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1 Introduction and summary

Hydrodynamics [1, 2] is the low-energy effective theory for slowly varying fluctuations

around thermal equilibrium. All relevant dynamics in this regime is captured by the con-

servation laws of the underlying microscopic field theory. In the simplest case of an un-

charged relativistic fluid in (3 + 1) dimensions, energy and momentum density are the only

four conserved charges. These charges themselves or alternatively their respective conju-

gate variables, temperature and fluid velocity, are the only relevant degrees of freedom and

constitute the fluid variables. The corresponding four equations of motion are given by the

conservation of the stress-energy tensor, supplemented by constitutive relations that ex-

press the stress-energy tensor in terms of the four fluid variables. The constitutive relations

take the form of a systematic expansion in gradients of the fluid variables, gradients which

are assumed to be small in the hydrodynamic regime. In the spirit of effective field theory,

all independent terms compatible with the underlying symmetries appear in the consti-

tutive relation at a given order in gradients, each multiplied by a free parameter. These

parameters are referred to as transport coefficients and provide the low-energy constants of

hydrodynamics. In order to determine their values we need to compute appropriate real-

time correlators of the stress tensor, both in the underlying microscopic theory and from

hydrodynamics, and then match the two results. The constitutive relation for the stress

tensor of an uncharged relativistic fluid features two transport coefficients at first order in

gradients, the shear viscosity η and the bulk viscosity ζ, and another fifteen coefficients

at second order [3, 4]. Kubo formulae, which tell us which correlators exactly to look at

in order to compute a specific transport coefficient [2, 5], are known for η and ζ, for the

five second-order coefficients already present in conformal fluids [6], and for six of the ten

second-order coefficients only present in non-conformal fluids [7].

In recent years, hydrodynamics has been successfully applied to describe the early-stage

evolution of the quark-gluon plasma (QGP) created in heavy-ion collisions at RHIC [8–12].

In fact, it captures the evolution of the QGP from surprisingly early times onwards.

However, it is not sufficient to simulate the QGP with first-order viscous hydrodynam-

ics, as this is plagued by superluminal modes which violate causality. To get rid of these

modes it is necessary to take into account second-order terms as well [3]. As the temper-

ature of the QGP is not too far from the confinement scale of QCD, the QGP falls into

the intermediate-coupling regime and its transport coefficients cannot be computed by per-

turbative methods. Lattice calculations are not well-suited to computations of transport

coefficients either: computations of real-time correlators face the formidable problem of

analytic continuation whereas indirect methods are plagued with uncertainties [13].

The only currently available tool that allows for the computation of real-time correla-

tors in strongly interacting field theories is gauge/gravity duality [14–19]. In particular, it

reduces computing stress-tensor correlators in the hydrodynamic regime to solving classical

Einstein’s equations on anti-de Sitter (AdS) backgrounds in a small-momentum expansion.

Applying the appropriate Kubo formulae, one can read off the transport coefficients in the

strongly coupled holographic field theory [20–22]. Apart from its relevance for strongly

coupled field theories, a hydrodynamic interpretation of solutions to Einstein’s equations
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is interesting in its own right, because it extends the analogy between thermodynamics

and black-hole mechanics beyond thermal equilibrium to a more general correspondence

between fluids and gravity [23].

At present, the construction of the exact holographic dual of realistic theories such as

QCD is beyond reach. The best one can hope for when trying to make connections with

experiment is to identify and investigate properties that hold for a large class of holographic

models: being insensitive to the microscopic details of the dual field theory, it is possible

that such properties are shared by many or even all QFTs in the strong coupling limit,

including the ones realised in nature. The most prominent example of such a universal

property is the ratio of shear viscosity η over entropy density s [24] which is known to

obey η/s = 1/4π for any strongly coupled theory with a two-derivative gravity dual and

unbroken SO(3) rotational symmetry [22, 25–32]. Current estimates for the value of η/s

in the QGP extracted from heavy ion collision data are indeed close to 1/4π [33–39].

Universality in hydrodynamic transport is most likely to be observed among trans-

port coefficients that can be measured without considering sound perturbations, which

would necessarily excite the model-specific matter content [40]. There exists one partic-

ular relation between second-order transport coefficients which promises to exhibit such

universal behaviour:

H ≡ 2ητπ − 4λ1 − λ2 = 0 . (1.1)

Prompted by the observation in ref. [41], Haack and Yarom [42] demonstrated that the

combination H vanishes for conformal holographic theories with a two-derivative gravity

dual, and with any number of U(1)-charges at finite density. It has further been shown

that H remains zero when taking into account leading corrections to the infinite coupling

limit, both in planar N = 4 [43] and in the hypothetical fluid dual to Gauss-Bonnet

gravity [44–46]. A simple example of non-conformal holographic transport was studied

in ref. [47]: employing the method developed in ref. [48] and working to linear order in

1/3 − c2
s, the authors showed that H also vanishes for the non-conformal Chamblin-Reall

background. This background, however, can simply be viewed as the analytic continuation

of higher-dimensional AdS compactified on a torus [49]. While the transport coefficients in

this special non-conformal model do differ from their conformal values, they are nonetheless

completely dictated by the higher-dimensional conformal theory [48]. In particular, the

five coefficients that are already present in the conformal case are simply multiplied by

a common factor so that relations that hold between coefficients in the conformal case,

such as H = 0, trivially apply to this non-conformal compactification as well. The only

holographic model in which non-conformal corrections to H have been taken into account

beyond leading order are the compactified D4-branes of ref. [50] where the relation H = 0

was also found to hold.1 Note that neither the Chamblin-Reall background studied in

ref. [47] nor the compactified branes of ref. [50] admit an asymptotically AdS region.2

Their holographic duals therefore do not have an obvious UV fixed point.

1Other recent holographic and non-holographic studies of second-order transport in non-conformal rel-

ativistic fluids include refs. [51–57].
2In both cases the bulk geometry can be viewed as a compactification of AdS and one can essentially

borrow the higher dimensional AdS/CFT dictionary [58, 59].
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Whether H = 0 holds more generally in holographic theories without conformal sym-

metry remains an open question which we want to address in this paper. To this end

we compute the second-order transport coefficients entering H for a large class of non-

conformal holographic models from three-point functions of the stress tensor. The precise

type of models we consider are holographic renormalisation-group (RG) flows in asymp-

totically AdS5, triggered by an arbitrary scalar operator of dimension ∆ = 3. We prove

analytically that H vanishes for this class of models even when leading non-conformal

corrections to the transport coefficients are included. We subsequently study two specific

families of RG flows from that class and show numerically that H vanishes along both.

The content of this paper is structured as follows: in section 2 we derive new Kubo

formulae for the five second-order coefficients

κ , η τπ + κ∗ , λ1 +
κ∗

2
, λ2 , λ3 − 2κ∗ , (1.2)

by considering the response of the stress tensor to shear perturbations of the external

metric. The coefficients (1.2) are combinations of the five coefficients present in conformal

fluids and the non-conformal coefficient κ∗. The combination H, eq. (1.1), can be obtained

as a linear combination of these coefficients. The Kubo formulae we derive are valid for

any uncharged relativistic fluid in four dimensions, with or without conformal symmetry.

We end section 2 with a brief explanation of how they can be applied specifically to the-

ories with a holographic dual. In section 3 we introduce the class of strongly coupled

non-conformal models studied in this paper. These are four-dimensional holographic the-

ories with a UV fixed point, deformed by a relevant scalar operator of dimension ∆ = 3.

The dual description of such RG flows is provided by Einstein gravity in asymptotically

AdS5, coupled to a scalar field with mass m2L2 = ∆ (∆− 4) = −3 but otherwise arbitrary

potential. We derive the relevant bulk equations of motion for black-brane backgrounds

and for metric perturbations. In section 4 we solve Einstein’s equations for bulk metric

perturbations around a general black-brane background. Section 5 contains our analyt-

ical results on second-order transport in the class of non-conformal holographic models

that we investigate. We present formulae for the five second-order coefficients (1.2) for a

given background solution in subsection 5.1. The coefficients always satisfy the relation

H̃ ≡ 2ητπ − 2 (κ− κ∗) − λ2 = 0. In subsection 5.2 we prove analytically that H remains

zero when leading non-conformal corrections to the transport coefficients are taken into

account. Section 6 contains our numerical results. Treating the bulk scalar field as a small

perturbation, we obtain in subsection 6.1 the leading non-conformal corrections to the

transport coefficients in the vicinity of the UV fixed point. These leading corrections only

depend on the mass term in the scalar potential and therefore apply to all holographic RG

flows triggered by a scalar operator of dimension ∆ = 3. In subsection 6.2 we introduce two

specific families of bulk potentials: the first one describes RG flows to a fixed point in the

IR, the second one describes flows to a non-conformal IR. We present our numerical results

for the five transport coefficients in subsection 6.3. Our main result is that the combination

H, eq. (1.1), vanishes for both families of flows, even if the individual transport coefficients

deviate from their conformal values by factors of two and more. In subsection 6.4 we

employ relations between second-order coefficients and their derivatives which hold if one
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demands that the local entropy production be positive under all circumstances [4, 60].3

This allows us to extend our results to eight second-order coefficients. We conclude with a

summary of our results and propose future directions of research in section 7. We attach

technical details of our calculations in appendices A–F.

2 New Kubo formulae for non-conformal second-order hydrodynamics

We begin this section with a brief introduction to hydrodynamics in subsection 2.1. We

then derive a new set of Kubo formulae (2.21) for five second-order transport coefficients

in subsection 2.2. These Kubo formulae are valid for any uncharged relativistic fluid in

(3 + 1) dimensions, with or without conformal symmetry, and constitute one of the main

results of this paper. In subsection 2.3 we outline how they can be applied specifically to

strongly coupled fluids with a holographic gravity dual.

2.1 Quick recapitulation of hydrodynamics

Hydrodynamics [1, 2] is the effective low-energy description of slowly varying fluctuations

around thermal equilibrium in an interacting field theory. It assumes that the only relevant

degrees of freedom are the expectation values of global charge densities in small patches of

the fluid that have already equilibrated. These patches of local equilibrium are taken to be

large compared to the microscopic scales of the underlying field theory but approximately

local compared to macroscopic thermodynamic scales.

The fluid equations of motion are the conservation equations for the corresponding

current densities. They must be supplemented by constitutive relations which express the

current densities in terms of the charge densities. By definition, hydro fluctuations have

small momenta and the constitutive relations take the form of an expansion in gradients

of the charge densities.

The fluid variables of an uncharged relativistic fluid on a four-dimensional background

g(0)µν are the components of its 4-momentum
〈
T tµ(x)

〉
whose dynamics is governed by the

covariant conservation of stress-energy,

∇µ 〈Tµν(x)〉 = 0 . (2.1)

To zeroth order in gradients O(∂0), interactions between patches of local equilibrium are

neglected and we are dealing with an ideal fluid

〈Tµν(x)〉 = [ε(x) + p(x)]uµ(x)uν(x) + p(x)gµν(0)(x) +O (∂) (2.2)

with local 4-velocity uµ, energy density ε, and pressure p. The local equilibrium quantities

ε(x) and p(x) are linked by the fluid’s equation of state and satisfy the usual thermodynamic

relations. We can invert the constitutive relation (2.2) to use ε and uµ as fluid variables

instead of the 4-momentum.

The constitutive relations for an uncharged relativistic fluid are known up to third order

in gradients [3, 4, 62]. Up to second order, seventeen independent tensor structures can be

3Ref. [61] obtains the same relations by coupling the fluid to external sources.
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constructed from the fluid variables and g(0)µν , each multiplied by a transport coefficient

such as shear viscosity (see appendix A for the explicit expressions). These transport

coefficients are the free input parameters of the effective hydrodynamic description. In

order to compute their values we have to match the hydro result for appropriate correlators

of 〈Tµν〉 with the corresponding result in the underlying microscopic theory.

2.2 Sourced fluid stress tensor and Kubo formulae

A suitable quantity to match is the response of 〈Tµν〉 to an external metric perturbation

around flat space of a fluid in equilibrium. In the equilibrium rest frame, the fluid variables

of the perturbed fluid on the background g(0)µν(x) = ηµν + hµν(x) will take the form

ε(x) = ε̄+ δε(x) , uµ(x) = (1, v)
(
−g(0)tt − 2g(0)tiv

i − g(0)ijv
ivj
)−1/2

. (2.3)

It is convenient to use δε(x) and v(x) as fluid variables as this allows for a second expansion

in fluctuations around static global equilibrium sourced by hρσ, in addition to the hydro

gradient expansion. Writing the equilibrium stress tensor as

T̄µν ≡ 〈Tµν〉 [δε = v = hρσ = 0] , (2.4)

the off-shell stress tensor of the perturbed fluid, eq. (A.5), assumes the following form to

first order O(δ) in fluctuations:

〈Tµν〉 [δε, v;hρσ] = T̄µν +

[
∂T̄µν

∂ δε
δε+

∂T̄µν

∂vi
vi
]

+
∂T̄µν

∂hρσ
hρσ +O(δ2) , (2.5)

where we defined

∂T̄µν

∂ δε
≡ ∂ 〈Tµν〉

∂ δε

∣∣∣∣
δε=v=hρσ=0

(2.6)

etc. Linearising the conservation eq. (2.1) around equilibrium yields the equations of motion

for the fluid variables δε and v in the presence of the linear metric perturbation hρσ.

