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1 Introduction

In any theory with extra dimensions, a first step towards understanding its dynamics is to

construct a low energy, 4-dimensional effective theory. In such an effective description, the

dynamical degrees of freedom arise as particular fluctuations of the fields present in the

higher dimensions. As a classic example, 5-dimensional gravity on a circle gives rise at low

energies to a 4-dimensional effective theory with gravity, a U(1) gauge field, and a scalar,

all of which arise as fluctuations of the bulk 5-dimensional metric. In string theory, the

low energy limit of compactification also leads to a 4-dimensional effective theory in which

the 4-dimensional degrees of freedom arise from fluctuations of the original 10-dimensional

fields. These can include bulk fields such as the metric and p-form gauge fields, as well as

localized sources like branes. The details of the effective theory depend on the details of

the compact space and other fields of the higher-dimensional background, and much work

has gone into deriving these effective theories (see [1–4] for example). Typically, these

effective theories are derived by dimensionally reducing the higher dimensional action for

some particular ansatz of the higher dimensional fields (specifically a zero mode of the

appropriate differential operator on the extra dimensions). However, as we emphasize, care

must be taken that the ansatz chosen is a consistent solution to the higher-dimensional

equations of motion.

One set of essential ingredients in string compactifications are the dynamics of localized

sources such as D-branes. D-branes arise in string compactifications as sources of Standard-

Model-like fields [5], supersymmetry-breaking uplifiting [6], and sources of cosmic inflation

(as in [7]; see also the reviews [8, 9]). The 4-dimensional effective theory for D-branes

is commonly obtained by dimensional reduction of the localized Dirac-Born-Infeld and

Chern-Simons actions in the probe approximation. However, the probe approximation

cannot address several related conceptual problems.

As an example, consider a Dp-brane in an internal space described by the coordinates

{ym}, so that the brane spans 4-dimensional spacetime {xµ} embedded with coordinates

Y . Let us write the D-brane embedding as a constant reference value plus a spacetime-

dependent fluctuation Y = Y0+δY (x). In the probe approximation, the D-brane degrees of

freedom are described by the spacetime-dependent transverse coordinates ∂µY = ∂µδY (x)

and are independent fluctuations in 10-dimensions. However, when the brane is coupled

to gravity it is always possible to make a spacetime-dependent coordinate redefinition

(diffeomorphism) of the transverse coordinates y → ỹ, Y → Ỹ so hypersurfaces of constant
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Figure 1. A spacetime-dependent fluctuation of a brane can be described by its transverse coordi-

nates (left). However, it is also possible to redefine the coordinates in a spacetime-dependent way,

so the brane fluctuation is “gauged away” (right). In this case, the brane fluctuation is “eaten” by

the metric.

ỹ coincide with the worldvolume of the D-brane, as in figure 1. The brane embedding

coordinates no longer encode the D-brane degrees of freedom, since they are now, by

definition, spacetime-independent ∂µỸ = 0. The D-brane degrees of freedom have been

“eaten” by the metric, and the effective theory for the D-brane degrees of freedom now

arises not from the localized sources but from the dynamics of the metric. It is interesting

to note that this lack of diffeomorphism invariance of the D-brane transverse coordinates

implies that the true diffeomorphism invariant degrees of freedom describing the motion of

D-branes are a combination of the transverse coordinates and the metric — a combination

of open and closed string sectors.

One might think that the simplest resolution is just to fix the gauge such that all

of the degrees of freedom are found in the transverse coordinates and not in the metric.

Unfortunately, the linearized higher dimensional equations of motion (EOM) do not allow

one to choose a gauge with vanishing metric fluctuations. As an example, consider a scalar

field in a 4-dimensional homogeneous and isotropic cosmological background. Fluctuations

of the scalar field about a time-dependent background φ = φ0(t) + δφ(t, x) can be removed

by an appropriate time redefinition t → t̃(t, x) so that the true gauge-invariant degree of

freedom is a combination of scalar field and metric fluctuations [10]. It is not possible

to work in a fixed gauge in which the fluctuation only appears in the scalar field, setting

the metric fluctuations to zero, because there is a contribution to the off-diagonal Einstein

equations of the form

0 = G0i − κ2
4T0i = −1

2
κ2

4 φ̇0 ∂iδφ . (1.1)

These off-diagonal Einstein equations act as non-dynamical constraints on the fluctuations,

and must be solved for a consistent dynamical description of the scalar perturbations, even

at linear order. As is well known, the correct ansatz for scalar cosmological perturbation

theory includes simultaneous fluctuations of the metric and scalar field, allowing one to
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consistently solve the constraint equations. The metric fluctuations then play an important

role in determining the equation of motion for the dynamics of the scalar degree of freedom.

Similarly, there is no consistent gauge in which the metric does not contain any of

the degrees of freedom for the D-brane. In particular, an ansatz with a static metric but

spacetime-dependent D-brane fails in two ways even at linear order. First, the change

in brane position backreacts on the 10-dimensional metric (specifically the warp factor).

In addition, there is a contribution to the off-diagonal 10-dimensional Einstein equations

through the energy-momentum tensor of the form

0 = Gµm − κ2
10Tµm = −κ2

10T3∂µYm(x)δ6(y, Y ) . (1.2)

These constraints on the D-brane motion arise from the required gauge-fixing described

above, much like the Gauss law constraint of electromagnetism or the Hamiltonian and

momentum constraints of gravitation. As a result, the probe-brane effective theory based

on the D-brane degrees of freedom residing entirely in the localized transverse coordinates

is incomplete. The appropriate 10-dimensional ansatz will require including parts of the D-

brane degrees of freedom in both the metric and the transverse coordinates, as we will see.

One concern with moving beyond the probe approximation is that inserting the backre-

acted brane solution into the effective action could cause a “self-energy” problem in which

the effective action diverges. We explicitly show in section 3.3 that when one carefully per-

forms a dimensional reduction which solves the constraint equations the resulting effective

action does not contain any such divergent self-energy terms.

In this paper, as a test case and for concreteness, we will focus on the dynamics of

D3-branes in the type IIB backgrounds of the form given in [11–14] (commonly called GKP

compactifications). In these backgrounds, the positions of D3-branes (along with metric

Kähler moduli and various axions) are moduli, and the effective theory is described by a

4D supergravity (possibly with spontaneous supersymmetry breaking). As a result, the

effective theory arises from a Kähler potential (see for example [1, 7, 15]). One challenge

for the construction of an effective theory in GKP backgrounds is that the metric becomes

a warped product between the internal and external spaces, complicating the identification

of the degrees of freedom. The supersymmetry of the background along with the fact that

scaling the warp factor can be removed with a 10D diffeomorphism has allowed [16–19] to

derive many aspects of the effective theory without a direct dimensional reduction.

However, to work with generic warped compactifications without so much structure, it

is necessary to develop techniques for dimensional reduction in warped metrics. For exam-

ple, [20] showed that the dilaton and volume modulus are identified under diffeomorphisms

for warped backgrounds with a dilaton profile. Fortunately, work on warped effective field

theory (see [20–26]) has led to some useful formalisms [20, 23] for constructing and analyz-

ing fluctuations of these 10-dimensional backgrounds and their effective theories. In [25],

the effective theory for the universal volume modulus and its associated axion was derived

for GKP compactifications, while [26] improved and extended this analysis to include the

rest of the axion sector.1 Our first-principles approach is to choose an ansatz in a fixed

1A recent analysis in [19] shows that the supersymmetric formalism [16–18] in fact agrees with direct

dimensional reduction [26] in detail for GKP compactifications.
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gauge (for diffeomorphisms and the supergravity form fields) and ensure that it solves all

the constraints of the 10D theory even when the 4D fluctuation is off shell.

An initial attempt [27] to derive the effective theory for D3-branes in these backgrounds

was unable to solve the constraint equations coming from the higher-dimensional EOM

and was unable to derive the terms (including mixing terms) necessary to construct the

Kähler potential and effective theory. We will use the formalism and techniques developed

in [20, 26] to obtain an ansatz which does solve all of the higher dimensional EOM and to

derive all the necessary terms in the effective theory. It is not essential that the D3-brane

we study in this paper is localized in a strongly warped region: the effects discussed above

are inherent to the D-brane’s interaction with the background, and thus will be present

regardless of the strength of the warping at the location of the D3-brane.

In fact, we will present two calculations of this effective action. The self-duality of the

type IIB five-form causes the action to vanish if all the components of the 10D covariant

tensor are included. Following [14], we discard half the components of the five-form in

the dimensional reduction of the action. If we keep components with legs mostly along

the external dimensions, the D3-brane carries an electric charge for the five-form; keeping

the complementary set of components leads the D3-brane to carry magnetic monopole

charge. In the former case, axions of the 4D theory arise as 2-form degrees of freedom, and

cross terms between the brane position and axion descend from the brane’s Wess-Zumino

action. Meanwhile, in the latter case, we solve the nontrivial Bianchi identity by finding a

field redefinition that gives the 5-form field strength an explicit dependence on the brane

position, and cross terms in the kinetic action arise directly through backreaction of the

brane on the field strength. This procedure is related to Dirac’s original proposal for a

Lagrangian describing the coupling of magnetic monopoles and Maxwell fields [28]; the

relationship of our procedure to Dirac’s theory and its generalization to branes will appear

in a forthcoming paper [29].

The plan of our paper is as follows. In section 2, we review the background compacti-

fication, the procedure for dimensional reduction, and the EOM of type IIB supergravity

with D3-branes. We then give the dimensional reduction in the version of the theory in

which the D3-brane carries electric charge for the five-form in 3, followed by the analogous

calculation for the magnetically charged D3-brane in section 4. In these two sections, we

provide a short summary at the end of each subsection encapsulating the important results

as an aid to the reader. We close with a discussion; conventions and formalism are found

in the appendices.

2 Background and fluctuations

2.1 Flux compactifications

To set our conventions, we work in the bosonic sector of type IIB string theory as described

by the low-energy supergravity (SUGRA)

SIIB =
1

2κ2
10

∫
d10x
√
−g
(
R− ∂Mτ∂

M τ̄

2 (Im τ)2

)
− 1

2κ2
10

∫ [
G3 ∧ ?Ḡ3

12 Im τ
+

1

4
F̃5 ∧ ?F̃5

+
i

4 Im τ
C4 ∧G3 ∧ Ḡ3

]
+ Sloc , (2.1)
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where R is the ten-dimensional (10D) Ricci scalar, and κ10 is the 10D Newton’s constant.

We have defined the axio-dilaton τ = C0 + ie−φ, combined the 3-forms F3 = dC2 and

H3 = dB2 into the complex 3-form G3 = F3− τH3, and defined the five-form field strength

as F̃5 = dC4 − C2 ∧H3, which is constrained to be self-dual: F̃5 = ?F̃5. Sloc is the action

for all the local objects, including D3-branes.

The background fields of GKP compactifications take the form

ds2
10 = e2A(0)(y)η̂µνdx

µdxν + e−2A(0)(y)g̃mndy
mdyn ,

F̃
(0)
5 = ε̂ ∧ d̃e4A(0)

+ ?̃d̃e−4A(0)
, ?̃G

(0)
3 = iG

(0)
3 , (2.2)

where {xµ} spans 4-dimensional (4D) spacetime and {ym} spans the internal dimensions.

The unwarped metrics η̂µν , g̃mn are respectively Minkowski and Calabi-Yau (CY). We

denote objects constructed with respect to η̂µν with a hat and those with respect to g̃mn
with a tilde. The three-form field strength is harmonic, and the background warp factor,

A(0)(y), obeys a Poisson equation

∇̃2e−4A(0)
= −gs

2

∣∣∣G(0)
3

∣∣∣2̃ − 2T3κ
2
10δ̃

6(y, Y (0))− · · · , (2.3)

where · · · are other local sources including more D3-branes (which also contribute delta

function sources), D7-branes, and negative charge and tension orientifold O3- and O7-

planes. Although only a single D3-brane (located at Y ) is considered here and throughout,

the extension to multiple, non-interacting branes of this type is trivial. Furthermore, we

work in the orientifold limit where four D7-branes are coincident with each O7-plane for

simplicity, although we expect our results to generalize straightforwardly to F-theory.

A nontrivial G
(0)
3 also stabilizes moduli of the compactification, generically including all

the complex structure moduli of g̃mn and the axiodilaton τ . (See [26] for a more complete

review of the effects of the flux on moduli stabilization.) As a result, we assume that the

complex structure and τ are constant. In addition, the background is supersymmetric at

the classical level when G
(0)
3 is (2, 1) in the CY complex coordinates;2 if the flux breaks

supersymmetry, it does so spontaneously [21], and the effective theory can be described by

4D SUGRA.

With τ assumed to be constant, we can write G3 = dA2 in terms of a complex potential

A2 = B2 − τC2. In this case, it is common to redefine C4 to set F̃5 = dC4 + (igs/4)(A2 ∧
Ḡ3 − Ā2 ∧G3). We will use this definition for F̃5 henceforth.

2.2 Dimensional reduction and the kinetic action

To determine the effective 4D theory, we must first decompose the 10D fields into orthog-

onal modes, each of which corresponds to a 4D degree of freedom. In a product space

compactification, these modes are simply the eigenfunctions of some second order differen-

tial operator on the compact space (for example, the Laplacian for a scalar or the Hodge-de

Rham operator for a form field). However, the constraints described in the introduction

complicate matters somewhat for warped compactifications. We are particularly interested

2And primitive, which is automatically satisfied on a generic CY.
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in clasically massless moduli, so we consider only those modes that satisfy the massless

Klein-Gordon equation in the external xµ directions. The following sections will describe

the structure of these massless modes; here, we will outline the procedure of dimensionally

reducing the action once the linearized modes are known, following [26].

To find the two-derivative kinetic action in terms of a metric Gab(φ) on moduli space,

we need find only the action to quadratic order in fluctuations around the background —

as long as we expand the background around an arbitrary point φ0 in moduli space, we

recover the full dependence of the metric on the moduli. While our primary consideration

is D3-brane position moduli, we are interested in the metric on the Kähler moduli space of

the CY. We therefore also consider the universal volume modulus and axions descending

from the 4-form potential (which are partners of the Kähler metric moduli). Because

the 4D effective theory is a SUGRA, the moduli space is naturally described in terms of

holomorphic coordinates, and the metric is defined in terms of a Kähler potential.

This quadratic action can be written in terms of the first-order fluctuations and the

linearized EOM, as demonstrated in [26] (and used implicitly in [24]). Specifically, for type

IIB SUGRA, we can write

S =
1

4κ2
10

∫
d10x

√
−g δgMNδEMN +

1

4κ2
10

∫ (
δC4 ∧ δE6 +

gs
2
δA2 ∧ δĒ8 +

gs
2
δĀ2 ∧ δE8

)
+
T3

2

∫
d10x

√
−g

∫
d4ξ
√
−γ δX /MδE /M , (2.4)

where δEmn is the linearized Einstein equation, δE6 the linearized EOM for the 4-form,

δE8 for the 2-form potential, and δE /M for the D3-brane position. The EOM for the world-

volume metric γab (as described below) are higher-order (and constraints), so they do not

contribute (though γab should be evaluated on the solution). Note that we have labeled

the brane embedding coordinate X /M (ξ) with a slashed index to indicate that tensors at

that point do not contract with tensors at a general point xM in spacetime, and this term

is integrated over the brane worldvolume coordinates as well as spacetime. Furthermore,

these are the EOM as they directly arise from the variation of the action; in particular,

the equations of type IIB SUGRA are often reorganized to remove terms proportional to

E6 from E8.

There are also two subtleties to note. First, there is not actually a covariant action in

10D that respects the self-duality of the 5-form field strength,3 so (2.4) includes only some

of the components of C4 and the corresponding EOM. We describe our approach to this

subtlety in section 2.3 below. Second, [26] arrives at the action (2.4) after an integration by

parts; in some cases, there are terms in the action which are quadratic in fluctuations but

contribute no terms to the linearized EOM (for example, the axionic coupling θF 2 where

the field strength is first order). These terms must be added separately to the quadratic

action, as we will see in section 3.3.

The action (2.4) should also be understood in a fixed gauge (for diffeomorphisms,

form gauge transformations, and worldvolume reparameterization). We choose a gauge in

3For the usual fields of IIB SUGRA; Sen [30] has recently (during preparation of this manuscript)

described a covariant action with different field content.
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which the underlying CY metric g̃mn of the internal directions does not fluctuate (and form

potential gauge as described below); for D3-branes with internal positions Y /m that vary

slowly over the external spacetime, we find it convenient to use a static gauge ξa = δa/µX
/µ(ξ)

so that fluctuations of X /µ are gauged away (with |∂aY /m| assumed to be small).

2.3 Equations of motion with D3-brane sources

In this section, we summarize the 10-dimensional EOM for type IIB supergravity with

D3-brane sources. The bulk SUGRA equations are well-known [31], but the brane sources

are less familiar. We therefore simply state the bulk terms but provide a brief derivation

of the D3 sources. As in section 2.2, we use slashed indices at the D3-brane position; the

parallel propagator Λ
/M
M (x,X) (or its inverse) switches index type for fields evaluated at

coincidence (i.e. when multiplied by a delta function).

