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1 Introduction

In this work we consider how certain techniques developed in the study of systems with

quenched disorder may be used in the context of string theory. The rough picture goes

as follows: consider wrapping branes on complicated cycles within some compact manifold

such that the branes are point-like in the non-compact space. These internal cycles can

intersect amongst each other and amongst themselves, giving rise to a large number of light

degrees of freedom localized at the brane intersections. Moreover, the different intersection

modes can further interact with each other via some stringy processes. If the charges of

the point-like branes in the non-compact directions, which are given by the cohomology

of the cycles they wrap, become large enough we expect them to backreact into a charged

extremal black hole. We expect several of the features of such black holes to be governed by

the effective quantum mechanical theory obtained upon reducing the wrapped cycles to the

lowest Kaluza-Klein modes. Generically this will be governed by some rather complicated

Hamiltonian, coupling the large number of intersection modes between each other. The
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parameters of this Hamiltonian will result from difficult calculations involving the detailed

structure of the compactification manifold. But perhaps, to some good approximation,

they can simply be treated as a collection of random variables. If, in addition, these

random variables evolve on time scales much larger than that of the intersection modes

themselves, they may be viewed as quenched disorder. Our interest is to analyze the effect

of this type of quenched disorder in a particular quantum mechanical model motivated from

string theory. This approach is similar in spirit to Wigner’s [1], who analyzed the spectral

properties of heavy nuclei by approximating their Hamiltonian by a random matrix.

The model we consider is a supersymmetric quantum mechanics with four super-

charges [2, 3]. The matter content is organized in a quiver diagram, with bifundamental

fields connecting different nodes and adjoint fields residing on the nodes. These models

have been argued to describe, at weak coupling, the low energy physics of branes wrapping

different cycles in a Calabi-Yau compactification. The adjoint matter describes the degrees

of freedom of the brane’s motion in the non-compact directions, and the bifundamentals

capture the intersection modes in the internal cycles. Interestingly, certain types of quivers

exhibit an exponentially large number of ground states [4] (in the large intersection num-

ber limit) reminiscent of the Bekenstein-Hawking entropy of the extremal black holes they

are supposed to describe at strong coupling. The Hamiltonian of these models is highly

constrained by supersymmetry, but it does allow for a superpotential which leads to inter-

actions between the different intersection modes. The coefficients of this superpotential are

in principle fixed by an often prohibitively difficult calculation depending on many of the

details of the compactification manifold and its internal cycles. It is these superpotential

coefficients that we take to be random in this paper, as a first step toward our broader goal.

The extremal black holes that the branes backreact into have several features of in-

terest such as an AdS2 × S2 near horizon with an SL(2,R) symmetry and the possible

fragmentation of this throat into a multitude of split horizons [5–9]. It was previously

shown that the classically chaotic [10] quiver models on the Coulomb branch, i.e. when

the branes are separated in the non-compact space, are described in the low energy limit

by an SL(2,R) invariant multi-particle mechanics [11]. This is reminiscent of the SL(2,R)

invariant mechanics [12, 13] defined by the motion of the tips in the fragmented extremal

throat.

We focus instead on the Higgs branch of the model, where the branes are sitting on

top of each other and the intersection modes are light. In order to analyze this branch, we

invoke the replica trick which involves considering n replicas of the original system. Upon

integrating out the random disorder, these replicas interact amongst each other. At large

intersection number N , the system is described by a collection of n×n replica matrices QAB.

The ‘paramagnetic’ case QAB = QδAB is shown to be perturbatively stable. Moreover,

as speculated in [11], we find that the disorder averaged theory exhibits an emergent time

reparametrization symmetry at low temperatures, containing an SL(2,R) subgroup. This

is reminiscent of the symmetry found in the near horizon region of extremal black holes [14].

This is very similar to the situation encountered in several models of quenched quantum

systems, such as the system recently considered in [15–20]. Additionally, we study the

low temperature thermodynamics of the system. We show that the specific heat at low
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temperatures grows linearly. Interestingly, the specific heat of near extremal black holes

has a similar linear growth in T . In appendix A we discuss how a simple model of free

fermions with random masses also exhibits several of these features.

Finally, we establish that the Coulomb branch and Higgs branch SL(2,R) invariant

sectors are distinct — the scaling dimensions of the fields in each sector is different. We

also initiate the study of more general replica symmetric and replica symmetry breaking

saddles, but leave a complete analysis of this question to future work.

2 Quiver quantum mechanics

The quantum mechanical theories of interest in this paper have four supercharges [3].

The matter content resides in a chiral multiplet Φi
α = (φiα, ψ

i
α, F

i
α) containing a complex

scalar φiα, a complex Weyl spinor1 ψiα and an auxiliary complex scalar F iα. The index

α = 1, 2, . . . , N indicates a particular intersection mode connecting two branes, and the

index i = 1, 2, 3, . . . ,m represents the particular pair of branes being connected. We

consider a cyclic quiver with three nodes (and hence three branes), i.e. m = 3, since it is

the simplest case and the general m-node cyclic case turns out to be qualitatively similar.

The Euclidean action contains a standard kinetic piece:

Skin =

∫
dτ
(
|φ̇iα|2 + ψ̄iαψ̇

i
α − |F iα|2

)
, (2.1)

as well as interactions governed by a holomorphic superpotential W (φ):

Sint =

∫
dτ

(
∂W (φ)

∂φiα
F iα +

1

2

∂2W (φ)

∂φiα∂φ
j
β

ψiαε ψ
j
β + h.c.

)
. (2.2)

Repeated indices are summed throughout our discussion unless otherwise specified. The

theory has an SO(3) symmetry generated by J = ψ̄iασψ
i
α/2. Notice that the above expres-

sion also contains an SO(3) invariant term ψiαε ψ
j
β containing the 2 × 2 ε-tensor which is

contracted by the (suppressed) spinor indices of the fermions. The supersymmetry trans-

formations act as follows:

δφiα =
√

2 ξ ε ψiα , (2.3)

δψiα =
√

2 ξ̄ ε φ̇iα +
√

2 ξ F iα , (2.4)

δF iα =
√

2 ξ̄ ψ̇iα . (2.5)

We will work with a specific holomorphic superpotential:

W (φ) = Ω~α φ
1
αφ

2
βφ

3
γ , (2.6)

with ~α ≡ (α, β, γ) and Ω~α a set of constants. Since W (φ) contains no quadratic piece, the

bosons φiα and fermions ψiα are all massless. There can be higher order terms, but we will

1The Weyl spinor has an SO(3) spinor index which we are suppressing. The ψiα transform in the 2 of

SO(3) and ψ̄iα transform in the 2̄.
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only consider the lowest order one. The scalar potential is given by:

V (φ) =
∑
α,i

∣∣∣∣∂W (φ)

∂φiα

∣∣∣∣2 . (2.7)

It is useful to provide the engineering dimensions of the various fields. With [τ ] = +1 we

have [Ω~α] = −3/2, [φα] = +1/2, [ψα] = 0 and [Fα] = −1/2. Note that the Ω~α are the only

parameters in the model, and they are dimensionful. For the system at finite temperature

T = 1/β we identify τ ∼ τ + β with [β] = +1.