Defining

δTµν(δε,v) ≡
∂T̄µν

∂ δε
δε+

∂T̄µν

∂vi
vi , δT µν(h) ≡

∂T̄µν

∂hρσ
hρσ , (2.7)

these equations read

∂µδT
µν
(δε,v) = −∂µδTµν(h) − δΓ

µ
µρT̄

ρν − δΓνµρT̄µρ +O(δ2) . (2.8)

As hρσ sources hydro fluctuations around static equilibrium we impose the boundary condi-

tion that δε = v = 0 for h = 0, i.e. we do not consider the usual free hydro modes that solve

eq. (2.8) in the absence of the source terms on the right hand side. There exists a partic-

ularly simple subset of non-trivial metric perturbations in four dimensions xµ = (t, x, y, z)

that do not source any fluctuations of the fluid variables to first order. Explicitly, if we

only turn on

{hxy(t, z), htx(z), hty(z), hxz(t), hyz(t)} (2.9)

– 6 –
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then the right hand side of eq. (2.8) vanishes at O(h), and the hydro equations are solved

by δε(h), v(h) = O(h2). In that case, the on-shell stress tensor takes the following form to

second order in the source O(h2):

〈Tµν〉 [hρσ] = T̄µν +
∂T̄µν

∂hρσ
hρσ +

1

2

∂2T̄µν

∂hρσ∂hκλ
hρσhκλ

+

(
∂T̄µν

∂ δε
δε(h) +

∂T̄µν

∂vi
vi(h)

)
+O(h3) . (2.10)

This expression simplifies even further if we focus on the transverse-tensor component

〈T xy(t, z)〉 as it is independent of the scalars δε, vz and the transverse-vector components

vx, vy to first order O(δ):

∂T̄µν

∂ δε
=
∂T̄µν

∂vi
= 0 . (2.11)

Using this together with the constitutive relation (A.5), the on-shell response of 〈T xy〉 to

the metric perturbations (2.9) at O(h2) is found to be

〈T xy〉 =
[
−p̄− η ∂t −

κ

2
∂2
z +

(
η τπ −

κ

2
+ κ∗

)
∂2
t

]
hxy(t, z)

+

[
p̄ hxz hyz + η (hxz ∂thyz + ∂thxz hyz) +

(
λ1 − η τπ −

κ∗

2

)
∂thxz ∂thyz

+
(κ

2
− η τπ − κ∗

) (
hxz ∂

2
t hyz + ∂2

t hxz hyz
)]

+

[
−p̄ htx hty +

(
λ3

4
− κ∗

2

)
∂zhtx ∂zhty −

κ

2

(
htx ∂

2
zhty + ∂2

zhtx hty
)]

+

[
1

2
η τπ −

λ2

4
+
κ∗

2

]
(∂zhtx ∂thyz + ∂zhty ∂thxz) +O(h3, ∂3) , (2.12)

where p̄ denotes the pressure in global equilibrium. The linear response sourced by the

tensor perturbation hxy was derived in ref. [3], the quadratic response sourced by the

transverse-vector perturbations was computed in ref. [6] for a conformal fluid with κ∗ = 0.

To our knowledge, the response (2.12) of a non-conformal fluid has not appeared in the

literature before. Note in particular that κ∗ is the only non-conformal second-order co-

efficient that appears in eq. (2.12). Eq. (2.12) shows that the response of 〈T xy〉 to the

perturbations (2.9) gives us access to five independent linear combinations of second-order

transport coefficients,4

κ , η τπ + κ∗ , λ1 +
κ∗

2
, λ2 , λ3 − 2κ∗ , (2.13)

which includes the combination H = 2η τπ−4λ1−λ2. In fact, no additional information is

provided by the response to hxy, and all five coefficients (1.2) can be obtained by turning

on plane-wave excitations for {hxz(t), hyz(t)}, {htx(z), hty(z)}, and {hty(z), hxz(t)}, one

after another.
4Note that if we wanted to extract all fifteen second-order coefficients we would have to turn on metric

perturbations in the scalar sound channel which would necessarily source fluctuations of δε and v.

– 7 –
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Turning on {hxz(t), hyz(t)}. Perturbing the metric by

1

2
hµνdxµdxν = ε

(
H(b)
xz e
−iq0tdxdz +H(b)

yz e
−ip0tdydz

)
, (2.14)

with plane-wave amplitudes H
(b)
xz and H

(b)
yz , sources the response

〈T xy(x)〉 =

[
p̄− i (q0 + p0) η − q0p0

(
λ1 − η τπ −

κ∗

2

)
−
(
q2

0 + p2
0

) (κ
2
− η τπ − κ∗

)]
ε2H(b)

xz H
(b)
yz e
−i(q0+p0)t +O(ε3, ∂3) , (2.15)

corresponding to the second and third line in eq. (2.12).

Turning on {htx(z), hty(z)}. Perturbing the metric by

1

2
hµνdxµdxν = ε

(
H

(b)
tx e

iqzzdtdx+H
(b)
ty e

ipzzdtdy
)
, (2.16)

with plane-wave amplitudes H
(b)
tx and H

(b)
ty , sources the response

〈T xy(x)〉 =

[
−p̄− qzpz

(
λ3

4
− κ∗

2

)
+
(
q2
z + p2

z

) κ
2

]
ε2H(b)

xz H
(b)
yz e

i(qz+pz)z +O(ε3, ∂3) ,

(2.17)

corresponding to the fourth line in eq. (2.12).

Turning on {hty(z), hxz(t)}. Perturbing the metric by

1

2
hµνdxµdxν = ε

(
H

(b)
ty e

ipzzdtdy +H(b)
xz e
−iq0tdxdz

)
, (2.18)

with plane-wave amplitudes H
(b)
ty and H

(b)
xz , sources the response

〈T xy(x)〉 = q0pz

(
1

2
η τπ −

λ2

4
+
κ∗

2

)
ε2H

(b)
ty H

(b)
xz e
−iq0t+ipzz +O(ε3, ∂3) , (2.19)

corresponding to the last line in eq. (2.12).

Kubo formulae. Comparing eqs. (2.15), (2.17), (2.19) with the general form of the

stress-tensor response written in terms of retarded correlators in momentum space [6],

〈Tµν(x = 0)〉 = Gµν(0)− 1

2

∫
d4p

(2π)4G
µν,ρσ(p)hρσ(p)

+
1

8

∫
d4q

(2π)4

d4p

(2π)4G
µν,ρσ,κλ(q, p)hρσ(q)hκλ(p) +O(h3) , (2.20)

– 8 –
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one can read off the low-momentum expansion of the corresponding three-point functions

Gxy,xz,yz, Gxy,tx,ty, Gxy,ty,xz and derive the following Kubo formulae:5

κ = ∂2
qzG

xy,tx,ty(q, p)
∣∣
q=p=0

, (2.21a)

ητπ + κ∗ =
κ

2
+

1

2
∂2
q0G

xy,xz,yz(q, p)
∣∣
q=p=0

, (2.21b)

λ1 +
κ∗

2
= (ητπ + κ∗)− ∂q0∂p0G

xy,xz,yz(q, p)|q=p=0 , (2.21c)

λ2 = 2 (ητπ + κ∗)− 4 ∂q0∂pzG
xy,tx,xz(q, p)

∣∣
q=p=0

, (2.21d)

λ3 − 2κ∗ = −4 ∂qz∂pzG
xy,tx,ty(q, p)

∣∣
q=p=0

. (2.21e)

2.3 Holographic calculation

We now turn to the specific kind of microscopic theories that we will be studying through-

out the remainder of this work: strongly coupled non-conformal QFTs with a holographic

dual in asymptotically AdS5 [15, 63, 64]. In order to extract their second-order transport

coefficients we need to compute the stress-tensor component 〈T xy〉 to second order O(ε2) in

the perturbations (2.14), (2.16), (2.18) of the field-theory metric and match the result with

the effective hydro results (2.15), (2.17), (2.19) [22, 65, 66]. Perturbations of the external

field-theory metric act as boundary sources for perturbations of the dynamical bulk metric

gmn in the dual gravity theory. Their backreaction on the bulk can be computed pertur-

batively in ε. With regard to universality it is encouraging that, even for non-conformal

fluids, H can be measured by considering shear perturbations of the fluid. Unlike sound

perturbations, shear perturbations only couple to the gravity sector of the dual bulk, which

is common to all holographic theories, and not to the model-specific matter content [40].

According to the holographic dictionary [16, 17], the field-theory stress tensor 〈T xy〉
equals, up to a scaling factor, the quasi-local gravity stress tensor T µν of the dual AdS

bulk [67] (see appendix C). The latter measures the response of the on-shell gravity action

to changes in the induced AdS boundary metric. Explicitly, variations of the induced AdS

boundary metric γµν lead to the following variation in the (appropriately renormalised)

bulk action,

δSren = − 1

16πGN

∫
d5x
√
−gEOMmnδgmn +

1

2

∫
∂AdS5

d4x
√
−γ T µνδγµν , (2.22)

where EOMmn denote Einstein’s equations in the bulk. Thus, for (2/
√
−γ) (δSren/δγxy)

to yield the correct result for T xy up to O(ε2) included, EOMxy must be satisfied to order

O(ε2) [65].6

5Ref. [6] defines the Fourier-transformed three-point functions with the opposite sign for the two mo-

menta. In our convention, the shear viscosity is therefore given by η = i ∂q0G
xy,xz,yz(q, p)|q=p=0, as

opposed to eq. (21) in ref. [6], η = −i ∂q0Gxy,xz,yz(q, p)|q=p=0. We further believe that the factors of 2 in

their eqs. (22) and (23) should be absent, in agreement with their eq. (26).
6Given that the bulk metric will be diagonal to leading order, gmn ∝ δmn, we can ensure that

EOMxy = O(ε3) by solving the usual form of Einstein’s equations with lower indices, EOMmn, to O(ε)

and EOMxy to O(ε2).
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To summarise, our strategy to compute the transport coefficients will be the following:

we turn on the boundary metric perturbations (2.14), (2.16), (2.18), one after another,

solve the xy-component of Einstein’s equations in the bulk to second order in amplitudes

O(ε2) and momenta O(∂2) of the perturbations, compute the xy-component of the field-

theory stress tensor according to the holographic dictionary, and finally compare it with

the general hydro results (2.15), (2.17), (2.19).

3 A class of non-conformal holographic models

In this section we introduce the specific class of strongly coupled non-conformal field

theories, described by a holographic gravity dual, whose transport properties we are

going to study: we will consider holographic RG flows [68–77] which, starting from a

four-dimensional conformal field theory (CFT) in the UV, are triggered by a relevant

deformation ∫
d4x
√
−g(0) Λ(x)O(x) (3.1)

with a scalar operator O of dimension ∆ = 3.7 The dual gravity description of such RG

flows is provided by five-dimensional Einstein gravity coupled to a scalar field,

S =
1

16πGN

∫
d5x
√
−g
[
R− 1

2
(∂φ)2 − V (φ)

]
, (3.2)

with potentials of the form

V (φ) =
1

L2

[
−12− 3

2
φ2 +O(φ4)

]
. (3.3)

Solutions to the bulk equations of motion approach AdS5 with radius L in the near-

boundary region φ→ 0,

ds2 → L2

ζ2

(
dζ2 + dx · dx

)
, (3.4)

which is dual to the UV fixed point. The leading near-boundary mode of the scalar with

mass m2L2 = ∆ (∆− 4) = −3 is φ ∼ Λζ, where Λ is interpreted as the source of the dual

operator O.

3.1 Background equations of motion

Thermal equilibrium states in flat space are holographically described by black-brane solu-

tions to (3.2) that preserve Euclidean symmetry in the spatial directions [14, 78]. Choosing

a convenient gauge for the radial coordinate, they can be written as

ds2 = g(0)
mndxmdxn = e2A(u)

[
−f(u)dt2 + dx2

]
+

L2

4u2f(u)
du2 , (3.5)

where f(u) has a simple zero at the horizon and the Hawking temperature T and entropy

density s are given by

T =
−f ′(u) eA(u)

2πL

∣∣∣∣∣
u=1

, s =
e3A(u)

4GN

∣∣∣∣∣
u=1

. (3.6)

7We restrict ourselves to operators of dimension ∆ = 3 because the holographic renormalisation has

already been done for this class of holographic RG flows, see appendix C for details.
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The residual scaling symmetry, inherited from the UV CFT, can be used to set the horizon

position to u = 1, effectively expressing all dimensionful quantities in units of tempera-

ture. The equations of motion that follow from the action (3.2) take the following form

in the gauge (3.5):

φ′′ +

(
4A′ +

1

u

)
φ′ +

f ′

f
φ′ − L2

4u2f

(
dV

dφ

)
= 0 , (3.7a)

A′′ +
1

u
A′ +

1

6

(
φ′
)2

= 0 , (3.7b)

f ′′ +

(
4A′ +

1

u

)
f ′ = 0 , (3.7c)

6A′f ′ + f
[
24
(
A′
)2 − (φ′)2]+

L2

2u2
V = 0 , (3.7d)

where primes denote derivatives with respect to u. The system is partly redundant in the

sense that the constraint (3.7d) and its derivative are algebraically given in terms of the

other three equations:(
d

du
+

2

u

)
(3.7d) = −2f

dφ

du
(3.7a) +

(
48fA′ + 6f ′

)
(3.7b) + 6A′(3.7c) . (3.8)

For vanishing scalar, φ = 0, eqs. (3.7) are solved by the AdS5-black brane background:

A(u) =
1

2
log

[
(πTL)2

u

]
, f(u) = 1− u2 . (3.9)

3.2 Equations for metric perturbations

We will now present the dual gravity description of the (field-theory) metric perturbations

we discussed in section 2. Generally, the external metric g(0)µν of QFTs with a holographic

dual prescribes the value of the dual dynamical bulk metric gmn at the AdS boundary [17].

Perturbations hµν of the field-theory metric source changes in the bulk metric, which in

turn encode the response of the QFT stress tensor 〈Tµν〉 [67, 79]. Denoting the field-theory

directions by xµ = (t, x, y, z) and maintaining a radial gauge guµ = 0, we will write the

perturbed bulk metric as

ds2 = gmndxµdxn = g(0)
mndxmdxn + ε g(1)

µν dxµdxν + ε2 g(2)
µν dxµdxν +O(ε3) , (3.10)

where g
(0)
mn is the background metric (3.5), ε g

(1)
µν contains the sourced metric perturbations

at the boundary, and ε2 g
(2)
µν describes their O(ε2) backreaction on the bulk. The form

of g
(1)
µν and g

(2)
µν varies depending on which of the three metric perturbations (2.14), (2.16)

and (2.18) we turn on. However, none of these transverse-vector perturbations source linear

fluctuations of the scalar field at O(ε), and fluctuations of φ at O(ε2) do not affect g
(2)
xy .8

8Metric perturbations in the scalar sound channel, on the other hand, would source linear fluctuations of

φ. It is for this technical reason that we restrict ourselves to perturbations in the transverse shear channel.