The variation of the action with respect to the metric, EMN , is

EMN = RMN −
1

2
gMNR− (T 5

MN + T 3
MN + TD3

MN + T locMN ) , (2.5)

so that setting EMN = 0 gives the 10-dimensional Einstein equations. The contributions

to the energy-momentum from the 5-form flux (given 5-form self-duality) and background

3-form are

T 5
MN =

1

4 · 4!
F̃MPQRSF̃N

PQRS , T 3
MN =

gs
4

(
G(M

PQḠN)PQ − gMN |G|2
)
. (2.6)

The D3-brane coupling to the metric enters in the Dirac-Born-Infeld (DBI) terms in the

brane action; if we ignore couplings to the 2-form potentials and world-volume gauge field

(justified below), we can replace the usual DBI action for the brane with a classically

equivalent Polyakov-like form

SDBI = −T3

2

∫
d10x
√
−g
∫
d4ξ
√
−γ

[
γabP (g)ab − 2

]
δ10(x,X(ξ)) , (2.7)

where γab is an independent worldvolume metric which equals the induced metric P (g)ab =

g /M /N∂aX
/M∂bX

/N on shell. Regarding delta functions in curved spacetime, we refer the

reader to appendix B. The resulting energy-momentum from D3-branes is then

TD3
MN ≡ −

2κ2
10√
−g

δSDBI
δgMN

= −κ2
10T3

∫
d4ξ
√
−γ γabΛ /M

MΛ
/N
Ng /M /P g /N /Q∂aX

/P∂bX
/Qδ10(x,X(ξ)) .

(2.8)

A similar expression leads to the energy-momentum T locMN from localized sources other than

the mobile D3-brane of interest. For notational convenience, we will often make the parallel

propagators implicit, writing for example gM /P = Λ
/M
Mg /M /P .

Self-duality of F̃5 raises some complications for dimensional reduction at the level of the

action. Specifically, evaluating (2.1) on a self-dual 5-form leads to a vanishing kinetic term,

whether on or off shell. The prescription we follow is to replace (2.1) by a non-covariant

action, retaining only half the components of F̃5 and doubling the coefficient of the F̃5∧?F̃5

term in the action. We will make two distinct choices for the sets of components to keep:

– 7 –
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the “electric” set with 4 or 3 legs on xµ and 1 or 2 respectively on ym, and the “magnetic”

set with 0 or 1 leg on xµ and 5 or 4 on ym (an equal number of components with 2 on

xµ and 3 on ym fall in each set, but these all vanish for the moduli we consider). The

corresponding components of C4 for the electric set couple electrically to the D3-brane,

whereas the D3-brane is a magnetic source for the magnetic set.4 It is worth noting that

the components in each set are Hodge dual to the components in the other set.

We begin by considering the theory for the electric components. In this case, the

Bianchi identity is trivial (dF̃5 = 0), and the source for d ? F̃5 arises through the D3-brane

Wess-Zumino (WZ) action (again ignoring couplings to the 2-form potentials for now)

SWZ = µ3

∫
d10x
√
−g
∫
ξ
P (C4)δ10(x,X(ξ))

= µ3

∫
d4ξ
√
−γ
∫

10
C4 ∧ ? ε‖ δ10(x,X(ξ)) , (2.9)

where ε‖ is the push-forward of the antisymmetric world-volume tensor. We define the

push-forward as

ε
/M /N /P /Q
‖ ≡ εabcd∂aX /M∂bX

/N∂cX
/P∂dX

/Q , (2.10)

and take parallel propagators to be implicit in the 10D Hodge star. As we will see below,

D3-branes which are mutually BPS with the background have charge equal to tension

µ3 = T3. The resulting 5-form EOM, including contributions from the 3-form, is therefore

E6 = d ? F̃5 −
igs
2
G3 ∧ Ḡ3 + 2κ2

10T3

∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) , (2.11)

and vanishes on shell.5 Since the 3-form has at most one leg in the external spacetime, G3

contributes only to the EOM and not the Bianchi identity.

The EOM and Bianchi identity for the magnetic components of F̃5 are simply given by

exchanging F̃5 ↔ ?F̃5 in the corresponding equations for the electric components. There-

fore, the EOM is E6 = d ? F̃5, while the Bianchi identity becomes

0 = dF̃5 −
igs
2
G3 ∧ Ḡ3 + 2κ2

10T3

∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) . (2.12)

We will consider both (2.11), (2.12) in the static gauge later. As discussed in [21, 25, 26], the

nontrivial Bianchi identity (2.12) for the magnetic components means that perturbations of

C4 as defined in (2.1) and below are not globally defined on the CY manifold. Those refer-

ences studied the Bianchi identity in the absence of D3-branes and found a field redefinition

with a globally-defined 4-form potential. In terms of the new C4 (in the absence of axions

descending from A2), perturbations of F̃5 are δF̃5 = dδC4 + (igs/2)(δA2Ḡ
(0)
3 − δĀ2G

(0)
3 ).

4Technically, there is a WZ action coupling C4 to the brane, but it appears at higher order in spacetime

derivatives than we consider.
5There is one subtlety with factors of 2; when varying the covariant action (2.1), we replace µ3 → µ3/2

in Sloc since the WZ term includes magnetic and electric couplings. This is equivalent to keeping only the

electric components of F̃5 and doubling the coefficient of the F̃5 ? F̃5 term as in [14].
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We will review this field redefinition and demonstrate the additional redefinition needed

for the D3-brane contribution to the Bianchi identity in section 4.

The 3-form is somewhat simpler; the Bianchi identity is trivial dG3 = 0 for constant

axio-dilaton τ , and the EOM is

E8 = d ? G3 + iG3 ∧
(
F̃5 + ?F̃5

)
+
i

2
A2 ∧ E6 + · · · , (2.13)

with either electric or magnetic components for F̃5. The coefficients of the last two terms

are given in keeping with our prescription to double the F̃5 kinetic term. The dots represent

brane source terms, which we ignore as discussed below. Since we do not consider axions

that descend from A2 or their backgrounds, the last term given explicitly in (2.13) will not

contribute.

Finally, we need to determine the 10-dimensional D3-brane EOM. Due to the different

couplings to the electric and magnetic components of the 5-form, these equations take

different forms depending on which version of the theory we consider. Here we present the

more familiar electric version and discuss the magnetic version in section 4 below. Using

the normalization of (2.4), variation of (2.7), (2.9) gives6

E /M =

{
∇a
[(
g /M /N∂

aX /N +
1

6

µ3

T3
εabcdC /M /N /P /Q∂bX

/N∂cX
/P∂dX

/Q

)]
(2.14)

−
[

1

2
∂ /Mg /N /P∂aX

/N∂aX /P +
1

4!

µ3

T3
εabcd∂ /MC /N /P /Q/R∂aX

/N∂bX
/P∂cX

/Q∂dX
/R

]}
δ10(x,X) .

This EOM allows us to set our sign convention for the D3-brane charge (since |µ3| = T3).

Consider a static D3-brane ∂aY /m = 0 in static gauge in the background described above.

The /M = /µ equation becomes ∇a
[
(1− µ3/T3) δ10(x,X)

]
= 0, while the /M = /m equation

becomes −4∂ /mA (1− µ3/T3) δ10(x,X) = 0. Both of these vanish for the choice µ3 = T3.

We now justify ignoring the 2-form potential couplings in both the DBI and WZ

actions, despite the fact that they appear in the background with nontrivial G
(0)
3 . The

main point is that the background potentials have completely internal legs and are pulled

back to the world volume by two powers of the small derivatives ∂aY /m. Furthermore, in a

perturbative expansion of the DBI action, the pulled-back potential P (B2) enters either at

second-order, or contracted with the world-volume field strength. These terms are 3rd and

4th order in fluctuations, so we ignore them. The WZ terms containing P (C2) and P (B2)

are similarly 3rd and 4th order and can also be ignored. Finally, we set the world-volume

field strength to zero, since we do not consider vector degrees of freedom.

3 Electric D3-brane couplings

As we discussed in section 2.3 above, because of the 10D self-duality of F̃5, a D3-brane

can act as either an electric or magnetic source for C4. In this section, we consider the

“electric” choice as defined above, namely, the choice to keep components of F̃5 with legs

6The Euler-Lagrange equations also apparently contain terms proportional to ∂ /Mδ
10(x,X); however, in

the variation of the action, these terms vanish upon converting the X /M derivative to an xM derivative and

integrating by parts. We therefore do not consider them to be part of the EOM.

– 9 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
9

mostly along the external spacetime. With this choice, a D3-brane has an electric coupling

to C4 through the WZ terms in its action.

We begin by first presenting our ansatz for fluctuations in the D3-brane position.

As discussed in the introduction, an ansatz for dimensional reduction must satisfy the

constraint equations arising from the 10D EOM (2.5), (2.11), (2.14). We will show how

our ansatz — which involves the presence of D3-brane degrees of freedom not only as

transverse coordinates but also in the metric and 4-form gauge potential — solves these

constraint equations and is thus the first known consistent ansatz for the dimensional

reduction of transverse D3-brane degrees of freedom. In order to compute the full effective

action of the D3-brane, we need to understand how it couples to the massless moduli, such

as the volume modulus and C4 axions. Dimensional reduction of the volume modulus and

axions in GKP compactifications has been studied previously in [25, 26]; however, those

articles worked with the other (magnetic) choice for components of F̃5, which leads to a

slightly different ansatz for the linearized fluctuations. Thus, we briefly discuss the electric

form of linearized fluctuations of these moduli. We will then see that these moduli can all

be described by a common “electric” ansatz, which we use to carry out the dimensional

reduction of the action to a 4D effective theory.

3.1 D3-brane fluctuations in electric formalism

As discussed in section 2.2, we will consider a D3-brane with embedding coordinates

X /M =
{
X /µ, Y /m

}
with world volume parameterization in static gauge ξa = δa/µX

/µ (so

that fluctuations in X /µ are gauged away) and take small, slowly varying fluctuations of

the transverse coordinates of the D3-brane Y /m(x) = Y (0) /m + δY /m(x).

As discussed in the introduction, diffeomorphisms and the constraint equations couple

the D3-brane with the metric and 4-form C4, forcing us to go beyond the probe limit for

the D3-brane. Thus, fluctuations of the D3-brane transverse position appear in the metric

at linear order through the ansatz

ds2 =e2Ω(x)e2A(x,y)η̂µνdx
µdxν + 2e2Ω(x)e2A(x,y)∂µB

Y
m(x, y)dxµdym + e−2A(x,y)g̃mndy

mdyn ,

(3.1)

which uses the same structure as [25, 26] for the volume modulus and axions. This is similar

to the background (2.2); the additions are spacetime-dependence in the warp factor A(x, y),

a “compensator” term containing a 1-form BY
m(x, y) needed to solve the constraints (and

which vanishes for spacetime-independent fluctuations), and a Weyl factor Ω(x) defined by

e−2Ω(x) ≡ 1

Ṽ

∫
d6y

√
g̃e−4A(x,y) with Ṽ ≡

∫
d6y

√
g̃ . (3.2)

The Weyl factor is required to diagonalize the 4D graviton and warped volume fluctua-

tions. We work in a diffeomorphism gauge in which the CY metric g̃mn is fixed to its

background form.

Fluctuations of the D3-brane position also appear in the electric components of the

4-form potential C4 through the Weyl factor, warp factor, and compensator

C4 = e4Ωe4Aε̂+ e4Ωe4A?̂d̂BY
1 (3.3)
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with corresponding 5-form

F̃5 = e4Ωε̂ ∧ d̃e4A + d
(
e4Ωe4A?̂d̂BY

1

)
+
[
?̃d̃e−4A + ?d

(
e4Ωe4A?̂d̂BY

1

)
− e2Ωe−4A?̃

(
d̂BY

1 ∧ d̃e4A
)]

. (3.4)

The terms of (3.4) in square brackets are required in the 10D description of the field

strength for self-duality (these are the magnetic components of F̃5).

The constraints follow from inserting our ansatz (3.1), (3.2), (3.3), (3.4) into the 10D

EOM (2.5), (2.11), and (2.14). We will see that the constraints have specific solutions for

A(x, y), BY
m(x, y), and Ω(x).

First, consider the constraints coming from the non-dynamical terms in the Einstein

equations (see appendix C.1). In particular, the (µν) component yields

∇̃2e−4A(x,y) = −gs
2

∣∣∣G(0)
3

∣∣∣2̃ − 2κ2
10T3δ̃

6(y, Y )− · · · , (3.5)

as well as

∇̃ñBY
n = e−2Ωδe−4A − e−4Aδe−2Ω . (3.6)

The first of these, (3.5), promotes the background Poisson equation for the warp factor (2.3)

to include first-order contributions from the D3-brane “instantaneously” (i.e., separately

at each point xµ in spacetime):

e−4A(0)(y) → e−4A(x,y) = 2κ2
10T3 G̃(y, Y (0) + δY ) + · · ·

= 2κ2
10T3 G̃(y, Y (0)) + 2κ2

10T3 δY
/m∂ /mG̃(y, Y ) + · · ·

= e−4A(0)(y) + 2κ2
10T3 δY

/m∂ /mG̃(y, Y ) , (3.7)

where the · · · represent the other contributions to the warp factor due to fluxes and other

localized sources (which are smooth at Y ) and G̃(y, Y ) is the biscalar Green’s function

on the internal CY.7 In this sense, our diffeomorphism gauge choice is analogous to the

Coulomb gauge describing electromagnetic radiation. Equation (3.7) also shows that the

Weyl factor Ω(x) is independent of the D3-brane moduli at linear order, since

δY e
−2Ω =

2κ2
10T3

Ṽ
δY /m

∫
d6y
√
g̃ ∂ /mG̃(y, Y ) = −2κ2

10T3

Ṽ
δY /m

∫
d6y
√
g̃ ∇̃nG̃n/n = 0 , (3.8)

via the relation (B.10) between scalar and tensor Green’s functions. Nevertheless, we

will keep the Weyl factor in our calculations since it is important for defining the 4D

Einstein frame.

Next, the mixed component of the Einstein equation gives a non-trivial constraint

−1

2
∂µ∂me

−4A +
1

2
e2Ω∂µ∇̃ñ(d̃BY

1 )mn + κ2
10T3 g̃m/n∂µY

/n δ̃6(y, Y ) = 0 (3.9)

7See appendix B for definitions and properties of bitensor Green’s functions.
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as well as a copy of (3.5) multiplied by ∂µB
Y
m. Since ∇̃ñ(d̃B1)mn = −∇̃2Bm + ∇̃m∇̃ñBn

on the Ricci flat CY, (3.6) and (3.9) yield

∇̃2BY
m = 2κ2

10T3e
−2ΩỸmδ̃

6(y, Y ) , where Ỹm = g̃m/nδY
/n . (3.10)

The compensator is given by the bivector Green’s function

BY
m(x, y) = −2κ2

10T3e
−2Ωg̃mnδY /pG̃n/p (y, Y ) . (3.11)

The Green’s function identity (B.10) implies that BY
1 automatically satisfies (3.6).

The EOM for the 5-form flux (2.11), evaluated for this ansatz in (C.20) in detail, also

contributes a constraint equation. The source term for (2.11) in static gauge is∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) = ?ε‖ δ

6(y, Y (x)) = −
(
ε̃+ d̂?̃Ỹ1

)
δ̃6(y, Y ) , (3.12)

and the constraints are another copy of (3.5) and

d̂
[
?̃d̃e−4A + e2Ωd̃?̃d̃B1 − 2κ2

10T3?̃Ỹ1δ̃
6(y, Y )

]
= 0 . (3.13)

Equation (3.13) is the 6-dimensional dual of (3.9) and is thus automatically satisfied.

The D3-brane EOM (2.14) contributes no new constraints; the /M = /µ component

vanishes identically (see (C.23)) as in the background, while the /M = /m component (shown

below in (3.30)) contributes to the dynamical EOM only.

3.1.1 Summary

We have shown that the ansatz (3.1), (3.2), (3.3), (3.4) solves the constraints required to

describe the motion of a D3-brane in a GKP background beyond the probe limit. To first

order in the fluctuation of the brane position, the warp factor, metric and F̃5 compensator,

and Weyl factor are (repeating our earlier results)

e−4A(x,y) = e−4A(0)(y) + 2κ2
10T3 δY

/m∂ /mG̃(y, Y ) , (3.7)

BY
m(x, y) = −2κ2

10T3e
−2Ωg̃mn δY /pG̃n/p (y, Y ) , (3.11)

e−2Ω(x) =
1

Ṽ

∫
d6y
√
g̃ e−4A(0)(y) = e−2Ω(0)

. (3.14)

To our knowledge, this is the first ansatz in the literature that describes the backreaction

of the D3-brane on the field strength and geometry and can be used to perform a consistent

dimensional reduction.

3.2 Kähler moduli in electric components

Having found an ansatz for the SUGRA fields for a moving D3-brane that solves all con-

straints, we can determine the dynamical EOM and dimensionally reduce the quadratic

action (2.4). However, the full structure of the effective action is apparent only when we

include the complete moduli space. In this paper, we consider the universal volume modu-

lus c, 2-form axions bI2 descending from C4, and brane positions Y /m. Each of the axions is
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associated with a harmonic 2-form ωI2 on the unwarped CY manifold (where I = 1, · · ·h1,1

runs over a basis). In principle, the holomorphic moduli of the 4D SUGRA should include

all the metric Kähler moduli as partners of the bI2; so far, the constraints have only been

solved for the volume modulus. Some compactifications have additional axionic moduli

that descend from A2. Solutions to the constraints have been presented in [26], and they

can be added to our analysis in a straightforward manner.

Here we present a brief description of the linearized fluctuations corresponding to all

these moduli and the constraint equations they must solve; more details are presented in

appendix C.1.

