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bHEBA Ideas S.A. de C.V.,

Calculistas 37, Cd. Mx. 09400 México
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1 Introduction

The standard model (SM) exhibits features, such as the family repetition and the struc-

ture of mixing matrices for quarks and leptons, that suggest an underlying structure.

Non-Abelian discrete flavor symmetries appear in many bottom-up models as a promising

explanation for these observations [1–3].

A large set of Abelian and non-Abelian discrete symmetries has been successfully

investigated in this context [3–26]. Particularly, the groups Z3 [27–30], S3 [31–38] and

∆(27) [22, 39–45] have shed some light on the structure of the quark and neutrino sectors,

providing in some cases an explanation of proton stability and dark matter [19, 40, 46–48]

or an explanation of the Dirac-ness of neutrinos [43]. These symmetries have in common

that they are subgroups of ∆(54), which however has been explored only aiming at a tri-

bimaximal neutrino-mixing structure or similar [49–52]. Since θ13 is now known to be

non-zero, the potential of ∆(54) as a flavor symmetry must be revisited. To pave the way

to a vast revision on this subject is one of the goals of this work.

On the other hand, despite their success, the origin of flavor symmetries remains

unexplained in bottom-up model building. Fortunately, non-Abelian flavor symmetries

emerge naturally in different compactification schemes of string theory [53–59] that enjoy

the properties of the SM or its supersymmetric extension(s), yielding a promising ultraviolet

completion of flavor phenomenology.

Toroidal heterotic orbifolds [60, 61] (see e.g. [62] for a comprehensive introduction)

lead to models which reproduce the gauge group and matter spectrum of the SM [63],

its minimal supersymmetric extension [64–67] and other non-minimal extensions [68], as

well as many other observed and/or desirable properties of particle physics [69–75]. As
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we discuss in section 2, following previous findings of [54, 56], a ∆(54) flavor symmetry

can emerge in these constructions as a result of dividing a T2 torus by Z3 in the compact

dimensions. A paramount difference between the flavor theory emerging in this context

and one arbitrarily proposed is that all properties, including the flavor representations and

number of fields, are dictated by the string compactification itself, resulting in interesting

phenomenological consequences that we aim at studying in this paper.

Due to their geometrical structure, Z3 or Z3×Z2 heterotic orbifolds could in principle

yield a ∆(54) flavor symmetry, but it is known that no promising model where this symme-

try remains unbroken arises in those cases [76–78]. Therefore, the simplest complete string

scenarios with SM-like physics and this flavor symmetry are Z3×Z3 heterotic orbifolds.

In this paper, we explore the phenomenological viability of the ∆(54) flavor symmetry

from a top-down and a bottom-up perspective. After explaining in section 2 how flavor

symmetries relate to geometry in heterotic string compactifications, in section 3 we perform

a search of semi-realistic Z3×Z3 heterotic orbifold models, which turn out to display ∆(54)

as a flavor symmetry more naturally than other possibilities. In section 4 we inspect the

flavor symmetries and spectrum properties of one string sample model. Inspired by the

features of the string models, in section 5 we propose a model that reproduces at some level

known flavor observations and provides predictions for the neutrino sector. In section 6 we

provide our concluding remarks.

2 Origin of flavor symmetries in heterotic orbifolds

We follow here the discussion of [54, 56], stressing some important aspects for our work.

In higher dimensional models, such as the string theories, flavor symmetries result from

the geometrical symmetries (and other properties) of the extra dimensions (see e.g. [79]

for a field-theoretical proposal). Since in those models the extra dimensions must be

compactified in order to justify that we only perceive four dimensions, the compact space

adopts geometrical structures which are endowed with symmetries that are passed down,

as flavor symmetries, to the fields arising in those constructions.

Among all possibilities, orbifolds are perhaps the simplest compactifications. A d-

dimensional orbifold is defined as the quotient of Rd divided by a discrete group. The

resulting space is a compact solid, exhibiting typically some curvature singularities (fixed

points of the orbifold), at which matter states may be localized. In the absence of local

effects at the singularities, the states attached to all singularities are indistinguishable. The

transformations (permutations, reflections, etc.) of those identical states that leave the

matter distribution invariant build a (non-Abelian) symmetry of the compactified theory.

Note that such transformations are equivalent to field relabelings.

As a first example, let us suppose that an orbifold yields a compact space endowed

with two singularities at which two matter generations are chosen to be localized. Since

these localized matter generations are indistinguishable, i.e. have identical quantum num-

bers, excepting of course for their localization properties, a permutation or relabeling of

the generations does not alter the system. That is, the system is invariant under an S2
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permutation symmetry, leading to an effective model with two generations related to each

other under the non-trivial (flavor) transformation of that group.

In string theory, the simplest and yet quite promising compactifications of this kind

are toroidal heterotic orbifolds [60, 61]. They are achieved by letting first the six extra

dimensions of a 10D heterotic string be compact by imposing the quotient R6/ΛG, where

ΛG can be chosen as a 6D root lattice of a Lie group G. The resulting 6D torus T6 = R6/ΛG
is then divided by a discrete group of its isometries P , yielding the orbifold O = T6/P . O
is Abelian when P is Abelian. For simplicity, we shall focus here only on Abelian orbifolds.

Not any arbitrary choice of T6 and P is admissible. Requiring unbroken supersymmetry

in the effective 4D field theory as well as considering topological equivalences between

compactifications with different geometries reduce greatly the number of allowed heterotic

orbifolds. In fact, all possible 6D orbifolds of this type have been exhaustively classified [80],

resulting in a small number of Abelian orbifolds and thus a small number of possible

geometrical symmetries to be considered.