As mentioned in the introduction, these theories can be viewed as low energy effective

actions arising from the dynamics of open strings living at the intersection points of branes

wrapped along internal cycles in the compactification manifold. The branes are point like

in the non-compact dimensions, and we are discarding their position degrees of freedom

(which comprise a vector multiplet) by making them parametrically massive. A more

complete analysis would include these degrees of freedom. We briefly discuss their effect

in section 5. For large values of N the point-like branes can backreact into extremal black

holes with an AdS2×S2 throat in the near horizon geometry. The details of the coefficients

Ω~α are contained in the geometry of the compactification manifold and the specific cycles

wrapped by the branes.

It is in general rather complicated to compute the exact values of Ω~α. Therein lies

the basic assumption of our paper. We take the Ω~α to be random coefficients drawn

independently from a Gaussian probability distribution with variance 〈|Ω~α|2〉 = Ω2 and

vanishing mean. Moreover we assume that the disorder is quenched, such that we must

average over the disorder only upon computing a particular extensive, physical quantity

such as the free energy. In what follows we analyze the implications of such quenched

disorder.

The supersymmetric ground state sector of these models has been the subject of ex-

tensive work [4, 21–23]. By evaluating a Witten index, the particular model under con-

sideration was shown to have an exact ground state degeneracy that grows as 23N in the

large N limit [4]. Our main interest in what follows regards the low temperature non-

supersymmetric sector of the model which has been far less explored.

2.1 Partition function and the replica trick

In order to compute the two-point function we consider the Euclidean partition function

at finite temperature:2

ZΩ[T ] =

∫
DΦI e

−SE [ΦI ; Ω~α] , (2.8)

where I is a generalized index specifying any of the given fields. The bosonic degrees

of freedom are periodic around the thermal circle τ ∼ τ + 1 and the fermonic degrees of

freedom are anti-periodic. For a given realization of disorder the above partition function is

too complicated to analyze. However for large enough systems, disorder-averaged quantities

2From now on we normalize all fields and parameters in units where β = 1. For example, we denote the

dimensionless quantity Ω2β3 by Ω2 and reinstate factors of β when necessary.
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get at the essential physics. Since the disorder is quenched, the main quantity of interest

is the averaged free energy, given by the logarithm of ZΩ[T ]. We express this as (with

overlines denoting disorder averages):

FΩ[T ] = −T logZΩ[T ] = −T lim
n→0

∂n(ZΩ[T ])n . (2.9)

At this point take n to be an integer, such that we can view (ZΩ[T ])n as n-replicas of the

original system. The average over the quenched disorder is performed over this replicated

system, and the basic assumption is that the final results can be analytically continued to

real n. This assumption is known in the literature as the replica trick, and is a basic tool

in analyzing simple models of spin glasses. As a warm up example in using the replica

trick, we provide a simple solvable case of free fermions with a random mass matrix in

appendix A.

Upon integrating out the disorder we find an effective action for the replicated degrees

of freedom Φi
αA = (φiαA, ψ

i
αA, F

i
αA) which now cary an additional replica index A = 1, . . . , n.

For our choice of superpotential, this effective action reads:

Seff = Skin − Ω2

∫
dτ dτ ′F~α[Φi

αA(τ)]F̄~α[Φ̄i
αA(τ ′)] , (2.10)

where

F~α[Φi
αA(τ)] ≡

∑
~i∈S3

∑
A

(
φi1αAφ

i2
βAF

i3
γA + ψi1αAεψ

i2
βAφ

i3
γA

)
. (2.11)

S3 is the permutation group with 3-elements and ~i = (i1, i2, i3). The kinetic action Skin is

the replicated version of the original (2.1):

Skin =
∑
A,i

∫
dτ
(
−φ̄iαA∂2

τφ
i
αA + ψ̄iαA∂τψ

i
αA − F̄ iαAF iαA

)
. (2.12)

Notice that upon integrating out the disorder we have coupled the replica indices. Also

note that since the original action is bounded from below, the path integral over the replica

matrices must be well defined for all Ω2 > 0. Furthermore, (2.10) is invariant under the

same supersymmetry transformations as the original action. This is to be expected, since

the theory is supersymmetric for any given realization of the variables ω~α.

2.2 Replica matrices

At this point we introduce replica matrices: QIJAB(τ, τ ′) and delta-functionals implementing

the on-shell conditions:

QIJAB(τ, τ ′) =
∑
α

Φ̄IαA(τ)ΦJαB(τ ′) , (2.13)

where we use the generalized index I = {i, type} to specify the node index i and the field

type, i.e. φ, F or ψa. These are reminiscent of the bi-local fields introduced in [24]. We
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use the integral representation of the delta functionals by introducing Lagrange multipli-

ers ΛIJAB(τ, τ ′):

δ
[
QIJAB(τ, τ ′)− Φ̄IαA(τ)ΦJαB(τ ′)

]
=∫

DΛIJAB(τ, τ ′) exp

[
i

∫
dτdτ ′ΛIJAB(τ, τ ′)

(
QIJAB(τ, τ ′)− Φ̄IαA(τ)ΦJαB(τ ′)

)]
. (2.14)

Upon implementing the delta function conditions, the remaining Seff is quadratic in the

ΦIαA, which we can consequently integrate out. This leads to a Berezinian determi-

nant factor and an interacting action in the bilocal fields. Writing (2.12) as Skin =∫
dτdτ ′Φ̄IαA(τ)OIJ (τ, τ ′)ΦJαA(τ ′), the determinant factor reads:

Det
[
OIJ (τ, τ ′)⊗ In×n + iΛIJAB(τ, τ ′)

]−N
. (2.15)

If we had chosen to turn on a source JIAα(τ) for the ΦIAα(τ) fields, the partition function

would also be a function of these JIAα(τ). In this case integrating out the ΦIAα(τ) leads to

an additional term in the effective action:

Ssource[J
I
A(τ)] = −

∫
dτdτ ′ J̄IAα(τ)

[
OIJ ⊗ In×n + iΛIJAB(τ, τ ′)

]−1
JJBα(τ ′) . (2.16)

The above expression expresses the correlation functions of the original fields Φ in terms

of the new variables Q and Λ.

2.3 Large N limit

Notice that the functional determinant in (2.15) is raised to the power N . We are interested

in a particular large N limit, which we will now specify. We rescale Q → NQ and keep

ΩN ≡ λ, Q and Λ fixed as N →∞. With this large N limit all exponents in the effective

action scale as N .

It follows from (2.15) and (2.16) that the saddle point value of the QIJAB(τ, τ ′) computes

the various disorder averaged, equilibrium, two-point functions:

QIJAB(τ, τ ′) =
1

N
〈Φ̄IαA(τ)ΦJαB(τ ′)〉 . (2.17)

It is useful to note that several of these QIJAB(τ, τ ′) will vanish. (For example, they might

involve a single fermionic field.) Moreover, there will always be a large N saddle point for

which the replica matrices QIJAB(τ, τ ′) all have I = J . This saddle will be perturbatively

stable against fluctuations in the I 6= J directions. We study such saddles in what follows,

since they already contain a lot of interesting phenomena.