These moduli can all be described to linear order by a common metric

ds2 = e2Ωe2Aη̂µνdx
µdxν + 2e2Ae2Ω∂µBmdx

µdym + e−2Ag̃mndy
mdyn (3.15)

and electric C4 components8

C4 = e4Ωe4Aε̂+ e4Ωe4A?̂d̂B1 + bI2 ∧ ωI2 . (3.16)

The total compensator field is written as the sum from each moduli sector, so

d̂B1(x, y) ≡ −d̂c(x) ∧ d̃K(y) + e−4Ω?̂d̂bI2(x) ∧Bb,I
1 (y) + d̂BY

1 (x, y) . (3.17)

Note that we have used a notational shorthand since d̂2B1 6= 0 (that is, d̂B1 is not actually

an exterior derivative in spacetime) except when the axions are on shell. It is worth noting

that there is a gauge in which the volume modulus compensator field, K(y), appears in

the (µν) component of the metric; however, this is not possible for the other moduli,

since perturbations of bI2 and Y /m directly source Tµm. The C4 axions in the presence of

background G
(0)
3 flux also source a compensator for the 2-form potential

δA2 = −e−2Ω?̂d̂bI2 ∧ ΛI1 . (3.18)

The field strengths for our ansatz are

F̃5 = e4Ωε̂ ∧ d̃e4A + d
(
e4Ωe4A?̂d̂B1

)
+ d̂bI2 ∧ ωI2 (3.19)

+
[
?̃d̃e−4A − e2Ωe−4A?̃

(
d̂B1 ∧ d̃e4A

)
+ ?d

(
e4Ωe4A?̂d̂B1

)
+ e−2Ω?̂d̂bI2 ∧ e−4A?̃ωI2

]
,

G3 = G
(0)
3 − e

−2Ωd̂?̂d̂bI2 ∧ ΛI1 + e−2Ω?̂d̂bI2 ∧ d̃ΛI1 . (3.20)

As in the previous subsection, the terms in square brackets on the second line of (3.19) are

the magnetic components dual to the electric components on the first line; the magnetic

components subsume the Chern-Simons terms (igs/2)(δA2Ḡ
(0)
3 − δĀ2G

(0)
3 ). This form for

F̃5 differs from the form presented in [25, 26] by terms proportional to the 4D dynamical

EOM e4Ωe4Ad̂?̂d̂B1 +e−4A?̂d̂?̂d̂?̃B1. Therefore, both versions of the field strength represent

the same on-shell degrees of freedom with slightly different 4D field definitions, and the con-

straints for the volume modulus and axions remain unchanged. We summarize them below.

8In principle, there can be an additional compensator term −d̂b2K1 associated with each axion, but we

show in the appendix that K1 = 0.
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The constraints arising from the external components of the Einstein equation are,

as above,

∇̃2e−4A(x,y) = −gs
2

∣∣∣G(0)
3

∣∣∣2̃ − 2κ2
10T3δ̃

6(y, Y )− · · · , (3.21)

∇̃ñBn = e−2Ωδe−4A − e−4Aδe−2Ω . (3.22)

Since the axions do not appear as sources for the warp factor in (3.21), the warp and Weyl

factors are independent of these degrees of freedom. However, the volume modulus appears

as a spacetime-dependent shift of the warp factor [25]

e−4A(x,y) = e−4A(0)(y) + c(x) + 2κ2
10T3δY

/m(x)∂ /mG̃(y, Y ) . (3.23)

The Weyl factor is e−2Ω = e−2Ω(0)
+ c(x) including the volume modulus. In addition

to (3.6), (3.22) gives a Poisson equation for the volume modulus compensator

∇̃2K(y) = e−4A(0)(y) − e−2Ω(0)
(3.24)

and ∇̃ñBb,I
n = 0.

The mixed component of EMN gives a nontrivial constraint for all of the degrees of

freedom, namely

−1

2
e4A∂µ∂me

−4A +
1

2
e2Ωe4A∂µ∇̃ñ(d̃B1)mn + κ2

10T3e
4Ag̃m/n∂µY

/nδ̃6(y, Y )

−2e−2Ωe4A(?̂d̂bI2)µ

[
e−4A

(
ωI2
)
mn

∂ñA− igs
8

(
?̃
(
d̃Λ1 ∧ Ḡ(0)

3

)
m
− c.c.

)]
= 0 , (3.25)

as well as a copy of equation (3.21) multiplied by ∂µBm. We have already seen how this

equation is satisfied for fluctuations in D3-brane position; for the volume modulus, we note

that ∂µ∂me
−4A = 0 and that its compensator is exact, so the constraint is automatically

satisfied. For the 2-form axions, (3.25) becomes

∇̃2Bb,I
m = 4e−4A

(
ωI2
)
mn

∂ñA− igs
2
?̃
(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

)
, (3.26)

which we take to be the defining Poisson equation for the axion compensators, as in [26].

The constraints coming from the 5-form EOM (C.20) again include a copy of (3.21),

as well as ?̃ of (3.25). For the axions, we can further rewrite this constraint as

d̃

[
e−4A?̃ωI2 − ?̃d̃B

b,I
1 +

igs
2

(
ΛI1 ∧G

(0)
3 − c.c.

)]
= 0 , (3.27)

which implies that

e−4A?̃ωI2 +
igs
2

(
ΛI1 ∧G

(0)
3 − c.c.

)
− ?̃d̃Bb,I

1 = γI4 + d̃KI
3 , (3.28)

where γI4 is harmonic and K3 is given by a Poisson-like equation (whose precise form will

be unimportant to us).

Finally, the constraint from the 3-form EOM (2.13) as given in (C.21) receives no

contribution from the volume or D3 position moduli. For the axions, it is

d̃?̃d̃Λ1 + iωI2 ∧G
(0)
3 = 0 . (3.29)

The contribution ΛI1 for each axion takes the same form as in [26].

– 14 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
9

3.2.1 Summary

We have shown that a generic “electric” ansatz, given by (3.15), (3.16), (3.17), (3.19), can be

used to describe the volume modulus, C4 axions, and D3-brane position. The warp factor,

Weyl factor, and compensators for each modulus can be determined by (3.23), (3.24), (3.26)

and (3.29) — along with corresponding expressions from section 3.1 — and are shown to

satisfy all of the 10D constraint equations. It is important to note that the constraints

require fluctuations in multiple 10D fields for each of the moduli separately.

3.3 4D effective action in electric formalism

As discussed in section 2.2, the quadratic effective action is obtained by multiplying the

fluctuations of the 10D fields with the first-order parts of the 10D dynamical EOM; in

this case, there is an additional contribution to the quadratic action described below that

takes a topological form and does not appear in the EOM. Integration over the compact

manifold projects onto the massless sector.

3.3.1 Contributions to effective action

As described above, the quadratic action is given by

S =
1

4κ2
10

∫
d10x

√
−g δgMNδEMN +

1

4κ2
10

∫ (
δC4 ∧ δE6 +

gs
2
δA2 ∧ δĒ8 +

gs
2
δĀ2 ∧ δE8

)
+
T3

2

∫
d10x

√
−g

∫
d4ξ
√
−γ δX /MδE /M , (2.4)

where δgMN , δC4, δA2 are the first-order parts of (3.15), (3.16), (3.18). However, as noted

in section 2.2, there can generally be “topological” terms in the quadratic action, such as

the instanton density of 4D Yang-Mills theory, that do not appear in the linearized EOM.

We identify a contribution of this type below.

We begin with the contribution from the D3-brane sector. The dynamical part of the

D3-brane EOM is

δE /m = e−4Ae−4Ω
(
e2Ωg̃ /m/n∂̂

2Y /n + e4Ae4Ω∂̂2B /m − e4Ae4Ω∂̂2B /m

)
δ10(x,X)

= e−4Ae−2Ωg̃ /m/n∂̂
2Y /nδ10(x,X) . (3.30)

Note that the contribution to the EOM from the WZ action has cancelled with a term

proportional to gµm in the DBI action in the first line of (3.30). We obtain the contribution

SD3
eff =

T3

2

∫
d4x

∫
d6y

√
g̃ e2Ωg̃ /m/nδY

/m∂̂2Y /n δ̃6(y, Y ) . (3.31)

There is no “self-energy” problem; the singular fields sourced by the D3-brane cancel out of

the effective action. Previous attempts at constructing the effective action for D3-branes

(such as [15, 27]) have only included this contribution from the DBI action on a fixed

warped background. However, as we have emphasized, there are, in principle, additional

contributions to the effective action arising from the presence of moduli dependence in the

metric and flux sectors.
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For example, the dynamical Einstein equations, given in (C.17), (C.18), (C.19), are

δEµν = −2e4Ae2Ωη̂µν(∂
˜̀
A)∂̂2B` , (3.32)

δEµm = 0 , (3.33)

δEmn = ∂̂2
[
∇̃(mBn) − g̃mn∇̃

˜̀
B`

]
+ e−4Ae−2Ωg̃mn∂̂

2 (3δΩ− 2δA) . (3.34)

Inserting these into the expression for the gravity contribution to the effective action,

we obtain

SReff =
1

4κ2
10

∫
d4x

∫
d6y
√
g̃ e4Ω

[
16(δA+ δΩ)(∂

˜̀
A)∂̂2B` − 10δA∂̂2∇̃˜̀

B`

+12e−4Ae−2ΩδA∂̂2 (3δΩ− 2δA)
]
. (3.35)

Notice that (3.35) implies that there are contributions to the effective action for D3-brane

fluctuations from both the compensators and the fluctuations in the warp and Weyl factors.

These include complicated mixings with the volume modulus and C4 axions and depend

on the details of the solutions for the compensators from (3.24) and (3.26).

Next, we need to include the contribution to the effective action from the flux sectors.

The relevant9 dynamic contributions to the 5-form EOM are

δE6 = d̃
(
e−4A?̃∂̂2B1

)
+ e−2Ωd̂?̂d̂bI2 ∧

(
γI4 + d̃KI

3

)
. (3.36)

The 5-form contribution to the effective action is then

S5
eff =

1

4κ2
10

∫
d4x

∫
d6y
√
g̃ e4Ω

[
4(δA+ δΩ)

(
∂̂2∇̃˜̀

B` − 4∂
˜̀
A∂̂2B`

)]
− 1

4κ2
10

∫
e−2Ωd̂bI2 ∧ ?̂d̂bJ2

∫
ωI2 ∧ γJ4 . (3.37)

We expand γJ4 = (C−1)JK ?̃ωK2 , so
∫
ωI2γ

J
4 = 3Ṽ (C−1)IJ using the normalization of our

basis forms. Following [26],

(C−1)IJ =
1

3Ṽ

{∫
e−4AωI2 ∧ ?̃ωJ2 +

igs
2

∫
ωI2 ∧

(
ΛJ1 ∧ Ḡ

(0)
3 − Λ̄J1 ∧G

(0)
3

)}
, (3.38)

which is the identity when the CY metric is formal, meaning that the wedge product of

harmonic forms is always harmonic. Meanwhile, the 3-form sector does not contribute to

the quadratic action10 because none of the components of δE8 have the correct legs to

wedge nontrivially with δA2.

Finally, there is an additional contribution to the effective action that is not captured

by equation (2.4). Specifically, the WZ action (2.9) contains a term that is quadratic in

9There is an additional term of the form e−4A?̃d̂∂̂2B1, but it contributes only to higher-derivative terms.

We expect these to be modified by other corrections, such as threshold corrections. They are also ambiguous

because they change under field redefinitions of the form u→ u+ f(u)∂̂2u. For both these reasons, we do

not consider them.
10Except at higher derivatives, which we ignore for the reasons stated in footnote 9.
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field fluctautions but does not give a contribution to the linearized EOM:11

Sax−D3
eff =

T3

2

∫
D3
bI2 ∧ d̂Y /m ∧ d̂Y /nωI/m/n . (3.39)

This is analogous to the axion-photon coupling θF 2, which contributes to the EOM only

at quadratic order in the fields but can nonetheless contribute to the action at quadratic

order in fluctuations if θ has a background value. In infinite Minkowski space, a constant

background b2 is gauge trivial, but there are nontrivial Wilson lines if the spatial dimensions

are compactified on a large torus, for example, so we must include this term. The terms in

the action with background b2 are topological in the sense that they are total derivatives,

also like the axion-photon coupling.

Adding all the contributions yields a series of cancellations. Specifically, all terms

proportional to ∂
˜̀
A∂̂2B` cancel. Then the constraint equation for the compensator (3.22)

allows us to simplify the remaining terms involving δA, δΩ to the form

SA−Ω
eff =

8

4κ2
10

∫
d4x

∫
d6y
√
g̃ e−4Ae2Ω (δA− δΩ) ∂̂2δΩ (3.40)

=
1

4κ2
10

∫
d4x

∫
d6y
√
g̃
[
e4Ω

(
c+ 2κ2

10T3δY
/m∂ /mG̃(y;Y )

)
∂̂2c+ 2e6Ωe−4Ac∂̂2c

]
.

Since ∂ /mG̃(y;Y ) = −∇̃nG̃n/m(y;Y ), the brane-volume cross-term integrates to zero. With

the definition of the Weyl factor, the remaining terms combine, yielding

Seff = SD3
eff + SReff + S5

eff + Sax−D3
eff

= − 3Ṽ

4κ2
10

∫
d4x e4Ω∂µ̂c(x)∂µc(x)− 3Ṽ

4κ2
10

∫
e−2Ω

(
C−1

)IJ
d̂bI2 ∧ ?̂d̂bJ2

− T3

2

∫
d4x e2Ω g̃ /m/n(Y )∂µ̂Y /m∂µY

/n +
T3

2

∫
D3
bI2 ∧ d̂Y /m ∧ d̂Y /nωI/m/n . (3.41)

This is the key result of this section: all of the complicated structures from the ansatz,

including compensators and Green’s functions, end up cancelling non-trivially in the final

effective action. This remarkable set of cancellations illustrates the necessity for a consistent

solution of the 10D constraint equations; the constraints, and their solutions, are essential

for simplifying the effective action. Note that the only contribution to the effective action

by the warp factor is through the axion field space metric (3.38), as was determined in [26].

3.3.2 Scalar axions and kinetic action

Since the 4D effective theory is a supergravity, ultimately the quantity of interest is the

Kähler potential, so we should write the kinetic action in terms of holomorphic scalar

coordinates. Here, we dualize the 2-form axions into scalars and find that using complex

coordinates ym = (zi, z̄ ı̄) on the CY provides some simpification.

The CY coordinates appear explicitly in the action (3.41) through the brane positions

in the combinations g̃ /m/n∂
µ̂Y /m∂µY /n and ωI/m/nd̂Y

/md̂Y /n. The first is trivially re-written

11The extra factor of 1/2 in (3.39) compared to the WZ form (2.9) follows from careful comparison of

combinatorial factors in a general 4-form versus a 2-form wedged with two 1-forms.
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in complex coordinates as 2g̃ī∂
µ̂Zi∂µZ̄

̄ (for legibility, we drop the slash on quantities

evaluated at the brane position in complex coordinates). However, we can re-organize the

second further; by the ∂∂̄ lemma, the harmonic 2-forms are locally ωI2 = i∂∂̄kI(z, z̄) in

terms of potentials kI (when ω2 is the complex structure form J̃2, k is the Kähler potential

of the CY), and

ωI/m/nd̂Y
/md̂Y /n = i∂ik

I
̄ d̂Z

id̂Z̄ ̄ − i∂̄ı̄kIj d̂Z̄ ı̄d̂Zj , kIi = ∂ik
I , kIı̄ = ∂̄ı̄k

I . (3.42)

Furthermore, since k is evaluated at the brane position, we have d̂kĪ = ∂ik
I
̄ d̂Z

i+∂ı̄k
I
̄ d̂Z

̄;

since partial derivatives commute, d̂kĪ d̂Z̄
̄ = ∂ik

I
̄ d̂Z

id̂Z̄ ̄.

Now the kinetic action for the axions can be written as

Saxion = − 3Ṽ

4κ2
10

∫
e−2Ω(C−1)IJ d̂bI2 ∧ ?̂d̂bJ2 + i

T3

2

∫
bI2 ∧

(
d̂kIı̄ ∧ d̂Z̄ ı̄ − d̂kIi ∧ d̂Zi

)
= − 3Ṽ

4κ2
10

∫ [
e−2Ω(C−1)IJ d̂bI2 ∧ ?̂d̂bJ2 − iγd̂bI2 ∧ κI1 ,

]
(3.43)

where we have defined κI1 ≡ kIj d̂Z
j − kĪ d̂Z

̄ and γ = 2κ2
10T3/3Ṽ . To define the scalar

axion, we re-write the action (3.43) in terms of the field strength hI3 ≡ d̂bI2 and enforce the

Bianchi identity d̂hI3 = 0 by introducing a Lagrange multiplier bI0, so

Saxion = − 3Ṽ

4κ2
10

∫ (
e−2Ω(C−1)IJhI3 ∧ ?̂hJ3 − iγhI3 ∧ κI1 − 2bI0d̂h

I
3

)
. (3.44)

The classical EOM implies

hI3 = e2ΩCIJ ?̂
(
d̂bJ0 + i

γ

2
κJ1

)
. (3.45)

Substituting this into (3.44) and simplifying gives the action in terms of the scalar axions as

Saxion = − 3Ṽ

4κ2
10

∫
e2ΩCIJ

(
d̂bI0 + i

γ

2
κI1

)
∧ ?̂
(
d̂bJ0 + i

γ

2
κJ1

)
. (3.46)

With the brane coordinates written in terms of complex variables and the axions

dualized to the conventional scalars, the effective action (3.41) becomes

Seff = − 3Ṽ

4κ2
10

∫
d4x

[
e4Ω∂µ̂c∂µc+ 2γe2Ω g̃ī(Z, Z̄)∂µ̂Zi∂µZ̄

̄ + e2ΩCIJ

×
(
∂µ̂bI + i

γ

2
kIi ∂

µ̂Zi − iγ
2
kIı̄ ∂

µ̂Z̄ ı̄
)(

∂µb
J + i

γ

2
kJj ∂µZ

j − iγ
2
kJ̄ ∂µZ̄

̄
)]

. (3.47)

This effective action for the volume modulus, C4 axions, and D3-brane positions is the

primary result of this paper. Compared to the action found in [1], which does not account

for the effects of the warp factor or flux in kinetic terms, our result is similar, but we find

that a nontrivial warp factor and flux appear through the Weyl factor (which corresponds

to shifting the expectation value of the volume modulus) and the metric CIJ , as in [25, 26].