The drawback is that this only gives us access to five independent combinations of transport coefficients,

eq. (1.2), as explained in section 2.2.
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Turning on {hxz(t), hyz(t)}. The metric perturbation (2.14) corresponds to

1

2
g(1)
µν dxµdxν = e2A(u)

[
H(b)
xz e
−iq0tH(1t)(u, q0) dxdz

+H(b)
yz e
−ip0tH(1t)(u, p0) dydz

]
, (3.11)

where Einstein’s equations at order O(ε) reduce to a frequency-dependent equation for the

function H(1t),

H(1t)′′(u, ω) +

(
1

u
+ 4A′ +

f ′

f

)
H(1t)′(u, ω) +

e−2AL2 ω2

4u2f2
H(1t)(u, ω) = 0 , (3.12)

normalised to H(1t)(u = 0) = 1 at the boundary. The xy-component of the resulting

backreaction at O(ε2) is conveniently parameterised as

g(2)
xy = e2A(u)H(b)

xz H
(b)
yz e

−ip0t−iq0tH(2tt)(u, q0, p0) (3.13)

so that the xy-component of Einstein’s equations at O(ε2) becomes

H(2tt)′′(u, q0, p0) +

(
1

u
+ 4A′ +

f ′

f

)
H(2tt)′(u, q0, p0) +

e−2AL2(q0 + p0)2

4u2f2
H(2tt)(u, q0, p0)

=
e−2AL2q0p0

4u2f2
H(1t)(u, q0)H(1t)(u, p0) +H(1t)′(u, q0)H(1t)′(u, p0) . (3.14)

The fluctuation H(2tt) is not sourced by an explicit deformation of the boundary metric,

H(2tt)(u = 0) = 0, but only by the backreaction of the first-order perturbations g
(1)
µν .

Turning on {htx(z), hty(z)}. The metric perturbation (2.16) corresponds to

1

2
g(1)
µν dxµdxν = e2A(u)

[
H

(b)
tx e

iqzzH(1z)(u, qz) dtdx+H
(b)
ty e

ipzzH(1z)(u, pz) dtdy
]
, (3.15)

where Einstein’s equations at order O(ε) reduce to a momentum-dependent equation for

the function H(1z),

H(1z)′′(u, ω) +

(
1

u
+ 4A′

)
H(1z)′(u, ω)− e−2AL2 ω2

4u2f
H(1z)(u, ω) = 0 , (3.16)

normalised to H(1z)(u = 0) = 1 at the boundary. The xy-component of the resulting

backreaction at O(ε2) is conveniently parameterised as

g(2)
xy = e2A(u)H

(b)
tx H

(b)
ty eiqzz+ipzzH(2zz)(u, qz, pz) (3.17)

so that the xy-component of Einstein’s equations at O(ε2) becomes

H(2zz)′′(u, qz, pz) +

(
1

u
+ 4A′ +

f ′

f

)
H(2zz)′(u, qz, pz)−

e−2AL2 (qz + pz)
2

4u2f
H(2zz)(u, qz, pz)

=
e−2AL2qzpz

4u2f2
H(1z)(u, qz)H

(1z)(u, pz)−
1

f
H(1t)′(u, qz)H

(1z)′(u, pz) . (3.18)

The fluctuation H(2zz) is not sourced by an explicit deformation of the boundary metric,

H(2zz)(u = 0) = 0.
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Turning on {hty(z), hxz(t)}. The metric perturbation (2.18) corresponds to

1

2
g(1)
µν dxµdxν = e2A(u)

[
H

(b)
ty e

ipzzH(1z)(u, pz) dtdy +H(b)
xz e
−iq0tH(1t)(u, q0) dxdz

]
, (3.19)

where Einstein’s equations at order O(ε) reduce to eqs. (3.12) and (3.16) for H(1t) and H(1z)

respectively.9 The xy-component of the resulting backreaction at O(ε2) is conveniently

parameterised as

g(2)
xy = e2A(u)H

(b)
ty H(b)

xz e
−iq0t+ipzzH(2tz)(u, q0, pz) (3.20)

so that the xy-component of Einstein’s equations at O(ε2) becomes

H(2tz)′′(u, q0, pz) +

(
1

u
+ 4A′ +

f ′

f

)
H(2tz)′(u, q0, pz)

−
e−2AL2

(
−q2

0 + f p2
z

)
4u2f2

H(2tz)(u, q0, pz) =
e−2AL2q0pz

4u2f2
H(1t)(u, q0)H(1z)(u, pz) . (3.21)

The fluctuation H(2tz) is not sourced by an explicit deformation of the boundary metric,

H(2tz)(u = 0) = 0.

4 Solving Einstein’s equations

In the previous section we introduced a class of non-conformal holographic models and

presented the corresponding equations of motion for static black-brane backgrounds (sub-

section 3.1) and for metric fluctuations around these backgrounds (subsection 3.2), sourced

by perturbations (2.14), (2.16), (2.18) of the field-theory metric. Our next goal is to de-

termine the response of the field-theory stress tensor 〈Tµν〉 to these perturbations. To this

end, we need to find solutions to the bulk equations of motion that satisfy the appropriate

boundary conditions at the AdS boundary and at the horizon. The stress tensor is then

encoded in the near-boundary expansion of the bulk metric [79, 80].

In this section we want to see how far we can get solving for fluctuations of the bulk met-

ric around an arbitrary background solution without specifying the scalar potential (3.3)

beyond the mass term. The results of this section therefore apply to all holographic RG

flows triggered by a scalar operators of dimension ∆ = 3, at any value of the temperature.

We begin by writing down the near-horizon and near-boundary expansion of a general

background solution in subsection 4.1. The former is needed to identify which boundary

conditions to impose on metric fluctuations at the horizon while the latter is necessary for

the computation of 〈Tµν〉. In subsection 4.2 we turn to fluctuations of the bulk metric: we

impose the appropriate boundary conditions, perform the hydro expansion up to second

order in momenta, determine local solutions near horizon and boundary, and try to find

9Moreover, H(1t) and H(1z) are again normalised to 1 at the boundary and, as we will discuss in

section 4.2, are subject to the same boundary conditions at the horizon as they are in cases (3.11) and (3.15).

Hence H(1t) and H(1z) here are indeed the same as in perturbations (3.11) and (3.15).
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global solutions connecting the two. We managed to solve for all but five of the hydro

metric fluctuations analytically, and we found integral expressions for another four.10

We appreciate that this is a rather technical section. For practical purposes, inte-

grals (4.22), which yield the sub-leading boundary modes for four hydro metric fluctuations,

make up the central result we will refer to in subsequent sections.

4.1 Local analysis of background solutions

Near-horizon expansion. The fields A(u), f(u) and φ(u) satisfy a system of three

second-order equations (3.7a)–(3.7c) and one first-order equation (3.7d). The coefficients

in the local series solution around the horizon are not constrained by (3.7d) thanks to the

redundancy (3.8). The general local near-horizon solution therefore contains six integration

constants. Demanding that A and φ be regular at the horizon and that the horizon position

be at u = 1 amounts to three boundary conditions. The near-horizon expansions of A, f ,

and φ thus depend on three near-horizon modes {AH , fH , φH} and assume the form

A(u) = AH +
∑
k≥1

bAk (1− u)k , (4.1a)

f(u) = (1− u)

fH +
∑
k≥1

bfk (1− u)k

 , (4.1b)

φ(u) = φH +
L2 V ′(φH)

4fH
(1− u) +

∑
k≥2

bφk (1− u)k , (4.1c)

with series coefficients fully determined by the near-horizon modes and the given potential.

Near-boundary expansion. The general local near-boundary solution to (3.7) con-

tains six integration constants, two of which we fix by demanding that the spacetime be

asymptotically AdS5,

A(u) = −1

2
log(u) +O

(
u0
)
, f(u) = 1 +O(u) . (4.2)

The redundancy (3.8) implies that at each order in u, the four equations of motion (3.7)

only provide three independent algebraic equations which determine the corresponding

series coefficients of A, f and φ. When we reach the order of one of the remaining four

integration constants (the sub-leading modes of A and f , and the two modes of the scalar

φ), then the three algebraic equations fail to fix these (free) parameters. Instead, either only

two of the algebraic equations are independent at this order, or one of them restricts the

form of potentials V , eq. (3.3), compatible with the requirement of asymptotically AdS5.

10Curiously, it turns out that the one hydro metric fluctuation for which we did not find a solution cancels

out in the expression for 〈Tµν〉 presented in subsection 5.1.
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One finds that near-boundary solutions take the form

A(u) =
1

2
log

(
Ab
u

)
−
φ2
L

24
u+

∑
k≥2

cAk u
k , (4.3a)

f(u) = 1 + fb u
2 + u2

∑
k≥1

cfku
k , (4.3b)

φ(u) = φL
√
u+ φSL u

3/2 + u3/2
∑
k≥1

cφku
k , (4.3c)

with series coefficients fully determined by V and the four boundary modes {Ab,fb, φL, φSL},
and that the potential must satisfy11

4!
d4V

dφ4
= − 1

12L2
. (4.4)

As the local near-boundary solution cannot depend on more than four free parameters,

the three independent equations coming from (3.7) must succeed in fixing the three cor-

responding series coefficients of A, f , and φ to all orders beyond the fields’ sub-leading

modes. In particular, no further constraints on the potential V (φ) can arise.

4.2 Solutions for metric perturbations

Boundary conditions. In order to compute the retarded response of the stress tensor,

time-dependent perturbations of the bulk metric need to represent incoming waves at the

horizon [18, 19] while static perturbations are simply required to be regular at the horizon.

Let us define momenta in Fraktur as the dimensionless combination

w ≡ Lω

2fHeAH
=

ω

4πT
, (4.5)

where we used expression (3.6) for the temperature. The incoming-wave solution to

eq. (3.12) and the regular solution to eq. (3.16) take the form

H(1t)(u, ω) = (1− u)−iwK(1t)(u, ω) , (4.6a)

H(1z)(u, ω) = (1− u)K(1z)(u, ω) , (4.6b)

where K(1α), α ∈ {t, z}, are analytic at the horizon and normalised to 1 at the boundary.

The first-order perturbations dictate the form of the second-order fluctuations they source.

Investigating eqs. (3.14), (3.18), (3.21) shows that

H(2tt)(u, q0, p0) = (1− u)−iq0−ip0 K(2tt)(u, q0, p0) , (4.7a)

H(2zz)(u, qz, pz) = K(2zz)(u, qz, pz) , (4.7b)

H(2tz)(u, q0, pz) = (1− u)−iq0 K(2tz)(u, q0, pz) , (4.7c)

where K(2β), β ∈ {tt, zz, tz}, are analytic at the horizon and vanish at the boundary.

11Note that superpotentials W which lead to L2 V = −12 − (3/2)φ2 + O
(
φ4
)
, i.e. LW = − (3/2) −

φ2/8+O
(
φ4
)
, automatically ensure that the condition (4.4) is satisfied. We believe that this condition was

overlooked in ref. [49].
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Hydrodynamic gradient expansion. To match the holographic result for 〈T xy〉 with

the general hydro form discussed in section 2.2, we need to turn on sources that admit an

expansion in small gradients/momenta. We therefore expand the metric fluctuations as

K(1α)(u, ω) = K
(1α)
0 (u) +K

(1α)
1 (u)ω +K

(1α)
2 (u)ω2 +O(w3) , α ∈ {t, z} (4.8)

K(2β)(u, q, p) = K
(2β)
(0,0)(u) +

[
K

(2β)
(1,0)(u) q +K

(2β)
(0,1)(u) p

]
+
[
K

(2β)
(2,0)(u) q2+K

(2β)
(1,1)(u) q p+K

(2β)
(0,2)(u) p2

]
+(O(q, p))3 , β ∈ {tt, zz, tz} .

To simplify the discussion we shall use a to label the metric perturbations and j to

denote the order in the hydro expansion, i.e. j ∈ {0, 1 . . .} for a ∈ {1t, 1z} and j ∈
{(0, 0), (1, 0), (0, 1) . . .} for a ∈ {2tt, 2zz, 2tz}.

Expanding the equations of motion (3.12), (3.16), (3.14), (3.18), (3.21) in momenta

reveals that not all of the K
(a)
j are independent. Firstly, K

(2tt)
(1,0) and K

(2tt)
(0,1) satisfy the

same equation and boundary conditions and are thus identical. As a consequence the

same holds for K
(2tt)
(2,0) and K

(2tt)
(0,2). Furthermore, K

(1z)
1 satisfies a linear and homogeneous

equation. The solution that is regular at the horizon and vanishes at the boundary is

identically zero. The same is then true for K
(2zz)
(1,0) , K

(2zz)
(0,1) , K

(2tz)
(0,0) , K

(2tz)
(1,0) , K

(2tz)
(0,1) , K

(2tz)
(2,0) , and

K
(2tz)
(0,2) which all vanish identically. Finally, K

(2zz)
(2,0) and K

(2zz)
(0,2) are also subject to the same

equation and boundary conditions and are therefore identical. These identities essentially

follow from simple symmetry properties and the fact that the considered boundary metric

perturbations (2.14), (2.16), (2.18) do not source all 24 possible bulk fluctuations K
(a)
j .

Local solutions. The K
(a)
j have been defined to be analytic at the horizon where the

local solution thus depends on a single near-horizon mode Z
(a)
j :

K
(a)
j (u) = Z

(a)
j +

∑
s≥1

λ
(a)
j,s (1− u)s . (4.9)

The equations of motion (3.12), (3.16), (3.14), (3.18), (3.21) also show that solutions can

be expanded near the boundary as

K
(a)
j = X

(a)
j + k

(a)
j,1 u+ Y

(a)
j u2 +

∑
s≥3

k
(a)
j,s u

s + log u
∑
s≥2

l
(a)
j,s u

2 , (4.10)

with leading mode X
(a)
j and sub-leading mode Y

(a)
j . The boundary conditions discussed

around eqs. (4.6) and (4.7) amount to

X
(1α)
0 = 1 , X

(1α)
j≥1 = 0 , α ∈ {t, z} ,

X
(2β)
j = 0 , β ∈ {tt, zz, tz} . (4.11)

Global solutions. Some of the K
(a)
j (u) can be solved for analytically. Using the con-

straint (3.7d) on the background, ∂uK
(1t)
0 and ∂uK

(2tt)
(0,0) are found to satisfy homogeneous
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linear first-order equations. The unique regular solutions that are normalised to 1 and 0

at the boundary respectively are

K
(1t)
0 = 1 , K

(2tt)
(0,0) = 0 . (4.12)

This in turn renders the equations satisfied by K
(2tt)
(1,0) and K

(2tt)
(2,0) homogeneous. The unique

regular solutions that vanish at the boundary are identically zero,

K
(2tt)
(1,0) = 0 , (4.13)

K
(2tt)
(2,0) = 0 . (4.14)

Likewise, employing the constraint (3.7d) and replacing A′(u) using eq. (3.7c) one can

successively solve for K
(1z)
0 , K

(2zz)
(0,0) , and K

(1t)
1 :

K
(1z)
0 =

f(u)

1− u
, K

(2zz)
(0,0) = 1− f(u) , (4.15)

K
(1t)
1 = − i

4πT
log

(
f(u)

1− u

)
. (4.16)

Finally, comparing the corresponding equations of motion reveals that

K
(2zz)
(2,0) = − (1− u)K

(1z)
2 +K

(2tz)
(1,1) . (4.17)

This leaves us with five of the initial 24 functions K
(a)
j still undetermined:

K
(1z)
2 , K

(1t)
2 , K

(2tt)
(1,1) , K

(2zz)
(1,1) , K

(2tz)
(1,1) . (4.18)

We did not manage to solve for K
(1z)
2 , but we can do a little better with the other four.

