννL, µ +

1

4
CeµT ēRσ

µνµL ν
T
L, eCσµννL, µ

}
+ h.c. , (7.9)

where the coefficients CS and CT are

CµeS =
v3

4
√

2

(
Cµµ eeLLēH + 2CµeµeLLēH + 3Cµe eµLLēH

)
, CµeT = − v3

4
√

2

(
Cµµ eeLLēH − C

µe eµ
LLēH

)
,

CeµS =
v3

4
√

2

(
Cee µµLLēH + 2Ceµ eµLLēH + 3CeµµeLLēH

)
, CeµT = − v3

4
√

2

(
Cee µµLLēH − C

eµµe
LLēH

)
. (7.10)

CµeS,T, and its hermitian Cµe∗S,T , mediate, respectively, the ∆L = 2 decays µ+ → e+ν̄eν̄µ and

µ− → e−νeνµ, while CeµS,T and Ceµ∗S,T induce µ− → e−ν̄eν̄µ and µ+ → e+νeνµ.

The experimental analysis of ref. [40] searched for ν̄e in the decay products of a µ+ at

rest, by looking for the charged current processes p ν̄e → e+n and 12C ν̄e → e+ n 11B follow-

ing the decay of the muon. The muonic neutrino is not identified, and thus the experiment

constrains µ+ → e+ν̄e(ν̄+ν). The experimental setup is such that the contribution of neu-

trino oscillations, ν̄µ → ν̄e, is negligible [40]. If, in addition, we assume that there are no

∆L = 0 lepton-flavor violating operators, which would for example induce µ+ → e+ν̄eνµ,

the limits on the branching ratio can be used to put bounds on Cµ eS,T.
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Figure 7. Constraints in the mββ-Λ3CLLQ̄uH plane using the NMEs of [76] and assuming Λ =

600 TeV. The left panel assumes Arg CLLQ̄uH = 3/4π, while in the right panel we marginalize over

the phase of CLLQ̄uH .

In terms of CµeS,T, the branching ratio is

BR
(
µ+ → e+ν̄eν̄µ

)
=

Γ (µ+ → e+ν̄eν̄µ)

Γ (µ+ → e+νeν̄µ)
=

1

4

∣∣CµeS

∣∣2 +
3

4

∣∣CµeT

∣∣2 . (7.11)

The dependence of the decay rate on the ν̄e energy is determined by the Michel parameter

ρ̃, which, at tree level, is ρ̃ = 3/4 for the scalar, and ρ̃ = 1/4 for the tensor operator.

With this information, we can use the 90% C.L. limits on the branching ratio [40]

BR
(
µ+ → e+ν̄eν̄µ, ρ̃ = 0.75

)
< 0.9 · 10−3, BR

(
µ+ → e+ν̄eν̄µ, ρ̃ = 0.25

)
< 1.3 · 10−3,

(7.12)

to obtain |CµeS | < 0.06 and |CµeT | < 0.04, corresponding to a scale of around 350 GeV for

the operator OLLēH .

8 Two-coupling analysis

The single-coupling limits of section 7 clearly show the constraining power of the 0νββ

experiments, as they reach scales of O(100 TeV). However, in realistic lepton-number-

violating scenarios one would generally expect to generate multiple ∆L = 2 couplings at

the scale of new physics. In this section, we discuss scenarios in which both mββ and

a dimension-seven operator are turned on simultaneously. We study how such scenarios

differ from the well-known light-Majorana neutrino case. Finally, in section 8.1, we briefly

consider the possibility of distinguishing different ∆L = 2 operators using the energy

and/or angular distributions of the electrons emitted in 0νββ.

We begin with showing the limits in the |mββ | − Λ3 CLLQ̄uH plane in figure 7. Here

we assumed Λ = 600 TeV and used the NMEs of ref. [76]. In the left panel we take

a specific value for the relative phase between the dimension-seven coupling and mββ ,
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Figure 8. Constraints in the mββ-Λ3CLeud̄H plane using the NMEs of [76] and assuming Λ =

40 TeV. Here the phase of CLeud̄H is marginalized over.

namely, Arg (CLLQ̄uHm∗ββ) = 3/4π. As one can see, in this case the experimental limits

form ellipses in the mββ − Λ3 CLLQ̄uH plane. For a generic relative phase the picture is

qualitatively the same. However, specific values of the relative phase, namely, 0 and π,

allow for cancellations between the dimension-seven and mββ contributions. As a result,

free directions appear once we marginalize over the relative phase. This is clearly shown

in the right panel of figure 7.