In fact, our result matches that derived in [18] using methods from 4D conformal SUGRA
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and corrected by flux dependence on metric moduli [19]; the contribution from the flux

background to CIJ already appeared in direct dimensional reduction in [26].

In the case that the CY metric g̃mn is formal or that we restrict to the universal axion

(ω2 = J̃2, the almost complex structure), CIJ = e2ΩδIJ . With a single axion b, then the

effective action (3.47) follows from the Kähler potential

K = −3 ln
[
−i(ρ− ρ̄)− γk(Z, Z̄)

]
(3.48)

and holomorphic coordinate

ρ = b0 + i
(
e−2Ω +

γ

2
k(Z, Z̄)

)
, (3.49)

as we show in appendix D. This takes the form proposed in [7, 15] for D3-branes in warped

compactifications when restricted to a single Kähler modulus.

3.3.3 Summary

Starting with the ansatz of the previous subsection for the 10D SUGRA fields, we have

performed a consistent dimensional reduction beyond the probe limit of the effective ac-

tion of a mobile D3-brane, the volume modulus, and 4-form axions in a warped GKP

background. A number of critical cancellations occur because the 10D fields satisfy their

constraint equations.

The effective action is

Seff = − 3Ṽ

4κ2
10

∫
d4x

[
e4Ω∂µ̂c∂µc+ γe2Ω g̃ī(Z, Z̄)∂µ̂Zi∂µZ̄

̄ + e2ΩCIJ

×
(
∂µ̂bI + i

γ

2
kIi ∂

µ̂Zi − iγ
2
kIı̄ ∂

µ̂Z̄ ı̄
)(

∂µb
J + i

γ

2
kJj ∂µZ

j − iγ
2
kJ̄ ∂µZ̄

̄
)]

, (3.47)

where the flux and warp factor appear through the metric

(C−1)IJ =
1

3Ṽ

{∫
e−4AωI2 ∧ ?̃ωJ2 +

igs
2

∫
ωI2 ∧

(
ΛJ1 ∧ Ḡ

(0)
3 − Λ̄J1 ∧G

(0)
3

)}
. (3.38)

There is no known explicit form for the corresponding Kähler potential, though it reduces

to the DeWolfe-Giddings [7, 15] form when the CY has only a single Kähler modulus.

4 Magnetic D3-brane couplings

We can also carry out the dimensional reduction in the version of type IIB SUGRA in which

we keep the mostly internal components of F̃5. In this version of the theory, a D3-brane

does not couple to C4 in the action,12 but rather through a nontrivial Bianchi identity.

To describe the SUGRA in this way will require a new, but equivalent, expression for the

field strength ansatz which differs from (3.4) by terms that are proportional to equations of

motion. Since it is identical on shell, this ansatz describes the same 4D degrees of freedom

as (3.4); off shell, the 4D effective action will differ only in higher-derivative terms, which

12Except at higher order in spacetime derivatives than we consider.
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are ambiguous as they can be changed by a 4D field redefinition. We start this section by

demonstrating that the new ansatz satisfies the same constraints as required in the electric

description of the D3-brane.

At the same time, we will notice that the fluctuation in F̃5 decomposes into an exact

term (the contribution of a globally-defined 4-form potential) and a delta-function sup-

ported term with an explicit dependence on the brane position. This motivates us to

divide F̃5 in the presence of magnetic charges into an exact piece and terms that depend

explicitly on brane position; the field redefinition yields a 4-form potential without a Dirac

string singularity, much as a field redefinition can be used to create a 4-form potential that

is invariant under 2-form gauge transformations needed to describe a background 3-form

field strength. We discuss this field redefinition in section 4.2.

A puzzle that arises when treating the D3-brane as a magnetic charge is how the

no-force condition in our background arises, since there is no WZ coupling between the

brane and C4. As it turns out, the field redefinition described above solves this puzzle,

since the explicit dependence of F̃5 on the brane position modifies the D3-brane EOM.

In section 4.2.3, we find the modified equation of motion for the brane and demonstrate

that a static D3-brane feels no force in backgrounds that are mutually BPS with the brane

(including GKP backgrounds).

Finally, after reviewing the results of [25, 26] in a “magnetic” description, we present

a unified ansatz for the volume modulus, C4 axions, and brane position at linear order.

Using this ansatz, we solve the constraints and integrate the quadratic action over the

internal manifold to find the 4D effective action for all moduli.

4.1 D3-brane fluctuations in magnetic formalism

Clearly, to represent the same 4D degree of freedom, the self-dual F̃5 must be the same

on shell whether we choose to describe IIB SUGRA using the electric or magnetic compo-

nents. However, the magnetic components of F̃5 in the ansatz (3.4) (which we used for the

electrically-coupled D3-brane) are not easily described in terms of a 4-form potential with

the magnetic set of components. Fortunately, it is possible to describe the same on-shell

solution of the 10D theory by adding terms proportional to the 4D dynamical EOM to F̃5;

some of these combine with other magnetic components to take the form dC4, as we will

see below. Specifically, we take

F̃mag
5 = F̃ elec

5 − e4Ae4Ωd̂?̂d̂BY
1 − e−4A?̂d̂?̂d̂?̃BY

1

= ?̃d̃e−4A − e2Ωd̂(?̃d̃BY
1 ) +

[
e4Ωε̂ ∧ d̃e4A − e4Ω?̂d̂d̃(e4ABY

1 )
]
, (4.1)

where F̃ elec
5 is given by (3.4). In the second line, the first two terms are the magnetic

components of F̃mag
5 , while the terms in brackets are the electric components. Through-

out the remainder of this section, we consider only F̃mag
5 , and therefore we suppress the

superscript. Our ansatz for the metric remains the same.

Since it differs from the ansatz in the electric formalism only by terms that are second

order in spacetime derivatives, this modified ansatz for F̃5 leaves the constraint equations

unchanged, so it is still a valid ansatz for dimensional reduction. The additional terms
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in (4.1) lead to higher-derivative terms in the dynamical EOM, which in fact vanish on

shell and do not affect our analysis. We verify that the constraints are unchanged by

explicit calculation in appendix C.2.

We can now address our claim that the magnetic components of this ansatz are simply

written in terms of a 4-form potential. The key is the constraint (3.13), which can be

written as

?̃d̃δe−4A + e2Ωd̃?̃d̃B1 − 2κ2
10T3?̃Ỹ1δ̃

6(y, Y ) = 0 . (4.2)

As a result, the fluctuation in the magnetic components is

δF̃5 = ?̃d̃δe−4A − e2Ω?̃d̃d̂BY
1

= −d
(
e2Ω?̃d̃BY

1

)
+ 2κ2

10T3?̃Ỹ1δ̃
6(y, Y ) . (4.3)

In other words, δF̃5 = dδC ′4 +S5, where C ′4 is a globally-defined potential (ie, has no Dirac

string singularity and can therefore be defined with a single gauge patch) and S5 is the

explicit dependence on the brane position required to solve the Bianchi identity. This is a

(non-local) field redefinition of the potential which apparently gives the 5-form an explicit

dependence on the brane position. We will explore this field redefinition in more detail

in the following subsection, including an analogy to the well-known Chern-Simons terms

involving A2 and G3 in F̃5.

4.1.1 Summary

The ansatz for 10D fields is somewhat modified in order to write the magnetic components

of F̃5 in terms of a 4-form potential. The metric and 5-form are given by

ds2 = e2Ωe2Aη̂µνdx
µdxν + 2e2Ωe2A∂µB

Y
mdx

µdym + e−2Ag̃mndy
mdyn , (3.1)

F̃5 = ?̃d̃e−4A − e2Ωd̂(?̃d̃BY
1 ) +

[
e4Ωε̂ ∧ d̃e4A − e4Ω?̂d̂d̃(e4ABY

1 )
]
, (4.1)

where the magnetic components are the first two terms. We have found that the magnetic

components of the field strength can be written as F̃5 = S5 + dC ′4, where S5 contains

explicit dependence on the brane position and is described by a potential with a Dirac

string singularity. The redefined potential C ′4 is globally defined and has fluctuation δC ′4 =

−e2Ω?̃d̃BY
1 .

This ansatz satisfies the same constraints as the ansatz we proposed in the electric

formalism. Therefore, we still have e2Ω = e2Ω(0)
,

e−4A(x,y) = e−4A(0)(y) + 2κ2
10T3 δY

/m∂ /mG̃(y, Y ) , and (3.7)

BY
m(x, y) = −2κ2

10T3e
−2Ωg̃mn δY /pG̃n/p (y, Y ) . (3.11)

4.2 Non-trivial Bianchi identities, field redefintions, and EOM

We recall from equation (2.12) that the Bianchi identity for the magnetic components of

F̃5 is

dF̃5 =
igs
2
G3 ∧ Ḡ3 − 2κ2

10T3

∑
D3/O3

∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) , (4.4)

– 21 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
9

which has both distributed (G3) and local sources. The meaning of the distributed sources

is well-understood — the gauge-invariant field strength contains both an exact term and

Chern-Simons terms involving both the potential and field strength for another SUGRA

degree of freedom. As a result, the 4-form potential C4 (even at first order in pertur-

bations) has a nontrivial gauge patching in a background G3; [21, 25, 26] demonstrated

that this gauge transformation can be removed from perturbations of C4 by a simple field

redefinition, so the perturbation in F̃5 decomposes into an exact term and a (somewhat

altered) Chern-Simons term.

Similarly, the presence of a local magnetic source implies that C4 must be defined

on at least two patches glued together with a nontrivial gauge transformation (to remove

the Dirac-string-like singularity). We show here that, as in the case of distributed sources,

there is a field redefinition of the potential that allows the perturbation in the field strength

to be written as dC ′4 plus an analog of Chern-Simons terms with delta-function support.

Our approach is to make a formal expansion of the source terms around an arbitrary fixed

point; the nontrivial gauge patching can then be relegated to a background potential that

creates the zeroth order term in the expansion, while the spacetime-dependent terms in

the field strength are separated into an explicit dependence on the brane position and the

exterior derivative of an exact potential. This explicit dependence of the field strength on

the D3-brane position in turn modifies the EOM for the brane’s motion. These techniques

are similar to Dirac’s original proposal for magnetic monopoles in 4D Maxwell theory [28];

the relationship of our work to Dirac’s and the extension of Dirac’s formalism to general

branes is the subject of an upcoming companion paper by two of us [29].

The key point in both cases is two-fold: the original C4 is not suitable for dimensional

reduction because it is not globally defined (and cannot be integrated over the CY in the

usual way, for example) and is not an entirely independent degree of freedom because its

nontrivial gauge patching depends on the values of other fields. The field redefinitions we

discuss below resolve both of these difficulties.

We begin with a brief review of the field redefinition in the case of a background G3,

largely following [26]. We then demonstrate how to re-write F̃5 with explicit dependence

on the brane position in a generic background, working in static gauge. The cases of

distributed and local magnetic sources are independent, so we discuss them separately. We

close with a discussion of the modified D3-brane EOM in section 4.2.3.

4.2.1 Field redefinition in background 3-Form

Ignoring local sources, the 5-form Bianchi identity can be written as dF̃5 = (igs/2)G3 ∧
Ḡ3 = (igs/4)d(A2 ∧ Ḡ3 − Ā2 ∧ G3).13 This, of course, leads to the well-known expression

F̃5 = dC4+(igs/4)(A2∧Ḡ3−Ā2∧G3) with Chern-Simons terms acounting for the nontrivial

Bianchi identity. The appearance of the 2-form potentials requires C4 to vary nontrivially

under gauge transformations of A2. This is the usual definition of the 4-form potential in

IIB SUGRA (one of the two common definitions, to be precise).

13When the axio-dilaton is constant; this discussion must be modified somewhat in a general F theory

background.
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However, if G3 has a harmonic background value G
(0)
3 (as in GKP compactifications),

A2 is defined only on coordinate patches, so C4, including its fluctuation, must also be

defined only in patches. Defining G3 = G
(0)
3 + δG3 with δG3 = dδA2 exact, we have

dF̃5 =
igs
2

[
G

(0)
3 ∧ Ḡ

(0)
3 + δG3 ∧ Ḡ(0)

3 +G
(0)
3 ∧ δḠ3 + δG3 ∧ δḠ3

]
. (4.5)

Similarly splitting F̃5 = F̃
(0)
5 + δF̃5, where F̃

(0)
5 satisfies the Bianchi identity for G3 = G

(0)
3 ,

dδF̃5 =
igs
2
d
[
δA2 ∧ Ḡ(0)

3 − δĀ2 ∧G(0)
3

]
+
igs
4
d
[
δA2 ∧ δḠ3 − δĀ2 ∧ δG3

]
. (4.6)

This suggests writing

δF̃5 = dδC ′4 +
igs
2

[
δA2 ∧ Ḡ(0)

3 − δĀ2 ∧G(0)
3

]
+
igs
4

[
δA2 ∧ δḠ3 − δĀ2 ∧ δG3

]
. (4.7)

It is important to note, however, that δC ′4 is not the fluctuation of C4 as defined above but

is shifted from that fluctuation by a wedge product of δA2 and the patched 2-form potential

that describes the background G
(0)
3 . It is clear from (4.7) that δC ′4 is a globally-defined

form; [21, 25, 26] demonstrated this fact using the explicit field redefinition and the gauge

transformations of the SUGRA fields.

Using the variables δC ′4, δA2, δĀ2 rather than δC4, δA2, δĀ2 serves two purposes: it

removes the background gauge transformations from the first-order potential and clarifies

the dependence of δF̃5 on δA2, δĀ2. Since δC ′4 is globally-defined, it is the appropriate vari-

able to describe fluctuations in moduli (such as 4-form axions) or compensators. However,

because the explicit dependence of δF̃5 on δA2 changes, the field redefinition from δC4 to

δC ′4 also modifies the 10D EOM for δA2 compared to the usual result from the SUGRA

(while leaving the 4-form EOM unchanged). As can be determined either by direct varia-

tion (at linear order) or by plugging the explicit field redefinition into (2.4), the change to

the linearized form of (2.13) is to ensure that A2 in the last term of that equation is the

globally defined δA2 (which may have a background value). Henceforth, we will use this

modified potential and correspondingly modified EOM.

4.2.2 Field redefinition for D3-brane source

We can take a parallel approach for dynamical local sources; considering only a single

D3-brane, the Bianchi identity (2.12) is

dF̃5 = −2κ2
10T3

∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) , (4.8)

which we evaluate in the static gauge ∂aX
µ = δµa . With this gauge choice, the integral

reduces to∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) = −

(
?⊥ − ?⊥d̂Y1 +

1

2
?⊥ (d̂Y1 ∧ d̂Y1) + · · ·

)
δ6
⊥(y, Y (x)) ,

(4.9)

following from the definition (2.10). Remarkably, all factors of the metric cancel on both

sides of (4.9), so we can take ?⊥ and δ6
⊥ to depend on an arbitrary 6D metric g⊥,mn on
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the ym. For now we will leave this metric arbitrary, making an advantageous choice later.

Because we can use an arbitrary 6D metric, our procedure does not rely on factorizability

of the 10D metric. Note that explicit factors of parallel propagators contracting d̂Y have

been suppressed since they become Kronecker deltas at coincidence (as enforced by the

delta function). Notationally, we continue to define d̂ = ∂µdx
µ, d̃ = ∂mdy

m rather than

introduce d‖, d⊥.

Our approach, as when considering a fluctuating 3-form source in 4.2.1 above, is to

demonstrate that terms containing spacetime derivatives of the brane position are exact.

Then F̃5 can be written as the exterior derivative of a (redefined) potential plus delta-

function-supported terms making explicit the entire dependence of F̃5 on the brane position

Y (x). To separate out the the dynamics of the brane position, we formally expand the

right-hand side of (4.9) around a fixed arbitrary point Y
m
∗ ; note that this is not necessarily

the background value of the D3-brane position. The proper expansion quantity is Synge’s

worldfunction σ(Y∗, Y ) (half the square geodesic distance between Y
m
∗ and Y /m).14 The

derivatives σm ≡ ∂mσ(Y∗, Y ) lie tangent to the geodesic from Y /m to Y
m
∗ in TM∗Y∗ as

illustrated in figure 2. By taking further partial derivatives, we can see that Λm
/m∂µY

/m =

−Λmm∂µσ
m, so we can replace d̂Y1 → −d̂σ1 in equation (4.9) above.

In carrying out this formal expansion, we note that

δ6
⊥(y, Y ) = δ6

⊥(y, Y∗)− σm∂mδ6
⊥(y, Y∗) +

1

2
σmσn∇m∂nδ6

⊥(y, Y∗) +O(σ3) . (4.10)

Order by order in σ, then, we find

dF̃5 = 2κ2
10T3

{
ε⊥δ

6
⊥(y, Y∗)− ε⊥σm∂mδ6

⊥(y, Y∗)− d̂ ?⊥ (σ1δ
6
⊥(y, Y∗)) (4.11)

+
1

2
ε⊥σ

mσn∇m∂nδ6
⊥(y, Y∗) + (d̂ ?⊥ σ1)σm∂mδ

6
⊥(y, Y∗)−

1

2
?⊥ (d̂σ1 ∧ d̂σ1)δ6

⊥(y, Y∗)

}
.

Using (B.5), and the fact that σm is function of Y∗, Y and not the position y where F̃5 is

evaluated, we can rewrite

σm∂mδ
6
⊥(y, Y∗) = −∇m

(
σmΛmmδ

6
⊥(y, Y∗)

)
= ?⊥d̃ ?⊥

(
σ1δ

6
⊥(y, Y∗)

)
. (4.12)

We immediately see that the second and third terms of (4.11) combine into a total derivative

−d(?⊥σ1δ
6
⊥(y, Y∗)).