Owing to the residual gauge symmetry at second order O(ε2) in metric perturbations, their

equations of motion only depend on the functions’ derivatives and take the form

d

du

[
u f(u) e4A(u) d

du
K

(a)
j (u)

]
= u f(u) e4A(u) Υ

(a)
j (u) , (4.19)

where

K
(a)
j ∈

{
K

(1t)
2 , K

(2tt)
(1,1), K

(2zz)
(1,1) , K

(2tz)
(1,1)

}
. (4.20)

The explicit expressions for the Υ
(a)
j , which only depend on the background, are written

in eq. (B.1) in appendix B. Using that the four K
(a)
j at hand are zero at the boundary and

that the regularity condition (4.9) implies that the square bracket in eq. (4.19) vanishes at

the horizon, we can formally integrate eq. (4.19) to

K
(a)
j (u) =

u∫
0

dv
1

v f(v) e4A(v)

v∫
1

dww f(w) e4A(w) Υ
(a)
j (w) . (4.21)
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Expanding the solution near the boundary (see appendix B for details) we can read off the

corresponding sub-leading modes,

Y
(a)
j =

1

8π2T 2

(
f2
H e

2AH

4Ab

)±
(

1−
φ2
L

8

)

−
1∫

0

dw

[
4w f(w) e4A(w)

Υ
(a)
j (w)

Ab L2
∓ 1

w2

(
1−

φ2
L

12
w

)] , (4.22)

where the upper signs refer to K
(a)
j ∈

{
K

(2tt)
(1,1), K

(2zz)
(1,1) , K

(2tz)
(1,1)

}
and the lower signs to

K
(a)
j = K

(1t)
2 . In the conformal case φ = 0, eq. (3.9), the integrals can be performed

analytically, resulting in(
Y

(1t)
2 , Y

(2tt)
(1,1) , Y

(2zz)
(1,1) , Y

(2tz)
(1,1)

)
φ→0−−−→

(
−5 + 4 log 2

32π2T 2
,

1− log 2

8π2T 2
, 0,

1

8π2T 2

)
. (4.23)

5 Analytic results for second-order transport

This section contains our analytic results for second-order transport in the class of non-

conformal holographic models introduced in section 3. We provide explicit formulae for

the five second-order coefficients (1.2) in subsection (5.1). They apply to all holographic

RG flows triggered by a scalar operator of dimension ∆ = 3, at any value of the tem-

perature. Notably, we find that the particular combination H̃ ≡ 2ητπ − 2 (κ− κ∗) − λ2

vanishes identically in this class of models. In subsection (5.2) we prove that the identity

H = 2ητπ − 4λ1 − λ2 = 0, which is universally satisfied by infinitely strongly coupled holo-

graphic fluids with conformal symmetry [42], still holds when taking into account leading

non-conformal corrections to the transport coefficients.

5.1 Formulae for transport coefficients

To compute the transport coefficients we need to match the effective hydro result for the

field-theory stress tensor 〈Tµν〉 with the corresponding holographic result. After a suitable

renormalisation procedure, the latter can be read off from the near-boundary expansion

of the dual bulk metric [79, 80]. Details on this calculation can be found in appendix C.

Once we apply the solutions for the bulk metric perturbations from the previous section,

the result will depend on the near-boundary modes {Ab, fb, φL, φSL} of the background,

on the temperature T which sets the unit of momenta, and on the sub-leading modes{
Y

(1z)
2 , Y

(1t)
2 , Y

(2tt)
(1,1) , Y

(2zz)
(1,1) , Y

(2tz)
(1,1)

}
of the metric perturbations (4.18) without closed-form

solutions. We can somewhat simplify the result by making use of the fact that f ′(u) satisfies

the first-order equation (3.7c). Imposing the requirement of asymptotically AdS5, eq. (4.3),

it can be integrated to give

f ′(u) = 2fb
A2
b e
−4A(u)

u
. (5.1)
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Evaluating this at the horizon and using expressions (3.6) for temperature T and entropy

density s reveals that

A2
b = −

(
4πGNL

fb

)
s T . (5.2)

Finally, we can re-express the leading- and sub-leading modes φL and φSL of the scalar

in terms of source Λ and expectation value 〈O〉 of the scalar operator, employing rela-

tions (C.9) and (C.21) from the holographic renormalisation.

We are ready at last to present the holographic result for 〈Tµν〉 in units of the field-

theory quantities T , s, Λ, and 〈O〉. The background stress tensor at O(ε0) takes the

ideal-fluid form

T̄µν =


ε̄

p̄

p̄

p̄

 (5.3)

with energy density

ε̄ =
3

4
sT − 1

4
Λ 〈O〉 (5.4)

and pressure12

p̄ =
1

4
sT +

1

4
Λ 〈O〉 . (5.5)

For each of the perturbations (2.14), (2.16), (2.18), the leading response of the trans-

verse tensor component 〈T xy〉 occurs at order O(ε2) and indeed takes the expected hydro

form (2.15), (2.17), (2.19). Owing to relation (5.2), the shear viscosity assumes its universal

value in units of s [22, 25–28, 30–32]

η =
1

4π
s , (5.6)

while the second-order coefficients are given by the following expressions:

κ = − 2

fb
Y

(2tz)
(1,1) sT , (5.7a)

η τπ + κ∗ =
1

fb

(
1

32π2T 2
+ Y

(1t)
2 − Y (2tz)

(1,1)

)
sT , (5.7b)

λ1 +
κ∗

2
=

1

fb

(
1

32π2T 2
+ Y

(1t)
2 − Y (2tz)

(1,1) + Y
(2tt)

(1,1)

)
sT , (5.7c)

λ2 =
2

fb

(
1

32π2T 2
+ Y

(1t)
2 + Y

(2tz)
(1,1)

)
sT , (5.7d)

λ3 − 2κ∗ =
4

fb
Y

(2zz)
(1,1) sT . (5.7e)

12In the conformal case φ = 0, eq. (3.9), this reduces to ε̄ = 3p̄ = 3π3L3

16GN
T 4 or ε̄ = 3p̄ = 3π2

8
N2T 4 for

N = 4 specifically [81].
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The solutions for the Y
(a)
j that appear in eq. (5.7) are stated in eq. (4.22). The fact that

〈T xy〉 assumes the form dictated by hydrodynamics is a non-trivial check on our compu-

tations. In particular, the correct result for η relies on identities (4.13) and (4.16), while

identities (4.12) and (4.15) are essential to ensuring that the second-order responses (2.15)

and (2.17) both reproduce the same pressure as the background stress tensor (5.3) does.

We further note that the dependence of the second-order coefficients (5.7) on Y
(1z)

2

cancels out as a consequence of relation (4.17). The five a-priori independent combina-

tions (5.7) hence only depend on the four sub-leading modes
{
Y

(1t)
2 , Y

(2tt)
(1,1) , Y

(2zz)
(1,1) , Y

(2tz)
(1,1)

}
given by eq. (4.22). In particular, there exists one linear combination of second-order

coefficients that is independent of the Y
(a)
j :

H̃ ≡ 2η τπ − 2 (κ− κ∗)− λ2 = 0 . (5.8)

This identity does not depend on a particular background solution and therefore holds

for all holographic RG flows triggered by a scalar operator of dimension ∆ = 3, at any

value of the temperature. We would also like to emphasise that it crucially relies on the

global solutions (4.12)–(4.17) we found for some of the metric perturbations. Accordingly,

identity (5.8) cannot simply follow from Ward identities which rely only on the local near-

boundary solutions [79, 82]. To our knowledge, the only holographic theories in which

all transport coefficients entering H̃ have been computed are planar N = 4 (at infinite ’t

Hooft coupling [3, 23, 24] as well as including leading finite coupling corrections [43, 83–88])

and the non-conformal Chamblin-Reall background [47]. In both cases H̃ vanishes in the

infinite coupling limit, but it becomes non-zero when taking into account finite coupling

corrections in N = 4.

We conclude this subsection by illustrating the usability of eqs. (5.7). They allow

for the straightforward computation of the second-order coefficients (1.2) for any given

background solution A(u), f(u), φ(u) of Einstein’s equations (3.7) coupled to a scalar with

potential V , eq. (3.3): simply extract horizon and boundary modes of the background

according to eqs. (4.1) and (4.3), perform integrals (4.22) over the background to compute

the four Y
(a)
j , and plug the result into eqs. (5.7). For instance, the values (4.23) of the Y

(a)
j

in the conformal case, eq. (3.9), readily reproduce the known results for all second-order

transport coefficients in conformal holographic fluids (κ∗ = 0) [3, 23],

{ κ, ητπ, λ1, λ2, λ3 } =
( s

8π2T

)
{ 2, 2− log 2, 1, −2 log 2, 0 } , (5.9)

where for N = 4 specifically s/T = π2N2T 2/2.

5.2 Proof that H = 0 to leading order away from conformality

We will now prove that, to leading order in the deviation from conformality, H = 2ητπ −
4λ1 − λ2 vanishes for any uncharged holographic CFT4 deformed by a relevant scalar

operator of dimension ∆ = 3. From eq. (5.7), H takes the form

H = − 4

fb

(
1

32π2T 2
+ Y

(1t)
2 + Y

(2tt)
(1,1)

)
(5.10)
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in such theories, where Y
(1t)

2 and Y
(2tt)

(1,1) are given by expression (4.22), combined with

eq. (B.1). A priori, Y
(1t)

2 and Y
(2tt)

(1,1) depend on both background fields A(u), f(u) and their

boundary and horizon modes {Ab, fb} and {AH , fH}. Replacing A(u) with its analytic

solution, eq. (5.1),

A(u) =
1

4
log

(
2fbA

2
b

u f ′(u)

)
, (5.11)

however, also cancels the explicit dependence on Ab and AH in eq. (5.10) and H becomes a

function of fb and f(u) only, though it depends on the latter through a complicated integral

over a rational functional of f(u) and its derivatives. Yet, close to the UV-fixed point we

can expand the integrand in the deviation δf(u) from the conformal solution (3.9),

f(u) = 1− u2 + δf(u) , (5.12a)

f(u→ 0) ∼ 1 + (−1 + δfb)u
2 , f(u→ 1) ∼ (2 + δfH) (1− u) . (5.12b)

To linear order in δf , the result for H is

H =
1

2π2T 2

− 1

4fb
+

1

4
+

+

1∫
0

dw
[
P (u)δf ′′(u) +Q(u)δf ′(u) +

(
Q′(u)− P ′′(u)

)
δf(u)

] , (5.13)

where we defined

P (u) ≡ (1 + u) log (1 + u)

8u2
, (5.14)

Q(u) ≡
u
(
1 + 2u− 3u2

)
− (1 + u)2 (2− 3u) log (1 + u)

8u3 (1− u2)
. (5.15)

Integrating by parts and inserting the near-boundary and near-horizon behaviour of δf(u),

eq. (5.12b), one finds that H indeed vanishes to first order in δf . This proves that,

even when taking into account the leading non-conformal corrections to second-order

transport caused by an arbitrary scalar operator of dimension ∆ = 3, the combination

H = 2ητπ − 4λ1 − λ2 remains zero in strongly coupled holographic fluids.

6 Numerical results for second-order transport

This section contains our numerical results for second-order transport in non-conformal

holographic liquids. In subsection 6.1 we present the leading non-conformal corrections to

second-order hydro coefficients. They only depend on the mass term in the scalar potential

and are therefore common to all holographic RG flows triggered by a scalar operator of

dimension ∆ = 3. In subsection 6.2 we introduce two specific examples of holographic

RG-flow families. We plot and discuss our numerical results for the transport coefficients

along these flows in subsection 6.3. In subsection 6.4 we exploit known relations between

transport coefficients, which must hold if the local entropy production is to be positive, in

order to extend our numerical results to seven second-order coefficients.
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6.1 Leading non-conformal correction to second-order coefficients

All holographic RG-flows described by (3.2) and (3.3) share the same UV fixed point, dual

to the AdS5-black brane geometry (3.9) with vanishing scalar φ = 0. At high temperatures

(compared to the scalar source Λ), φ remains close to zero and can be treated as a small

perturbation of the conformal background. Its leading backreaction on the geometry occurs

at quadratic order O(φ2) and can be computed analytically as we show in appendix D. The

result only depends on the quadratic mass term in the bulk potential V (φ) and is therefore

the same for all holographic RG-flows triggered by a scalar operator of dimension ∆ = 3.

Taking the result for the backreaction (eqs. (D.3), (D.4), (D.10), (D.12), and (D.13))

and plugging it into integrals (4.22) to compute the deviation of the Y
(a)
j from their con-

formal values (4.23), we obtain the leading non-conformal corrections to the transport

coefficients via eq. (5.7). We were not able to perform the required integrals over the

backreaction analytically, but they are easily evaluated numerically.

Thanks to identities H̃ = 2ητπ − 2 (κ− κ∗) − λ2 = 0 and H = 2ητπ − 4λ1 − λ2 = 0,

which we proved to hold when taking into account leading non-conformal corrections in

subsection (5.2), only three of the five transport coefficients (1.2) are independent. The

results for κ, λ2, and λ1 + λ3/4 are13

κ = 2
( s

8π2T

)(
1− 4.5979 · 10−3 (Λ/T )2

)
+O

(
(Λ/T )4

)
(6.1a)

λ2 = −2 log 2
( s

8π2T

)(
1 + 4.9253 · 10−3 (Λ/T )2

)
+O

(
(Λ/T )4

)
(6.1b)

λ1 + λ3/4 =
( s

8π2T

)(
1 + 2.5506 · 10−3 (Λ/T )2

)
+O

(
(Λ/T )4

)
, (6.1c)

while the other two combinations of transport coefficients satisfy

ητπ + κ∗ = κ+ λ2/2 , λ1 + κ∗/2 = κ/2 . (6.2)

The numerical integration over the backreaction can be done to very high accuracy, but

we chose to only display the first five digits in eq. (6.1). By checking the identity H = 0

and by comparing results obtained when writing cancelling divergences in the integrands

in different ways, we could estimate the absolute numerical error to be smaller than 10−14.