In the I = J subspace, the effective action simplifies considerably. Thus we can

simplify our notation slightly. We denote:

QiAB(τ, τ ′) ≡ 1

N
〈φ̄iαA(τ)φiαB(τ ′)〉 , (2.18)

P iAB(τ, τ ′) ≡ 1

N
〈F̄ iαA(τ)F iαB(τ ′)〉 , (2.19)

Si,aAB(τ, τ ′) ≡ 1

N
〈ψ̄i,ȧαA(τ)ψi,aαB(τ ′)〉 . (2.20)
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In the above expressions, only the Greek indices are summed over, and the index a = 1, 2

for the fermionic variables is the SO(3) spinor index. Our effective action thus becomes:

Seff

N
=

3∑
i=1

[∫
dτdτ ′δ(τ − τ ′)

(
−∂2

τQ
i
AA +

2∑
a=1

∂τS
i,a
AA − P

i
AA

)

− tr logQiAB(τ, τ ′) +

2∑
a=1

tr logSi,aAB(τ, τ ′)− tr log
(
−P iAB(τ, τ ′)

)]

− λ2
∑
~i∈S3

∫
dτdτ ′Qi1AB(τ, τ ′)

(
Qi2AB(τ, τ ′)P i3AB(τ, τ ′) + Si2,1AB (τ, τ ′)Si3,2AB (τ, τ ′)

)
,

(2.21)

where we have integrated out the Lagrange multipliers implementing the delta function

constraints in deriving this action. The above action implies the following equations of

motion for P iAB(τ, τ ′):

δABδ(τ−τ ′) = P iAB(τ−τ ′)+λ2
∑
C

∫
δτ ′′ P iCB(τ−τ ′−τ ′′)

∑
i/∈j∈S2

Qj1AC(τ ′′)Qj2AC(τ ′′) . (2.22)

Since the kinetic term for P iAB(τ, τ ′) has no time derivatives, we can integrate it out exactly,

leading to the following action solely in terms of QiAB(τ, τ ′) and Si,aAB(τ, τ ′):

Seff

N
=

3∑
i=1

∫ dτdτ ′δ(τ − τ ′)

(
−∂2

τQ
i
AA +

2∑
a=1

∂τS
i,a
AA

)
− tr logQiAB(τ, τ ′)

+

2∑
a=1

tr logSi,aAB(τ, τ ′) +

3∑
k=1

tr log

In×nδ(τ − τ ′) + λ2
∏
k 6=i

QiAB(τ, τ ′)


− λ2

∑
~i∈S3

∫
dτdτ ′Qi1AB(τ, τ ′)Si2,1AB (τ, τ ′)Si3,2AB (τ, τ ′) . (2.23)

Since our theory is time translation invariant QiAB(τ, τ ′)=QiAB(τ−τ ′) and Si,aAB(τ, τ ′) =

Si,aAB(τ − τ ′). Moreover, time reversal invariance implies for the diagonal components of

the replica matrices: QiAA(τ − τ ′) = QiAA(τ ′ − τ) which is moreover a real function. For

the fermions, Si,aAA(τ − τ ′) = −Si,aAA(τ ′ − τ) is a real odd function of u ≡ (τ − τ ′). In what

follows, it will also be convenient to consider expressions in frequency space as well:

QiAB(u) =
∑
k∈Z

e2πikuQiAB(k) , Si,aAB(u) =
∑
k∈Z

e2πi(k+1/2)uSi,aAB(k) . (2.24)

Note that QiAB(k) = 〈φ̄iαA(k)φiαB(−k)〉 and Si,aAB(k) = 〈ψ̄i,aαA(k)ψi,aαB(−k − 1)〉, where the

φiαA(k) are the Fourier coefficients of φiαA(τ) and so on. This in turn implies QiAA(k) is a

real even function, and Si,aAA(k) = Si,aAA(−k − 1).
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3 Replica symmetry

The action (2.23) is symmetric among the replica indices A,B. However, as is the case in

spin glass models, replica symmetry can be spontaneously broken. In this section we discuss

whether or not replica symmetry is broken in the model described above. To understand

this question, one must understand the dominant contribution to the partition function at

large N . In several simple models of quantum systems with quenched disorder [25, 26],

when replica symmetry is broken it indicates a transition to a glassy phase. A way to

determine the presence of replica symmetry breaking is to study fluctuations about a

replica symmetric saddle of the free energy and to see whether it is locally stable.

3.1 Small fluctuations about the paramagnetic ansatz

It follows from an argument in [25] that when A 6= B, the replica matrices must be time

independent. The argument uses the fact that different replicas are decoupled before the

disorder is integrated out. Hence the two-point function of two fields carrying different

replica indices must factorize into a product of their respective one-point functions. How-

ever, the equilibrium value of the one-point function for a fixed realization of disorder is

τ -independent. From this it follows that QiAB with A 6= B is itself τ -independent, i.e.

QiAB(τ, τ ′) =
(
δABQ

i(τ, τ ′) + qiAB
)

with qiAB = q̄iBA independent of τ and vanishing for

A = B. For Si,aAB(τ, τ ′), we have the even stronger condition that Si,aAB = 0 for A 6= B since

the equilibrium one-point function of a fermion 〈ψi,aαA〉 vanishes identically. The simplest

and most symmetric ansatz sets the qiAB = 0, and we refer to this as the ‘paramagnetic’

ansatz.

We would like to understand if this ansatz is a stable solution of the saddle point

equations stemming from the large-N action. The linear fluctuation of Seff must vanish at

the saddle point and thus the question is whether all quadratic contributions locally increase

the value of the action. Expressing the fluctuations as qiAB with QiAB = δABQ
i(τ−τ ′)+qiAB

and expanding the effective action to second order in the fluctuations we find:

S
(2)
eff

N
=

1

2

∑
i

∫
dτ dτ ′

(
(Qi)−1(τ − τ ′)

)2∑
A,B

qiAB q̄
i
AB . (3.1)

In the above expression (Qi)−1 is defined such that∫
dτ2(Qi)−1(τ − τ2)Qi(τ2 − τ ′) = δ(τ − τ ′) . (3.2)

Notice that the quadratic fluctuation is positive definite. Thus, at least locally, the para-

magnetic ansatz remains stable for all values of the temperature. This does not bar the

possibility of a lower free energy configuration, only that such a configuration will be

reached by non-perturbative fluctuations away from the paramagnetic one.

3.2 Paramagnetic equations of motion

Having argued that the paramagnetic ansatz is locally stable, we can examine the saddle

point equations governing the diagonal elements of the replica matrix QAB at large N .