These free directions appear in part because CLLQ̄uH contributes to the same leptonic

structure as mββ (see e.g. eq. (6.10)). As such, we also consider operators that generate

different leptonic structures. We show the mββ-Λ3CLeud̄H plane in figure 8, now assuming

Λ = 40 TeV. Although we marginalized over the relative phase, no free directions appear

because the different leptonic structure prohibit a (complete) cancellation between mββ

and the dimension-seven contribution. Finally, both figure 7 and 8 illustrate that the

different nuclei considered here do not have very different sensitivities, i.e. the ellipses and

bands all have roughly the same slope. This is a generic feature that does not depend on

the dimension-seven coupling under consideration. Unfortunately this implies that it will

be difficult to unravel the underlying ∆L = 2 mechanism from just nonzero 0νββ total

decay rates.

It is interesting to consider the impact of the dimension-seven operators on the inter-

pretation of 0νββ measurements. 0νββ experiments are often interpreted as constraints

on mββ , however, in the presence of ∆L = 2 operators, they are actually sensitive to a

combination of dimension-seven couplings and mββ . This combination can be defined as,

m
(eff)
ββ =

me

g2
AV

2
udMν

(
T 0ν

1/2

G01

)−1/2

, (8.1)

which reduces to mββ in case of vanishing dimension-seven operators.
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Figure 9. The left (right) column shows the allowed values for the effective parameter |meff
ββ |

(defined in eq. (8.1)) as a function of mlightest
ν for the normal (inverted) hierarchy. The gray bands

depict the case with all dimension-seven operators set to zero, while the red horizontal line shows the

0νββ limit from 136Xe. In the top panels, the green and blue bands show the allowed values for the

case that CLLQ̄uH = 1/Λ3 and CLLQ̄uH = −1/Λ3, respectively, assuming Λ = 600 TeV. The middle

panels show the same scenarios after marginalizing over the possible phase of CLLQ̄uH . I.e. we

take CLLQ̄uH = eiα/Λ3 and marginalize over α. Finally, the bottom panels show CLeud̄H = eiα/Λ3

marginalized over α, and assuming Λ = 40 TeV.
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To see how the dimension-seven operators affect m
(eff)
ββ we turn onmββ and a dimension-

seven coupling, and show the resulting allowed values of m
(eff)
ββ as a function of the light-

est neutrino mass in figure 9. The allowed areas are obtained by using the standard

parametrization in terms of the neutrino masses, mνi , the sines (cosines) of the neutrino

mixing angles, sij (cij), and the Dirac phase δ13,

mββ = mν1c
2
12c

2
13 +mν2e

2iλ1s2
12c

2
13 +mν3e

2i(λ2−δ13)s2
13 . (8.2)

We then marginalize over the Majorana phases, λ1,2, and the experimentally allowed values

of the Dirac phase, while setting the mixing angles to their central values [58]. The top-

left (-right) panel of figure 9 depicts the normal (inverted) hierarchy for several values of

CLLQ̄uH . Blue, gray, and green bands assume CLLQ̄uH = {−1, 0, 1} ·Λ−3, respectively, with

Λ = 600 TeV. The current limit on m
(eff)
ββ from 136Xe is depicted by the red shaded area.

The usual light-Majorana-neutrino scenario with Ci = 0 (shown in gray) allows for

a vanishing mββ in the normal hierarchy, while this is not possible in the inverted case.

However, the blue bands show that a nonzero dimension-seven operator (CLLQ̄uH = −1/Λ3

in this case) could alter this picture, as m
(eff)
ββ can go to zero for both hierarchies. Thus,

a vanishing 0νββ signal is possible even in the case where the neutrinos are Majorana

particles that follow an inverted hierarchy. In contrast, if CLLQ̄uH = +1/Λ3 is chosen

(green bands), both the normal and inverted hierarchies require m
(eff)
ββ to be nonzero and a

finite 0νββ must exist at some level. We show similar plots in the middle row of figure 9,

where the green band is obtained from marginalizing over the phase of CLLQ̄uH . For a wide

range of mlightest
ν , the effective parameter m

(eff)
ββ and thus the 0νββ rate, can go to zero

even for an inverted hierarchy.

CLLQ̄uH generates the same leptonic structures as mββ and it is interesting to look

at a coupling that induces a different phase-space factor. In the bottom row of figure 9,

we depict the allowed region for m
(eff)
ββ assuming that mββ and CLeud̄H are both turned

on. In this case the effective parameter m
(eff)
ββ is always nonzero and the allowed m

(eff)
ββ

region simply shifts upwards for the normal and inverted hierarchies (left and right panels,

respectively).