We wish to write the second order terms also as 10D total derivatives. We start by

noting that similarly

?⊥σ
mσn∇m∂nδ6

⊥(y, Y∗) = d̃
[
(?⊥σ1)σm∂mδ

6
⊥(y, Y∗)

]
(4.13)

and also

?⊥(d̂σ1 ∧ d̂σ1)δ6
⊥(y, Y∗) = d̂

[
?⊥(σ1 ∧ d̂σ1)δ6

⊥(y, Y∗)
]
. (4.14)

14For additional details, see appendix B.
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The remaining term in (4.11) can be re-written in two ways; the first is given by the simple

differentiation

d̂
[
(?⊥σ1)σm∂mδ

6
⊥(y, Y∗)

]
= (d̂ ?⊥ σ1)σm∂ /mδ

6
⊥(y, Y∗)− (?⊥σ1)d̂σm∂mδ

6
⊥(y, Y∗) . (4.15)

While the left-hand side of (4.15) looks like the complement to (4.13) that we desire, it

enters (4.11) with an incorrect coefficient, and the third term of (4.15) is not a derivative.

As it turns out, the complement of (4.14) is

d̃
[
?⊥(σ1 ∧ d̂σ1)δ6

⊥(y, Y∗)
]

= −d̂(?⊥σ1)σm∂mδ
6
⊥(y, Y∗)− (?⊥σ1)d̂σm∂mδ

6
⊥(y, Y∗) , (4.16)

where we have remembered to differentiate the parallel propagators Λm
m in the definition

of σ1. All told,

d̂(?⊥σ1)σm∂mδ
6
⊥(y, Y∗) =

1

2
d̂
[
(?⊥σ1)σm∂mδ

6
⊥(y, Y∗)

]
− 1

2
d̃
[
?⊥(σ1 ∧ d̂σ1δ

6
⊥(y, Y∗)

]
, (4.17)

so, to second order in the formal expansion,

dF̃5 = 2κ2
10T3

{
ε⊥δ

6
⊥(y, Y∗)− d

[
?⊥σ1δ

6
⊥(y, Y∗)

]
+

1

2
d
[
(?⊥σ1)σm∂mδ

6
⊥(y, Y∗)

]
−1

2
d
[
?⊥(σ1 ∧ d̂σ1)δ6

⊥(y, Y∗)
]}

. (4.18)

While we do not carry out this calculation to higher order, we conjecture that all terms

in the Bianchi identity at first or higher order in the formal σ expansion can be organized

into total derivatives, as we have shown at first and second order. It is important to note

that the source terms are actually independent of Y∗ when all orders of the expansion are

included, since they are simply a way of re-writing a function of Y (x).

Since the source for the Bianchi identity is a static delta function plus a series of total

derivatives according to our conjecture, F̃5 can be written in terms of a patched-together

potential for a static magnetic monopole located at Y∗, a globally-defined potential, and

additional terms that translate the Dirac string from Y
m
∗ to Y /m as

F̃5 = dS∗4 + dC ′4 − 2κ2
10T3

[
?⊥σ1δ

6
⊥(y, Y∗)−

1

2
(?⊥σ1)σm∂mδ

6
⊥(y, Y∗)

+
1

2
?⊥ (σ1 ∧ d̂σ1)δ6

⊥(y, Y∗) + · · ·
]
. (4.19)

Note that the static monopole potential S∗4 satisfies d2S∗4 = 2κ2
10T3 ?⊥ δ

6
⊥(y, Y∗), which is

allowed since it is not globally defined and is singular at y = Y∗. Of course, F̃5 and all

physically meaningful quantities must be independent of the arbitrarily chosen Y∗, so the

equation ∂F̃5/∂Y
m
∗ = 0 will result in a system of relations among different orders of the

expansion similar to renormalization group flow.

We emphasize that (4.19) is not our ansatz for D3-brane motion. Rather, any 5-form

field strength with a monopole source can be written in this form, as we have done for

our ansatz in (4.3). Specifically, δF̃5 in that expression is the first order term of F̃5 in
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the fluctuation of the brane position; to make contact with that expression, we should

take Y∗ to be the fixed background brane position, Y the actual brane position including

fluctuations, and g⊥,mn = g̃mn. Then dS∗4 + dC ′4 is the background 5-form, and σ1 → −Ỹ1.

Then (4.19) is identically (4.3) to first order.

Just as in section 4.2.1, the field redefinition from C4 → C ′4 serves a dual purpose.

First, it is clear that d2C ′4 = 0, so, unlike the original 4-form, the redefined potential is

now globally defined and is suitable for dimensional reduction. Therefore, the C4 compen-

sators and axion moduli appear in the redefined C ′4. Further, the field redefinition cleanly

separates F̃5 into a contribution from the independent 4-form potential C ′4 and an explicit

contribution from the D3-brane degrees of freedom (which is required by the Bianchi iden-

tity). As for other moduli, the explicit dependence of the field strength on Y (x) must

be supplemented by the appearance of compensators, which are necessary to satisfy the

constraints. In addition, since F̃5 explicitly depends on the brane position when written

in terms of C ′4, the D3-brane EOM is not simply given by the DBI and WZ actions, as we

discuss below.

4.2.3 The brane EOM in the magnetic picture

As we have noted previously, in the magnetic version of IIB SUGRA, D3-branes couple to

F̃5 only through the nontrivial Bianchi identity; there is no WZ coupling between C4 and

a static D3-brane. This naively presents a puzzle, since the brane is mutually BPS with

a GKP background (or the background of other static D3-branes) and should therefore

feel no force. The DBI action provides a gravitational force, but there is apparently no

counter-balancing force from the 5-form, unlike in the electric formulation of the theory!

The resolution of the puzzle lies in the redefinition of F̃5 in (4.19). While the redefini-

tion leaves the F̃5 EOM E6 unchanged because C ′4 enters F̃5 in the same way as C4 does,

the new explicit dependence of F̃5 on the brane position Y /m through σm(Y∗, Y ) modifies

the D3-brane’s EOM, just as the SUGRA Chern-Simons terms in F̃5 contribute to the

EOM for A2. We show here that the delta-function-supported terms in equation (4.19)

introduce two new contributions to the brane EOM: a force, which resolves the puzzle

described above, and terms proportional to the 5-form EOM E6, which vanish on shell but

will contribute to off-shell quantities including the effective action.

In the magnetic description, the D3-brane position degrees of freedom appear in the

DBI action (2.7) and the F̃5 kinetic terms, which are

S5 = − 1

2κ2
10

∫
d10x
√
−g

(
1

2

)(
1

5!

)
F̃MNPQRF̃

MNPQR
∣∣∣
mag

, (4.20)

where the subscript mag indicates that the sum is over only the magnetic components of

F̃5 (which are defined with indices lowered). Note that the indices are raised with the full

10D metric gMN . In the static gauge, the pullback of the metric is

P (g)µν = gµν(x, Y ) + 2gµ/n(x, Y )∂̂νY
/n + g /m/n(x, Y )∂̂µY

/m∂̂νY
/n ; (4.21)

the EOM for γµν also enforce γµν = P (g)µν , but we impose that constraint only after

varying S with respect to Y /m. The DBI part of the action, as previously, contributes
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terms equal to the EOM (2.14) with C /M /N /P /Q = 0 and all indices X /M restricted to Y /m in

static gauge.

We now determine the variation of the 5-form kinetic action with respect to the brane

position. To first order in the σ expansion,

∂F̃mnpqr

∂Y /m
= 2κ2

10T3(ε⊥)mnpqrs

{
Λs/m

[
δ6
⊥(y, Y∗)−

1

2
σm∂mδ

6
⊥(y, Y∗)

]
− 1

2
Λsnσ

nΛ
m
/m∂mδ

6
⊥(y, Y∗)

}
= 2κ2

10T3(ε⊥)mnpqrs

{
Λs/mδ

6
⊥(y, Y ) + ΛssΛ

[s
/mσ

m]∂mδ
6
⊥(y, Y∗)

}
, (4.22)

∂F̃µmnpq

∂Y /m
= κ2

10T3(ε⊥)mnpqrs Λr/mΛs/n∂µY
/nδ6
⊥(y, Y∗) , (4.23)

∂F̃µmnpq

∂(∂̂νY /m)
=−κ2

10T3δ
ν
µ(ε⊥)mnpqrs Λrmσ

mΛs/mδ
6
⊥(y, Y∗) . (4.24)

We have used the relationship ∂σm/∂Y /m = −Λ
m
/m as well as the expansion (4.10) for the

delta function.

For the most part, the EOM can be evaluated using the typical Euler-Lagrange formula.

However, the contribution from the second term of (4.22) deserves special consideration.

In the variation of the action, we can integrate by parts to remove the derivative from the

delta function:

δS5 = T3

∫
d10x

1

5!
δY /m

{
∇⊥t

[√
−g(ε⊥)mnpqrsF̃

mnpqrΛss

]
Λ

[s
/mσ

m]Λtmδ
6
⊥(y, Y∗) + · · ·

}
, (4.25)

where ∇⊥ is the covariant derivative compatible with the as yet arbitrary metric g⊥,mn.

With the antisymmetrization of the s,m indices, the derivative appears to be d̃ ?⊥ F̃5; how-

ever, the presence of the 10D metric requires a more delicate interpretation. As we expect

that the brane EOM will contain terms proportional to the F̃5 EOM, we are motivated to

re-write

1

5!
∇⊥[t

[√
−g(ε⊥)|mnpqr|s]F̃

mnpqr
]

ΛtnΛs/m =
1

2

√
−γ√g⊥(?γ d̃ ? F̃ )n /m , (4.26)

where ?γ is the 4D Hodge star for the induced metric; this combination is ultimately

independent of γµν .15 Note that only certain components of F̃ appear in (?γ d̃ ? F̃ )ts.

Similarly, the ∂µ(∂L/∂(∂µY )) term of the Euler-Lagrange equation contains

1

4!
∂µ

[√
−g(ε⊥)mnpqrsF̃

µmnpqΛs/m

]
Λnn =

√
−γ√g⊥ ?γ d̂ ? F̃n /m (4.27)

(with a slight abuse of notation). These terms in fact add together to give a contribution

proportional to the EOM E6.

15Recall that gMN and γµν are independent variables until the γµν EOM is enforced.
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All told, the variation of the action with respect to the brane position (in static gauge) is

δS = −T3

∫
d10x

√
−g δY /m

{(
1

2

)∫
d4ξ
√
−γ
[
γµν

(
∂ /mgµν(x, Y ) + 2∂ /mg/n(µ∂ν)Y

/n

+∂ /mg/n/p∂µY
/n∂νY /p

)
− 2∇γµ

(
γµνg /m/n∂νY

/n + γµνgν /m

)]
δ10(x,X)

−
[

1

5!
(ε⊥) /mnpqrsF̃

npqrsδ6
⊥(y, Y )− 1

2

√
−γ√g⊥√
−g

(?γd ? F̃5)n /mσ
nδ6
⊥(y, Y∗)

+
1

5!
(ε⊥)/n /mpqrsF̃

µpqrs∂µY
/nδ6
⊥(y, Y∗)

]}
. (4.28)

We need to make several comments. First, we have worked only to the first subleading order

in the formal σ expansion. It is reasonable to conjecture that the sole effect of the higher

order terms in σ is to replace δ6
⊥(y, Y∗)→ δ6

⊥(y, Y ) and perhaps to add new contributions

to the EOM which do not contribute at first order in the D3-brane velocity (like the last

term of (4.28)). We will primarily assume that this is the case in our discussion of the

dimensionally reduced action below but also comment on the possibility that the conjecture

is false (we leave a check of the conjecture to [29]). Next, we note the appearance of several

different metrics in (4.28) including the (as yet) arbitrary metric g⊥,mn. As we mentioned

above, this formalism has allowed us to include geometries in which gMN does not factorize

into 4D and 6D metrics. Finally, we recall from equations (2.4), (2.14) our convention that

the EOM should be defined as (in static gauge)

δS = T3

∫
d10x
√
−g
∫
d4ξ
√
−γδY /mE /m with E /m ∝ δ10(x,X) . (4.29)

Some of the terms in (4.28) manifestly take this form, but others do not. However, con-

sider that∫
d10x
√
−g
∫
d4ξ
√
−γ f(x, y, Y )δ10(x,X) =

∫
d10x
√
−γ√g⊥ f(x, y, Y )δ6

⊥(y, Y ) (4.30)

for any function f(x, y, Y ). Furthermore, we have the identities
√
−γ√g⊥εµνλργ εµνλρmnpqrs

= −4!
√
−g(ε⊥)mnpqrs and

√
−γ√g⊥εµλρσγ ενλρσmnpqrs = −6

√
−gδµν (ε⊥)mnpqrs. Therefore,

we can re-write (4.28) as the EOM

E /m =

{
∇γµ
(
γµνg /m/n∂νY

/n + γµνgν /m

)
− 1

2
γµν

(
∂ /mgµν + 2∂ /mg/n(µ∂ν)Y

/n

+∂ /mg/n/p∂µY
/n∂νY /p

)
− 1

2

(
?γd ? F̃5

)
n /m

Λnnσ
n

−
(

(?γ ? F̃5) /m + (?γ ? F̃5)µ /m/n∂µY
/n
)}

δ10(x,X) . (4.31)

Note that the final result depends only on the 10D metric and the induced metric on

the worldvolume, not the arbitrary metric g⊥,mn; this is physically necessary but occurs

through nontrivial cancellations. The field redefinition C4 → C ′4 which showed the explicit

dependence of F̃5 on Y /m has introduced several new terms in the D3-brane EOM. The last

two terms represent the “electromagnetic Lorentz” force of F̃5 on the brane and, at least to
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the order we have calculated in σ, they are independent of the arbitrary reference point Y∗,

as any physical quantity should be. Higher orders in the σ expansion can contribute terms

with higher powers of ∂µY /m as necessary for the 5-form version of the Lorentz force. The

remaining term, proportional to E6 = d?F̃5, is somewhat more puzzling because it contains

σn. This term vanishes on shell, so it does not affect the physically meaningful brane EOM,

but it does contribute to the (off-shell) quadratic action that we wish to calculate. We will

discuss this contribution in more detail when we calculate the quadratic action below. For

now, we simply note that we can replace (?γE6)n /mΛnnσ
n = (?γE6) /m/nσ

/n using properties of

the Synge world function (see appendix B).

We can now return to the puzzle we raised earlier — how does a static magnetically-

charged brane feel a BPS-like no-force condition even though it has no direct coupling

to the 5-form? We have recognized that the nontrivial Bianchi identity for F̃5 modifies

the D3-brane EOM as above. Consider a D3-brane in the background (2.2) at a constant

position Y /m. In this case, γµν = gµν = e2Aη̂µν . Then the brane EOM becomes

E /m =

[
−1

2
γµν∂ /mgµν + (?γ ? F̃5) /m

]
δ10(x,X)

=
[
−2e−2A∂ /me

2A − e−6Ae10A∂ /me
−4A

]
δ10(x,X) = 0 . (4.32)

In other words, the new contributions to the brane EOM due to the F̃5 field redefinition

precisely restore the no-force condition for the brane.

It is also worth discussing the relationship of (4.31) to the D3-brane EOM in the

electric formalism as given in (2.14). In static gauge,16 this is

E /m =

{
∇γµ
(
γµνg /m/n∂νY

/n + γµνgν /m

)
− 1

2
γµν

(
∂ /mgµν + 2∂ /mg/n(µ∂ν)Y

/n

+∂ /mg/n/p∂µY
/n∂νY /p

)
+ εµνλργ ∇γµ

(
1

6
C /mνλρ +

1

2
C /m/nλρ∂νY

/n + · · ·
)

−εµνλργ

(
1

24
∂ /mCµνλρ +

1

6
∂ /mC/nνλρ∂µY

/n + · · ·
)}

δ10(x,X) , (4.33)

where the · · · include higher powers of ∂µY /m, which we did not calculate in the magnetic

framework. The first terms, which involve the metric and its derivatives, are manifestly

identical in the electric and magnetic formalisms, so we are left to compare the terms

involving the potential/flux. With some rearrangement,

1

6
εµνλργ ∇γµC /mνλρ = − 1

24
εµνλργ (d̂C4)µνλρ /m +

1

6
εµνλργ ∂/nC /mνλρ∂µY

/n ; (4.34)

the first term combines with the first term of the third line of (4.33) to give −(?γF̃5) /m in

terms of the electric components. We add the remainder to the other terms from (4.33)

and find

−1

3
εµνλργ ∂[ /mC/n]νλρ∂µY

/n +
1

2
εµνλργ ∇γµC /m/nλρ∂νY

/n = −(?γF̃5)µ /m/n∂νY
/n + · · · , (4.35)

16And excluding terms proportional to derivatives of the delta function as in footnote 6.
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after remembering the no-torsion condition for derivatives of scalars. As when deriving the

D3-brane EOM originally, we have assumed that the 2-form potentials and 3-form fluxes

do not contribute to the electric components of F̃5. Now we see that the D3-brane EOM

in the electric and magnetic formalisms are equivalent (at least the terms we consider) if

[
(?γF̃5) /m + (?γF̃5)µ /m/n∂νY

/n
]elec

=
[
(?γ ? F̃5) /m + (?γ ? F̃5)µ /m/n∂νY

/n
]mag

, (4.36)

which is simply the relation of the electric and magnetic components of the fieldstrength

to each other.

4.2.4 Summary

In the presence of a nontrivial Bianchi identity, the potential C4 as usually defined contains

both an independent degree of freedom in the 10D SUGRA (which contributes both to the

4-form axions and compensators of other moduli in dimensional reduction) and also a direct

dependence on the D3-brane position. This potential carries a Dirac string singularity

which moves with the brane (alternately described as gauge patching); because of the non-

standard periodicity conditions, C4 is not appropriate to describe moduli or compensators

in dimensional reduction, and it also does not accurately reflect the contribution of the

brane position to the action.