– 8 –
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Taking the replica matrices to be diagonal, we are left with the following effective action:

Seff

Nn
=

3∑
i=1

∫ dτdτ ′δ(τ − τ ′)

(
−∂2

τQ
i +

2∑
a=1

∂τS
i,a

)
− tr logQi(τ, τ ′)

+
2∑

a=1

tr logSi,a(τ, τ ′) + tr log

δ(τ − τ ′) + λ2
∏
l 6=i

Ql(τ, τ ′)


− λ2

∑
~i∈S3

∫
dτdτ ′Qi1(τ, τ ′)Si2,1(τ, τ ′)Si3,2(τ, τ ′) . (3.3)

From the above action, we find the following saddle equations:

δ(τ − τ ′) = −∂2
τQ

i(τ − τ ′) + λ2
∑
j 6=i

∑
k∈Z

∫
dτ ′′

Qi(τ − τ ′ + τ ′′)Qj(τ ′′)∫
dυ e2πik(υ−τ ′′) [δ(υ) + λ2Qi(υ)Qj(υ)]

− λ2

∫
dτ ′′Qi(τ − τ ′ + τ ′′)

∑
i/∈~j∈S2

Sj1,1(τ ′′)Sj2,2(τ ′′) , (3.4)

δ(τ − τ ′) = −∂τSi,a(τ − τ ′)

+ λ2

∫
dτ ′′Si,a(τ − τ ′ + τ ′′)

∑
i/∈~j∈S2

Qj1(τ ′′)Sj2,b(τ ′′) for a 6= b . (3.5)

These are the Schwinger-Dyson equations for the two-point functions of the scalar and

fermion fields at large N .

We can also express the effective action and saddle point equations in frequency space:

Seff

Nn
=

3∑
i=1

∑
k∈Z

(2πk)2Qi(k) + 2πi(k + 1/2)

2∑
a=1

Si,a(k)− logQi(k)

+
2∑

a=1

logSi,a(k) + log

1 + λ2
∏
l 6=i

∑
kl∈Z

Ql(kl)

 δ

k +
∑
j 6=i

kj


− λ2

∑
~i∈S3

∑
k1,k2∈Z

Qi1(k1)Si2,1(k2)Si3,2(−k1 − k2 − 1) , (3.6)

with the following saddle point equations:

1

Qi(k)
= (2πk)2 + λ2

∑
j 6=i

∑
l∈Z

Qj(−k − l)
1 + λ2

∑
m∈ZQ

i(m)Qj(−m− l)

− λ2
∑

i/∈~j∈S2

∑
m∈Z

Sj1,1(m)Sj2,2 (−k −m− 1) , (3.7)

1

Si,a(k)
= −2πi(k + 1/2) + λ2

∑
i/∈~j∈S2

∑
m∈Z

Qj1 (−k −m− 1)Sj2,b(m) for a 6= b . (3.8)
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When λ = 0, it is easy to see that Si,a and Qi are precisely the frequency space two-point

functions of a free fermion and a free boson respectively, and as expected.

We can study perturbative corrections to the free result in a small λ-expansion. These

are given in appendix B to first order. We find to leading order in λ that the permutation

symmetry acting on the node index remains unbroken. Also, Si,a(k) = (2πik)Qi(k) (at

large k) holds to sub-leading order in small λ indicating that supersymmetry is preserved

to this order. At large λ the solutions may change significantly. We analyze this limit in

the next section. Before doing so, we make some brief remarks about replica symmetry

breaking.

3.3 Replica symmetry breaking?

Though the paramagnetic ansatz is perturbatively stable, we can still ask whether replica

symmetry breaking takes place in this model. Though we do not analyze this question

extensively in this work, we will make some brief comments in this section. First we need

to study the simplest replica symmetric, yet non-paramagnetic, ansatz:

QAB(k) = Q(k) δAB + υ εAB δk,0 , (3.9)

where εAB ≡ (1 − δAB) is the matrix with vanishing diagonal terms and ones otherwise.

We have dropped node and spinor indices, by assuming that in addition all the QiAB are

equal amongst each other. The υ is a real constant independent of the frequency known

as the Edwards-Anderson parameter in the spin glass literature [27]. A non-vanishing

Edwards-Anderson parameter often indicates the presence of glassy behavior.

With this ansatz, the effective action additionally becomes a function of υ. The part

that depends on the new variable υ is, for general replica size n:

Seff [υ]

3N
= −(n− 1) log [Q(0)− υ]− log [(n− 1)υ +Q(0)]

+ (n− 1) log
[
λ2
(
Q ·Q− υ2

)
+ 1
]

+ log
[
λ2
(
(n− 1)υ2 +Q ·Q

)
+ 1
]
, (3.10)

where we define Q · Q ≡
∑

mQ(m)Q(−m). The equation of motion for υ in the n → 0

limit is given by:

υ

[Q(0)− υ]2
=

2λ4υ3

[1 + λ2(Q ·Q− υ2)]2
. (3.11)

Clearly the paramagnetic value υ = 0 is always a solution. To obtain the other solu-

tions we must take into account the effect of non-vanishing υ on the equations governing

Q(k) and S(k). This is a hard task, but inspection of (3.11) already reveals that real

solutions for υ are present given some Q(k). Assuming that there exists a solution with

non-vanishing υ, we can study fluctuations about this more general replica symmetric

background. To do so, we consider quadratic perturbations δQAB away from the replica

symmetric background with a replica symmetry breaking perturbation. In perturbing away

from the replica symmetric configuration we require δQAA = 0 and we also impose that

tr(ε·δQ) = tr(ε·δQ·ε·δQ) = 0. To obtain the quadratic action governing the perturbations,
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we must use the inverse of the replica symmetric matrices (3.9) [26]:

Q−1
AB(k) =

1

[Q(k)− υ δk,0]

(
δAB −

υ δk,0
[Q(k) + (n− 1)υ δk,0]

)
. (3.12)

Also useful is the inverse:

[
IAB + λ2

(
Q ·Q IAB + υ2 εAB

)]−1
=

[
λ2
(
Q ·Q+ (n− 2)υ2

)
+ 1
]
δAB − υ2λ2εAB

{λ2(υ2 −Q ·Q)− 1} {λ2[(1− n)υ2 −Q ·Q]− 1}
.

(3.13)

The perturbations are dictated by the following action:

S(2)

N
=

3

2
AQδQABδQAB , (3.14)

with (in the limit n→ 0):

AQ =
1

[Q(0)− υ]2
− (2υλ)2

[
λ2
(
Q ·Q− 2υ2

)
+ 1

(λ2(υ2 −Q ·Q)− 1)2

]2

−
[

2υ2λ4

(λ2 (υ2 −Q ·Q)− 1)2

]
. (3.15)

Using the equation of motion (3.11), we note that the expression for AQ simplifies. The

eigenvalue of the mass matrix of δQAB is given by:

λQ = −3

2
(2υλ)2

[
λ2
(
Q ·Q− 2υ2

)
+ 1

(λ2(υ2 −Q ·Q)− 1)2

]2

≤ 0 . (3.16)

That λQ is negative indicates that there is no stable replica symmetric saddle υ 6= 0. It is

always favorable to push in the direction of replica symmetry breaking!

What about these replica symmetry breaking saddles [27]? For instance, we could

consider a single step replica symmetry breaking ansatz. This is given by splitting the n

replicas into n/m clusters of size m. Within each m×m cluster the matrix takes the value

q0. For the pieces of the replica matrix not inside a given cluster, the replica matrix takes

the value υ < q1. As before the diagonal components of the replica matrix take the value

Q(k). In other words:

QAB(k) = [Q(k)− q1δk,0] δAB + [q1 − υ] ε
(m)
AB δk,0 + υ δk,0 , (3.17)

where the matrix ε
(m)
AB is equal to one whenever A and B are within a diagonal m×m block.