In contrast to a bottom-up approach, where matter fields are arbitrarily localized at

the singularities or let free in the bulk, in heterotic orbifolds matter localization is restricted

by the compactification rules. All fields of the 4D effective field theories emerging from

heterotic compactifications arise from the (anomaly, tachyon and ghost free) spectrum of

excitations of closed strings that are not affected by the action of the orbifold.

In (supersymmetric) heterotic orbifolds, bulk or untwisted fields correspond to the

orbifold-invariant states arising directly from the 10D closed strings of the uncompactified

heterotic string, whose field limit is 10D N = 1 supergravity endowed with an E8×E8 or

SO(32) Yang-Mills theory. Thus, the 4D gauge (super)fields, generating the unbroken 4D

gauge group G4D ⊂ E8 × E8 or SO(32), and some 4D matter states live in the bulk of a

heterotic orbifold.

Additionally, there are the so-called twisted fields, which arise from strings that are

closed only due to the action of the orbifold. Twisted fields are always localized at sin-

gularities of the orbifold and are thus instrumental in the conception of a flavor theory

with non-trivial representations from strings. As long as there are no further compactifi-

cation ingredients, such as Wilson lines [81] or discrete torsion [82–85], that may lead to

differences in the states at the singular points, the twisted spectrum is degenerate, i.e. all

singularities carry identical twisted string states.

Couplings among string states are subject to a set of constraints called string selection

rules [86–92], due to symmetries of the underlying conformal field theory of the compactified

string theory. These selection rules establish for which combination of string states there

is a non-zero correlation function, and thus a non-zero coupling for the associated effective

fields. In the 4D model emerging from an Abelian heterotic orbifold, the selection rules

amount to including additional (Abelian ZN × ZM × · · · ) symmetries and assign thus

appropriate discrete charges to each field in the model.

Thus, we notice that flavor symmetries in Abelian toroidal heterotic orbifolds have

two sources: the group of non-Abelian (relabeling) symmetries GnA from the geometrical

structure of the compactification space and the group of Abelian symmetries GA from the

string selection rules. In the case that the string selection rules provide a normal subgroup
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(a) Fixed points.

m = 2

m = 0

q = 1

m = 1

(b) Symmetries and charges.

Figure 1. Geometrical origin of a ∆(54) flavor symmetry in a T2/Z3 orbifold. If the fixed points

are not further affected by the compactification, there is an S3 permutation symmetry. Further,

string selection rules impose additional a Z3 × Z3 symmetry based on the localization charges m

and q of twisted states. The resulting symmetry is S3 nZ2
3 = ∆(54).

(invariant under conjugation) of the full symmetry group, the resulting flavor symmetry is

isomorphic to the semi-direct product GnA nGA (see e.g. [93]).

Let us turn now to a relevant example for the present work. Suppose that two extended

dimensions are compactified in the orbifold T2/Z3, where we choose the torus to be defined

by the root lattice ΛSU(3) which is invariant under the Z3 generator ϑ = e2πi/3 in complex

coordinates. That is, in the orbifold, points z1 and z2 of C are equivalent if they can

be related by z1 = ϑz2 + λ, λ ∈ ΛSU(3). In this orbifold, there exist three inequivalent

fixed points or orbifold singularities1 zf,m, m = 0, 1, 2, such that zf,m = ϑzf,m + λm for

some lattice vectors λm. We can choose the inequivalent fixed points to be zf,0 = 0,

zf,1 = 1
3(2e1 + e2) and zf,2 = 1

3(e1 + 2e2), where {eα} span ΛSU(3), as depicted in figure 1a.

The gray region contains all inequivalent points in this orbifold.

Remarking in figure 1a that the upper tip is equivalent to zf,0 and that the lines on

both sides of zf,i, i 6= 0, are identified, the orbifold becomes the triangular pillow-like

object with three apices displayed in figure 1b. This solid is clearly invariant under all

possible apex permutations, as symbolized by the arrows in that figure. Thus, we identify

a geometrical S3 symmetry.

When the current example is applied to heterotic orbifolds, the string selection rules

demand additionally that any coupling of the form Φm1Φm2Φm3 · · · among string states

Φmi (setting m = 0 for untwisted states) satisfy first
∑

imi = 0 mod 3. Noting that

this relation corresponds to a Z3 symmetry, it can be rewritten as
∏
i κ

mi = 1 in terms

of a Z3 generator κ = e2πi/3. Furthermore, assigning a charge q = 1 to ϑ-twisted states

(and q = 2 to ϑ2-twisted states and q = 0 to untwisted states), non-vanishing string

couplings require that the couplings themselves be non-twisted, i.e.
∏
i ϑ

qi = 1, which can

be rewritten as
∑

i qi = 0 mod 3. Thus, we identify a Z3×Z3 arising from the selection

rules. Finally, since the Z3×Z3 obtained is a normal subgroup of the group generated by

1Analogous results are obtained for the second non-trivial Z3 group element, ϑ2.
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S3 and Z3 × Z3, then the resulting effective flavor symmetry of a T2/Z3 orbifold can be

written as ∆(54) = S3 nZ2
3.