As we describe in section 4.2.1, this situation is similar to the case of background

3-form flux; we reviewed a field transformation previously described by [21, 25, 26] to a

globally defined 4-form C ′4 which also makes explicit the dependence of F̃5 on fluctuations

in A2. We then found that it is similarly possible to write F̃5 in the presence of a D3-brane

monopole as

F̃5 = dS∗4 + dC ′4 − 2κ2
10T3

[
?⊥σ1δ

6
⊥(y, Y∗)−

1

2
(?⊥σ1)σm∂mδ

6
⊥(y, Y∗)

+
1

2
?⊥ (σ1 ∧ d̂σ1)δ6

⊥(y, Y∗) + · · ·
]

(4.19)

in terms of a new potential C ′4, which is globally defined and an independent degree of

freedom.

The explicit dependence of F̃5 on the brane position contributes to the brane EOM,

as derived in (4.28). The modified EOM satisfies the no-force condition on a static D3-

brane in a GKP background, which would otherwise be a mystery due to the lack of a WZ

coupling to the magnetic 4-form.

4.3 4D effective action in magnetic formalism

In this section, we calculate the 4D effective action in the magnetic formulation of the

SUGRA. We begin by reviewing the ansätze for the D3-brane positions, volume modulus,

and axions, and then we compute the quadratic action and integrate over the internal

manifold. Appendix C.2 contains details of the calculation.
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4.3.1 Kähler moduli in magnetic components

The 10D ansätze (and solutions to the constraints) for the volume modulus and C4 axions

in terms of the magnetic components of F̃5 were presented in [25, 26]. We review those

results here in concert with the ansatz for D3-brane motion as given in section 4.1.

All these moduli are described by the same metric ansatz (3.15) as in the electric

formulation, including a compensator field

B1 = −c(x)d̃K(y) + bI0(x)BI
1(y) +BY

1 (x, y) . (4.37)

The 4-form perturbation is

δC ′4 = bI0(x)?̃ωI2(y)− d̂bI0KI
3 (y)− e2Ω?̃d̃BY

1 (x, y) ; (4.38)

note that the volume modulus does not appear in the magnetic components of C ′4, even

through its compensator. There is an additional compensator for the axions in the 2-form

potential, δA2 = −d̂bI0(x)ΛI1(y), which is nontrivial only in the presence of a background

3-form flux. Altogether, the field strengths are

F̃5 = ?̃d̃e−4A − e2Ωd̂(?̃d̃BY
1 ) + d̂bI0 ∧

(
?̃ωI2 + d̃KI

3 −
igs
2

(
ΛI1 ∧ Ḡ

(0)
3 − Λ̄I1 ∧G

(0)
3

))
+
[
e4Ωε̂ ∧ d̃e4A − e4Ω?̂d̂d̃(e4AB1) + e2Ω?̂d̂bI0 ∧ γI2

]
and (4.39)

G3 = G
(0)
3 + d̂bI0 ∧ d̃ΛI1 . (4.40)

The field strength F̃5 is not the background plus dδC ′4 because F̃5 includes extra terms as

in (4.7), (4.19).

The compensators and warp factor are given by equations (3.23), (3.24), (3.11), as in

the electric formulation, along with

∇̃2ΛIm = −1

2
G(0)
mnpγ

I,ñp , ∇̃2BI
m = −e−2ΩγImn∂

ñe−4A − igs
2
?̃
(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

)
m

(4.41)

for the axions. The new form γI2 in (4.39), (4.41) is harmonic (with the CY metric g̃mn)

satisfying

γI2 ≡ e4A

[
ωI2 + ?̃

(
d̃KI

3 −
igs
2

(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

))
+ e2Ωd̃BI

1

]
≡ CIJωJ2 . (4.42)

The matrix CIJ is defined as in (3.38); see [26] for more details of the axion degrees of

freedom. The final constraint can be written conveniently as

∇̃m̃Bm = e−2Ωδe−4A − e−4Aδe−2Ω , (4.43)

for the total compensator (4.37) including the variations due to all the moduli; the com-

pensator BI
1 for the axions is divergenceless.
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4.3.2 Effective action

The contribution to the quadratic action from the Einstein equations is only through the

(mn) component. By contracting the first-order parts of

δEmn = ∂̂2

[
4∂(mABn) − 2g̃mn∂

p̃ABp + ∇̃(mBn) −
1

2
e−2Ωe−4Ag̃mn

]
(4.44)

with

δgmn = δ(e2Ag̃mn) = −1

2
e6Aδe−4Ag̃mn , (4.45)

we arrive at

SReff = − 1

8κ2
10

∫
d4x

∫
d6y
√
g̃ e4Ω

[
−6δe−4A∂̂2c+ 2e4A∂m̃δe−4A∂̂2Bm

]
(4.46)

after integration by parts and use of (4.43). Note that δe−2Ω = c(x), the volume modulus.

The first term of (4.46) is proportional to∫
d6y
√
g̃ δe−4A = Ṽ c(x) (4.47)

because the brane motion does not change the warped volume per (3.8). Therefore,

SReff =
1

4κ2
10

∫
d4x e4Ω

[
3Ṽ c∂̂2c−

∫
d6y
√
g̃ e4A∂m̃δe−4A∂̂2Bm

]
. (4.48)

Next, we examine the contribution from the 5-form EOM. The first-order parts of E6

include the dynamical EOM for the axion as well as a contribution from the compensator

for all moduli:

δE6 = e2Ωd̂?̂d̂bI0 ∧ γI2 − e4Ωd̂?̂d̂d̃(e4AB1) . (4.49)

As in (2.4), we wedge this with δC ′4 from (4.38) (which is globally defined and represents

an independent 10D degree of freedom). After integration by parts and some cancellation,

we see that

S5
eff =

1

4κ2
10

{∫
d2ΩbI0 ∧ d̂?̂d̂bJ0

∫
?̃ωI2 ∧ γJ2 −

∫
e6Ωe4Ad̃?̃d̃BY

1 ∧ d̂?̂d̂B1

}
. (4.50)

We can simplify this further using the 2-form inner product and the constraint (3.13) to find

S5
eff =

1

4κ2
10

∫
d4x

[
3Ṽ CIJe2ΩbI0∂̂

2bJ0 +

∫
d6y
√
g̃ e4Ωe4A∂m̃δe−4A∂̂2Bm

]
−T3

2

∫
d4x

∫
d6y
√
g̃ δ̃6(y, Y )e4Ωe4AδY /mΛm/m∂̂

2Bm . (4.51)

The linearized 3-form EOM δE8 is non-trivial but does not contribute to the quadratic

action since δA2 has the wrong legs to give a non-vanishing wedge product with it.

Finally, the contribution to the action from the brane sector is determined by contract-

ing the dynamical part of the brane EOM with the fluctuation in brane position. As there

– 32 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
9

is no WZ term, there is no cancellation between terms involving gµm and C ′4. Instead,

given that the induced metric is gµν to linear order, the linearized EOM is

δE /m =

[
e−2Ωe−4Ag̃ /m/n∂̂

2δY /n + ∂̂2B /m −
1

2
e−4Ωe−4A(?̂δE6) /m/nσ

/n

]
δ10(x,X) . (4.52)

Therefore, the quadratic action as in (2.4) is

SD3
eff =

T3

2

∫
d4x

∫
d6y
√
g̃ δ̃6(y, Y )δY /m

[
e2Ωg̃ /m/n∂̂

2δY /n + e4Ωe4A∂̂2B /m

−1

2
e2Ω∂̂2bI0γ

I
/m/nσ

/n +
1

2
e4Ω∂̂2d̃(e4AB1) /m/nσ

/n

]
. (4.53)

The second term will cancel with a similar term in S5
eff (4.51). As in section 3.3.2, we have

g̃ /m/n∂µY
/m∂µ̂Y /n = 2g̃ī∂µZ

i∂µ̂Z̄ ̄; here and in the following we drop slashes on complex

indices for legibility whenever the context is clear.

We are now forced to confront the terms that depend explicitly on the arbitrary ref-

erence point through the appearance of σ/n. We begin with the term proportional to the

harmonic (1,1)-form γ2. In complex coordinates, we can write

δY mγImnσ
n = CIJ

(
δZiωJīσ

̄ + δZ̄ ̄ωJ̄iσ
i
)
. (4.54)

We know from our earlier calculation in the electric formulation that this term should

contain derivatives of the (locally-defined) Kähler potential for the 2-form defined via

ωIī = i∂i∂̄̄k
I , so we consider the derivative ∂̄̄(ω

I
ik̄
σk̄) = ωī + (∂̄k̄ωī)σ

k̄. Because their

derivatives are the same, we replace ωIīσ
̄ → −ikIi , ωĪiσi → ikĪ to lowest order in the formal

σ expansion. If, instead, our conjectured replacement δ6
⊥(y, Y∗)→ δ6

⊥(y, Y ) is incorrect, we

should evaluate this term as γImnΛ
m
/mσ

n(Y∗). Since we can set both k(Z, Z̄) and ki(Z, Z̄) to

zero at Y∗ by a Kähler transformation, we se that γIīΛ
i
/i
σ̄ = CIJωJīΛ

i
/i
σ̄ ∼ CIJkJ/i (Y ). In

fact, this is essentially the approximation used in [1] for these kinetic terms. Presumably,

higher order terms in the σ expansion would make this approximation exact. In either

case, we are led to replace

e2Ω∂̂2bI0γ
I
/m/nδY

/mσ/n → −ie2ΩCIJ ∂̂2bI0
(
kJi δZ

i − kJı̄ δZ̄ ı̄
)
, (4.55)

in precise agreement with (3.47).

The other term, proportional to d̃(e4AB1), is somewhat more subtle because both

e−4A and B1 contain Green’s functions evaluated at the singular coincidence limit of their

arguments. Specifically, e4A → 0 at at D3-brane, so the volume modulus and axion com-

pensators do not contribute to (4.53), while the divergence of BY
1 can lead a priori to a

finite contribution for the D3-brane.17 It is possible to show for any 1-form v1 that

∂[/p

(
(d̃v1) /m]/nσ

/n
)

= (d̃v1)/p /m −
1

2
σ/n∇̃/n

(
d̃v/p /m

)
, (4.56)

17The compensators K and BI1 do in fact solve Poisson equations with singular sources (given by G̃(y, Y )),

but the subsequent convolution against another Green’s function ensures the compensators themselves are

smooth.
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so it seems reasonable at lowest order in the formal σ expansion to replace

δY /me4Ω∂2̂d̃(e4AB1) /m/nσ
/n → δY /me4Ω∂2̂e4AB /m → −e2ΩδY /m∂2̂δY /n lim

y→Y

(
Λm/mg̃mp

G̃p/n(y, Y )

G̃(y, Y )

)
(4.57)

in the coincidence limit for the warp factor (3.7) and compensator (3.11). This term has the

same general structure as the final term in (3.47), as it provides a not-necessarily-Hermitian

contribution to the field space metric for the brane positions. However, the precise form

is puzzling. Consistency with the calculation in the electric formalism suggests that we

can identify the Green’s function form of (4.57) with derivatives of Kähler potentials in

combinations proportional to CIJkIi k
J
j , etc. However, while it would be interesting to

conjecture that the Green’s functions may be related to the Kähler potentials in a similar

way, the Green’s functions know only about the unwarped CY metric and not the global

warp factor or flux information contained in CIJ . Possibly, higher order terms in the

formal σ expansion contain this information; we leave it to future work [29] to determine

if that is true.

Alternately, we can recall that we assumed that the δ function in the last term of (4.53)

should be evaluated at Y rather than Y∗. Evaluating it at Y∗ regulates the Green’s functions

in e4AB1. Since the effective action cannot depend on the arbitrary point Y∗, one way to

remove the Y∗ dependence is to average Y∗ over the CY. This certainly contains global

information about the warp factor and flux. Ultimately, a resolution of these issues will

require carrying the σ expansion to higher (or all) orders. One approach, which we will

not pursue here, may be to note that physical quantities like F̃5 are independent of Y∗,

leading to relations between terms at different orders in the σ expansion. These relations

may help resum the series in a manner similar to renormalization group flow.

Collecting the effective actions from each sector, we can construct the total effective

action. Once again, there is significant cancellation between the different sectors. The total

remaining action is

Seff =− 3Ṽ

4κ2
10

∫
d4x

(
e4Ω∂µc(x)∂µ̂c(x) + e2ΩCIJ∂µb

I
0∂

µ̂bJ0

)
− T3

∫
d4x

[
e2Ωg̃i,̄(Y )∂µZ

i∂µ̂Z̄ ̄ − i

4
CIJ∂µb

I
0

(
kJ/i ∂

µ̂Z/i − kJ
/̄ı
∂µ̂Z̄ /̄ı

)
−1

2
e2Ωg̃mpΛ

m
/m

(
G̃p/n(y, Y )

G̃(y, Y )

)
∂µδY

/m∂µ̂δY /n

]
, (4.58)

assuming we use the replacements (4.55), (4.57).

Our final result (4.58) is not manifestly equal to the effective action (3.47) found using

the electric formalism for IIB SUGRA, and the two actions may not be equal at all. While a

proper treatment must yield the same effective action whether we take electric or magnetic

components for F̃5, (4.58) relies on two conjectured replacements (4.55), (4.57) as well as a

D3-brane EOM truncated at second order in a formal expansion; we have not yet been able

to verify all our assumptions. As a result, it is unsurprising that we do not have precise

agreement with the complete derivation of (3.47). However, the agreement of the general
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form of the action is striking: in the magnetic formalism, backreaction of the D3-brane

on F̃5 induces a ∂b0∂Z cross term of the correct form (and correct coefficient, if (4.55) is

correct) as well as non-Hermitian ∂Y ∂Y kinetic terms. The possibility that higher orders

in the formal σ expansion will lead to a relation between the derivatives of the CY Kähler

potential and Green’s functions is intriguing, but we leave that to the future.

4.3.3 Summary

We provided a unified ansatz for fluctuations of the volume modulus, C4 axions, and

D3-brane position in the magnetic formalism and performed a dimensional reduction on

this ansatz. Interestingly, the D3-brane EOM as modified according to the results of the

previous subsection contains terms of the form i∂bki∂Z
I+c.c. and additional ∂Y ∂Y kinetic

terms. In the electric formalism, these terms had appeared due to the WZ action, which

does not exist in the magnetic formalism. Although we have not been able to give a

full interpretation of these terms in the magnetic formalism — there are possibly more

contributions from higher orders in the formal σ expansion — it is important to note that

these crucial “cross terms” in the kinetic action arise due to the backreaction of the brane

motion on the 5-form.

5 Discussion

D-branes are important ingredients in flux compactifications, and their dynamics are es-

sential for understanding the structure of the Kähler moduli of the low energy effective

theory as well as applications in string phenomenology and cosmology. For instance, sev-

eral models of inflation in string theory explicitly use the motion of D-branes in warped

regions in their construction (see [7, 32]), so a correct description of D-brane dynamics is

not of idle interest.

We have shown that a consistent dimensional reduction of 10D supergravity in the

presence of a D3-brane requires the inclusion of fluctuations in the 10D metric and 5-

form gauge potential, in addition to the degrees of freedom of the transverse motion of

the D3-brane. The D3-brane can couple to the 4-form as either an electric or magnetic

source, and we presented for both cases the first consistent set of fluctuations that solve the

10D constraint equations. For a D3-brane coupling as a magnetic source, we find a novel

field redefinition of the magnetic 4-form potential that allows the 5-form field strength to

be written in terms of a globally-defined 4-form plus delta-function-supported terms that

make the dependence of F̃5 on the D3-brane position explicit. The field redefinition leads

to additional terms in the D3-brane equation of motion from F̃5, which resolve a puzzle

involving the no-force condition on a D3-brane in the magnetic description, as well as

contributing important terms to the effective action.

Combining our consistent 10D description of transverse D3-brane degrees of freedom

with existing descriptions for the volume modulus [25] and C4 axions [26], we performed

a careful dimensional reduction to obtain the 4D effective action. The resulting effective

action contains important contributions due to flux and warping, as previously seen in the

axion sector in [26]. The calculation involves a remarkable set of cancellations between
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the compensators and Green’s functions, demonstrating the importance of a consistent

10D solution of the constraint equations. We also explicitly demonstrated that there is no

“self-energy” problem for the dynamical effective action which might arise from inserting

the backreacted brane solution into the brane effective action. The kinetic action includes

the expected brane-axion cross-terms as well as kinetic terms for transverse brane motion

in addition to the manifest kinetic term in the DBI action. When treating the brane as an

electric source, these terms arise from the Hodge dualization of the axions from 2-forms to

scalars in the presence of the brane WZ action. When the underlying CY manifold has only

a single Kähler modulus, the Kähler potential agrees with the proposal of [7, 15]. In the

dimensional reduction treating the brane as a magnetic source, these additional terms arise

from the explicit dependence of F̃5 on the brane position along with the backreaction of

the brane on the 5-form. While we have not reproduced the precise form of the additional

D3-brane kinetic terms, there are intriguing hints that these terms could be related to

Green’s functions on the internal space.

Many cancellations in the dimensional reduction likely occur because of the high degree

of structure of the background, including supersymmetry and no-scale structure. An effec-

tive action for D3-branes in a more general warped background with interesting applications

will likely be more complex, and the techniques developed here can play an important role

in the necessary calculation. Moving beyond the probe approximation, which we have ar-

gued is necessary, it would be interesting to see if there are modifications to the kinetic part

of the effective action arising from the interaction of the D3-brane with the 10D fields. As

another example, the dynamics of D3-branes in warped flux backgrounds [33] beyond the

probe approximation should also include perturbations to the 10D fields in the effective

description. We leave a detailed investigation of these and other applications to future

work. Nevertheless, we have seen the importance of a consistent 10D description, solving

the constraint equations, for constructing a 4D effective action from dimensional reduction.
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A Conventions

Here we summarize our conventions and notational shorthand. External, noncompact

spacetime coordinates denoted xµ, while internal, compact dimension coordinates are ym;

when used, xM include all coordinates. Brane worldvolume coordinates are ξa, and the

embedding of the worldvolume into spacetime is denoted X /M (ξ) (with ξ dependence some-

times suppressed). The slashed index indicates that the coordinate transforms under dif-
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feomorphisms as the position of the brane as opposed to the spacetime point xM where

SUGRA fields are evaluated (see appendix B on bitensors).