We leave it to future work to see whether such an ansatz, as well as the more general k-step

replica symmetry broken matrices, lead to further stable large N saddles.

4 Scaling regime

In this section we consider the theory in the large λ limit. This can also be viewed as a

low temperature limit, since upon reinstating the temperature λ2 → λ2β3. Consider the
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saddle point equations (3.4) and (3.5). If it is the case that the terms proportional to λ2

on the right hand side are dominant, then the theory exhibits a large symmetry:

τ → f(τ) , (4.1)

Qi(τ, τ ′) →
(
df(τ)

dτ

df(τ ′)

dτ ′

)µQi/2
Qi
(
f(τ), f(τ ′)

)
, (4.2)

Si,a(τ, τ ′) →
(
df(τ)

dτ

df(τ ′)

dτ ′

)µ
Si,a

/2

Si,a
(
f(τ), f(τ ′)

)
. (4.3)

Moreover, it follows from (3.4) and (3.5) that the scaling coefficients must obey the following

relation:

µSi1,1 + µSi2,2 + µQi3 + 2 = 0 , ~i ∈ S3 . (4.4)

If the subgroup of the permutation symmetry permuting the µQi and µSi remains unbroken,

then µQi = µQ and µSi1,a = µS such that:

2µS + µQ + 2 = 0 . (4.5)

We shall see in what follows that the above is indeed the saddle point solution at low

temperatures, for given values of µQ and µS . The above symmetry is a time reparametriza-

tion invariance, or in other words it is the set of diffeomorphisms (known as the Witt

algebra) that map the circle to itself. This vast symmetry group has a maximal finite

dimensional sub-algebra generating the group SL(2,R) of real 2 × 2 matrices with unit

determinant. Thus, the theory has an emergent conformal invariance in the particular

scaling limit we have considered. We emphasize that for this symmetry to be precise, one

requires a large N and strong coupling limit.

4.1 Zero temperature solutions

We wish to find solutions to (3.7) and (3.8) at strong coupling/low temperature. In order to

make the low temperature limit more transparent, we will temporarily reintroduce factors

of β and take the β →∞ limit. To reintroduce units of β we recall the discussion on units

from section 2. Furthermore, with β reintroduced, the thermal Fourier transform is:

f(k) =
1√
β

∫ β

0
dτ eiωkτf(τ) f(τ) =

1√
β

∑
k

e−iωkτf(k) , (4.6)

meaning that the units Q(k), and S(k), differ from the units of Q(τ) and S(τ) by [Q(k)] =

[Q(τ)] + 1 and similarly for S(k) and S(τ). In the β → ∞ limit, the thermal frequencies

ωk = 2πk/β become continuous and the sums over momenta can be replaced by integrals.

Furthermore, since we have decompactified the thermal circle, there is no shift by one-half

in the fermionic frequencies. We study the case where all Qi’s and Si,a’s are taken to be
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equal and drop the node and spinor SO(3) indices entirely. The β →∞ limit yields:3

1

Q(ω)
= ω2 + 2λ2

∫
dω′

2π

Q(−ω − ω′)
1 + λ2

∫
dω′′

2π Q(ω′′)Q(−ω′′ − ω′)

− 2λ2

∫
dω′

2π
S(ω′)S

(
−ω − ω′

)
, (4.7)

1

S(ω)
= −i ω + 2λ2

∫
dω′

2π
Q
(
−ω − ω′

)
S(ω′) . (4.8)

Furthermore, at low energies (ω3 � λ2), we assume the following inequalities are satisfied:

ω2Q(ω)� 1 , |ωS(ω)| � 1 ,

∫
dω′

2π
Q(ω′)Q(−ω − ω′)� 1

λ2
. (4.9)

We will check that the solutions obtained under this assumption are indeed self-consistent.

Under our assumption, equations (4.7) and (4.8) simplify:

1 = 2

∫
dω′

Q(ω)Q(−ω − ω′)∫
dω′′ Q(ω′′)Q(−ω′′ − ω′)

− 2λ2

∫
dω′

2π
Q(ω)S(ω′)S

(
−ω − ω′

)
, (4.10)

1 = 2λ2

∫
dω′

2π
Q
(
−ω − ω′

)
S(ω′)S(ω) . (4.11)

Notice that the equations are self consistent. This can be seen by integrating both equations

over ω and substituting (4.11) into (4.10).

4.1.1 Non-supersymmetric solution

Let us assume that the solution to the saddle point equations (4.10) and (4.11) takes

the form:

Q(ω) =
αQ
|ω|a

, S(ω) = i αS
sign(ω)

|ω|b
. (4.12)

These correspond to conformal weights ∆Q = (1− a)/2 for the scalars and ∆S = (1− b)/2
for the fermions.4 Due to (4.5), we have a = 1− 2b. Plugging (4.12) into (4.10) and (4.11)

leads to divergences if we are not careful. One may consider regulating them by analytic

continuation in the powers a and b. That is, over certain ranges, these integrals will be

representations of the Euler β-function

β(x, y) ≡
∫ 1

0

dt

t1−x(1− t)1−y =

∫ ∞
0

dt

t1−x(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)
. (4.14)

3We remind the reader that the non-polynomial nature of (4.7) arises due to the fact that we have

integrated out P i(τ − τ ′).
4At finite temperature, we can obtain the expression for conformally invariant correlators by mapping

the the line to a circle [18]:

Q(k) = αQ
Γ[∆Q + k]

Γ[1−∆Q + k]
, S(k) = iαS

Γ[∆S + k + 1/2]

Γ[1−∆S + k + 1/2]
, k ∈ Z . (4.13)

For low temperatures and large frequencies these are well approximated by (4.12).
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Without loss of generality, we will take ω > 0 in (4.10) and (4.11). Let us treat (4.11) first

for simplicity. First define ω′ ≡ m̃ω and C ≡ αQα2
Sλ

2/π, then we can write (4.11) as

− 1

2C
=

(∫ −1

−∞
dm̃

sign(m̃)

|1 + m̃|a|m̃|b
+

∫ 0

−1
dm̃

sign(m̃)

|1 + m̃|a|m̃|b
+

∫ ∞
0

dm̃
sign(m̃)

|1 + m̃|a|m̃|b

)
.