We conclude this subsection by emphasising again that the leading non-conformal

corrections (6.1) and (6.2) are common to all holographic RG-flows triggered by a scalar

operator of dimension ∆ = 3.

6.2 Two simple families of holographic RG flows

Potential V(1). The first family V(1) of potentials that we are going to investigate has

recently been introduced in ref. [89]. It derives from a family of quartic superpotentials W

LW = −3

2
− φ2

8
+

φ4

16φ2
m

, (6.3)

13Note that λ3, as opposed to κ∗, does not vanish for conformal fluids in general [6, 65]. It does, however,

vanish in conformal holographic theories at strictly infinite coupling [23].
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resulting in

V(1) = 8

[(
∂W

∂φ

)2

− 2

3
W 2

]

=
1

L2

[
−12− 3

2
φ2 − 1

12
φ4 +

6 + φ2
m

12φ4
m

φ6 − 1

48φ4
m

φ8

]
. (6.4)

The potential V(1) has a maximum at φ = 0 and a minimum at the free parameter φm.

Close to φ = φm, the potential takes the form

L2 V(1) = −12
L2

L2
IR

+
m2

IRL
2

2
(φ− φm)2 +O

(
(φ− φm)3

)
, (6.5)

yielding a second asymptotically AdS5-region, dual to an IR fixed point, with a smaller

AdS radius,

LIR ≡
(

1 +
φ2
m

24

)−1

L , (6.6)

and a positive mass,

m2
IRL

2 = 12 +
φ2
m

3
. (6.7)

The potential V(1) thus represents a family of RG flows between a UV CFT, deformed by a

relevant operator of dimension ∆ = 3, and an IR CFT, whose number of degrees of freedom

is smaller by a factor of (LIR/L)3/2 compared to the UV [82, 90] and which is deformed by

an irrelevant operator of dimension [16, 17]

∆IR = 2 + 2

√
1 +

m2
IRL

2
IR

4

= 4 +
48

24 + φ2
m

∈ (4, 6) . (6.8)

For smaller φm, the number of degrees of freedom in the IR increases and the operator

becomes more irrelevant in the IR. In this sense, the RG flow happens more quickly. In

the opposite limit φm →∞, the potential becomes quartic,

V(1)
φm→∞−−−−−→ 1

L2

[
−12− 3

2
φ2 − 1

12
φ4

]
, (6.9)

the number of degrees of freedom in the IR goes to zero, and the IR operator becomes

marginally irrelevant. In this sense, the RG flow happens infinitely slowly.

Potential V(2). The second family V(2) of potentials that we are going to study is given by

V(2) =
1

L2

[
−12−

(
3

2
− 1

γ2

)
φ2 +

2

γ4
(1− cosh(γφ))

]
(6.10)

=
1

L2

[
−12− 3

2
φ2 − 1

12
φ4 − γ2

360
φ6 +O(φ8)

]
.
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The potential V(2) is monotonically decreasing for any value of the free parameter γ and

hence represents an RG flow from a UV CFT towards a non-conformal IR.

For large φ, V(2) asymptotically approaches an exponential potential, L2V(2)→−eγφ/γ4,

for which the finite-temperature solution is given by the analytically known Chamblin-Reall

background [49, 91]. In the deep IR, i.e. for large values φH of the scalar at the horizon,

the near-horizon region of solutions to our model V(2) is therefore asymptotically described

by the Chamblin-Reall background. In particular, temperature T and entropy density s

take the following form in the limit of large φH [49]:

log (LT ) =

(
γ

2
− 1

3γ

)
φH + (const in φH) , (6.11a)

log (4GNs) = −φH
γ

+ (const in φH) . (6.11b)

This implies that the speed of sound cs in the deep IR is

c2
s =

dp̄

dε̄
=

d log T

d log s

T→0−−−→ 1

3
− γ2

2
. (6.12)

Importantly, black brane solutions to V(2) can be stable for arbitrarily small temperatures

only if c2
s > 0, i.e. if |γ| <

√
2/3.14 Note that for γ → 0, V(2) approaches the same quartic

potential as V(1) does in the limit φm →∞, eq. (6.9):

V(2)
γ→0−−−→ 1

L2

[
−12− 3

2
φ2 − 1

12
φ4

]
. (6.13)

Background solutions. For both families V(1) and V(2) we used the method devised in

ref. [49] to construct numerical background solutions. The essential steps are summarised

in appendix E. Figure 1 shows our numerical results for the speed of sound along the two

RG flows for a few representative values of the respective parameters ∆IR and γ.

6.3 Second-order coefficients along examples of RG flows

This section contains our numerical results for the second-order transport coefficients (1.2)

along the two families of holographic RG flows introduced in subsection 6.2. For each

of the two families V(1) and V(2), we looked at around 20 parameter values covering the

range 4.1 ≤ ∆IR ≤ 5.9 and 0 ≤ γ ≤
√

2/3 respectively. For each of these flows we

then constructed numerical background solutions at about 40 different temperatures and

computed the second-order coefficients from eq. (5.7).

Our main result is that the combination H = 2ητπ − 4λ1 − λ2 vanishes in all cases

considered, even when the individual transport coefficients deviate from their conformal

values by factors of two and more. More precisely, the absolute values we obtained for H

all lie below our numerical accuracy of order 10−5. For details on the numerics see the

14Note that this implies that the top-down GPPZ -flow with superpotential W = − 3
4

(
1 + cosh(φ/

√
3)
)

does not admit stable black-brane solutions below a certain minimum temperature as its potential ap-

proaches V → − (3/8) exp(2φ/
√

3) for large φ.
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V(1)[ΔIR = 5.9]

V(1)[ΔIR = 5.8]

V(1)[ΔIR = 5.7]
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Figure 1. The speed of sound squared c2s plotted versus operator source Λ over temperature T .

The upper plot shows our numerical results for potential V(1) for three operator dimensions ∆IR

at the IR fixed point, eq. (6.8). The lower plot shows our numerical results for potential V(2) for

four values of the parameter γ, which determines the value of c2s in the deep IR via eq. (6.12),

c2s → 1/3− γ2/2. Each curve represents a holographic RG flow triggered by a different operator.
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end of appendix E. Our result suggests that the identity H = 0 does not only hold for

holographic fluids with conformal symmetry [42–46] or close to a fixed point (see ref. [47]

and our subsection 5.2), but is in fact universally satisfied by all holographic fluids at

infinite coupling, with or without conformal symmetry.

Combined with H̃ = 2ητπ − 2 (κ− κ∗) − λ2 = 0, the result H = 0 implies that only

three of the five coefficients (1.2) are independent. In figures 2 and 3 we plot the second-

order coefficients κ, λ2, λ1 + λ3/4 and the speed of sound squared c2
s versus Λ/T . The

plots show our numerical results for V(1) and V(2), each with the largest parameter value

considered, i.e. ∆IR = 5.9 and γ =
√

2/3. Our results for smaller parameter values all lie

between these two extreme curves and vary smoothly with ∆IR and γ. The plots confirm

that the behaviour of the transport coefficients close to the UV fixed point, i.e. for small

Λ/T , is well described by the leading non-conformal correction discussed in subsection 6.1.

If we compare figures 2 and 3 with figure 1, the difference in the considered range of (Λ/T )-

values stands out. In particular, while figure 1 follows the speed of sound all the way from

the UV to the IR region, figures 2 and 3 only contain results for relatively high T and

do not capture the IR properties of V(1) and V(2). This is due to the fact that we did

not use the same radial coordinate to compute the transport coefficients that we used to

compute thermodynamic quantities such as c2
s. The latter were obtained using the scalar φ

itself as radial coordinate, as required by the method we employed to construct background

solutions [49], see appendix E for details. However, φ is not a suitable coordinate in the UV,

where it becomes small everywhere. In particular, it does not lend itself to a perturbative

treatment as in subsection 6.1 and it is ill-defined in the conformal limit φ → 0. For this

reason, we switched to the u-coordinate when dealing with metric fluctuations around the

background. While u is well-defined in the UV, it becomes problematic in the IR because

the region φ ∈ (0, φH) is mapped onto the same interval u ∈ (0, 1) for all values of φH .

At low temperatures, i.e. for large φH , the modes in the u-coordinate become very large

and render the numerics unstable. Nonetheless, we decided to work in the u-coordinate

as it allowed us to obtain independent results from the perturbative treatment of φ and

to compare every step of our calculations with the conformal case. The drawback is that

reliable results for the transport coefficients could only be obtained for relatively small

values of Λ/T . In particular, we cannot observe how the transport coefficients go back to

their conformal values in the case of V(1) or begin to approach the values assumed in the

Chamblin-Reall background in the case of V(2) (see appendix F). We leave the numerical

investigation of second-order coefficients in the deep IR for future research.

Let us take another look at figure 1. It indicates that for V(2) the influence of the

IR becomes dominant only if Λ/T & 10. We found that the same is true for V(1) with

∆IR . 5.2. In these cases it was therefore possible to obtain reliable numerical results for

larger values of Λ/T than it was in the case of V(1) with ∆IR close to 6. Figure 4 shows the

deviations of c2
s, κ, λ2, and λ1 + λ3/4 from their conformal values for V(2) with γ =

√
2/3

and γ = 0, plotted against Λ/T . Results for V(2) with 0 < γ <
√

2/3 lie between these two

curves. Results for V(1) with ∆IR . 5.2 closely follow the curve for V(2)|γ=0, in agreement

with V(1)
∆IR→4−−−−→ V(2)|γ=0 from eqs. (6.9) and (6.13).
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● V(2)γ= 2/3 

● V(1)[ΔIR = 5.9]

leading correction

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.80

1.85

1.90

1.95

2.00

Λ/T

κ
(8
π
2 T

/s
)

● V(2)γ= 2/3 

● V(1)[ΔIR = 5.9]

leading correction

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-1.50

-1.48

-1.46

-1.44

-1.42

-1.40

-1.38

Λ/T

λ
2
(8
π
2 T

/s
)

Figure 2. The second-order coefficients κ and λ2 in units of s/
(
8π2T 2

)
plotted versus Λ/T . The

plots show our numerical results for V(1) and V(2) with ∆IR = 5.9 and γ =
√

2/3 respectively. For

smaller values of ∆IR and γ, the orange and blue curve move closer to each other until they coincide

for ∆IR → 4 and γ = 0, see eqs. (6.9) and (6.13). The solid line describes the leading non-conformal

corrections (6.1) from subsection 6.1.
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● V(2)γ= 2/3 

● V(1)[ΔIR = 5.9]

leading correction

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.00

1.01

1.02

1.03

1.04

Λ/T

(λ
1
+
λ
3/
4)
(8
π
2 T

/s
)

● V(2)γ= 2/3 

● V(1)[ΔIR = 5.9]

leading correction

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.30

0.31

0.32

0.33

Λ/T

c s2

Figure 3. The second-order coefficient λ1 + λ3/4 in units of s/
(
8π2T 2

)
and the speed of sound

squared c2s plotted versus Λ/T . The plots show our numerical results for V(1) and V(2) with ∆IR = 5.9

and γ =
√

2/3 respectively. For smaller values of ∆IR and γ, the orange and blue curve move closer

to each other until they coincide for ∆IR → 4 and γ = 0, see eqs. (6.9) and (6.13). The solid line

describes the leading non-conformal corrections (6.1) from subsection 6.1.
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V(2)γ= 2/3  V(2)[γ= 0]

(λ1 + λ3/4) (8π2T/s) - 1
cs2 - 1/3

λ2 (8π2T/s) + 2 log 2
κ (8π2T/s) - 2

2 4 6 8
-4

-3

-2

-1

0

1

Λ/T

Figure 4. The deviation of the speed of sound squared c2s and the second-order coefficients λ1+λ3/4,

λ2, κ in units of s/
(
8π2T

)
from their conformal values (5.9), versus Λ/T . The solid line shows

our numerical results for V(2) with γ =
√

2/3, the dashed line refers to V2 with γ = 0. Results for

intermediate values of γ interpolate smoothly between the two lines.

6.4 Employing relations from the entropy current

Patches of local equilibrium in a fluid obey the second law of thermodynamics [2]. This

requires the existence of an entropy current whose divergence is non-negative when the

equations of motion are satisfied. A sufficient condition, which ensures that the second

law is obeyed, is to demand that at each order in the entropy current’s gradient expansion

only terms that always lead to non-negative entropy production can appear. Imposing this

condition, refs. [4, 60] found five equalities relating second-order coefficients. The same

relations were found in ref. [61] by coupling the fluid to external sources. Written in our

conventions these equalities can be found in ref. [7]. In particular, they determine κ∗, ξ5,

and ξ3 + ξ6 in terms of κ(T ) and λ3(T ) as

κ∗ = κ− T

2

dκ

dT
, ξ5 =

1

2

(
c2
sT

dκ

dT
− c2

sκ−
κ

3

)
, (6.14)

ξ3 + ξ6 =

[
1

3

(
1− 3c2

s

)
+
T

12

(
1− 6c2

s

) d

dT
+
T 2c2

s

4

d2

dT 2

]
κ+

[
1

12

(
1− 9c2

s

)
+
Tc2

s

4

d

dT

]
λ3 .