8.1 Pinpointing the ∆L = 2 mechanism

In the best-case scenario in which a 0νββ signal is measured, it would be crucial to identify

the underlying ∆L = 2 mechanism. Of course, a nonzero value of T 0ν
1/2 could be generated

by any of the dimension-five or -seven couplings and additional information is required to

disentangle them. In principle, one could think of using measurements of T 0ν
1/2 in different

nuclei. Although the NMEs generally show similar patterns for different nuclei, leading

to degenerate sensitivities, this is not always the case for the phase space factors. In

particular, G02 has an increased sensitivivity to the Q value compared to the other phase

space factors (see eq. (6.7)). This means that, 128Te, which has a rather small Q value, will

have a significantly smaller value of G02 than 76Ge. As C
(6)
VR contributes proportional to

G02, this in turn implies that 128Te is less sensitive to C
(6)
VR compared to 76Ge [91, 92]. This

– 42 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

����������

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

cos(θ)

1/
Γ
dΓ

/d
co
s(
θ)

|mββ|=0.05 eV, LeudH=eiα/Λ3

α varied
LeudH=0
mββ=0

����������

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.1

0.2

0.3

0.4

0.5

E1/me

m
e/
Γ
dΓ

/E
1

|mββ|=0.05 eV, LeudH=eiα/Λ3

α varied
LeudH=0
mββ=0

Figure 10. The left and right panels show, respectively, the angular and energy dependence

of the inverse half-life for 76Ge. Here the dashed black and red lines show the case where only

mββ or CLeud̄H are nonzero, respectively. Instead the orange bands show the scenario in which

|mββ | = 0.05 eV and CLeud̄H = eiα/Λ3 with Λ = 40 TeV, while we varied over α.

in principle provides a way to disentangle C
(6)
VR from the other operators, by measuring

the decay rates in several isotopes. However, as discussed above, the nuclei considered

here (76Ge, 82Se, 130Te, and 136Xe) have very similar sensitivities to the dimension-seven

couplings, something which is even worsened once nuclear and hadronic uncertainties are

taken into account. It would therefore be difficult to pinpoint the underlying ∆L = 2

mechanism from just 0νββ total rates of the nuclei under consideration here. Similar

conclusions were reached in refs. [93, 94].

Additional information could come from ∆L = 2 signals at colliders such as the LHC.

There are certainly scenarios in which colliders can compete with the 0νββ measure-

ments [95]. While the limits derived in section 7 already put some of the operators at

very high scales of O(100 TeV), two effects, in combination, may mitigate these bounds

and make collider searches competitive with 0νββ experiments. First, in specific models

the Wilson coefficients Ci may naturally be suppressed by small Yukawa couplings, allowing

for a smaller scale Λ consistent with the 0νββ bounds obtained here.9 In addition, for a

fixed mass scale, we saw in section 6.3 that the uncertainty in the values of the nuclear

matrix elements can lead to an order-of-magnitude variation in the predicted 0νββ rate.

This is the appropriate measure for comparison, since in the contact limit , the production

rate at a collider experiment has the same scaling with Λ as the 0νββ rate, yet is unaffected

by uncertainties in the nuclear matrix elements. The rate at a collider may be even higher

if intermediate particles can be produced on-shell. It therefore remains an open question

whether direct searches at the LHC or a future collider would be able to see a signal from

the fundamental ∆L = 2 operators.

As such, here we focus on additional observables that can be measured by the 0νββ

experiments [96], namely, the angular and energy distributions of the electrons produced in

0νββ. These distributions are determined by the leptonic structures in eq. (6.4). Several

dimension-seven operators generate different leptonic structures such that the angular and

9The authors thank F. Deppisch for this observation.

– 43 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

energy distributions carry information about the Ci. Unfortunately, only the low-energy

couplings C
(6)
VL and C

(6)
VR induce leptonic structures different from the one generated by

mββ . These vector couplings are induced by the high-energy dimension-seven couplings

CLHDe and CLeud̄H . Consequently, all other dimension-seven couplings induce the same

lepton structure as mββ and will be degenerate with mββ and each other.