In the absence of Wilson lines and discrete torsion, twisted string states replicate in

all orbifold singularities, thus appearing always with a multiplicity of three and building

triplet representations. Since ϑ−1 = ϑ2, twisted states located at the ϑ2 fixed points

have the opposite geometrical quantum numbers of the ϑ-twisted states. That is, if we

label as 311 the ϑ-twisted states,2 those generated at the ϑ2 singularities build then the

representation 312. Untwisted states and twisted states affected by Wilson lines or discrete

torsion are just ∆(54) trivial singlets 10. No other ∆(54) representations appear in this

context, yielding a tight and useful string constraint for flavor phenomenology.

This discussion has been explicitly developed for all possible sub-orbifolds (in less than

six dimensions) appearing in Abelian toroidal heterotic orbifolds [54], resulting in a reduced

number of family symmetries. The findings include, besides ∆(54), only the symmetries3

D4, (D4×D4)/Z2, (D4×Z4)/Z2, (D4×Z8)/Z2 and S7 nZ6
7. As we shall see, these sym-

metries are enlarged in the full 6D heterotic orbifold, but can then be finally reduced back

to these symmetries in phenomenologically viable models. This may already be considered

a phenomenologically relevant observation: not any flavor symmetry is allowed in particle

physics if it arises from a compactified string theory.

3 Classification of Z3×Z3 heterotic orbifolds with ∆(54)

The purpose of this section is to identify string models exhibiting a number of semi-realistic

properties and ∆(54) flavor symmetry in the simplest compactification scheme where such

models are present, Z3×Z3 heterotic orbifolds.

Z3×Z3 heterotic orbifolds are characterized by the quotient of a so-called factorizable

torus T6 = T2
1×T2

2×T2
3 divided by the joint action of two Z3 isometries of T6 in the extra

dimensions of a heterotic string. In the simplest case,4 the tori are described by the root

lattice of SU(3)1 × SU(3)2 × SU(3)3 and the Z3 generators act diagonally on the tori as

ϑ = diag
(
e2πiv1 , e2πiv2 , e2πiv3

)
, ω = diag

(
e2πiw1 , e2πiw2 , e2πiw3

)
, (3.1)

where v and w are the so-called twist vectors

v = (1/3, 0,−1/3) , w = (1/3,−1/3, 0) . (3.2)

Consequently, each of the 2-tori are subject to a Z3 orbifold.

According to our previous discussion, one may conjecture that these constructions

lead to a ∆(54)3 flavor symmetry, but this is wrong. In fact, in this case the relabeling

symmetry that naturally appears is S3 × S3 × S3. Further, concerning the symmetries

due to string selection rules, invariance under the two twists, ϑ and ω, leads to two Z3

symmetries analogous to the one for the q charge in the previous section. In addition,

2We follow here the notation of [93] for ∆(54) representations; see appendix A.
3Note though that, under certain conditions, other symmetries may appear, as in [79].
4There are 15 Z3×Z3 choices, among which many include rototranslations [80].
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localization selection rules introduce one extra Z3 factor for each 2-torus. That is, the

natural flavor symmetry in these heterotic orbifolds is (S3 × S3 × S3) nZ5
3.

Note, however, that the relabeling symmetry can be further enhanced to S27 if the sizes

of the tori T2
a, a = 1, 2, 3, are identical and no Wilson lines nor discrete torsion is invoked.

As we shall shortly see, phenomenologically viable models only arise if one introduces

Wilson lines. In fact, most promising models have two Wilson lines that distinguish the

states located at the singularities of two of the tori, retaining only the non-Abelian S3
relabeling symmetry. Further, there is no reason why all tori should have the same size;

their sizes (and also their shapes) are encoded in the values of (untwisted) moduli that can

a priori have arbitrary values.

Once the generic geometrical aspects of the compactification have been set, our task is

now to apply this compactification to a heterotic string. We restrict ourselves here to the

N = 1 E8×E8 heterotic string, but expect similar results from the N = 1 SO(32) heterotic

string.5 Modular invariance of the partition function demands the orbifold to be embedded

into the gauge group E8×E8. This gauge embedding consists in choosing a 16D (shift)

vector for each of the twists performed in the six compact dimensions and a so-called 16D

Wilson-line vector Aα, α = 1, . . . , 6, encoding in the gauge degrees of freedom each eα of T6.

The gauge embedding is subject to three constraints. First, modular invariance addi-

tionally imposes in Z3×Z3 heterotic orbifolds that [85]

3 (V 2 − v2) = 0 mod 2 , 3 (V ·Aα) = 0 mod 2 , α = 1, . . . , 6 , (3.3)

3 (W 2 − w2) = 0 mod 2 , 3 (W ·Aα) = 0 mod 2 ,

3 (V ·W − v · w) = 0 mod 2 , 3 A2
α = 0 mod 2 ,

3 (Aα ·Aβ) = 0 mod 2 , α 6= β ,

where V and W are the 16D vectors that denote respectively the gauge embeddings of the

twists v and w of eq. (3.2). Secondly, both V and W must be consistent with a Z3×Z3

action. This amounts to requiring that three times these vectors must be a trivial gauge

transformation within E8×E8, i.e. for the shift vector V (with entries V (i))6

3
8∑
i=1

V (i) = 0 mod 2 , 3
16∑
i=9

V (i) = 0 mod 2 , (3.4)

demanding that the entries V (i) be all integer or half-integer, independently for i = 1, . . . , 8

and i = 9, . . . , 16. Analogous conditions must then be imposed to W . The final constraint

imposes that Wilson-line vectors must be consistent with the choice of T6 lattice and the

action of the orbifold on it. The fact that the lattice vectors eα are related by the action of