Making use of these relations we can extend our results to all five conformal coefficients

κ, ητπ, λ1, λ2, λ3 and to three non-conformal coefficients κ∗, ξ5, ξ3 + ξ6. They are shown

in figure 5.
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V(2)[γ= 0] leading correction

κ (8π2T/s)
ξ5 (8π2T/s)
κ* (8π2T/s)
λ3 (8π2T/s)

0 2 4 6 8
-6

-4

-2

0

2

Λ/T

V(2)[γ= 0] leading correction

ητπ (8π2T/s)
λ1 (8π2T/s)

(ξ3 + ξ6) (8π2T/s)
λ2 (8π2T/s)

0 2 4 6 8

-2

0

2

4

6

Λ/T

Figure 5. All five conformal second-order coefficients κ, ητπ, λ1, λ2, λ3 and three non-conformal

second-order coefficients κ∗, ξ5, ξ3 + ξ6 in units of s/
(
8π2T

)
versus Λ/T . The solid line shows our

numerical results for V(2) with γ = 0, the dashed line describes the leading non-conformal corrections

from subsection 6.1. The eight second-order coefficients were obtained applying constraints derived

from the positivity of the local entropy production as described in subsection 6.4.
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7 Conclusion and outlook

In this paper we studied second-order hydrodynamic transport in strongly coupled non-

conformal field theories. We derived new Kubo formulae for five second-order transport

coefficients valid for uncharged non-conformal fluids in (3 + 1) dimensions. We applied

these Kubo formulae to holographic RG flows triggered by a relevant scalar operator of

dimension ∆ = 3 and found expressions for the five second-order transport coefficients at

infinite coupling in terms of the holographically dual gravitational background solution.

We showed that the relation

H̃ = 2ητπ − 2 (κ− κ∗)− λ2 = 0 (7.1)

is satisfied along all such holographic RG flows. We proved that the Haack-Yarom

identity [41, 42]

H = 2ητπ − 4λ1 − λ2 = 0 , (7.2)

which is known to hold for conformal holographic fluids at infinite coupling, is also satisfied

when leading-order non-conformal corrections are included within the class of considered

RG flows. For the two specific classes of RG flows we studied numerically, we found the

Haack-Yarom identity to be satisfied all along each flow beyond perturbative non-conformal

corrections. This provides further evidence that the identity may be universally satisfied

by strongly coupled fluids [43–47, 50].

In section 2 we derived a new set of Kubo formulae, eq. (2.21), for five second-order

transport coefficients of non-conformal fluids and showed how these Kubo formulae can

be applied to strongly coupled fluids with a gravity dual. We introduced a specific class

of strongly coupled non-conformal field theories that describe an RG flow induced in the

UV by a scalar operator of dimension ∆ = 3 in section 3. We derived bulk equations of

motion both for asymptotically AdS backgrounds of the dual Einstein-scalar models and

for the metric fluctuations on such backgrounds that are relevant for the Kubo formulae.

In section 4 we solved the fluctuation equations in a hydrodynamic derivative expansion

and derived explicit integral expressions for the sub-leading modes in terms of background

data, eq. (4.22). In section 5 we presented our analytic results for second-order transport

coefficients. We determined the expressions (5.7) for five transport coefficients in terms

of the dual background data and proved that a certain linear combination of second-order

transport coefficients, H̃ = 2η τπ−2 (κ− κ∗)−λ2, vanishes identically along any RG flow in

the class considered. We showed that the Haack-Yarom identity H = 0, eq. (1.1), is obeyed

to leading order in the deviation from conformality for arbitrary holographic RG flows

triggered by a relevant scalar operator of dimension ∆ = 3. In section 6 we presented our

numerical results for second-order transport coefficients. First, we computed the leading

non-conformal corrections to the second-order coefficients. Second, we introduced two

specific families of ∆ = 3 operators and numerically found the Haack-Yarom identity to be

obeyed along both families of corresponding RG flows. Third, we plotted the independent

combinations of second-order coefficients along both classes of RG flows and found them to
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agree with the perturbative results in the appropriate high-temperature regime. Fourth, we

applied three constraints derived from positivity of the local entropy production to extend

our results to all five conformal coefficients κ, ητπ, λ1, λ2, λ3 and to three non-conformal

coefficients κ∗, ξ5, ξ3 + ξ6.

Our work points to a number of open questions. For technical reasons, we restricted

our bulk computations to transverse vector and tensor channel perturbations of the metric.

If scalar sound perturbations were included as well and an appropriate set of Kubo formu-

lae were derived, it would be possible to compute all fifteen second-order non-conformal

transport coefficients. The major technical obstacle is that these scalar sound perturba-

tions necessarily source fluctuations of the scalar field in the bulk. Nevertheless, if one

computed all fifteen second-order coefficients one could check the five relations which have

been derived from the positivity of the local entropy production [4, 60, 61].

In the presentation of our numerical results in subsections 6.3 and 6.4 we pointed

out that our choice of the radial coordinate u made it impossible to numerically access

the deep IR of the considered RG flows, despite several other advantages. As we explain

in appendix E, the IR region would become accessible if we used the scalar φ as radial

coordinate instead. We have precise expectations as to what such a numerical study would

reveal. For the first family of potentials the transport coefficients have to return to their

conformal values. For the second family of potentials they are expected to approach the

values they assume in the Chamblin-Reall background, which we list in appendix F.

Whether our proof in subsection 5.2 that H vanishes when taking into account leading

non-conformal corrections caused by an operator of dimension ∆ = 3 can be generalised

to relevant operators of arbitrary dimension 2 < ∆ < 4 is another open question. Since

the computation of H does not involve fluctuations of the bulk scalar, a change in the dual

operator dimension would require a different set of holographic counterterms but would

not affect the relevant bulk metric fluctuations.

What our results entail for the entropy current is another direction for future research.

Fluids with simple gravity duals at strong coupling have been conjectured to obey a prin-

ciple of minimal dissipation [43, 92]. The observation that the lower bound on the shear

viscosity over entropy density ratio is universally satisfied by a large class of holographic

theories [22, 25–27, 31] is a first hint in this direction since this ratio appears as coefficient

of the leading contribution to the entropy production. At second order in gradients, the

entropy current of a conformal fluid contains two terms [4]: the coefficient of the first one

vanishes if 2λ1 = κ, which is indeed true for conformal holographic fluids at infinite cou-

pling [3], while the coefficient of the second term remains unknown. The relations H̃ = 0

and H = 0 found in this work are equivalent to H = 0 and 2λ1 = κ − κ∗. It was shown

within an effective action approach to adiabatic hydrodynamics that these two relations

must hold for perfect fluids that do not produce entropy [93]. Indeed, the Haack-Yarom

identity, H = 0, seems to require either infinite coupling or adiabaticity. Even for confor-

mal fluids, the identity is violated in examples of weakly coupled systems in the kinetic

regime [94] and when finite coupling corrections are included in the hypothetical dual of
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Gauss-Bonnet gravity [43, 45, 46].15 It would be interesting to explore if the relations

H = 0 and 2λ1 = κ−κ∗ lead to cancellations in the divergence of the entropy current sim-

ilar to the conformal case. This would provide further evidence in favour of the principle

of minimal dissipation.

We think that the results of this paper will provide a valuable starting point for research

into the open questions outlined above.
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A Second-order constitutive relations

This appendix contains the explicit constitutive relations for the stress tensor of an un-

charged relativistic fluid up to second order in the gradient expansion that were used

to derive (2.9) and (2.12). Firstly, let the 4-velocity be the unit timelike eigenvector of

〈Tµν〉 and ε the corresponding eigenvalue to all orders in the gradient expansion (Landau

frame) [1, 2, 4]. Further define the projection to symmetric, traceless tensors that are

transverse to the fluid motion,

∆µν(x) ≡ uµ(x)uν(x) + gµν(0)(x) , (A.1)

A<µν> ≡ 1

2
∆µρ (Aρσ +Aσρ) ∆σν − 1

3
∆µν (∆σρAσρ) , (A.2)

the shear tensor

σµν ≡ 2∇<µuν> , (A.3)

and the vorticity tensor

Ωµν ≡ 1

2
∆µρ (∇ρuσ −∇σuρ) ∆σν . (A.4)

The constitutive relation for 〈Tµν〉 can then be written as

〈Tµν(x)〉 = ε(x)uµ(x)uν(x) + p(x)∆µν(x) + Πµν
conf.(x) + Πµν

non−conf.(x) +O(∂3) (A.5)

15Consistently, H = 0 does not follow from the generalised Onsager relations, which were derived from

an effective action for hydrodynamics in ref. [95] and which should apply to any uncharged conformal fluid.
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where

Πµν
conf.(x) ≡ −η σµν

+ η τπ

[(
uλ∇λσ

)<µν>
+

1

3
σµν (∇ · u)

]
+ κ

[
R<µν> − 2uλR

λ<µν>κuκ

]
+ λ1σλ

<µσν>λ + λ2σλ
<µΩν>λ − λ3Ωλ

<µΩν>λ (A.6)

is present in conformal and non-conformal fluids and was first derived in ref. [3], and where

Πµν
non−conf.(x) ≡ −ζ ∆µν (∇ · u)

+ η τ∗π
1

3
σµν (∇ · u) + κ∗ 2uλR

λ<µν>κuκ + λ4∇<µ log s∇ν> log s

+
(
ζ τΠ u

λ∇λ (∇ · u) + ξ1 σ
κλσκλ + ξ2 (∇ · u)2 + ξ3 ΩκλΩκλ

+ ξ4 ∆κ
λ (∇λ log s) ∆κρ (∇ρ log s) + ξ5R+ ξ6 u

κuλRκλ

)
∆µν , (A.7)

was constructed in ref. [4] and vanishes for conformal fluids.

B Sub-leading modes of metric perturbations

The functionals Υ
(a)
j that appear in eq. (4.19) are

Υ
(2tt)
(1,1)(u) =

L2

4f(u)2

(
1

u2 e2A(u)
− f ′(u)2

f2
H e

2AH

)
, (B.1a)

Υ
(2zz)
(1,1) (u) =

L2

4u2 f(u) e2A(u)
(2− f(u)) , (B.1b)

Υ
(2tz)
(1,1)(u) =

L2

4u2 f(u) e2A(u)
, (B.1c)

Υ
(1t)
2 (u) = − L2

4f(u)

 1

u2 f(u) e2A(u)

+
f + 2 (1− u) f ′ − log

(
1−u
f

) [
f
u + 4 (1− u)A′ f + (1− u) f ′

]
(1− u)2 f2

H e
2AH

 . (B.1d)

In all four cases the near-boundary expansion of the first integrand in eq. (4.21) reads

w f(w) e4A(w) Υ
(a)
j (w) = ±Ab L

2

4

(
1

w2
−
φ2
L

12

1

w

)
+O(w0) , (B.2)

where upper signs in this appendix refer to a ∈ {2tt, 2zz, 2tz}, j = (1, 1), and lower signs

refer to a = 1t, j = 2. The first integral in eq. (4.21) thus admits the expansion

v∫
1

dww f(w) e4A(w) Υ
(a)
j = ∓Ab L

2

4

(
1

v
+
φ2
L

12
log v

)
+ c

(a)
j +O(v) , (B.3)
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where the v-independent contribution c
(a)
j can be extracted via

c
(a)
j = ∓Ab L

2

4
+

0∫
1

dw

[
w f e4A Υ

(a)
j ∓

Ab L
2

4w2

(
1−

φ2
L

12
w

)]
. (B.4)

Plugging this into eq. (4.21), together with

1

v f(v)e4A(v)
=

v

A2
b

(
1 +

φ2
L

6
v +O(v2)

)
, (B.5)

one finally obtains the near-boundary expansion of the four K
(a)
j ,

K
(a)
j = ∓ L2

4Ab
u

(
1 +

φ2
L

24
u log u

)
+

1

2A2
b

(
c

(a)
j ∓

Ab L
2 φ2

L

32

)
u2 + o(u2) , (B.6)

from which one can read off the sub-leading modes

Y
(a)
j =

1

2A2
b

(
c

(a)
j ∓

Ab L
2 φ2

L

32

)
, (B.7)

yielding eq. (4.22) (recall expression (3.6) for the temperature).

C Holographic renormalisation

Holographic QFTs, like any QFT, contain UV-divergences that need to be regulated and

then cancelled by appropriate counterterms in order to obtain finite, renormalised physi-

cal quantities [17, 96]. For theories with a holographic dual in asymptotically AdS these

UV-divergences manifest themselves as near-boundary divergences of the dual gravity ac-

tion [67, 79, 82, 97, 98]. For the holographic renormalisation procedure it is convenient to

switch to a Fefferman-Graham gauge in which the asymptotically AdS-metric, eqs. (3.5)

and (3.10), takes the form

gmndxmdxn =
L2

4ρ2
dρ2 +

L2

ρ
ḡµνdxµdxν , (C.1)

ḡµν(ρ, x) = g(0)µν(x) + ρ g(2)µν + ρ2
[
g(4)µν + h(4)µν log ρ

]
+ . . . , (C.2)

the radial coordinates u and ρ being related via

u =
Ab
L2
ρ+

fb
4

(
Ab
L2
ρ

)3

+ . . . , (C.3)

ensuring that g(0)µν represents the field-theory metric. The bare gravity action can be

regulated by introducing a near-boundary cut-off ρ = ε. Denoting the outward-pointing

unit normal of the regulating surface ρ = ε by nm, n = −dρL/ (2ε), and its first and

second fundamental form by

γmn = gmn − nmnn , Kmn = γm
p∇pnn , (C.4)
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the regulated bare gravity action, eq. (3.2), including the Gibbons-Hawking term reads

Sreg(ε) =
1

16πGN

∫
ρ≥ε

d5x
√
−g
[
R− 1

2
(∂φ)2 − V

]
+

1

16πGN

∫
ρ=ε

d4x
√
−γ 2Km

m . (C.5)

The UV-divergences only depend on the fields’ leading near-boundary modes which are

fully determined by the operator dimension ∆ = 3. For the scalar potentials we con-

sider, eq. (3.3), the divergences are thus the same as for the GPPZ -flow [70], which has

been renormalised in refs. [75, 99], and can be removed by adding the following local

counterterms:

Scov
ct = − 1

8πGN

1

L

∫
ρ=ε

d4x
√
−γ
(

3 +
L2

4
R(γ) +

1

4
φ2

)
, (C.6)

Slog
ct = − 1

8πGN

∫
ρ=ε

d4x
√
−γ 1

2
log
( ε

L2

)[L3

8

(
−R(γ)µνR

µν
(γ) +

1

3
R2

(γ)

)

+
L

4

(
−φ�(γ)φ+

1

6
R(γ)φ

2

)]
, (C.7)

where R(γ)µν and �(γ) respectively denote Ricci tensor and Laplacian of the induced met-

ric γµν on the regulating surface. The explicit dependence of Slog
ct on the regulator ε

breaks the invariance under bulk diffeomorphisms that induce Weyl transformations of the

boundary metric g(0)µν . This results in the correct conformal anomaly A in the dual field

theory [75, 82, 99],

A =
4L3

16πGN

[
1

16

(
R(0)µνR

µν
(0) −

1

3
R2

(0)