(4.15)

The integrals may be expressed as Euler-β functions and combining everything gives:

1 =
2Cπ2 csc2(πb)

Γ(1− 2b)Γ(b)Γ(1 + b)
. (4.16)

Let us now treat (4.10) and label the first and second terms A and B respectively:

1 = 2

∫
dω′

Q(ω)Q(−ω − ω′)∫
dω′′ Q(ω′′)Q(−ω′′ − ω′)

− 2λ2

∫
dω′

2π
Q(ω)S(ω′)S

(
−ω − ω′

)
≡ A+B . (4.17)

The term labeled B on the right hand side can be treated in the same way as before. Define

ω′ ≡ m̃ω and we obtain

B = −2C

(∫ −1

−∞
dm̃

sign(m̃) sign(1 + m̃)

|1 + m̃|b|m̃|b

+

∫ 0

−1
dm̃

sign(m̃) sign(1 + m̃)

|1 + m̃|b|m̃|b
+

∫ ∞
0

dm̃
sign(m̃) sign(1 + m̃)

|1 + m̃|b|m̃|b

)

=
2π C cot

(
πb
2

)
sec(πb)Γ(1− b)

Γ(2− 2b)Γ(b)
. (4.18)

A requires a little more care. Let us first treat the denominator of the integrand

f(ω′) ≡
∫
dω′′ Q(ω′′)Q(−ω′′ − ω′) . (4.19)

Treating f(ω′) carefully for positive and negative ω′ we find that it can be regulated to give

f(ω) = α2
Qπ

2|ω|4b−1 csc2(πb) sec(2πb)

2Γ(1− 2b)2Γ(4b)
. (4.20)

With this, A is given by (again defining ω′ = l̃ω)

A =
4Γ(1− 2b)2Γ(4b)

π2 csc2(πb) sec(2πb)

(∫ −1

−∞
dl̃

1

|l̃|4b−1|1 + l̃|1−2b

+

∫ 0

−1
dl̃

1

|l̃|4b−1|1 + l̃|1−2b
+

∫ ∞
0

dl̃
1

|l̃|4b−1|1 + l̃|1−2b

)
=

1− 4b

1− 2b

(
1− tan2(πb)

)
. (4.21)
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Figure 1. Solutions to equations (4.22) and (4.23) for b ∈ [0, 1].

Putting everything together we find two equations in the unknowns C and b:

1 =
1− 4b

1− 2b

(
1− tan2(πb)

)
+

2π C cot
(
πb
2

)
sec(πb)Γ(1− b)

Γ(2− 2b)Γ(b)
, (4.22)

1 =
2Cπ2 csc2(πb)

Γ(1− 2b)Γ(b)Γ(1 + b)
. (4.23)

We plot the contours that satisfy the equations in figure 1. In order for the Euclidean-time

correlators to decay at late times, we require a < 1 and b < 1. Since a = 1−2b, this restricts

0 < b < 1. Notice there is a solution compatible with the equations for 0 < b < 1 with

(b, C) ≈ (0.226, 0.128). It is now straightforward to check that our initial assumption (4.9)

is satisfied for this solution, so long as:

αS � (ω)b−1 , ω1/2−2b/λ� αQ � ω−(1+2b) . (4.24)

The second inequality further implies that ω3/2 � λ, which at large λ allows for this

solution to be valid for a parametrically large range of ω.

The solution found above is not isolated since αQ and αS remain unfixed but related

by αQ = Cπ/(α2
Sλ

2). At this point we can compute the on-shell action as a function of αS
and find which value of αS is a critical point. A somewhat tedious calculation yields:

αS ≈ 1.39× 1

λ2/3
. (4.25)

4.1.2 Supersymmetric solution

Recall that for all values of the disorder Ω~α, the theory is supersymmetric. At zero temper-

ature, supersymmetry relates the correlation function of the fermion and boson in a given
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supermultiplet as: S(τ, τ ′) = ∂τ ′Q(τ, τ ′). This follows from the supersymmetric transfor-

mation rules acting on 〈ψ̄i,aα (τ)φiα(τ ′)〉 = 0. One can check that it holds explicitly to low

order in a small λ expansion, as discussed in appendix B. In combination with the scal-

ing symmetry at large λ, the quantum mechanics becomes super-conformal [30], such that

the scaling dimensions of the bosons and fermions differs by one-half. This imposes that

b = a − 1 which, in combination with (4.5), leads to b = 0 and a = 1. If, in addition, the

supersymmetic ground state preservers scale invariance, the zero temperature momentum

space correlators would behave as:

Q(ω) =
1

2π

αQ
|ω|

, S(ω) = i αS sign(ω) . (4.26)

Recall that sign(ω) scales like a constant. In addition supersymmetry relates αQ = αS
which in turn implies that they both decay as λ−2/3 at large λ. This is consistent with the

behavior of (4.25).

The scaling ansatz (4.26), for which ∆Q = 0 and ∆S = 1/2, has a Fourier transform

back to Euclidean time which is logarithmically divergent. This is reminiscent of logarith-

mic divergences that appear in conformal field theories which often indicate the presence

of a small scaling anomaly [28]. We suspect that this is the case here as well, and the

scaling form of (4.26) is approximate. A natural IR cutoff whose role would be to tame

this logarithmic divergence is the Fayet-Iliopoulos parameter θ that appears in the full

quiver theory, including vector multiplets, enforcing that the scalars φiα take values in a

compact space. The smallness of ∆Q would suggest that the dynamics of the scalars are

effectively frozen as compared to those of the fermions whose correlations decay in time.

In appendix A we discuss a toy model that has fermions with random masses, that shares

some of above features.5

4.2 Thermodynamics

Having solved the saddle point equations, we can compute the on-shell action to leading

order and obtain the thermodynamic features of the system at low temperature in the

paramagnetic phase. For instance the free energy is given by:

F [β, λ] =
1

β
lim
n→0

Seff [β, λ]

n
. (4.27)

It is convenient to scale out the temperature from the functions Q(u) and S(u), where

u = τ − τ ′. These can be written as functions of the dimensionless quantities u/β, λ2β3

such that:

Q(u;λ2, β) = β Q̃(u/β;λ2β3) , S(u;λ2, β) = S̃(u/β;λ2β3) . (4.28)

Only explicit factors of β will play a role when taking derivatives of βF [β, λ], since we

are assuming that Q(u) and S(u) take their on-shell values. Thus we can compute, for

5With weight ∆S = 1/2, the low energy theory allows for an SO(3) breaking marginal (at least at large

N) deformation: J = a ·
∫
dτ
(
ψ̄ȧα(τ)σȧaψ

a
α(τ)

)
. Perhaps this is related to the near horizon of extremally

rotating black holes.
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example, the internal energy U [β, λ] = ∂β (βF [β, λ]) as:

U [β, λ]

3N
= − 3

2β

∑
k∈Z

[
2πi (k + 1/2) S̃(k) + (2πk)2Q̃(k)

]
. (4.29)

Notice that when S(k) and Q(k) take their free values, U [β, λ] vanishes. This had to be

the case, since in the absence of any dimensionful parameters, Seff [β] must be independent

of β.

For the non-supersymmetric solution (b, C) ≈ (0.226, 0.128) we find the low tempera-

ture result (upon ζ-function regularization of the infinite sums):

U [β, λ]

3N
≈ 2.11× 1

λ2/3

(
1

β

)2

. (4.30)

The internal energy of the system grows quadratically with the temperature giving rise

to a specific heat that is itself linear in the temperature. This resembles the universal

low temperature behavior for the specific heat of near extremal black holes. A similar

situation holds for the supersymmetric solution. At zero temperature, the entropy also has

a contribution from the supersymmetric ground state degeneracy which is also extensive

in N [4].

Thus, the replica symmetric phase, to leading order in the large N limit, is governed

by a gapless low temperature phase. In section 3 we established that the replica symmetric

phase is perturbatively stable. However, it remains an open question whether there is a

glassy replica symmetry broken phase in the system. The possibility of such a replica sym-

metry broken phase and its holographic interpretation (perhaps related to multi-horizon

geometries [9]) is extremely interesting. We hope to address this question in the future,

employing a numerical analysis.