Thus, the angular and energy distributions can in principle be used to disentangle

CLHDe and CLeud̄H from the remaining couplings. These two couplings induce a depen-

dence on cos θ whose slope has the opposite sign of the one induced by mββ . In addition,

although CLHDe gives rise to an energy dependence that is very similar to mββ , the energy

distribution of CLeud̄H is significantly different. This is illustrated in figure 10 which shows

the angular and energy dependence in the left and right panels, respectively. The different

lines correspond to the case of nonzero mββ (dashed black), nonzero CLeud̄H (dashed red),

and a scenario where both couplings are turned on (orange band). In the latter scenario

we set |mββ | = 0.05 eV and CLeud̄H = eiα/Λ3 with Λ = 40 TeV, while we varied over the

relative phase α. As can be seen from the left panel, the slope of the cos θ dependence

does indeed differ by a sign between mββ and CLeud̄H . Once both couplings are turned on

the resulting slope lies somewhere in between the two extremes. Although many couplings

could induce the same cos θ dependence as mββ , the opposite slope can only point to either

CLeud̄H or CLHDe.
The energy dependence is shown in the right panel of figure 10. Again there is a clear

difference between the case in which only mββ is turned on (dashed black) or only CLeud̄H
is nonzero (dashed red). As one would expect, including both couplings (orange band)

gives a combination of the two dashed lines. It should be noted that only CLeud̄H is able to

induce an energy dependence that significantly differs from the mββ case, while the CLHDe
case looks very similar to that of mββ .

9 Summary, conclusions, and outlook

In this work we have investigated neutrinoless double beta decay in the framework of the

Standard Model effective field theory. In principle, the dominant contribution to 0νββ

arises from the dimension-five Weinberg operator which is only suppressed by one power of

the scale of beyond-the-SM physics. However, in several models competing contributions

arise from higher-dimensional operators and we therefore extended the analysis to include

all ∆L = 2 operators of dimension seven.

In the first part of this work we classified the different dimension-seven operators and

studied how they manifest at a relatively low-energy scale of a few GeV. We studied the

evolution of the operators to lower energies by considering renormalization-group running

and threshold effects from integrating out relatively heavy SM fields such as the Higgs and

electroweak gauge bosons. This analysis gives rise to a set of effective dimension-six, -seven,

and -nine ∆L = 2 operators that we evolve to slightly above the QCD scale using their

renormalization group equations. All operators scale as 1/Λ3, where Λ is the scale of BSM

physics, and their effective dimension is determined by powers of the electroweak scale.

– 44 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

In the second part we applied the framework of chiral effective field theory to construct

the effective ∆L = 2 hadronic Lagrangian. For each effective operator at the quark-gluon

level we build the chiral Lagrangian up to the order where we find the first non-vanishing

contribution to the 0νββ decay rate. Depending on the effective operator under consid-

eration, the chiral Lagrangian consists of pionic, pion-nucleon, and/or nucleon-nucleon

interactions. Armed with the chiral Lagrangian we calculated effective two-nucleon 0νββ

operators in a consistent power-counting scheme, and derived, within the same scheme, a

Master formula for the 0νββ decay rate. Our results contain several new aspects

• We used up-to-date hadronic input for several low-energy constants that connect

∆L = 2 quark-gluon operators to ∆L = 2 chiral operators. While remarkable

progress has been made in recent years on several of the LECs, others, in partic-

ular those associated to ∆L = 2 pion-nucleon and nucleon-nucleon interactions, are

still unknown. In the future it will be important to further constrain or compute

these LECs. For illustrative purposes, we show in figure 5 how the current bound on

the Wilson coefficient C
(9)
1 is affected by the uncertainty on the unknown LECs.

• We introduced a power-counting-scheme for 0νββ operators which includes, apart

from the standard χEFT counting rules, the additional scales associated with 0νββ :

the so-called “closure energy” and the Q value of the reaction. We showed that up to

leading order in the power counting, the rate does not depend on the closure energy.

In addition, we find that the leading-order rate only depends on several nuclear

moments (scalar, vector, axial, and tensor) and not on the associated radii which are

often included. These considerations greatly reduce the number of nuclear matrix

elements that needs to be calculated. We confirmed these power-counting predictions

by explicit comparison with several sets of nuclear matrix elements calculated in

the literature.

• Based on the extended χEFT power counting we identified nine combinations of

nuclear matrix elements, which determine the leading-order 0νββ rate up-to-and-

including dimension-seven operators in the SM-EFT. Two combinations of nuclear

matrix elements turned out to be numerically suppressed due to factors beyond the

power-counting scheme (the large size of the nucleon isovector magnetic moment and

the smallness of the electron mass with respect to the reaction Q values.) As such,

the 0νββ rate is dominated by a relatively small set of nuclear matrix elements.