Quantities with a hatˆare associated with the 4D metric η̂µν , such as raised or lowered

indices, the antisymmetric tensor ε̂µνλρ (or volume form ε̂). Similarly, any quantity with

a tilde˜ is associated with the unwarped CY metric g̃mn. However, as partial derivatives

are metric-independent, we do not accent them (ie, we write ∂µ, ∂m) except for raised

indices. However, for appearance, we accent the derivatives rather than the square in

Laplacians/d’Alembertians, writing ∂̂2 and ∇̃2 rather than ∂2̂ and ∇̃2̃. Ten-dimensional

quantities have capital indices but no accents. A superscript (0) with parentheses indicates

a background value.

Two other metrics appear in this paper, the worldvolume metric γab and an arbitrary

metric g⊥mn. Indices a, b denote quantities associated with γab; in static gauge ∇γµ is also the

covariant derivative associated with the worldvolume metric. Quantities associated with

g⊥mn are denoted with a ⊥ sub- or superscript.

We work with a mostly + metric and define the antisymmetric symbol ε as a tensor.

Similarly, delta functions are defined as scalars, so ε and δ implicitly carry
√
|g| factors.

Combinatorial factors for differential forms are defined as in appendix B of [34]. The wedge

symbol in a wedge product may be omitted in in-line mathematics.

Harmonic 2-forms are written in terms of a basis {ωI2} on the CY manifold, so any

harmonic form can be written as eIωI2 for constant coefficients eI . This is not the basis of

harmonic forms at a single point; if h1,1 is greater than the 2nd Betti number of T 6, the ωI2
are not all linearly independent at any given point, only as functions. We orthonormalize

the basis with respect to the inner product∫
ωI2 ∧ ?̃ωJ2 = 3Ṽ δIJ . (A.1)

This normalization allows us to choose the Kähler form as ω1
2 = J̃ , since J̃3 = 6ε̃ and

?̃J̃ = J̃2/2. (Strictly speaking, in this paper we only consider 2-forms with positive parity

under the orientifold involution, but similar considerations would apply for those with

negative parity.)

B Bitensors, expansions, and Green’s functions

As we have noted previously, any attempt to describe the influence of D-branes on SUGRA

fields necessarily involves (at least) two points in spacetime: the position where the SUGRA

fields are evaluated and the position of the localized brane source (respectively ym and Y /m

in static gauge). The SUGRA fields are generally functions of both of these positions.

We also must consider both positions when evaluating the 10D EOM, as there are bulk

equations evaluated at ym and brane equations involving fields evaluated at Y /m. At some

points, we also introduce a fixed reference point Y
m
∗ . As diffeomorphisms in general act

differently at different points, we use distinct markings to indicate which transformation

acts on a given tensor index (ie, unmarked, slashed, or underlined). Here we give a very brief

review of the properties of tensor functions of two spacetime points, known as bitensors,

following [35].
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A bitensor is a tensorial function of two points in spacetime, which may have indices

marked for either of the two points. As an example, the 5-form F̃5 has 5 indices associated

with the evaluation point y but also depends on the brane position Y , ie, F̃mnpqr(y, Y ). A

key example for us is the 6-dimensional biscalar Dirac distribution (delta function) δ6(y, Y )

(for some metric gmn) defined by∫
d6y
√
g(y)f(y)δ6(y, Y ) = f(Y ) ,

∫
d6Y

√
g(Y )f(Y )δ6(y, Y ) = f(y) . (B.1)

Note that the Dirac distribution integrates as a scalar in both coordinates, so it implicitly

includes a factor of 1/
√
g. (In the main text, we will consider Dirac distributions for metrics

g̃mn and g⊥mn.)

To understand the coincidence limit of a bitensor as well as the expansion of a tensor

around a fixed point, we consider the Synge world function. This is a biscalar function of

y, Y defined by

σ(y, Y ) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gmn(z)tmtndλ , (B.2)

where zm(λ) describes a geodesic with z(λ0) = y and z(λ1) = Y as depicted in figure 2. For

affine parameter λ, tm is tangent to the geodesic, and σ(y, Y ) is half the squared geodesic

distance between y and Y . The derivatives σm ≡ ∂mσ and σ /m ≡ ∂ /mσ are tangent to the

geodesic at the respective endpoint and directed outward, as in the figure. It can be shown

that σmσ
m = σ /mσ

/m = 2σ. A covariantly constant vector Am can be parallel transported

from y to Y along the geodesic via the parallel propagator Λ
/m
n as A /m(Y ) = Λ

/m
n (y, Y )An(y),

with the corresponding generalization for covariantly constant tensors. At coincidence

y = Y , Λ
/m
n = δ

/m
n , so any bitensor (with any distribution of indices) satisfies

Tm1···ma/n1···/nb
p1···pj/q1···/qk(y, Y )

(
Λ
/n1
n1 · · ·

)(
Λq1/q1
· · ·
)
δ(y, Y )

= Tm1···man1···nb
p1···pjq1···qk(y, y)δ(y, Y ), (B.3)

etc.

There are several useful identities among the Dirac distribution, parallel propagator,

and derivatives of the worldfunction. First, because σm ∝ tm, the tangent to the geodesic,

we have

σ/n = −Λm/n σm and σn = −Λ
/m
n σ/b . (B.4)

Next, in the coincidence limit, parallel propagators are covariantly constant with respect

to either endpoint. Finally, the Dirac distribution and the parallel propagator satisfy the

identities

∇m
(

Λm/n (y, Y )δ(y, Y )
)

= −∂/nδ(y, Y ) , ∇ /m

(
Λ
/m
n (y, Y )δ(y, Y )

)
= −∂nδ(y, Y ) (B.5)

in any dimensionality.

Of course, it is often useful to evaluate a tensor as a series expansion around a fixed

reference point, preferably in a manifestly covariant manner. One possible application is to
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z(λ)

ym

Y
m/

σ

σ

m

m/

Figure 2. The geodesic z(λ) connects ym to Y /m. σm, σ /m are outgoing tangents to the geodesic at

the endpoints with length equal to the geodesic distance.

consider the expansion of a bitensor Tm1···/n1···(y, Y ) around coincidence y = Y ; in covariant

form, this is an expansion in powers of σm (or alternately σ /m) [35]. Another application is

the expansion of a tensor as a function of Y /m near a reference point Y
m
? . As an example,

the expansion of a scalar is

A(Y ) = A(Y∗)− ∂nA(Y∗)σ
n +

1

2
∇m∂nA(Y∗)σ

mσn + · · · , (B.6)

where the dots represent terms higher order in σm. In the main text, we use this to expand

δ̃6(y, Y ) around Y = Y?, taking y as a constant, so the delta function is just a scalar

function of Y .

Finally, let us discuss the behavior of Green’s functions on curved space. Consider

a minimally coupled massless scalar Φ and a vector field Am which satisfy the Poisson

equations

∇2Φ = −µ(y) , ∇2Am = −jm(y) , (B.7)

where µ, jm are sources. We can write the solutions in terms of the biscalar and bitensor

Green’s functions G(y, y′) and Gmm′(y, y
′) as

Φ(y) =

∫
dY
√
g(Y )G(y, Y ) µ(Y ) , Am(y) =

∫
dY
√
g(Y )Gm/m(y, Y ) j /m(Y ) (B.8)

(in any dimensionality). The Green’s functions are defined to satisfy

∇2G(y, Y ) = −δ(y, Y ) , ∇2Gm/m(y, Y ) = −Λm/mδ(y, Y ) . (B.9)

The scalar and tensor Green’s functions are related by

∇mGm/m(y, Y ) = −∂ /mG(y, Y ) (B.10)

and vice-versa. We are mostly concerned with the 6D metric g̃mn and corresponding

Green’s functions G̃(y, Y ) and G̃m/m(y, Y ).
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C Linearized equations of motion

In this appendix, we assemble all the linearized 10D EOM for the 10D SUGRA fields;

these are the Einstein equations, 5-form and 3-form flux equations, and D3-brane position

equations. We will identify how the EOM divide into constraints and dynamical EOM; the

electric form of the equations are listed first, followed by the magnetic form.

C.1 Electric formalism equations of motion

Here we provide the EOM for the electric formalism for D3-brane motion. For reference,

our ansatz for the SUGRA fields is

ds2 = e2Ωe2Aη̂µνdx
µdxν + 2e2Ωe2A∂µBm(x, y)dxµdym + e−2Ag̃mndy

mdyn , (3.15)

F̃5 = e4Ωε̂ ∧ d̃e4A + d
(
e4Ωe4A?̂d̂B1

)
+ d̂bI2 ∧ ωI2 (3.19)

+
[
?̃d̃e−4A − e2Ωe−4A?̃

(
d̂B1 ∧ d̃e4A

)
+ ?d

(
e4Ωe4A?̂d̂B1

)
+ e−2Ω?̂d̂bI2 ∧ e−4A?̃ωI2

]
,

G3 = G
(0)
3 − e

−2Ωd̂?̂d̂bI2 ∧ ΛI1 + e−2Ω?̂d̂bI2 ∧ d̃ΛI1 , (3.20)

along with Y /m(x) = Y (0) /m+ δY /m(x). As in the main text, the components of F̃5 in square

brackets are the magnetic components provided for reference as ?F̃5 of the electric compo-

nents. Above, and throughout, the metric compensator B1(x, y) is the total compensator

for all the moduli

d̂B1(x, y) ≡ −d̂c(x) ∧ d̃K(y) + e−4Ω?̂d̂bI2(x) ∧Bb,I
1 (y) + d̂BY

1 (x, y) . (3.17)

This is clearly an abuse of notation; for reference, d̂?̂d̂B1 = −d̂?̂d̂cd̃K+ d̂?̂d̂BY
1 and d̂2B1 =

e−4Ωd̂?̂d̂bI2B
b,I
1 to first order. Furthermore, the warp and Weyl factors include first-order

contributions, ie A = A(x, y) and Ω = Ω(x). Finally, to allow for the presence of a

compensator δC4 ∼ −d̂bI2KI
1 , we do not yet require that ωI2 be harmonic (though it must

be closed to avoid terms in F̃5 ∼ bI2d̃ω
I
2). A number of the results in this appendix follow

from calculations in [26].

C.1.1 Einstein equations

The components of the Ricci tensor to first order are

Rµν = ∂µ∂ν(4A− 2Ω)− η̂µν ∂̂2(A+ Ω) + e4Ae2Ω
(
∂

˜̀
A∂̂2B`η̂µν − ∇̃2Aη̂µν + ∂µ∂ν∇̃

˜̀
B`

)
,

(C.1)

Rµm = 2∂µ∂mA− 8∂µA∂mA+ e4Ae2Ω
(
∂µ∇̃

˜̀
(∇̃[mB`])− ∇̃2A∂µBm + 4∂

˜̀
A∂µ∂̃[mB`]

)
,

(C.2)

Rmn = ∂̂2∇̃(mBn) + 4∂(mA∂̂
2Bn) − ∂

˜̀
A∂̂2B`g̃mn + ∇̃2Ag̃mn + e−4Ae−2Ω∂̂2Ag̃mn

− 8∂mA∂nA+ R̃mn . (C.3)

We note for later that we did not need to use d̂2B1 = 0, which is not true off shell for (3.17).

Here, R̃mn is the Ricci tensor of g̃mn; for the CY metrics we consider here, it vanishes, so

we set R̃mn = 0 henceforth.
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Using these, we can calculate the Ricci curvature, R, to first order

R = 6e−2Ae−2Ω∂̂2(A− Ω) + 2e2A
(
∂̂2∇̃˜̀

B` + ∂
˜̀
A∂̂2B` + ∇̃2A− 4∂

˜̀
A∂`A

)
, (C.4)

and the Einstein tensor, whose components are

Gµν = (∂µ∂ν − η̂µν ∂̂2)
(

4A− 2Ω + e4Ae2Ω∇̃˜̀
B`

)
+ 2e4Ae2Ωη̂µν

(
2∂

˜̀
A∂`A− ∇̃2A

)
, (C.5)

Gµm = 2∂µ∂mA− 8∂µA∂mA+ e4Ae2Ω∂µ

(
∇̃˜̀∇̃[mB`] + 4∂

˜̀
A∇̃[mB`]

+2Bm(2∂
˜̀
A∂`A− ∇̃2A)

)
, (C.6)

Gmn = ∂̂2∇̃(mBn) − ∂̂2∇̃˜̀
B`g̃mn + 4∂(mA∂̂

2Bn) − 2∂
˜̀
A∂̂2B`g̃mn − 8∂mA∂nA

+4∂
˜̀
A∂`Ag̃mn + e−4Ae−2Ωg̃mn∂̂

2(3Ω− 2A) . (C.7)

Next, we determine the stress-energy tensor. We remind the reader that the contribu-

tions of the Ramond-Ramond fluxes to the energy-momentum are

T 5
MN =

1

4 · 4!
F̃MPQRSF̃N

PQRS , T 3
MN =

gs
4

(
G(M

PQḠN)PQ − gMN |G|2
)
. (2.6)

The resulting energy-momentum tensor for the 5-form (3.19), including terms up to first-

order, has components

T 5
µν = 2e4Ae2Ωη̂µν

(
∂

˜̀
A∂̂2B` − 2∂

˜̀
A∂`A

)
, (C.8)

T 5
µm = 4e4Ae2Ω

(
∂

˜̀
A∂µ∇̃[mB`] − ∂

˜̀
A∂`A∂µBm

)
− 2e−2Ω(?̂d̂bI2)µωmn∂

ñA , (C.9)

T 5
mn = 4∂

˜̀
A∂`A g̃mn − 8∂mA∂nA+ 4∂(mA∂̂

2Bn) − 2∂
˜̀
A∂̂2B`g̃mn . (C.10)

The resulting energy-momentum tensor for the 3-form (3.20), including terms up to first-

order, has components

T 3
µν = −gs

4
e2Ωe8A

∣∣∣G(0)
3

∣∣∣2̃ η̂µν , (C.11)

T 3
µm = −gs

4

[
ie−2Ωe4A(?̂d̂bI2)µ?̃

(
d̃ΛI1 ∧ Ḡ(0) − c.c.

)
m

+ e2Ωe8A∂µBm

∣∣∣G(0)
3

∣∣∣2̃] , (C.12)

T 3
mn =

gs
4

(
e4A(G(0))m

p̃q̃(Ḡ(0))npq − g̃mne4A
∣∣∣G(0)

3

∣∣∣2̃) = 0 . (C.13)

We have used the imaginary self-duality of the background flux, ie ?̃G
(0)
3 = iG

(0)
3 , to

simplify (C.12), (C.13).

The energy-momentum tensor for our mobile D3-brane comes from

TD3
MN = −κ2

10T3

∫
d4ξ
√
−γ γabΛ /M

MΛ
/N
Ng /M /P g /N /Q∂aX

/P∂bX
/Qδ10(x,X(ξ)) . (2.8)

We will use slashed indicies X /M to refer to the embedding coordinates of the D3-brane

and will work in static gauge ξa = δa/µX
/µ(ξ). The D3-brane energy-momentum tensor, up
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to first order, has components

TD3
µν = −κ2

10T3e
8Ae2Ωη̂µν δ̃

6(y, Y ) , (C.14)

TD3
µm = −κ2

10T3e
8Ae2Ω∂µBmδ̃

6(y, Y )− T3e
4Ag̃m/n∂µY

/n(x)δ̃6(y, Y ) , (C.15)

TD3
mn = 0 . (C.16)

Other localized sources (such as other D3-branes and O3-planes) also contribute an energy

momentum tensor T locMN identical in form to (C.14), (C.15), (C.16), with the exception

that T locµm does not contain the term with explicit dependence on the single mobile brane’s

position, ∂µY /n.

At the end of the day, we obtain the 10D Einstein equations EMN = GMN − (T 5
MN +

T 3
MN + TD3

MN + T locMN ) explicitly in terms of our ansatz (through first order in fluctuations):

Eµν = e2Ωe4A

[
2(4∂

˜̀
A∂`A− ∇̃2A) + T3e

4Aδ̃6(y, Y ) +
gs
4
e4A

∣∣∣G(0)
3

∣∣∣2̃ + · · ·
]
η̂µν

+(∂µ∂ν − η̂µν ∂̂2)(4A− 2Ω + e4Ae2Ω∇̃˜̀
B`)− 2e4Ae2Ωη̂µν∂

˜̀
A∂̂2B` , (C.17)

Eµm = e2Ωe4A∂µBm

[
2(4∂

˜̀
A∂`A− ∇̃2A) + κ2

10T3e
4Aδ̃6(y, Y ) +

gs
4
e4A

∣∣∣G(0)
3

∣∣∣2̃ + · · ·
]

+2∂µ∂mA− 8∂µA∂mA+ e4Ae2Ω∂µ∇̃
˜̀∇̃[mB`] + T3e

4Ag̃m/n∂µY
/n(x)δ̃6(y, Y )

+2e−2Ωe4A(?̂d̂bI2)µ

[
e−4AωImn∂

ñA+
igs
8
?̃
(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

)]
, (C.18)

Emn = ∂̂2
(
∇̃(mBn) − g̃mn∇̃

˜̀
B`

)
+ e−4Ae−2Ωg̃mn∂̂

2 (3Ω− 2A) , (C.19)

where · · · denotes the contributions due to local sources other than our mobile D3-brane,

whose precise forms are unimportant. The Einstein equations contain both constraints and

dynamical EOM For example, the (µν) and (µm) components both contain the Poisson

equation (3.21) that determines the warp factor to be (3.23), which now must be satisfied to

first order point-by-point on the external spacetime (in this way, our choice of coordinates is

similar to the Coulomb gauge of Maxwell theory). The (µν) component (C.17) also contains

a constraint proportional to ∂µ∂ν−η̂µν ∂̂2 (yielding (3.22)) and a dynamical EOM in the last

term, while the remainder of the (µm) component (C.18) is a constraint (3.25) determining

the contribution of each modulus to Bm (this gives both (3.11), (3.26)). Finally, Emn is

entirely second-order in external spacetime derivatives and contributes a dynamical EOM.