5 Quenched Coulomb branch

In our treatment up to now, we have ignored the vector multiplet degrees of freedom Xi =

{xi, λi, Di, Ai} representing the position degrees of freedom of the wrapped branes in the

non-compact (3 + 1)-dimensional Minkowski space-time. In this section we briefly discuss

the effect of having quenched and random ω~α on the Coulomb branch, upon integrating

out the chiral multiplet. The interaction between the two multiplets is dictated by the

following action:

Sint =

∫
dτ
[(

x2
ij +Dij

)
|φijα |2 + ψ̄ijασψ

ij
α · xij + i2

√
2 Im φ̄ijαλijεψ

ij
α

]
, (5.1)

where xij = (xi−xj) and so on.6 As before, if we consider the ω~α to be quenched random

variables we can integrate over them and obtain an effective action Seff . The new feature

is that Seff will also be a functional of the vector multiplet degrees of freedom Xi. If we

6For convenience we have used a slightly different notation in (5.1), where the chiral multiplet is now

labeled by two integers, (ij), denoting the particular two branes they connect.
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are interested in the effective action of xi only, we can set λi = 0. Then, after similar

manipulations to those already performed, we obtain a contribution to the effective action:

δSeff

nN
=

∫
dτdτ ′δ(τ − τ ′)

[
−δij∂2

τ +
(
xij(τ)2 +Dij(τ)

)]
Qij(τ, τ ′)

+

∫
dτdτ ′δ(τ − τ ′)

[
δaḃδij∂τ + σaḃ · xij(τ)

]
Sij,aḃ(τ, τ ′) . (5.2)

In [11] it was shown that in the absence of a superpotential, the effective multi-particle

theory of the xi contained a low energy SL(2,R) invariant sector upon integrating out the

chiral multiplets and taking a large N limit. The scaling dimension of xi in the low energy

sector of the Coulomb branch was found to be ∆x = 1. In order for the contribution (5.2)

to preserve the scale invariance of the (paramagnetic) effective action (3.3), the scaling

dimension of S(τ, τ ′) would have to vanish. But this is inconsistent with the scaling dimen-

sion of S(τ, τ ′) we found in the previous section. In other words, the two SL(2,R) phases

of the full quiver theory, the one in the Coulomb branch and the other in the Higgs branch,

are distinct. Going from one to the other, which in the gravity limit might be viewed as

the fragmented tips in the warped throat merging into a single horizon, resembles an RG

flow from one IR fixed point to another. Somewhat interestingly, ∆x is twice the conformal

weight of the fermion for the supersymmetric solution [31].
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A Fermions with random masses

We provide a simple purely fermionic model with random masses as an example a solvable

model, which we can also solve using the replica trick. The Hamiltonian is given by:

H = Jαβψ̄αψβ , α = 1, 2, . . . , N , (A.1)

where Jαβ is an N ×N Hermitean matrix drawn from a Gaussian ensemble with variance

J2/N . The 2N -dimensional Hilbert space can be decomposed into basis vectors built from

the state |0〉 annihilated by all ψα, where we recall {ψ̄α, ψβ} = δαβ . The basis vectors are

|αi;n〉 =

n∏
i=1

ψ̄αi |0〉 , n ∈ [0, N ] . (A.2)
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A useful quantity characterizing the states is the number of particles n, which is the eigen-

value of the number operator. For a given n there are CNn states. The Hamiltonian becomes

block diagonal with N blocks of size CNn × CNn with n = 0, 1, . . . , N . The corresponding

Euclidean action is:

S =

∫ β

0
dτ
(
ψ̄α∂τψα − Jαβψ̄αψβ

)
. (A.3)

Since the model is quadratic, it can be solved exactly. For instance, going to thermal

frequency space, the exact two-point function is given by:

〈 ψ̄α(k)ψβ(−k − 1) 〉J = [i ωk ⊗ IN×N − J ]−1
αβ . (A.4)

We can average the two-point function 〈 ψ̄α(k)ψα(−k − 1) 〉, with α summed, over the

disorder by computing:∫
dJαβ e

−JαβJβαN/2J2
tr [i ωk ⊗ IN×N − J ]−1

αβ . (A.5)

This is a standard exercise in matrix integrals. It is known that the eigenvalue distribution

of J with Gaussian weight is the Wigner semicircle distribution [29], hence we must compute

(in the β →∞ limit):

1

N

∑
α

〈 ψ̄α(ω)ψα(−ω) 〉J

=
1

2πJ2

∫ 2J

−2J
dλ

√
(2J − λ)(2J + λ)

i ω − λ
=

i

2J2

(
ω − sign(ω)

√
4J2 + ω2

)
. (A.6)

In the matrix model literature this often referred to as the resolvent. Notice that in the

large J limit, the two-point function is approximately given by the sign function just like

the large λ̃ correlator (4.26) found in the main body of the text. We can also compute the

quench averaged free energy:

F [β, J ]

N
= − 1

2πβJ2

∫ 2J

−2J
dλ
√

(2J − λ)(λ+ 2J) log

(
2 cosh

βλ

2

)
. (A.7)

From this we can derive an expression for the specific heat:

C[β, J ]

N
=

4

2πJ2β2

∫ Jβ

−Jβ
du
√

(Jβ − u)(u+ Jβ)u2 sech2u . (A.8)

In the low temperature, β → ∞ limit the specific heat is linear and goes as C[β, J ] ≈
πN/(3Jβ).

We can also solve this model using the techniques outlined in the main body of the

text. Hence we should compute the effective theory of Q(τ, τ ′). For the paramagnetic

ansatz we find:

Seff

Nn
= tr logQ(τ, τ ′) +

∫
dτdτ ′

(
δ(τ − τ ′)∂τQ(τ, τ ′) +

J2

2
Q(τ, τ ′)Q(τ ′, τ)

)
. (A.9)
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The momentum space equations are:

1

Q(ω)
= i ω − J2Q(ω) , (A.10)

with solution:

Q±(ω) =
i

2J2

(
ω ±

√
4J2 + ω2

)
. (A.11)

From the above solutions, we pick the one for which the physical condition Q(ω) = Q(−ω)

holds, which is the same as (A.6). In this language we can also compute the thermodynamic

quantities of the model. The internal energy is given by:

U [β, J ]

N
=

1

β

∑
k∈Z

[
2πi(k + 1/2)Q̃(k)− 1

]
≈ π

6β2J
, (A.12)

where we have taken a low temperature limit and used ζ-function regularization to evaluate

the sum in the second equality. The quantity Q̃ is the dimensionless two point function,

similar to those that appeared in (4.29) and is defined as:

Q̃(k) =
i

2β2 J2

2π

(
k +

1

2

)
− sign

(
k +

1

2

)√(
2π

(
k +

1

2

))2

+ 4β2J2

 . (A.13)

As in the quiver model, we find an internal energy proportional to the temperature squared,

giving rise to a linear in temperature specific heat C ≈ πN/(3Jβ).