• We find that the nuclear matrix elements that are needed to constrain the contribu-

tions of dimension-seven operators can be lifted from existing calculations of 0νββ.

With the exception of MAA
T , the required matrix elements can be deduced from cal-

culations of light- and heavy-Majorana-neutrino exchange, provided that the various

components, M ij
GT,T (sd) in eq. (6.11), are listed separately and the calculations include

the contributions from weak magnetism and induced pseudoscalar form factor.

• The matrix element MAA
T is important in constraining C

(6)
V R, but is not evaluated in

any of the recent nuclear matrix element literature. Here we used the value computed
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in ref. [77]. It would be preferable if in the future this matrix element is reported

along with the other M ij
F,GT,M nuclear matrix elements such that all nuclear physics

input to the 0νββ rate is internally consistent.

• We have compared different sets of nuclear matrix elements obtained with various

many-body methods. We find that uncertainties on the non-standard matrix ele-

ments, based on the spread of the results, are of similar size as the uncertainty on the

light-Majorana-neutrino-exchange matrix elements. Typically the matrix elements

vary at most by factors of two-to-three (and several are in much better agreement)

depending on the chosen nuclear method. However, the sign and relative sizes of the

matrix elements are in good agreement with each other and the chiral power counting.

In the final phenomenological part of this work, we studied the constraints on the

fundamental ∆L = 2 operators. The above-described framework provides essentially a

dictionary between high-scale ∆L = 2 physics and low-energy 0νββ measurements such

that constraints on the scale of BSM physics can be immediately obtained. We obtain

several interesting conclusions:

• Depending on the ∆L = 2 operator under consideration, the limits on the BSM scale

varies from Λ > 10 TeV to Λ > 400 TeV. For most operators these limits on the

scale Λ are not too much affected by hadronic and nuclear uncertainties, except for

operators which mainly induce so-called short-distance contributions to 0νββ which

depend on unknown LECs associated to ∆L = 2 pion-nucleon and nucleon-nucleon

interactions. LQCD calculations of these LECs, along the lines of refs. [57, 97], could

improve this situation. Several dimension-seven SM-EFT operators do not contribute

to 0νββ at a significant level. We studied complementary observables, such as the

neutrino mass and magnetic moment, and muon decay, that can be used to probe

such couplings.

• We find that 0νββ experiments with different isotopes (we studied 76Ge, 82Se, 130Te,

and 136Xe) are rather degenerate with respect to the different ∆L = 2 mechanism

they are sensitive to. We have illustrated this in figures 7 and 8 where it can be seen

that different isotopes probe roughly the same combination of ∆L = 2 operators.

• The inclusion of non-zero dimension-seven ∆L = 2 couplings can affect the standard

interpretation of (the absence of) 0νββ signals in terms of light Majorana-neutrino

exchange. In this framework, it is possible to rule out the inverted ordering of the

neutrino mass spectrum with sufficiently sensitive 0νββ experiments. The upper

panels of figure 9 illustrates that this is no longer necessarily true once dimension-

seven operators are included in the analysis, although some fine-tuning is required to

suppress the 0νββ rate. At the same time, the inclusion of dimension-seven operators

can lead to a non-zero 0νββ rate for all values of the lightest neutrino mass even for

a normal hierarchy.

• While total 0νββ rates of different isotopes have little discriminating power with re-

spect to the underlying source, additional information could be obtained by angular
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and energy differential rates. As shown in figure 10, the differential rates can poten-

tially separate several ∆L = 2 dimension-seven operators from the dimension-five and

other dimension-seven operators. This is particularly relevant for BSM models, such

as left-right symmetric models, that induce low-energy vector-like ∆L = 2 operators.

Our work can be extended in several ways. First of all, in several models also ∆L = 2

dimension-nine operators provide relevant 0νββ contributions. We aim to extend the

framework to include these operators in future work. This will enable one to match specific

UV-complete models to the effective field theory framework. In particular, this would

allow for a global analysis of Standard Model extensions involving lepton-number violation,

including 0νββ and high-energy probes at the LHC or future high-energy colliders.

Acknowledgments

We thank the Institute for Nuclear Theory at the University of Washington for its hospital-

ity and the Department of Energy for partial support during the completion of this work.