ϑ and ω translates to relations among all Aα. For instance, in Z3×Z3 heterotic orbifolds

since e2 = ϑe1 (see e.g. figure 1a, valid in this case), then A1 = A2 up to a trivial gauge

5We also expect promising non-supersymmetric models arising from the N = 0 SO(16)×SO(16) heterotic

string, although the presence of tachyons at some level of the theory would still be a worry.
6These constraints arise from the fact that the root lattice of each E8 is even (and self-dual). An arbitrary

shift within the lattice does not alter the gauge degrees of freedom.
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transformation in E8×E8. One finds that these geometrical considerations lead to the

conditions

Aα = Aα+1 , α = 1, 3, 5 , (3.5)

3

8∑
i=1

A(i)
α = 0 mod 2 , 3

16∑
i=9

A(i)
α = 0 mod 2 .

A comment is in order. Notice that each 2-torus can be affected by up to one inequiv-

alent, non-trivial Wilson line. If one includes the Wilson line A2a−1 = A2a associated with

the compactification in the T2
a torus, a = 1, 2, 3, the relabeling symmetry S3 of that torus

disappears. Thus, with one and two non-vanishing Wilson lines, the non-Abelian relabel-

ing symmetry gets broken down, respectively, to S3 × S3 and S3, while no non-Abelian

symmetry is left when all three Wilson lines are non-trivial. Hence, it follows that only

models with two non-trivial Wilson lines can lead to a ∆(54) = S3 n Z2
3 flavor symmetry

in Z3×Z3 heterotic orbifolds.

After finding solutions to the constraints (3.3)–(3.5), there are standard techniques, dis-

cussed elsewhere in great detail (see e.g. [94, 95]), to determine the spectrum of massless

string states, including their gauge quantum numbers, localization, couplings and other

properties of the supersymmetric effective field theory. Spectra obtained this way must

then be inspected from a phenomenological perspective, imposing criteria based on observ-

able particle physics (and/or cosmology) that may discriminate phenomenologically viable

models from others.

Clearly, given the number of gauge-embedding parameters, the constraints (3.3)–(3.5)

can be satisfied for a large number of shift and Wilson-line vectors, making the task of iden-

tifying phenomenologically viable heterotic orbifolds very time-consuming. Fortunately,

this task becomes accessible thanks to tools such as the orbifolder [96], which automatizes

the computation of massless spectra, couplings and other important features of the models.

With the purpose of finding promising models endowed with a ∆(54) flavor symme-

try, we have used the orbifolder to randomly construct a large number of inequivalent

Z3×Z3 heterotic orbifold models. Models are considered to be equivalent by the software

if no differences are found when comparing the full gauge group, the non-Abelian gauge

quantum numbers of the resulting states and the number of non-Abelian gauge singlets in

the massless spectrum. From the created models, we have then selected the most promising

ones. Here, a promising model must yield the SM gauge group, such that the hypercharge

generator be non-anomalous and (with normalization) compatible with grand unification,

three generations of quarks and leptons, at least a couple of Higgs (super)fields, Hu and

Hd, and only vectorlike exotics w.r.t. the SM gauge group.

Our results are as follows. We have obtained over 7×106 inequivalent Z3×Z3 heterotic

orbifold models,7 with up to (the maximum of) three inequivalent Wilson lines. After

applying our phenomenological constraints, only 789 models exhibit the required properties.

7Following the statistical approach of [78, section 2.2], we estimate that the number of generated models

represents about 90% of the total of possible models in this scenario.
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We have verified that, considering couplings8 of the vectorlike exotics with up to six SM

singlets, in a large number of these models all exotics decouple once the SM singlets develop

vacuum expectation values (VEVs). Other models require higher dimensional operators to

yield mass terms for all vectorlike exotics.

An interesting geometrical quality of the promising models regards the effective family

symmetry. Among the 789 selected models, most (696) of them have two inequivalent

non-vanishing Wilson lines. About 10% of the viable models (81 of them) require one

non-trivial Wilson line, and only 12 result from compactifications with three Wilson lines.

Therefore, we find that ∆(54) as a flavor symmetry of (MS)SM-like models is favored in

Z3×Z3 heterotic orbifold models.

This outcome is compatible with previous results found in the literature. Particularly,

in ref. [97] the authors have found 445 Z3×Z3 heterotic orbifold models with the properties

we have required, out of which 369 of them exhibit two non-trivial Wilson lines. In this

perspective, our search shows to be more exhaustive.

4 A sample model with stringy ∆(54) flavor

With the purpose of exploring the flavor phenomenology produced by string compactifi-

cations, let us now study the properties of one of the promising models from our Z3×Z3

heterotic orbifold scan, chosen due to its simplicity. The parameters that define the model

are the shift vectors

3V =

(
−1

2
,−1

2
,−1

2
,−1

2
,

1

2
,

1

2
,

1

2
,

1

2
;−2, 0, 0, 1, 1, 1, 1, 4

)
, (4.1a)

3W = (0, 1, 1, 4, 0, 0, 1, 1; 1,−1, 4,−4,−1, 0, 0, 1) , (4.1b)

and the Wilson lines

3A1 = 3A2 =

(
−7

2
,−3

2
,

9

2
,

7

2
,−7

2
,−3

2
,

5

2
,

7

2
;−3, 0,−2, 0,−2,−4, 3,−2

)
, (4.2a)

3A3 = 3A4 = (3, 3,−3,−2,−1, 2, 4,−4;−3, 1,−1,−4, 1, 1, 4, 1) . (4.2b)

These parameters yield the unbroken gauge group SU(3)C × SU(2)L × U(1)Y × [SU(2) ×
U(1)11], where the additional SU(2) factor is considered hidden because no SM-field carries

a charge under that group. However, all fields in the spectrum are charged under the

additional U(1) factors.