B Perturbative expansion

In this appendix we analyze the perturbative expansion in λ of equations (3.7) and (3.8).

We discuss the solution with all Qi(k) ≡ Q(k) equal and all Si,a(k) ≡ S(k) equal. To

leading order in the small λ expansion, the solutions are:

Qi0(k) =
1

(2πk)2
, ∀ k 6= 0 , (B.1)

Qi0(0) =
1

λ
, (B.2)

Si,a0 (k) =
i

2π(k + 1/2)
∀ k ∈ Z . (B.3)

The next order is found by expanding Qi = Qi0 + δQi and Si,a = Si,a0 + δSi,a. Solving for

δSi,a and δQi, we find:

δSi,a(k) = − 2λ

(2π)3

i

(k + 1/2)3 +O(λ2) , (B.4)

and

δQi(k) = − 2λ

(2πk)4
+O(λ2) ∀ k 6= 0 . (B.5)

Notice that the permutation symmetry between the different node indices is unbroken.

Also notice that at large k, δSi,a(k) = (2πik) δQi(k) which is consistent with unbroken

supersymmetry.

– 20 –



J
H
E
P
1
2
(
2
0
1
6
)
0
7
1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Wigner, Random Matrices in Physics, SIAM Rev. 9 (1967) 1.

[2] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167

[INSPIRE].

[3] F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072]

[INSPIRE].

[4] F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011)

129 [hep-th/0702146] [INSPIRE].

[5] S.D. Majumdar, A Class of Exact Solutions of Einstein’s Field Equations, Phys. Rev. 72

(1947) 390 [INSPIRE].

[6] A. Papapetrou, A Static solution of the equations of the gravitational field for an arbitrary

charge distribution, Proc. Roy. Irish Acad. A 51 (1947) 191 [INSPIRE].

[7] F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049]

[INSPIRE].

[8] D. Anninos, T. Anous, J. Barandes, F. Denef and B. Gaasbeek, Hot Halos and Galactic

Glasses, JHEP 01 (2012) 003 [arXiv:1108.5821] [INSPIRE].

[9] D. Anninos, T. Anous, F. Denef and L. Peeters, Holographic Vitrification, JHEP 04 (2015)

027 [arXiv:1309.0146] [INSPIRE].

[10] D. Anninos, T. Anous, F. Denef, G. Konstantinidis and E. Shaghoulian, Supergoop

Dynamics, JHEP 03 (2013) 081 [arXiv:1205.1060] [INSPIRE].

[11] D. Anninos, T. Anous, P. de Lange and G. Konstantinidis, Conformal quivers and melting

molecules, JHEP 03 (2015) 066 [arXiv:1310.7929] [INSPIRE].

[12] R.C. Ferrell and D.M. Eardley, Slow motion scattering and coalescence of maximally charged

black holes, Phys. Rev. Lett. 59 (1987) 1617 [INSPIRE].

[13] R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on

Superconformal Quantum Mechanics and Multi-Black Hole Moduli Spaces, NATO Sci. Ser.

C 564 (2001) 235 [INSPIRE].

[14] A. Strominger, AdS2 quantum gravity and string theory, JHEP 01 (1999) 007

[hep-th/9809027] [INSPIRE].

[15] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg

magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[16] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev.

B 59 (1999) 5341 [cond-mat/9806119].

[17] A. Kitaev, A simple model of quantum holography, in proceedings of KITP Program:

Entanglement in Strongly-Correlated Quantum Matter, University of California, Santa

Barbara, California, U.S.A., April 6–July 2 2015

http://online.kitp.ucsb.edu/online/entangled15/.

– 21 –

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-th/9603167
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603167
http://dx.doi.org/10.1088/1126-6708/2002/10/023
https://arxiv.org/abs/hep-th/0206072
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206072
http://dx.doi.org/10.1007/JHEP11(2011)129
http://dx.doi.org/10.1007/JHEP11(2011)129
https://arxiv.org/abs/hep-th/0702146
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702146
http://dx.doi.org/10.1103/PhysRev.72.390
http://dx.doi.org/10.1103/PhysRev.72.390
http://inspirehep.net/search?p=find+%22PhysRev,72,390%22
http://inspirehep.net/search?p=find+J+%22Proc.Roy.Irish%20Acad.(Sect.A),A51,191%22
http://dx.doi.org/10.1088/1126-6708/2000/08/050
https://arxiv.org/abs/hep-th/0005049
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005049
http://dx.doi.org/10.1007/JHEP01(2012)003
https://arxiv.org/abs/1108.5821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5821
http://dx.doi.org/10.1007/JHEP04(2015)027
http://dx.doi.org/10.1007/JHEP04(2015)027
https://arxiv.org/abs/1309.0146
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0146
http://dx.doi.org/10.1007/JHEP03(2013)081
https://arxiv.org/abs/1205.1060
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1060
http://dx.doi.org/10.1007/JHEP03(2015)066
https://arxiv.org/abs/1310.7929
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7929
http://dx.doi.org/10.1103/PhysRevLett.59.1617
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,59,1617%22
http://dx.doi.org/10.1007/978-94-010-0852-5_7
http://dx.doi.org/10.1007/978-94-010-0852-5_7
http://inspirehep.net/search?p=find+J+%22NATO%20Sci.Ser.C,564,235%22
http://dx.doi.org/10.1088/1126-6708/1999/01/007
https://arxiv.org/abs/hep-th/9809027
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809027
http://dx.doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
http://inspirehep.net/search?p=find+EPRINT+cond-mat/9212030
http://dx.doi.org/10.1103/PhysRevB.59.5341
http://dx.doi.org/10.1103/PhysRevB.59.5341
https://arxiv.org/abs/cond-mat/9806119
http://online.kitp.ucsb.edu/online/entangled15/


J
H
E
P
1
2
(
2
0
1
6
)
0
7
1

[18] S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025

[arXiv:1506.05111] [INSPIRE].

[19] J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04

(2016) 001 [arXiv:1601.06768] [INSPIRE].

[20] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94

(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[21] J. Manschot, B. Pioline and A. Sen, From Black Holes to Quivers, JHEP 11 (2012) 023

[arXiv:1207.2230] [INSPIRE].

[22] I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS

Solutions and pure-Higgs States, JHEP 11 (2012) 171 [arXiv:1205.5023] [INSPIRE].

[23] S.-J. Lee, Z.-L. Wang and P. Yi, Quiver Invariants from Intrinsic Higgs States, JHEP 07

(2012) 169 [arXiv:1205.6511] [INSPIRE].

[24] S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003)

044011 [hep-th/0304093] [INSPIRE].

[25] A. Bray and M.A. Moore, Replica theory of quantum spin glasses, J. Phys. C 13 (1980) L655.

[26] L.F. Cugliandolo, D.R. Grempel and C.A. da Silva Santos, Imaginary-time replica formalism

study of a quantum spherical p-spin-glass model, Phys. Rev. B 64 (2001) 014403

[cond-mat/0012222].

[27] M. Mezard, G. Parisi and M. Virasoro, Spin glass theory and beyond: An Introduction to the

Replica Method and Its Applications, World Scientific (1986) [ISBN: 978–9971–5–0116–7].

[28] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in

momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].
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