We thank Frank Deppisch for a discussion on the LHC and our bounds on dimension-seven

operators. We are very grateful to Javier Menéndez for providing us with updated shell-

model nuclear matrix elements before publication, and for comments on the manuscript.

We are indebted to Jose Barea for providing us unpublished results for the nuclear ma-

trix elements in the interacting boson model. We thank Mihai Horoi and Andrei Neacsu

for several interesting discussions, and for clarifications on the nuclear matrix elements of

ref. [32]. VC and EM acknowledge support by the US DOE Office of Nuclear Physics and

by the LDRD program at Los Alamos National Laboratory. MG acknowledges support

by the US DOE Office of High Energy Physics and by the LDRD program at Los Alamos

National Laboratory. WD and JdV acknowledge support by the Dutch Organization for

Scientific Research (NWO) through a RUBICON and VENI grant, respectively.

A Comparison with other operator bases

In this appendix we compare our operator basis and Wilson coefficients to the one pre-

viously used in the literature. The basis introduced in refs. [29, 30, 35] contains at the

hadronic scale operators of dimension six (long range part), related to the ones in (3.2)

and dimension nine (short range part), related to the ones in (3.4). They do not consider

operators of dimension seven (see (3.3)) which naturally arise in our analysis based on

SU(2)×U(1) gauge invariance.

The effective couplings εαβ parameterizing long-range contributions to 0νββ are related

to our dimension-six Wilson coefficients as follows:

εV+A
V∓A =

1

2
C

(6)
VL,VR , εS+P

S∓P =
1

2
C

(6)
SL,SR , εTRTR =

1

2
C

(6)
T . (A.1)

The operator corresponding εTRTL in ref. [29, 36] vanishes identically, due to the identity

σµν(1± γ5)⊗ σµν(1∓ γ5) ≡ 0, so we have five dimension-six coefficients rather than six.
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For the short-range effective couplings associated to dimension-nine six-fermion op-

erators, [30, 35] the effective couplings εxyzi (with x, y, z labeling the chirality of the two

hadronic densities and the leptonic current, in that order) the mapping goes as follows:

εLLR3 =
1

2

mN

v
C

(9)
1 , εLRR3 =

1

2

mN

v
C

(9)
4 , εRLR1 = −mN

v
C

(9)
5 . (A.2)

B RG evolution

In this appendix we briefly discuss the scale dependence of the couplings mentioned in

sections 2 and 3. The running of the dimension-seven operators between the high scale, Λ,

and the electroweak scale is given by

C(µ) = U(µ, Λ) ·C(Λ), C = (CLLQ̄uH , C
(1)

LLQd̄H
, C(2)

LLQd̄H
)T , (B.1)

U(µ, Λ) =


(
αs(Λ)
αs(µ)

)−3CF /β0
0 0

0
(
αs(Λ)
αs(µ)

)−3CF /β0
0

0 1
2

[(
αs(Λ)
αs(µ)

)CF /β0
−
(
αs(Λ)
αs(µ)

)−3CF /β0
] (

αs(Λ)
αs(µ)

)CF /β0


while the remaining couplings are scale independent at one loop in QCD. Here β0 =
1
3(11Nc − 2nf ), with nf the number of active flavors, and recall CF = (N2

c − 1)/(2Nc).

The couplings CLLQ̄uH and C(1)

LLQd̄H
decrease in the ultra-violet (UV), whereas the behavior

of C(2)

LLQd̄H
depends on the initial values. The couplings at the electroweak scale are then

given by C(mW ) = U (nf=5)(mW , mt)U
(nf=6)(mt, Λ) ·C(Λ) . Numerically, using the one-

loop running of αs, this results in

C(mW ) =

1.3 0 0

0 1.3 0

0 −0.21 0.91

 ·C(10 TeV) =

1.5 0 0

0 1.5 0

0 −0.29 0.88

 ·C(100 TeV) . (B.2)

Below the electroweak scale we match onto the dimension-six, -seven, and -nine opera-

tors in eqs. (3.2), (3.3), and (3.4). The RGEs for the dimension-six operators are solved by

C
(6)
SL(SR)(µ) =

(
αs(mW )

αs(µ)

)−3CF /β0

C
(6)
SL(SR)(mW ),

C
(6)
T (µ) =

(
αs(mW )

αs(µ)

)CF /β0
C

(6)
T (mW ) .