)
+

1

8

(
−
(
∇(0)Λ

)2 − 1

6
R(0)Λ

2

)]
, (C.8)

where R(0)µν is the Ricci tensor of the field-theory metric g(0)µν , ∇(0) is the associated

covariant derivative, and Λ is the source of the scalar operator,

φ = Λ
√
ρ+ . . . , Λ =

√
Ab
L

φL . (C.9)

We further choose to add the following finite counterterm, corresponding to a particular

RG-scheme in which the renormalised stress tensor does not explicitly depend on the scalar

source Λ:16

Sfinite
ct =

1

2

∫
d4x
√
−g(0)

(
logAb +

1

2

)
A . (C.10)

The individual contributions to the gravity stress tensor Tµν [67],

Tµν = − 2√
−γ

δ

δγµν

(
Sreg + Scov

ct + Slog
ct + Sfinite

ct

)
, (C.11)

16Another finite counterterm that one could add is const ·
∫
ρ=ε

d4x
√
−γ φ4. For instance, if one was

interested in domain-wall solutions to a superpotential W that preserve supersymmetry at T = 0 one would

have to choose const = − 1
8πGN

2
L

4! d4W
dφ4

∣∣∣
φ=0

. Being only interested in solutions at finite T we choose to

work in a “minimal-subtraction” scheme instead, setting const = 0.
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are then as follows:

− 2√
−γ

δ

δγµν
Sreg =

1

8πGN
[K γµν −Kµν ] , (C.12)

− 2√
−γ

δ

δγµν
Scov

ct =
1

8πGN

[
− 3

L
γµν +

L

2

(
R(γ)µν −

1

2
R(γ)γµν

)
− 1

4L
γµνφ

2

]
, (C.13)

− 2√
−γ

δ

δγµν
Slog

ct = −1

2
T Aµν

(
log
( ε

L2

)
− 1

2

)
, (C.14)

− 2√
−γ

δ

δγµν
Sfinite

ct = −1

2
T Aµν

(
logAb +

1

2

)
, (C.15)

with

T Aµν ≡ −
2√
−γ

δ

δγµν

∫
d4x
√
−g(0) (−A) (C.16)

and [75, 99]

16πGN
4L3

lim
ε→0

(
L2

ε

1

2
T Aµν
)

=:
1

2
TAµν = h(4)µν −

1

2
g(0)µν

(
Λ�(0)Λ−

1

6
R(0)Λ

2

)
. (C.17)

Inserting the near-boundary solutions (4.3), (4.10) of background and metric perturbations,

and employing the identities (4.12)–(4.17) one can compute the renormalised field-theory

stress tensor:

〈Tµν〉 = gµα(0)g
νβ
(0) lim

ε→0

((
L2

ε

)
Tαβ
)
. (C.18)

To zeroth order O(ε0) in metric perturbations, 〈Tµν〉 is given by the ideal-fluid stress ten-

sor (5.3). The transverse tensor component 〈T xy〉 can be trusted up to O(ε2) as discussed in

section 2.3 and is indeed found to take the hydro form (2.15), (2.17), (2.19) for all three per-

turbations (3.11), (3.15), (3.19), with transport coefficients given by (5.5), (5.6) and (5.7).

The renormalised scalar one-point function is given by

〈O〉 = lim
ε→0

(
1

(ε2/L4)
√
−γ

δ (Sreg + Sct)

δφ/
√
ε

)
= lim

ε→0

(
L4

ε3/2

1√
−γ

(
−πφ +

δSct

δφ/
√
ε

))
, (C.19)

where

πφ = − 1

16πGN

√
−g gρρ∂ρφ (C.20)

denotes the scalar’s canonical momentum. Inserting the near-boundary solutions (4.3), one

finds to first order in metric perturbations

〈O〉 =
L3

8πGN

(
Ab
L2

)3/2

φSL +O(ε2) . (C.21)

We checked that the conformal Ward identity,

〈Tµµ〉 = 〈O〉 Λ +A , (C.22)

is satisfied to order O(ε) included as required (note that A = O(ε2)).
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D Leading backreaction of the scalar on AdS-black branes

This appendix describes the computation of the scalar’s leading backreaction on the back-

ground metric used in subsection 6.1. The calculation goes along the lines presented in

ref. [100]. Just this once we will be keeping the operator dimension ∆ general, 2 < ∆ < 4,

as it can be done without difficulty and the general form of the results might be useful in

other contexts. We thus consider potentials of the form

V (φ) = − 12

L2
+

∆ (∆− 4)

2L2
φ2 +O(φ3) . (D.1)

At zeroth order, φ = 0, the background equations of motion (3.7) are solved by the AdS5-

black brane metric (3.9), dual to the UV-CFT. To first order in φ, the regular solution to

the scalar equation of motion, eq. (3.7a), linearised around the black-brane background is

given by

φ(u) = δφ(u) ≡ φH 2F1(1−∆/4,∆/4; 1; 1− 1/u2)

= δφL u
(4−∆)/2

2F1(1−∆/4, 1−∆/4; 2−∆/2;u2)

+ δφSL u
∆/2

2F1(∆/4,∆/4; ∆/2;u2) (D.2)

with near-boundary modes

δφL = φH
Γ(∆/2− 1)

Γ(∆/4)2
, δφSL = φH

tan(π∆/4)

2π

Γ(∆/4)2

Γ(∆/2)
. (D.3)

At second order, the scalar itself remains unchanged, but it backreacts on the background

metric. Generally, the scalar backreacts on the geometry at even orders while φ itself re-

ceives corrections to its linearised solution (D.2) at odd orders. There is a minor complica-

tion concerning the boundary conditions: full non-perturbative solutions to the background

equations of motion (3.7) depend on the single integration constant φH which parameterises

the single physical parameter T/Λ. In the perturbative solution, on the other hand, we

need to pick the value of the scalar at the horizon at each order in the perturbative series.

This apparent ambiguity is resolved by the requirement that a chosen physical observ-

able remain unchanged order by order. We simply choose to hold φH fixed, meaning that

sub-leading corrections to φ(u) need to vanish at the horizon. Other possible, albeit more

complicated, choices include fixing AH or T/Λ.

A related subtlety is constituted by the fact that A(u) only enters the equations of

motion (3.7) via its derivative A′(u). This is most conveniently dealt with by separating

from the full non-perturbative A(u) = 1
2 log (Ab/u) + O(u) the part Ã(u) which vanishes

at the boundary u = 0, i.e. we write

A(u) =
1

2
log

(
Ab
u

)
+ Ã(u)

=
1

2
log

(
Ab
u

)
+

u∫
0

dv Ã′(v) . (D.4)
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The constant Ab is fixed by the full global solution of the scalar as follows. In terms of the

dimensionful ζ-coordinate, eq. (E.7), close to the AdS5 boundary we have φ ∼ (Λζ)4−∆

and A ∼ log(L/ζ), hence

A ∼ log
(

ΛLφ−1/(4−∆)
)

(D.5)

or, changing back to the u-coordinate,

A =
1

2
log


(

ΛLφ
−1/(4−∆)
L

)2

u

+O(u) , (D.6)

and hence

Ab =
(

ΛLφ
−1/(4−∆)
L

)2
. (D.7)

The value of A(u), eq. (D.4), at the horizon and the Hawking temperature, eq. (3.6), are

therefore given by

AH = log
(

ΛLφ
−1/(4−∆)
L

)
+ I , T = Λ

(
fH e

I

2π φ
1/(4−∆)
L

)
, (D.8)

where we defined

I ≡
1∫

0

du Ã′(u) . (D.9)

We emphasise again that these relations fix the observables AH and T/Λ in terms of the full

solutions for φL and Ã(u). In the particular case of a perturbative solution, they determine

AH and T/Λ order by order in the expansion parameter φH .

Let us now compute the leading, quadratic backreaction of the scalar on the geometry,

which takes the form

Ã(u) = δA(u) , f(u) = 1− u2 + δf(u) . (D.10)

The corrections δA and δf are both of order O(φ2
H) and, from eqs. (3.7b) and (3.7d),

satisfy the two independent equations

δA′′ +
1

u
δA′ = −1

6

(
δφ′
)2
, (D.11a)

δf ′ − 2

u
δf = −4

(
2− u2

)
δA′ − ∆ (4−∆)

12u
(δφ)2 −

u
(
1− u2

)
3

(
δφ′
)2
. (D.11b)

The second-order equation (3.7c) for f is redundant as it follows from the remaining three

equations (3.7a), (3.7b) and (3.7d). Demanding that δA vanish at the boundary u = 0 we

can integrate eq. (D.11a) twice and obtain

δA(u) = −
v∫

0

dv
1

v

v∫
0

dww
1

6

(
δφ′(v)

)2
(D.12)

u→0−−−→ −
φ2
L

24
u4−∆ ,
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in accordance with eq. (4.3a). Requiring that δf vanish at the horizon u = 1 we can now

integrate eq. (D.11b) to get

δf(u) = −u2

u∫
1

dv
1

v2

[
4
(
2− v2

)
δA′(v) +

∆ (4−∆)

12v
(δφ(v))2

+
v
(
1− v2

)
3

(
δφ′(v)

)2]
. (D.13)

The corresponding change in fH = −f ′(u = 1) can be read off from eq. (D.11b):

δfH =
∆ (4−∆)

12
φ2
H + 4 δA′(u = 1) (D.14)

=
∆ (4−∆)

12
φ2
H

1− ∆ (4−∆)

8

1∫
0

dv v−5
[
2F1(2−∆/4, 1 + ∆/4; 2; 1− 1/v2)

]2 .

Defining δI ≡
∫ 1

0 du δA′(u), we obtain the following expressions for temperature T and

entropy density s from (D.8):

4GNs = e3AH =
(ΛL)3

φ
3/(4−∆)
L

(
1 + 3δI +O(φ4

H)
)
, (D.15a)

T/Λ =
(2 + δfH) (1 + δI) +O(φ4

H)

2πφ
1/(4−∆)
L

. (D.15b)

Note that sub-leading corrections to the scalar,

φL = δφL +O(φ3
H) =

Γ(∆/2− 1)

Γ(∆/4)2
φH
(
1 +O(φ2

H)
)
, (D.16)

enter expressions (D.15) at the same order as δfH and δI do, so

(
Λ

πT

)4−∆

=
Γ(∆/2− 1)

Γ(∆/4)2
φH
(
1 +O(φ2

H)
)
. (D.17)

The sub-leading corrections to φL cancel, however, in the expression for the speed of sound,

which becomes17

c2
s =

dp̄

dε̄
=

d log T

d log s
=

1

3
[1− (4−∆) δfH ] +O

(
φ4
H

)
. (D.18)

17The result for c2s agrees with the one computed in ref. [100] using a different radial coordinate. Note

that the leading correction to the conformal value 1/3 is negative for all ∆, 2 < ∆ < 4.
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E Numerical construction of RG-flow geometries

In this appendix we outline our construction of numerical background solutions to the

action (3.2) for the scalar potentials V(1) and V(2) discussed in section 6. For that purpose

it is convenient to use the scalar φ as radial coordinate [49], which is assumed to increase

monotonically from the boundary φ = 0 to the horizon φ = φH > 0. Defining

eB(φ) ≡ L

2u

du

dφ
, (E.1)

the background metric (3.5) takes the form

ds2 = g(0)
mndxmdxn = e2A(φ)

[
−f(φ)dt2 + dx2

]
+
e2B(φ)

f(φ)
dφ2 . (E.2)

The residual scaling symmetry, inherited from the UV CFT, can be used to fix the value

of the scalar source to Λ = 1/L as the temperature is varied, knowing that all observables

can only depend on the dimensionless ratio T/Λ.

The equations of motion (3.7) become

4
dA

dφ
− dB

dφ
+

1

f

(
df

dφ

)
− e2B

f

(
dV

dφ

)
= 0 , (E.3a)

d2A

dφ2
−
(

dA

dφ

)(
dB

dφ

)
+

1

6
= 0 , (E.3b)

d2f

dφ2
+

[
4

dA

dφ
− dB

dφ

]
df

dφ
= 0 , (E.3c)

6

(
dA

dφ

)(
df

dφ

)
+ f

[
24

(
dA

dφ

)2

− 1

]
+ 2e2BV = 0 , (E.3d)

composed of a first-order equation for B (E.3a), two second-order equations (E.3b)–(E.3c)

for A and f , and the first-order constraint (E.3d). The system is partly redundant in the

sense that the constraint (E.3d) and its derivative are algebraically given in terms of the

other three equations:

(
d

dφ
− 2

dB

dφ

)
(E.3d) = −2f (E.3a) +

(
48f

dA

dφ
+ 6

df

dφ

)
(E.3b) + 6

dA

dφ
(E.3c) (E.4)

This redundancy prevents the constraint from restricting the series coefficients in the

local near-horizon and near-boundary solutions which thus each involve five integration

constants.
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Imposing regularity on A and B, the near-horizon expansion depends on three modes{
AH , f

φ
H , φH

}
and reads

A(φ) = AH −
1

3

V (φH)

V ′(φH)
(φ− φH) +

∑
k≥2

bA,φk (φ− φH)k , (E.5a)

f(φ) = (φ− φH)

fφH +
∑
k≥1

bf,φk (φ− φH)k

 , (E.5b)

B(φ) =
1

2
log

(
fφH

V ′(φH)

)
+
∑
k≥1

bBk (φ− φH)k , (E.5c)

with all series coefficients fixed in terms of the near-horizon modes and the chosen potential

V (φ). Inserting the near-horizon expansions of φ(u), eq. (4.1c), into eqs. (E.5) and equating

the result with the near-horizon solution of A(u) and B(u), eqs. (4.1), relates fφH to the near-

horizon mode fH in the u-coordinate, ensuring that near-horizon solutions satisfy eq. (E.1).