C.1.2 Form flux EOM

In addition to the 10D Einstein equations, we also have 10D EOM from the 5-form and

3-form fluxes, given by

E6 = d ? F̃5 −
igs
2
G3 ∧ Ḡ3 + 2κ2

10T3

∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) , (2.11)

E8 = d ? G3 + iG3 ∧
(
F̃5 + ?F̃5

)
+
i

2
A2 ∧ E6 . (2.13)
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Using the ansatz (3.15), (3.19), (3.20), the 5-form EOM becomes

E6 = d̃?̃d̃e−4A − igs
2
G

(0)
3 ∧ Ḡ

(0)
3 − 2κ2

10T3ε̃ δ̃
6(y, Y ) + d̃

(
e−4A?̃∂̂2B1

)
+d̂
[
?̃d̃e−4A + e2Ωd̃?̃d̃B1 − 2κ2

10T3?̃Ỹ1δ̃
6(y, Y ) + e−4A∂̂2?̃B1

]
−e−2Ω?̂d̂bI2 ∧ d̃

[
e−4A?̃ωI2 +

igs
2

(
ΛI1 ∧ Ḡ

(0)
3 − c.c.

)]
+e−2Ωd̂?̂d̂bI2 ∧

[
e−4A?̃ωI2 − ?̃d̃B

b,I
1 +

igs
2

(ΛI1 ∧ Ḡ
(0)
3 − c.c.)

]
. (C.20)

Each component of E6 leads to a distinct constraint or dynamical EOM. The constraints

largely repeat those from the Einstein equations: the first three terms of (C.20) are once

again the instantaneous Poisson equation for the warp factor. For reasons explained in foot-

note 9, we ignore the d̂∂̂2?̃B1 term, so the (1,5) components of E6 nearly reproduce (C.18)

(up to a Hodge star). They differ only by a term proportional to d̃?̃ωI2 ; therefore, we see

that ωI2 must be harmonic or alternately that any compensator d̂b2K1 in C4 must van-

ish. The dynamical EOM include (0,6) and (2,4) components and yield (3.36) once the

definition (3.28) is taken into account.

Meanwhile, the 3-form EOM becomes

E8 = −d̂bI2 ∧
[
d̃?̃d̃ΛI1 + iωI2 ∧G

(0)
3

]
+ e−2Ωe−4A(d̂?̂d̂?̂d̂bI2) ∧ ?̃ΛI1

+e−2Ω(?̂d̂?̂d̂bI2) ∧ d̃(e−4A?̃ΛI1) + ie−2Ωd̂?̂d̂bI2 ∧ (?̃d̃e−4A) ∧ ΛI1 . (C.21)

The first term (in square brackets) gives (3.29), the constraint determining ΛI
1. The remain-

der of the terms give the dynamical EOM δE8, but do not contribute to the 2-derivative

quadratic action because they either have the wrong legs to wedge with δA2, contribute

only at higher derivative order, or both.

C.1.3 Brane EOM

Finally, the D3-brane EOM is

E /M = ∇a
[(
g /M /N∂

aX /N +
1

6

µ3

T3
εabcdC /M /N /P /Q∂bX

/N∂cX
/P∂dX

/Q

)
δ10(x,X)

]
(2.14)

−
[

1

2
∂ /Mg /N /P∂aX

/N∂aX /P +
1

4!

µ3

T3
εabcd∂ /MC /N /P /Q/R∂aX

/N∂bX
/P∂cX

/Q∂dX
/R

]
δ10(x,X) .

As noted in the main text, we have ignored terms proportional to the derivative of the

delta function, as they vanish in the variation of the action upon integration by parts.

We evaluate these EOM in the static gauge using the 4-form background corresponding

to (3.19), ie

C4 = e4Ωe4Aε̂+ e4Ωe4A?̂d̂B1 + bI2 ∧ ωI2 . (C.22)

Then the /M = /µ component of the D3-brane EOM becomes (again, dropping terms pro-

portional to the derivative of the delta function)

E/µ = −
[
2e−2A−2Ω∂/µ

(
e2A+2Ω

)
− e−4A−4Ω∂/µ

(
e4A+4Ω

)]
δ10(x,X) = 0 , (C.23)
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which is a trivial constraint. The /M = /m component gives a dynamical EOM

E /m = e−4Ae−2Ωg̃ /m/n

(
∂̂2Y /n

)
δ10(x,X) . (3.30)

The second line of (2.14) vanishes identically, and the terms in the first line containing g /m/µ
and C /m/µ/ν/ρ, both of which include the B1 compensator, cancel each other.

C.2 Magnetic equations of motion

In this section, we will compute the 10D EOM for the gravity, 5-form flux, 3-form flux,

and local sources for the magnetic form. The ansatz for all moduli is

ds2 = e2Ωe2Aη̂µνdx
µdxν + 2e2Ωe2A∂µBm(x, y)dxµdym + e−2Ag̃mndy

mdyn , (3.15)

F̃5 = ?̃d̃e−4A − e2Ωd̂(?̃d̃BY
1 ) + d̂bI0 ∧

(
?̃ωI2 + d̃KI

3 −
igs
2

(
ΛI1 ∧ Ḡ

(0)
3 − Λ̄I1 ∧G

(0)
3

))
+
[
e4Ωε̂ ∧ d̃e4A − e4Ω?̂d̂d̃(e4AB1) + e2Ω?̂d̂bI0 ∧ γI2

]
, (4.39)

G3 = G
(0)
3 + d̂bI0 ∧ d̃ΛI1 , (4.40)

plus Y /m(x) = Y (0) /m+δY /m(x). In the main text, we also consider the relation of Y /m(x) to

reference point Y
m
∗ ; they are connected by a geodesic which has outward-pointing tangents

σm, σ /m at the endpoints. The metric compensator and (redefined) 4-form perturbation are

B1 = −c(x)d̃K(y) + bI0(x)BI
1(y) +BY

1 (x, y) , (4.37)

δC ′4 = bI0(x)?̃ωI2(y)− d̂bI0KI
3 (y)− e2Ω?̃d̃BY

1 (x, y) . (4.38)

As before, Ω(x), A(x, y) contain both background and first-order parts. Here, ωI2 is har-

monic, and there is an explicit compensator KI
3 for the axions. The form γI2 is shorthand for

γI2 ≡ e4A

[
ωI2 + ?̃

(
d̃KI

3 −
igs
2

(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

))
+ e2Ωd̃BI

1

]
≡ CIJωJ2 , (4.42)

which we will motivate from the constraints below; as we will also see that γI2 must be

harmonic, CIJ is a change-of-basis matrix defined as in (3.38), which can depend on the

background values of the moduli in general. Again, many of the following results are

adapted from [26].

C.2.1 Einstein equations

The metric is the same in the magnetic formalism as the electric formalism, with the

exception that the Bm compensator takes a somewhat different form. However, the Einstein

tensor is independent of the particular form of Bm, so the Einstein tensor is still given by

equations (C.5), (C.6), (C.7).

The energy-momentum tensors are similar to the electric formalism but not quite

identical. We find

T 5
µν = −4e2Ωe4A

(
∂

˜̀
A∂`A

)
η̂µν , (C.24)

T 5
µm = −4e2Ωe4A

(
∂

˜̀
A∂`A

)
∂µBm + 2e2Ωe4A∂µ(d̃B)mn∂

ñA− 2∂µb
I
0γ
I
mn∂

ñA , (C.25)

T 5
mn = 4∂

˜̀
A∂`Ag̃mn − 8∂mA∂nA (C.26)
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for the 5-form contribution based on [26]. Since the only compensator in G3 is for the

axions, its contribution to the energy-momentum tensor is identical to [26]:

T 3
µν = −gs

4
e2Ωe8A

∣∣∣G(0)
3

∣∣∣2̃ η̂µν , (C.27)

T 3
µm = −gs

4

[
−ie4A∂µb

I
0?̃
(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

)
m

+ e2Ωe8A∂µBm

∣∣∣G(0)
3

∣∣∣2̃] , (C.28)

T 3
mn = 0 . (C.29)

In static gauge, the energy-momentum tensor for the D3-brane is still given

by (C.14), (C.15), (C.16) since it is unaffected by the ansatz for the flux.

In the end, the Einstein equations through first order are

Eµν = e2Ωe4A

[
2(4∂

˜̀
A∂`A− ∇̃2A) + T3e

4Aδ̃6(y, Y ) +
gs
4
e4A

∣∣∣G(0)
3

∣∣∣2̃ + · · ·
]
η̂µν

+(∂µ∂ν − η̂µν ∂̂2)(4A− 2Ω + e4Ae2Ω∇̃˜̀
B`) , (C.30)

Eµm = e2Ωe4A∂µBm

[
2(4∂

˜̀
A∂`A− ∇̃2A) + κ2

10T3e
4Aδ̃6(y, Y ) +

gs
4
e4A

∣∣∣G(0)
3

∣∣∣2̃ + · · ·
]

+2∂µ∂mA− 8∂µA∂mA+ e4Ae2Ω∂µ∇̃
˜̀∇̃[mB`] + T3e

4Ag̃m/n∂µY
/n(x)δ̃6(y, Y )

+2e4A∂µb
I
0

[
e−4AγImn∂

ñA+
igs
8
?̃
(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

)]
, (C.31)

Emn = ∂̂2
(
∇̃(mBn) + ∂(mABn) − ∇̃

˜̀
B`g̃mn − 2g̃mn∇̃

˜̀
AB`

)
+ e−4Ae−2Ωg̃mn∂̂

2 (3Ω− 2A) .

(C.32)

As before, (C.30) contains the instantaneous version of the Poisson equation determining

the warp factor, which yields (3.23), along with the constraint (3.22) for ∇̃ñBn (includ-

ing (3.24) for K, the volume modulus compensator). The off-diagonal Einstein equa-

tion (C.31) also includes the Poisson equation for the warp factor, along with a Poisson

equation (3.10) for BY
m (which is satisfied by (3.11)), and the Poisson equation

∇̃2BI
m = −e−2ΩγImn∂

ñe−4A − igs
2
?̃
(
d̃ΛI1 ∧ Ḡ

(0)
3 − c.c.

)
m
. (C.33)

The internal component (C.19) is once again a dynamical EOM only, and we can simplify

it to the form (4.44) using (3.22).

C.2.2 Form flux EOM

Because the magnetic ansatz (4.39) for F̃5 differs considerably from the electric case, the

EOM for F̃5 and G3 also differ significantly from the electric formalism.

The first thing to note is that neither the 3-form or D3-brane source terms have the

correct components to contribute to E6 in the magnetic formalism; E6 = d?F̃5, as explained

in section 2.3. Therefore, the EOM becomes

E6 = −e4Ωd̂?̂d̂d̃(e4AB1) + e2Ωd̂?̂d̂bI0 ∧ γI2 + e2Ω?̂d̂bI0 ∧ d̃γI2 . (C.34)
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The first two terms contribute to the dynamical EOM, while the last term is a constraint

requiring that γI2 , defined in terms of the moduli and compensators as (4.42), be closed.

Meanwhile, the Bianchi identity is now the constraint

dF̃5 −
igs
2
G3 ∧ Ḡ3 + 2κ2

10T3

∫
d4ξ
√
−γ ? ε‖ δ10(x,X(ξ)) = 0 . (2.12)

Written as in (4.39), F̃5 automatically satisfies the Bianchi identity as long as BY
1 is given

by (3.11). However, in terms of the shorthand variable γI2 , the magnetic components of F̃5

are F̃5 = d̃e−4A − e2Ωd̂(?̃d̃B1) + e2Ωe−4Ad̂bI0?̃γ
I
2 . Like the (µm) component of the Einstein

equation, the constraint from the Bianchi identity in these variables leads to (3.10) for BY
1

and (C.33) if and only if d̃?̃γI2 = 0, which implies that γI2 is harmonic.

The 3-form EOM is

E8 = e2Ωd̂?̂d̂bI0 ∧ ?̃d̃ΛI1 − e2Ω?̂d̂bI0 ∧ d̃?̃d̃ΛI1 + ie4Ωe4Ad̂?̂d̂B1 ∧G(0)
3 − ie

2Ω?̂d̂bI0 ∧ γI2 ∧G
(0)
3 .

(C.35)

The first and third terms contribute to the dynamical EOM, while the second and fourth,

when acted on by ?̃, give the Poisson equation (4.41) for ΛI1.

C.2.3 Brane EOM

As noted in the main text, the D3-brane action has no WZ term through second order in

d̂Y in the magnetic formalism because C4 has the wrong legs. However, as we discussed

extensively, we should properly think of F̃5 as depending explicitly on the brane position

because of the nontrivial Bianchi identity, much as it depends on A2 and G3. As a result,

the F̃5 kinetic action contributes to the D3-brane EOM, which we derived in section 4.2.3.

With some conjectures about higher-order terms in a formal expansion, the EOM in static

gauge comes out to

E /m=

{
∇γµ
(
γµνg /m/n∂νY

/n + γµνgν /m

)
− 1

2
γµν
(
∂ /mgµν + 2∂ /mg/n(µ∂ν)Y

/n + ∂ /mg/n/p∂µY
/n∂νY /p

)
−1

2

(
?γd ? F̃5

)
n /m

Λnnσ
n +

√
−g√

−γ√g⊥
1

5!

(
(ε⊥) /mnpqrsF̃

npqrs + (ε⊥) /m/npqrsF̃
µpqrs∂µY

/n
)}

× δ10(x,X) . (4.31)

We recall that γµν is the (independent) worldvolume metric, g⊥,mn is an arbitrary metric

on the ym coordinates, and σm is the tangent to a geodesic from the brane position Y /m

to an arbitrary reference point Y
m
∗ at Y

m
∗ . As usual, the EOM for γµν sets it equal to

the pullback of gMN to the brane worldvolume, but γµν has no first-order fluctuation. For

convenience, we take g⊥,mn = g̃mn.

In (4.31), the background terms involving ∂ /mgµν and (ε⊥ · F̃5) /m cancel each other; this

is the no-force condition on the D3-brane in the magnetic formalism. A number of terms

enter at second order, leaving a first-order dynamical EOM of

δE /m =

[
e−2Ωe−4Ag̃ /m/n∂̂

2δY /n + ∂̂2B /m −
1

2
e−4Ωe−4A(?̂δE6) /m/nσ

/n

]
δ10(x,X) . (4.52)
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D Kähler potential and kinetic action

As is well-known, GKP compactifications have N = 1 SUGRA (possibly with sponta-

neously broken supersymmetry) as their 4D effective theory. As a result, the metric on

moduli space must be Kähler, meaning that moduli space is complex and that the her-

mitean metric on moduli space is Kähler Gab̄ = ∂a∂b̄K. Here we consider the kinetic

Lagrangian L = Gab̄∂µφ
a∂µφ̄b̄ for the Kähler potential

K = −3 log
[
−i(ρ− ρ̄)− γk(Z, Z̄)

]
, (D.1)

which is appropriate for the case that h1,1 = 1. In relation to the variables of the 10D

SUGRA fields, ρ = b + i(c + γk(Z, Z̄)/2), and k(Z, Z̄) is the Kähler potential of the

underlying CY manifold.

The kinetic Lagrangian for these moduli takes the form

L = ∂ρ∂ρ̄K ∂ρ∂ρ̄+ ∂ρ∂Z̄K ∂ρ∂Z̄ + ∂ρ̄∂ZK ∂ρ̄∂Z + ∂Z∂Z̄K ∂Z∂Z̄ . (D.2)

Using (D.1), each term is:

∂ρ∂ρ̄K ∂ρ∂ρ̄ =
3

4c2

(
(∂b)2 + (∂c)2 + γ∂c(∂Zk ∂Z + ∂Z̄k ∂Z̄)

+
γ2

4
(∂Zk ∂Z + ∂Z̄k ∂Z̄)2

)
, (D.3)

∂ρ∂Z̄K ∂ρ∂Z̄ = i
3γ∂Z̄k

4c2

(
∂b+ i∂c+ i

γ

2
(∂Zk ∂Z + ∂Z̄k ∂Z̄)

)
∂Z̄ , (D.4)

∂ρ̄∂ZK ∂ρ̄∂Z = −i3γ∂Zk
4c2

(
∂b− i∂c− iγ

2
(∂Z̄k ∂Z̄ + ∂Zk ∂Z)

)
∂Z , (D.5)

∂Z∂Z̄K ∂Z∂Z̄ =
3γ

2c

(
∂Z∂Z̄k +

γ∂Zk∂Z̄k

2c

)
∂Z∂Z̄ . (D.6)

Adding everything together gives

L =
3

4c2

(
(∂b)2 + (∂c)2

)
+

3γ

2c
∂Z∂Z̄k ∂Z∂Z̄ −

3iγ

4c2
∂b(∂Zk ∂Z − ∂Z̄k ∂Z̄)

− 3γ2

16c2

(
∂Zk∂Zk ∂Z∂Z − 2∂Zk∂Z̄k ∂Z∂Z̄ + ∂Z̄k∂Z̄k ∂Z̄∂Z̄

)
. (D.7)

Based on the form of (D.7), what we anticipate seeing in the quadratic action are

separate quadratic terms for the scalar axion, volume modulus, and the D3-brane; a

second-derivative of the internal Kähler potential; sets of derivatives (holomorphic, an-

tiholomorphic, and mixed) acting on k; and a coupling between the axion and D3-brane

moduli.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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