The couplings C
(6)
SL(SR) decrease in the UV while the tensor coupling C

(6)
T increases. The

dimension-seven operators do not run, while for the dimension-nine operators we have,

C′(µ) = U(µ, mW ) ·C′(mW ), C′ = (C
(9)
1 , C

(9)
4 , C

(9)
5 )T ,

U(µ, mW ) =


(
αs(mW )
αs(µ)

)3(1−1/Nc)/β0
0 0

0
(
αs(mW )
αs(µ)

)3/(Ncβ0)
0

0 λ

[(
αs(mW )
αs(µ)

)−6CF /β0
−
(
αs(mW )
αs(µ)

)3/(Ncβ0)
] (

αs(mW )
αs(µ)

)−6CF /β0

 .

– 48 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

where λ = 1/(2CF + 1/Nc) = 1/Nc. Here the couplings C
(9)
1 and C

(9)
4 increase in the UV,

and the behavior of C
(9)
5 depends on the boundary values. Taking into account the bottom

mass threshold, we obtain for the evolution between µ = mW and µ = 2 GeV,

C
(6)
SL(SR)(2 GeV) = 1.5C

(6)
SL(SR)(mW ), C

(6)
T (2 GeV) = 0.87C

(6)
T (mW ), (B.3)

C′(2 GeV) =

0.82 0 0

0 0.90 0

0 0.45 2.3

 ·C′(mW ) . (B.4)

The remaining operators in eqs. (3.2), (3.3), and (3.4) are scale independent at one loop

in QCD.

C Recoil matrix elements

The tensor C
(6)
T and vector operators C

(6)
VL,VR induce, at lowest order in χPT, two-nucleon

operators whose matrix elements vanish in 0+ → 0+ transitions. For example, C
(6)
T induces

contributions proportional to

C
(6)
T

q ·
(
σ(1) − σ(2)

)
q2

. (C.1)

The operator in eq. (C.1) is pseudoscalar, and, consequently, its matrix element vanishes in

0+ → 0+ transitions. Similar considerations apply to the LO operators induced by C
(6)
VL,VR.

The most important transition operators induced by C
(6)
T and C

(6)
VL,VR were discussed

in sections 5.2.2 and 5.2.3. At the order we are working, corrections proportional to the

nucleon recoil momentum can become important. In addition to the neutrino potential

defined in section 5.2.2, we find that the tensor operator gives

V (q2) = 2τ (1)+τ (2)+ 2G2
F mNC

(6)
T

1

q2
ū(k1)PRCū

T (k2) (C.2)

×
{
gAgT
m2
N

(
σ(1) · qσ(2) · (P1 −P2) + σ(1) · (P1 −P2)σ(2) · q

−σ(1) · σ(2) q · (P1 −P2)
)

+ i
gV gT
m2
N

(q× (P1 −P2)) · (σ(1) + σ(2))

}
,

where P1 = p1 + p′1 and P2 = p2 + p′2. Similarly, C
(6)
VL gives

V (q2) = τ (1)+τ (2)+ G2
F mNC6,VL

1

q2
ū(k1)Cγαγ5ū

T (k2) i
gAgV
2m2

N

×
(

(q× (P1 −P2)) · (σ(1) + σ(2))− (q× (P1 + P2)) · (σ(1) − σ(2))
)
. (C.3)

The neutrino potentials in eqs. (C.2) and (C.3) enter the amplitude at O(Λχε
2
χ). The

NMEs in eq. (C.2) have not been calculated in the literature. Compared with the second

term in eq. (5.6), they are not enhanced by the large nucleon isovector magnetic moment.

Therefore we expect their contribution to be numerically somewhat smaller. In the case of

eq. (C.3), the second term was included in the analysis of refs. [32, 77], where it was found

to be much smaller than the magnetic term in eq. (5.7). For this reason, we neglected it

in our formulae for the decay rate in section 6.
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NMEs Ref. [76, 84, 85] Ref. [83] Ref. [32]

MF MF MF MF,Fω,Fq

MAA
GT MAA

GT MAA
GT MGTω,GTq

MAP
GT MAP

GT MAP
GT 4meB MGTπν + 1

3MGT2π

MPP
GT MPP

GT MPP
GT −1

6MGT2π

MMM
GT r2

MM
MM
GT MMM

GT rM
gM

2gAgV RAmN
MR =

g2M
6g2ARAmN

MGT ′

MAA
T 7 7 7

MAP
T MAP

T MAP
T 4meB MTπν + 1

3MT2π

MPP
T MPP

T MPP
T −1

6MT2π

MMM
T r2

MM
MM
T MMM

T − g2M
12g2ARAmN

M ′T

MF,sd
memN
m2
π
MF,sd

memN
m2
π
MF,sd

memN
m2
π
MFN = mN

RAm2
π
M ′F

MAA
GT,sd

memN
m2
π
MAA
GT,sd

memN
m2
π
MAA
GT,sd

memN
m2
π
MGTN = mN

RAm2
π
M ′GT

MAP
GT,sd

memN
m2
π
MAP
GT,sd

memN
m2
π
MAP
GT,sd

2
3MGT1π

MPP
GT,sd

memN
m2
π
MPP
GT,sd

memN
m2
π
MPP
GT,sd

1
6(MGT2π − 2MGT1π)