Due to its two Wilson lines (4.2), the model has the flavor symmetry S3nZ5
3 ⊃ ∆(54).

The ∆(54) quantum numbers are associated with the symmetries of the third torus, T2
3,

whose localized states are not affected by any Wilson line. If we allow for the spontaneous

breakdown of the three additional Z3 symmetries by VEVs of appropriate SM singlets

transforming as 10 under ∆(54), the flavor symmetry in the vacuum is just ∆(54) and the

extra [SU(2)×U(1)11] gauge factors are broken too.

8Given the persistent controversy about the selection rules in heterotic orbifolds, we have considered

only the so-called rule 4 [90], gauge and space-group invariance, and R-charge conservation [91, 92].
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# irrep ∆(54) label # anti-irrep ∆(54) label

3 (3,2) 1
6

311 Qi

3
(
3,1

)
− 2

3
311 ūi

3
(
3,1

)
1
3

311 d̄i

3 (1,2)− 1
2

311 Li

3 (1,1)1 311 ēi

3 (1,1)0 312 ν̄i

1 (1,2)− 1
2

10 Hd 1 (1,2) 1
2

10 Hu

Flavons

3 (1,1)0 311 φui

3 (1,1)0 311 φd,ei

3 (1,1)0 312 φ̄νi

2 (1,1)0 2 · 10 s(d,e), su

128 (1,1)0 77 · 10 + 16 · 312 + 311 Ni

Exotic states

16 (1,2) 1
6

10 · 10 + 2 · 312 vi 16 (1,2)− 1
6

4 · 10 + 4 · 312 v̄i

3 (3,1)0 312 yi 3
(
3,1

)
0

3× 10 ȳi

1
(
3,1

)
− 1

3
10 zi 1 (3,1) 1

3
10 z̄i

7 (1,1)− 2
3

4 · 10 + 312 xi 7 (1,1) 2
3

4 · 10 + 311 x̄i

51 (1,1)− 1
3

30 · 10 + 7 · 312 wi 51 (1,1) 1
3

24 · 10 + 9 · 312 w̄i

Table 1. Massless spectrum. Representations w.r.t. SU(3)C × SU(2)L are given in bold face,

the hypercharge is indicated by the subscript. The 3rd and 7th columns display the ∆(54) flavor

representations.

Qi d̄ci ūci Li ēci ν̄i Hu Hd φui φ
(d,e)
i φ̄νi su s(d,e)

∆(54) 311 311 311 311 311 312 10 10 311 311 312 10 10

Z
(1)
3 ω 1 ω 1 ω 1 1 1 1 1 1 ω ω2

Z
(2)
3 1 ω2 1 ω2 1 ω 1 1 1 ω ω 1 1

Z
(3)
3 ω 1 ω 1 ω 1 1 1 1 1 1 ω ω2

Table 2. Flavor representations for the SM matter and flavon fields in a Z3×Z3 sample model.

The Z3 charges are defined in terms of the twist and field localizations in (4.3) with ω = e2πi/3.
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The gauge and ∆(54) representations of the massless matter spectrum of our sample

model are provided in table 1. As explained before, the only possible ∆(54) representations

are the trivial singlet 10 and the two triplets 311 and 312. One particular feature of the

observable sector is that, directly from the string computation, only three SM generations

that build non-trivial flavor representations arise, while the Higgs states are untwisted fields

and thus uncharged under the flavor symmetry. On the other hand, the exotic particles are

vectorlike w.r.t. the SM gauge group, but not necessarily under the flavor group. Despite

this hurdle, there exist SM singlets Ni in the appropriate flavor representations, so that all

exotics and the singlets Ni themselves can acquire masses when 〈Ni〉 6= 0.

To understand better the flavor phenomenology of the observable sector of this model,

we display in table 2 all flavor charges of the SM superfields and some gauge singlets that

shall serve as flavons. The Z3 charges are given in terms of

ωq and κ ma
a ≡ (e2πi/3)ma with a = 1, 2; q,ma = 0, 1, 2 , (4.3)

where ω is the (eigenvalue of the) second twist in eq. (3.1), κa correspond to the Z3

generators associated with the localization labels ma in the (first or second) torus T2
a, as

described in section 2, and q is the power of the twist that yields the corresponding twisted

states. Note that ω = κa = e2πi/3.

Since the SM matter fields are charged under flavor symmetries, the presence of

the properly charged s and φ flavon fields allows for Yukawa couplings in the (non-

renormalizable) superpotential, which in this case can be written as follows

WY = yuijkQiHuūjφ
u
ksu + ydijkQiHdd̄jφ

(d,e)
k s(d,e) + yeijkLiHdējφ

(d,e)
k s(d,e) (4.4)

+yνijklLiHuν̄j + λijkν̄iν̄jφ̄
ν
k , i, j, k = 1, 2, 3,

where the summation over repeated indices must follow the rules of the product of ∆(54)

representations that lead to invariant singlets (cf. appendix A),

10 ⊂ 311 × 312, 10 ⊂ 311 × 311 × 311 , 10 ⊂ 312 × 312 × 312.