In particular, it follows from eq. (E.1) and φ(u)’s near-horizon expansion, eq. (4.1c), that

fH = −L
2 V ′(φH)

2

eB(φH)

L
. (E.6)

In order to determine the boundary conditions that we must impose on the fields for

the spacetime to be asymptotically AdS5, let us switch to a radial coordinate ζ in terms of

which the line element (3.5) reads

ds2 = g(0)
mndxmdxn = e2A

[
−f dt2 + dx2

]
+

L2

ζ2f
dζ2 . (E.7)

For this metric to approach AdS5 as ζ → 0, eq. (3.4), A and f need to behave as

A ∼ log

(
L

ζ

)
, f ∼ 1 . (E.8)

Combining this with the leading near-boundary behaviour of the scalar,

φ ∼ Λ ζ , (E.9)

one finds that

A = − log φ+ log (ΛL) + o(1) , f = 1 + o(1) . (E.10)

Imposing these boundary conditions and setting the sub-leading mode log (ΛL) of A to

zero by scaling the operator source Λ to Λ = 1/L, near-boundary solutions to (E.3) assume

the form

A(φ) = − log φ+O(φ2) , f(φ) = 1 +O(φ4) , B(φ) = log

(
L

φ

)
+O(φ2) . (E.11)
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Matching eq. (E.10) with the near-boundary expansions of A(u) and φ(u), eq. (4.3a),

provides the relation18

Ab =

(
ΛL

φL

)2

=
1

φ2
L

. (E.12)

To construct global solutions that connect the local solutions (E.5) and (E.11), we

employed the method developed in ref. [49]. The key step is the realisation that a decoupled

non-linear second-order equation for G(φ) ≡ A′(φ) can be derived from eqs. (E.3):19

G′(φ)

G+ V/ (3V ′(φ))
=

d

dφ
log

(
G′(φ)

G(φ)
+

1

6G(φ)
− 4G(φ)− G′(φ)

G+ V/ (3V ′(φ))

)
. (E.13)

Imposing regularity at the horizon, eq. (E.5a), global solutions to eq. (E.13) depend on the

single integration constant φH and can readily be produced numerically. Solutions for A(φ),

B(φ) and f(φ) are then obtained by simple integrations of the equations of motion (E.3).

They depend on four additional integration constants which are fixed by requiring that the

spacetime be asymptotically AdS5, eq. (E.11), and that f(φ) vanish at the horizon:

A(φ) = − log φ+

φ∫
0

dϕ

(
G(ϕ) +

1

ϕ

)
, (E.14a)

B(φ) = log

(
L

φ

)
+

φ∫
0

dϕ

(
G′(ϕ) + 1/6

G(ϕ)
+

1

ϕ

)
, (E.14b)

f(φ) =

∫ φH
φ dϕ exp [−4A(ϕ) +B(ϕ)]∫ φH
0 dϕ exp [−4A(ϕ) +B(ϕ)]

. (E.14c)

These solutions depend on the single constant φH which parameterises the single physical

parameter T/Λ = T L.

Ultimately, we are looking for global solutions A(u), f(u), φ(u) in terms of the u-

coordinate, which we found a lot more convenient when dealing with perturbations of the

metric. For this purpose, we first determine the expansion of a global solution (E.14) near

the horizon u = 1 by computing the modes AH = A(φH) and fH from relation (E.6),

and plugging the result into the near-horizon expansions (4.1) of A(u), f(u), and φ(u).

We obtain a global solution without further numerical integrations by matching this near-

horizon expansion directly with the near-boundary expansion (4.3) at an intermediate value

of u where both local solutions are valid. The fact that the near-horizon modes stem from

a global solution to the connection problem ensures that these solutions indeed display the

appropriate near-boundary behaviour, which can be verified by checking relation (E.12).

For the computation of fH it is helpful to use

G(φH) = −1

3

V (φH)

V ′(φH)
, φG(φ) = φA′(φ)

φ→0−−−→ −1 , (E.15)

18Compare with eq. (D.7).
19This possibility is hinted at by the observation that A(φ)’s near-horizon expansion turns out to be

independent of the mode fφH , and by the fact that A(φ) enters eqs. (E.3) only through its derivative.

– 43 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
1

which follow from eqs. (E.5a) and (E.11), in order to simplify expression (E.6) as follows:

fH = −L
2 V ′(φH)

2

eB(φH)

L

=

(
L2 V (φH)

6G(φH)

)
1

φH
exp

 lim
φ→0

[
log

(
−G(φH)

−G(φ)

)
+ log

(
φH
φ

)]
+

φH∫
0

dϕ
1

6G(ϕ)


= −L

2 V (φH)

6
exp


φH∫
0

dϕ
1

6G(ϕ)

 . (E.16)

Hawking temperature T and entropy density s, eq. (3.6), are then given by

T L =
fH e

AH

2π
= −L

2 V (φH)

12π

1

φH
exp


φH∫
0

dϕ

(
G(ϕ) +

1

ϕ
+

1

6G(ϕ)

) , (E.17a)

4GNs = e3AH =
1

φ3
H

exp

3

φH∫
0

dϕ

(
G(φH) +

1

ϕ

) . (E.17b)

The leading high-temperature asymptotics of (E.17) are obtained by taking the limit

φH → 0, recalling that V (0) = −12/L2,

T L
φH→0−−−−→ 1

πφH
exp

 lim
φH→0

 φH∫
0

dϕG(ϕ)

 , (E.18a)

4GNs
φH→0−−−−→ 1

φ3
H

exp

3 lim
φH→0

 φH∫
0

dϕG(ϕ)

 . (E.18b)

Note that the limit of the remaining integral does not vanish by virtue of the fact that G(φ),

whose equation of motion (E.13) has regular singular points at φ = 0 and φ = φH , does

not behave smoothly in the limit φH → 0.20 However, the limiting value can be computed

by comparison with the perturbative high-temperature solution, eqs. (D.3) and (D.15):

T/Λ = T L
φH→0−−−−→ 1

πφH

Γ(3/4)2

√
π

, (E.19a)

4GNs
φH→0−−−−→

(
Γ(3/4)2

φH
√
π

)3

. (E.19b)

Details on the numerics. For integrals (E.14)–(E.17) in the φ-coordinate, a near-

horizon expansion of G(φ) to eleventh order was used in the region φH − φ < 10−2. We

verified that the dependence of AH and fH on φ4
H , which is sub-leading compared to

the φ2
H -contribution from appendix D but completely dictated by the quartic term (4.4)

common to all potentials, is the same for all solutions. The local solutions (4.1) and (4.3)

20We believe that this point was overlooked in ref. [49].
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in the u-coordinate were expanded to sixteen orders beyond horizon and boundary modes.

Inverting the near-boundary expansion, we extracted the boundary modes Ab, fb, φL, φSL
by matching the two local solutions at u = 0.5. The numerical error due to the truncation

of the two series is of order 0.516 ∼ 8 · 10−6. We checked that relations (5.2) and (E.12)

between horizon and boundary modes were indeed satisfied with a numerical error smaller

than 10−5 by all considered solutions. Directly matching the two local solutions in the

u-coordinate, rather than numerically integrating from the horizon towards the boundary,

involved the somewhat tedious inversion of the near-boundary expansion to sixteen orders.

However, it greatly simplified the computation of the transport coefficients because the

integrals (4.22) over the global background solution split into two simple integrals over the

near-horizon and the near-boundary series solutions.

F Transport coefficients in the Chamblin-Reall background

In this appendix we present our results for hydrodynamic transport in (3 + 1)-dimensional

holographic theories dual to a (4 + 1)-dimensional Chamblin-Reall backgrounds, which

does not admit an asymptotic AdS region [91]. These are finite-temperature solutions to

Einstein gravity coupled to a scalar with exponential potential, V (φ) ∝ eγφ. If the the

parameter γ can be written as

γ2 =
2(D − 4)

3(D − 1)
(F.1)

with integer D > 4 the corresponding Chamblin-Reall background can be obtained from

pure gravity in an AdSD+1-black brane background via toroidal compactification [49]. For

such compactifications the AdS/CFT dictionary can essentially be borrowed from the

higher dimensional non-compactified AdS [58, 59] and the transport coefficients of the

non-conformal fluid dual to Chamblin-Reall are completely determined by the coefficients

of a D-dimensional conformal fluid dual to AdSD+1. Einstein’s equations are smooth

under changes in γ so that one can analytically continue the results to Chamblin-Reall

backgrounds with arbitrary γ [48].

To obtain the first- and second-order transport coefficients for the Chamblin-Reall

background we first have to consider the conformal fluid dual to AdSD+1. The constitutive

relation of the stress tensor for a conformal fluid in D dimensions up to second order in

the derivative expansion was constructed in ref. [3] generalising eq. (A.5). The first- and

second-order transport coefficients specific to the conformal fluid dual to the AdSD+1-black

brane solution are [101, 102]

η =
s

4π
, τπ =

1

4πT

[
D +H

(
2−D
D

)]
, κ =

Ds

8(D − 2)π2T
, (F.2)

λ1 =
Ds

32π2T
, λ2 =

s

8π2T
H
(

2−D
D

)
, λ3 = 0 ,

where H(α) =
∫ 1

0 dx (1−xα)/(1−x) denotes the harmonic number. The coefficients given

in eq. (F.2) generalise previous results that were obtained in various fixed numbers of

dimensions [3, 23, 103–106].
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The first- and second-order transport coefficients of the non-conformal fluid dual to

the Chamblin-Reall background can be determined as follows. Take the stress tensor of

the D-dimensional conformal fluid dual to the AdSD+1-black brane solution with known

transport coefficients. Then dimensionally reduce this stress tensor on a (D−4)-dimensional

torus. Finally extract the Chamblin-Reall transport coefficients by comparing the resulting

expression with the non-conformal constitutive relation for the stress tensor, eq. (A.5) [48].

As a consequence we find that the coefficients of the non-conformal fluid obey the

relations [4]21

ζ =
2η

3

(
1− 3c2

s

)
, ητ∗π = (4λ1 − ητπ)

(
1− 3c2

s

)
, (F.3)

κ∗ = − κ

2c2
s

(
1− 3c2

s

)
, λ4 = 0 ,

τΠ = τπ , ξ1 =
λ1

3

(
1− 3c2

s

)
,

ξ2 =
2

9

[
3c2
sητπ + 2λ1

(
1− 6c2

s

)] (
1− 3c2

s

)
,

ξ3 =
λ3

3

(
1− 3c2

s

)
, ξ4 = 0 ,

ξ5 =
κ

3

(
1− 3c2

s

)
, ξ6 =

κ

3c2
s

(
1− 3c2

s

)
,

where c2
s = 1/(D− 1). These relations are indeed satisfied in the examples of compactified

backgrounds for which first- and second-order transport has been studied [50, 107].

In ref. [47] the leading order non-conformal corrections to first- and second-order trans-

port coefficients in Chamblin-Reall backgrounds were computed using δ ≡ 1− 3c2
s = 3γ2/2

as small parameter for the perturbative series. In the perturbative expansion the Harmonic

Number H appearing in eq. (F.2) takes more familiar values. However, given the conformal

coefficients in eq. (F.2) and the relations (F.3), we can not only compute the leading order

non-conformal corrections to the coefficients corresponding to the Chamblin-Reall back-

ground, but determine the fully non-perturbative transport coefficients listed in table 1.

In particular, we can confirm explicitly that the relations H = 0 and H̃ = 0, eqs. (1.1)

and (5.8), are satisfied for the fluids dual to Chamblin-Reall backgrounds. This generalises

the result of ref. [47] that H = 0 is satisfied including the leading non-conformal correc-

tions. Moreover, this implies that any holographic model described by Einstein gravity

coupled to a scalar whose potential asymptotically approaches an exponential satisfies the

relations H = 0 and H̃ = 0 in the deep IR. In addition, the transport coefficients approach

the values given in table 1. In particular, the results of this section apply to the deep

IR of the family of models described by potential V(2), eq. (6.10), which asymptotically

approaches an exponential for large values of the scalar, L2 V(2) → −eγφ/γ4, as noted in

subsection 6.2.

21We believe that ref. [4] missed the terms proportional to λ1 in their equations for ητ∗π and ξ2. In fact,

it was noted in ref. [50] that the transport coefficients of a fluid dual to compactified D4-branes did not

satisfy the equations for ητ∗π and ξ2 in the form they had been written in ref. [4]. However, the results of

ref. [50] do satisfy our relations for ητ∗π and ξ2 which include terms proportional to λ1.
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Coefficient
Chamblin-Reall background

Non-perturbative result Leading non-conformal correction

c2
s

1
3(1− δ) 1

3(1− δ)

η s
4π

s
4π

ζ s
6π δ

s
6π δ

τπ
1

4πT

[
4−δ
1−δ +H

(
2+δ
δ−4

)]
1

2πT

[
2− log 2 + 3(16−π2)

32 δ +O
(
δ2
)]

κ s(4−δ)
8π2T (2+δ)

s
4π2T

[
1− 3

4δ +O
(
δ2
)]

λ1
s(4−δ)

32π2T (1−δ)
s

8π2T

[
1 + 3

4δ +O
(
δ2
)]

λ2
s

8π2T
H
(

2+δ
δ−4

)
− s

4π2T

[
log 2 + 3π2

32 δ +O
(
δ2
)]

λ3 0 0

τ∗π
δ

4πT

[
4−δ
1−δ −H

(
2+δ
δ−4

)] 2+log 2
2πT δ +O

(
δ2
)

κ∗ − 3s(4−δ)δ
16π2T (1−δ)(2+δ)

− 3s
8π2T

δ +O
(
δ2
)

λ4 0 0

τΠ
1

4πT

[
4−δ
1−δ +H

(
2+δ
δ−4

)]
1

2πT

[
2− log 2 + 3(16−π2)

32 δ +O
(
δ2
)]

ξ1
s(4−δ)δ

96π2T (1−δ)
s

24π2T
δ +O

(
δ2
)

ξ2
s δ

72π2T

[ (4−δ)δ
1−δ + (1− δ)H

(
2+δ
δ−4

)]
− s log 2

36π2T
δ +O

(
δ2
)

ξ3 0 0

ξ4 0 0

ξ5
s(4−δ)δ

24π2T (2+δ)
s

12π2T
δ +O

(
δ2
)

ξ6
s(4−δ)δ

8π2T (1−δ)(2+δ)
s

4π2T
δ +O

(
δ2
)

Table 1. List of first- and second order transport coefficients for the non-conformal fluid dual

to Chamblin-Reall backgrounds characterised by the parameter δ = 3
2γ

2. In addition to the non-

perturbative result we explicitly state the leading order non-conformal correction for small δ in

order to allow for a comparison with ref. [47]. The disagreement in the expressions for τ∗π and ξ2 is

due to the incomplete relations in ref. [4] which were used in ref. [47].
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