MAP
T,sd

memN
m2
π
MAP
T,sd

memN
m2
π
MAP
T,sd

2
3MT1π

MPP
T,sd

memN
m2
π
MPP
T,sd

memN
m2
π
MPP
T,sd

1
6(MT2π − 2MT1π)

Table 9. Comparison of the different notations used in refs. [32, 76, 77]. For each row the expres-

sions in the different columns equal one another in the limit that Ē → 0. Furthermore, B =
m2
π

mu+md
,

where ref. [32] uses mu + md = 11.6 MeV. gM has different definitions in various papers. Here we

use gM = 1 + κ1 and introduce the ratio rM = (1 + κ1)/κ1.

D Conversion of nuclear matrix elements

In this appendix, we provide the conversion between the NMEs defined in section 6.1 and

those of the original papers [32, 76, 77, 83–85].

For the matrix elements involving the exchange of a light neutrino, our definitions

match those in refs. [76, 83–85]. The only exceptions are MMM
GT,T , for which refs. [76, 84, 85]

used gM (0) = κ1 = 3.7 rather than gM (0) = 1 + κ1. In section 6.1, we thus rescaled these

matrix elements by powers of rM = (1 + κ1)/κ1. For the Gamow-Teller and tensor matrix

elements, ref. [32] does not separately provide the AA, AP , PP and MM components.

However, we can reconstruct the needed NMEs from linear combinations of other matrix

elements computed in ref. [32], as detailed in table 9. The definitions of the NMEs in the

third column of table 9 are given in ref. [32].10

10The relation between MMM
GT and MR given in table 9 takes into account a factor of 1/3 that is missing

from the definition of HR in eq. (21v) of (the first arXiv version of) ref. [32]. We thank M. Horoi for

clarification on this issue.
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The relations we use are valid at LO in the chiral expansion, when one can take Ē → 0

and neglect subleading effects as the difference between the axial and vector form factors.

We discussed some checks of these assumptions in section 6.1. Additional consistency

checks can be performed with the NMEs of ref. [32]. In the limit Ē → 0, one would expect

MF = MFω = MFq and MGTω = MGTq. These relations are respected to a few percent for

MF and MFω, while MFq appears to be ∼ 50% smaller than MFω. The relation between

the GT elements holds to 20%. Furthermore, we can use the complete GT and T matrix

elements computed in ref. [32] to verify whether MGT = MAA
GT + MAP

GT + MPP
GT + MMM

GT

and MT = MAP
T +MPP

T +MMM
T . The agreement is within 20% for the GT elements and

for most of the T matrix elements. In the main body of the paper, to obtain MF , MAA
GT ,

MMM
GT , MF, sd, and MAA

GT, sd from the results of ref. [32] we used, respectively, MF , MGTω,

MGT ′ , MFN , and MGTN .

The long-distance matrix element MAA
T is not defined in refs. [76, 83–85], since it

does not appear in the standard scenario of light Majorana neutrino exchange. Ref. [32]

computes similar tensor matrix elements, which are needed in neutrino exchange diagram

when the neutrino is emitted from a ∆L = 2 vector or axial current, as in the second

diagram of figure 2. We were however not able to relate MTq of ref. [32] to MAA
T , even in

the Ē → 0 limit. MAA
T is related to MT of ref. [77] by MAA

T = 3/2MT . With the values of

ref. [77], MAA
T has only a small effects on the bounds on C

(6)
VR, and can be safely neglected.

For the short-distance matrix elements, which do not involve neutrino exchange, our

definitions differ from refs. [76, 83–85] only in the overall normalization. To keep the power

counting of the NMEs manifest, we normalized them to m2
π rather than memN . Ref. [32]

computed the pion-exchange matrix elements MGT1π, MGT2π, MT1π, MT2π, which are

related to MAP,PP
GT,sd and MAP,PP

T,sd by the equations in table 9
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