In principle, all Yukawa-coupling coefficients, y and λ, are computable by applying CFT

techniques for the string model. However, it is known that there are still some challenges

to be solved for non-renormalizable couplings. The best we can do here is to estimate that

y are order one (but with a suppression due non-renormalizability) because they include

the untwisted Higgs fields, whereas λ must be somewhat suppressed because all involved

fields are twisted. We observe that the second row of WY admits neutrino masses from

a type I see-saw mechanism with three right-handed (RH) neutrinos with proper φ flavon

VEVs. Similarly, the Dirac masses of charged leptons and quarks are determined by the

VEVs of other flavons φ and s. We point out that the structure of masses for down-quarks

and charged leptons is predicted in this model to be identical because the flavons involved

in the corresponding couplings are unavoidably the same. As we shall see, this enforces a

more stringent sort of b− τ unification.
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5 Fermion masses from a ∆(54) flavor symmetry

The properties of the string-derived model presented before can be now studied from a

bottom-up perspective. Although our string sample model is supersymmetric and all coup-

lings are determined at the compactification scale, the general structure of the Yukawa

Lagrangian at low energies can be determined from WY , if we insist on retaining the ∆(54)

flavor symmetry in the soft-breaking sector. Besides, it is known that Yukawa couplings do

not receive large contributions through the renormalization running [98]. Similarly, thresh-

old corrections shall not alter the mass and mixing structure of quarks and leptons, since

it depends mainly on mass ratios. Therefore, we can safely study the viability of the model

by restricting ourselves to the behavior of the appropriate non-supersymmetric fields.

In a compact notation, the effective Yukawa Lagrangian for quarks and charged leptons

that is obtained from WY reads

LfY = yf1
[
F1Hf̄1φ1 + F2Hf̄2φ2 + F3Hf̄3φ3

]
(5.1)

+yf2
[
(F1Hf̄2 + F2Hf̄1)φ3 + (F3Hf̄1 + F1Hf̄3)φ2 + (F2Hf̄3 + F3Hf̄2)φ1

]
+ h.c. ,

where generically F and f̄ denote respectively the left-chiral and right-chiral components of

SM fermions, H labels the Higgs associated with f̄ , and φ stands for flavon fields. Further,

we have let the VEVs of the s flavons be absorbed in the Yukawas y, as they do not alter

the structure of the couplings.

From the Yukawa Lagrangian (5.1), the Dirac mass matrices for the charged fermions

(namely, up and down quarks, and charged leptons) generically take the form

MD
f =


yf1φ

f
1 y

f
2φ

f
3 y

f
2φ

f
2

yf2φ
f
3 y

f
1φ

f
2 y

f
2φ

f
1

yf2φ
f
2 y

f
2φ

f
1 y

f
1φ

f
3

 . (5.2)

Let us now make a phenomenological assumption on the flavon VEVs. Suppose the

possibility of a VEV alignment of the form 〈φf 〉 = vfφ(0, rf , 1), with f = u, d, e, for some

real values vfφ and rf . This greatly simplifies the mass matrices to

MD
f =


0 af afrf

af bfrf 0

afrf 0 bf

 , (5.3)

where we define af ≡ yf2 vfφ and bf ≡ yf1 vfφ. Using now the invariant traces and determinant

of MD
f (we take a negative mf

1 to compensate the minus sign in the determinant),

trMD
f = bf (1 + rf )

!
= −mf

1 +mf
2 +mf

3 , (5.4)

tr(MD
f )2 = [2(af )2 + (bf )2][1 + (rf )2]

!
= (mf

1)2 + (mf
2)2 + (mf

3)2 ,

detMD
f = −(af )2bf [1 + (rf )3]

!
= −mf

1m
f
2m

f
3 ,
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it is straightforward to write down the Dirac mass matrices in terms of its eigenvalues, i.e.

the three (observable) fermion masses of type f , mf
i .

Clearly, any solution to the invariants (5.4) provides the right masses for quarks and

charged leptons. If we take e.g. the hierarchical solution, i.e. rf � 1 and af � bf , the

mass matrices take the form

MD
f ≈


0

√
mf

1m
f
2

mf
2−m

f
1

mf
3

√
mf

1m
f
2√

mf
1m

f
2 mf

2 −mf
1 0

mf
2−m

f
1

mf
3

√
mf

1m
f
2 0 mf

3

 , (5.5)

which corresponds to

rf ≈ (mf
2 −mf

1)/mf
3 , (af )2 ≈ mf

1m
f
2 , bf ≈ mf

3 . (5.6)

We notice that the hierarchical solution is compatible with the hierarchy of observed

fermion masses.

In the down-quark sector, this structure gives the Gatto-Sartori-Tonin formula for the

Cabibbo angle, which is approximately the ratio (MD
d )12/(M

D
d )22,

λC ≈
√
md

ms
, (5.7)

where we additionally used that md/ms � 1.9 The other two mixing angles are very small

at leading order, but could be generated if some of the vectorlike quarks mix with the SM

quarks, see for instance [99].

For charged leptons, on the other hand, the same flavon VEV alignment must be

imposed because down-quarks and charged leptons share the same flavons. It follows that

the corresponding mass matrix is diagonalized by a rotation in the 1–2 entries with the

mixing angle of the order
√
me/mµ.

There is another consequence of the parallelism between the down-quarks and charged

leptons. Since rd = re, it follows from eq. (5.6) that the following mass relation in our

model is required
ms −md

mb

!
=

mµ −me

mτ
. (5.8)

This relation does not match observations. We find that some possibilities to amend

eq. (5.8) include either to abandon the flavor structure in the soft-terms of the supersym-

metry breaking sector or that some (colored and uncolored) exotics acquire masses after the

breakdown of ∆(54), providing different suppression factors for down-quarks and charged

leptons. The latter can be achieved by allowed couplings as those represented in figure 2,

which yield effective contributions to Yukawa couplings, such as

1

mvmxmz
QHdd̄〈NiNjNk〉+

1

mvmxmw
LHdē〈N ′iN ′jN ′k〉 ,

9Eq. (5.7) has a small correction of order
√

mu/mc from the up-quark sector.
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Q z z̄ d̄

v

Ni Nj

Nk

x̄

Hd

x

v̄

L w̄ w ē

v

x̄
N ′
i N ′

j

N ′
k

Hd

x

v̄

Figure 2. Phenomenologically viable operators in the model presented that may alleviate the

tension observed by the predicted relation (5.8).

where both Ni,j,k and N ′i,j,k denote some of the 128 flavons of table 1, and mχ denotes

the effective mass of a given exotic field χ. Realizing particularly that mz and mw differ

in general and, moreover, that the flavons in the couplings may be different, we find that

the issue underlined by the constraint (5.8) may be alleviated. Unfortunately, even if this

hurdle is tackled, we do not expect these effects to alter the smallness of the remaining two

quark mixing angles since that depends on the hierarchical structure of the fermion masses.

5.1 The neutrino sector

For neutrinos, the major difference w.r.t. the other sectors is that, besides the presence of

Majorana mass terms, neutrinos build a conjugate ∆(54) triplet, 312. Therefore, renor-

malizable Yukawa couplings become possible.
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As stated before, the neutrino masses arise from a type I see-saw according to the

second row of the superpotential (4.4). From there, we can read off the Yukawa Lagrangian

for neutrinos:

LνY = yν1 [L1Huν̄1 + L2Huν̄2 + L3Huν̄3] (5.9)

+λ1
[
ν̄1ν̄1φ̄

ν
1 + ν̄2ν̄2φ̄

ν
2 + ν̄3ν̄3φ̄

ν
3

]
+λ2

[
2ν̄1ν̄2φ̄

ν
3 + 2ν̄1ν̄3φ̄

ν
2 + 2ν̄2ν̄3φ̄

ν
1

]
.

Hence, the Dirac neutrino mass matrix is proportional to the identity matrix, while RH

neutrino masses are governed by a structure similar to the one in eq. (5.2), that is,

MRH =


λ1φ̄

ν
1 λ2φ̄

ν
3 λ2φ̄

ν
2

λ2φ̄
ν
3 λ1φ̄

ν
2 λ2φ̄

ν
1

λ2φ̄
ν
2 λ2φ̄

ν
1 λ1φ̄

ν
3

 . (5.10)

We can now make a working assumption about the VEV of the neutrino flavon φ̄ν .

Considering the alignment 〈φ̄ν〉 = vν3 (R1, δ, 1), the light neutrino mass matrix becomes

Mν = λ


δ −R2R2

1 R(−1 +RR1δ) R(−δ2 +RR1)

R(−1 +RR1δ) R1 −R2δ2 R(Rδ −R2
1)

R(−δ2 +RR1) R(Rδ −R2
1) R1δ −R2

 , (5.11)

where we used the definitions

R = λ2/λ1 , λ = y21〈Hu〉2
/[

λ1vν3
(
R1δ + 2R3R1δ −R2(1 +R3

1 + δ3)
)]
. (5.12)

After performing a scan of our parameters, restricting the values of the computed ∆m2
12,

∆m2
13 and neutrino mixing angles to lie within the 3σ region of the global fits [100], we find

that the mass matrix in eq. (5.11) is compatible only with a normal hierarchy of neutrino

masses, i.e. an inverted hierarchy is disfavored, coinciding with recent preliminary results

from the T2K collaboration [101].

Furthermore, we observe that our model leads to a correlation between the atmospheric

and the reactor mixing angles in normal ordering, as displayed by the blue region in figure 3.

Comparing with the precision intervals, we see that the atmospheric mixing angle lies in

the second octant, approximately between 51.3 and 53.1 degrees, while the reactor mixing

angle has values between 7.8 and 8.9 degrees, in agreement with the oscillation global

fits within 3σ. These values are crucial for the model since a better measurement of the

neutrino mixing angles could falsify it.

A final result from our parameter scan is that the lightest neutrino mass, mν1 , takes

values in the region between 6 meV and 6.8 meV, and the sum of the light neutrino masses,∑
mν , lies in the interval between 65 meV and 70 meV, in consistency with data.
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0.018 0.020 0.022 0.024 0.026 0.028

0.40
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0.50

0.55

0.60

sin2θ13

si
n

2 θ
23

Figure 3. Correlation between the atmospheric and reactor mixing angles for normal mass ordering

in a string-inspired ∆(54) flavor model. The correlation (blue) points in the upper-left part of the

plot result from a scan of our parameters λ, δ,R,R1, imposing consistency within 3σ with measured

values of ∆m2
12, ∆m2

13 and θ12. The dark/light/lighter gray areas correspond to 1σ/2σ/3σ experi-

mental precision around the best fit value (denoted by the star) for the neutrino mixing angles [100].

6 Final remarks

Flavor symmetries arise naturally in string compactifications, which provide a promising

ultraviolet completion of usual bottom-up setups. Particularly, we have shown that ∆(54),

as a flavor symmetry, appears most naturally in semi-realistic Z3×Z3 heterotic orbifold

compactifications. We have identified almost 700 models with that flavor symmetry and

other promising particle-physics features, such as SM gauge group and three generations of

matter fields. By their nature, these constructions reduce the arbitrariness of low-energy

models by constraining the fields and their (flavor and gauge) transformation properties

and thereby providing useful guidelines to inspect flavor phenomenology.

To test the viability of ∆(54) flavor scenarios arising from strings, we have studied

the phenomenology of one simple string model from our classification, whose properties

may differ from the other identified models. In this model, SM fermion fields transform

as triplets of the flavor symmetry while the Higgs fields do not transform. As a result

of the flavor quantum numbers, the quarks and charged leptons acquire masses through

dimension-6 operators, and the Dirac neutrino masses as well as the RH Majorana neutrino

masses are generated at renormalizable level. Furthermore, we observe that choosing some

special flavon-VEV alignments results in the following flavor phenomenology features:

• correct masses for quarks and charged leptons;

• proper Gatto-Sartori-Tonin relation in the quark sector (although the other two mix-

ing angles are very small);
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• a mass relation between the down-quark sector and the charged leptonic sector (see

eq. (5.8));

• compatibility (only) with normal hierarchy of neutrino masses;

• smallest neutrino mass of order 6 − 7 meV; and

• PMNS matrix compatible with current constraints (atmospheric and reactor mixing

angles are in the 3σ region of the global best fit), with the atmospheric mixing angle

greater than 45 degrees.

Interestingly, an inverted hierarchy being disfavored as well as the atmospheric mixing

angle lying in the second octant, are features compatible with recent preliminary findings

of the T2K collaboration [101]. This outcome lets us assert that Z3×Z3 heterotic orbifolds

and ∆(54) as a flavor symmetry provide a fertile playground for useful phenomenology

which should be further investigated.

The particular model we have studied here was chosen due to its neat simplicity: it has

only three SM generations, the extra gauge sector includes only a hidden SU(2) and Abelian

symmetries, and all SM fields build ∆(54) triplets. These properties are only shared by

three more models in the set of promising Z3×Z3 compactifications. Other models include

additional (exotic) vectorlike pairs of quarks and leptons, larger Abelian and non-Abelian

hidden gauge symmetries, and some SM fields may build only trivial representations of

∆(54). This does not imply that other models are more or less promising, but their

analysis is somewhat more involved and shall be the purpose of future studies.

Despite these encouraging features, there are still some challenges to overcome. First,

in heterotic orbifolds it is challenging to obtain the VEV alignments chosen in section 5

because VEVs must be settled by a moduli stabilization mechanism that is not fully un-

derstood. Secondly, we found that two of the quark mixing angles in our model are too

small and the mass relation eq. (5.8) is incorrect. To attempt to alleviate these issues, one

should study in detail the soft-terms and other corrections in this kind of models. Another

potential hurdle is the absence of a symmetry that forbids rapid proton decay. However,

it is conceivable that such symmetry does appear as one of the extra Z3 symmetries of

another model where matter fields have the correct charges. Finally, as in most flavor

models, flavor-changing neutral currents pose a challenge that must and shall be studied

elsewhere in the context of our proposal.
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A ∆(54) tensor product for triplet representations

In this appendix, we provide the features of ∆(54) that are relevant for our proposal, fol-

lowing the notation of ref. [93]. The ∆(54) symmetry group has two one-dimensional, four

two-dimensional and four three-dimensional irreducible representations. These representa-

tions are denoted as 10 (invariant under the group), 11, 21, 22, 23, 24, 311, 312, 321 and 322.

Due to the matter content of our model, the only tensor products that are relevant in

this work are those among the three-dimensional representations 311 and 312, which are

obtained as
x1

x2

x3


311

⊗


y1

y2

y3


311

=


x1y1

x2y2

x3y3


312

⊕


x2y3 + x3y2

x3y1 + x1y3

x1y2 + x2y1


312

⊕


x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1


322

, (A.1)


x1

x2

x3


312

⊗


y1

y2

y3


312

=


x1y1

x2y2

x3y3


311

⊕


x2y3 + x3y2

x3y1 + x1y3

x1y2 + x2y1


311

⊕


x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1


321

, (A.2)

and finally
x1

x2

x3


311

⊗


y1

y2

y3


312

=
(
x1y1 + x2y2 + x3y3

)
10

⊕
(
x1y1 + ω2x2y2 + ωx3y3

ωx1y1 + ω2x2y2 + x3y3

)
21

⊕
(
x1y2 + ω2x2y3 + ωx3y1

ωx1y3 + ω2x2y1 + x3y2

)
22

⊕
(
x1y3 + ω2x2y1 + ωx3y2

ωx1y2 + ω2x2y3 + x3y1

)
23

⊕
(
x1y3 + x2y1 + x3y2

x1y2 + x2y3 + x3y1

)
24

, (A.3)

where ω = e2πi/3. It follows that the only products of ∆(54) triplets up to trilinear order

that yield invariant combinations are 311 ⊗ 312, 311 ⊗ 311 ⊗ 311 and 312 ⊗ 312 ⊗ 312. The

latter two products lead to two invariant singlets 10 each.
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