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1 Introduction

Recent years have seen great progress in our understanding of dualities in d = 2 + 1

dimensional quantum field theories where, for once, we have managed to shrug off the

holomorphic comfort blanket of supersymmetry. These developments have arisen from a

wonderfully disparate array of topics, including the study of holography, the non-Fermi

liquid state of the half-filled Landau level, and the surface physics of topological insulators.

Underlying many of these results is the idea of bosonization. Roughly speaking, this

states that theories of scalars interacting with U(N)k Chern-Simons theories are equivalent

to theories of fermions interacting with U(k)N Chern-Simons theories. (More precise state-

ments will be made later in this introduction.) These dualities were originally conjectured

in the limit of large N and k [1–3], motivated in part by their connection to higher spin

theories in AdS4 (recently reviewed in [4]). They have subsequently been subjected to a

battery of very impressive tests [5–8].

Versions of these dualities are also believed to hold for finite N and k. The first

arguments in favour of their existence were given in [9], and the first precise dualities

were described by Aharony [10] by piecing together evidence from level-rank dualities [11],

known supersymmetric dualities [12–17], and the map between monopole and baryon op-

erators [18].

When extrapolated to N = 1, the dualities imply relationships between Abelian gauge

theories, some of which had been previously proposed [19]. An example of such a duality

equates a theory of bosons, coupled to a Chern-Simons gauge field, to a free fermion.

(Closely related conjectures, which differ in some details, have long been a staple of the

condensed matter literature — see, for example, [20–24].) Recently it was shown that these

Abelian bosonization dualities can be used to derive a whole slew of further dualities [25,

26], including the familiar bosonic particle-vortex duality [27, 28], as well as its more novel

fermionic version [29–31]. The upshot is that there is a web of d = 2 + 1 Abelian dualities,

with bosonization lying at its heart.
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Non-abelian bosonization dualities

In this paper, our interest lies in the non-Abelian versions of the bosonization dualities.

For these, it is a little too quick to say that they relate U(N)k bosons to U(k)N fermions

since there are subtleties in identifying the levels of the U(1) factors on both sides. These

subtleties were largely addressed in [10] and, more recently, in [32]. Before proceeding, we

review these results and provide a slight generalisation.

Theory A: we start by describing the bosonic theory. This consists of Nf scalar fields with

quartic couplings, transforming in the fundamental representation of the gauge group

U(N)k, k′ =
U(1)k′N × SU(N)k

ZN
(1.1)

Here k and k′N denote the levels of the SU(N) and U(1) Chern-Simons terms re-

spectively, so that the action governing the gauge fields is given by

LA =
k

4π
Tr εµνρ

(
aµ∂νaρ −

2i

3
aµaνaρ

)
+
k′N

4π
εµνρãµ∂ν ãρ (1.2)

with a the SU(N) gauge field and ã the U(1) gauge field. (Regularization of each

Chern-Simons theory by a small Yang-Mills term is understood throughout.)

The discrete quotient in (1.1) restricts the allowed values of k′ to take the form

k′ = k + nN with n ∈ Z

A simple way to see this is to construct the u(N)-valued gauge field au(N) = a+ ã1N ;

the action (1.2) becomes a Chern-Simons action for au(N) at level k, which we denote

as U(N)k, together with an Abelian Chern-Simons action for Tr au(N) at level n.

The dual of Theory A depends on the choice of Abelian Chern-Simons level k′ or,

equivalently, on n. For n = 0, 1 and∞, the duals were first proposed by Aharony [10].

More recently, Hsin and Seiberg described the dual for the choice n = −1 [32].

Although not explicitly stated by the authors, the techniques of [32] allow for a

straightforward generalisation1 to any n, which we now describe.

Theory B: this consists of Nf fermions, transforming under the fundamental representa-

tion of the gauge group U(k)−N+Nf/2. The U(1) ⊂ U(k) gauge field also interacts

through a minimal BF coupling with a further U(1)n Chern-Simons theory. The

resulting action for the gauge fields is

LB =
−N +Nf/2

4π

[
Tr εµνρ(cµ∂νcρ −

2i

3
cµcνcρ) + k εµνρc̃µ∂ν c̃ρ

]
(1.3)

+
k

2π
εµνρc̃µ∂νbρ +

n

4π
εµνρbµ∂νbρ

with c the SU(k) gauge field and c̃, b both U(1) gauge fields.

1This generalisation was also noticed by Ofer Aharony and we thank him for extensive discussions on

this issue.
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For certain values of n, we can integrate out the auxiliary gauge field b. These values

give the dualities

n =∞ : Nf scalars with SU(N)k ←→ Nf fermions with U(k)−N+Nf/2

n = 0 : Nf scalars with U(N)k ←→ Nf fermions with SU(k)−N+Nf/2

n = ±1 : Nf scalars with U(N)k, k±1 ←→ Nf fermions with U(k)−N+Nf/2,−N∓k+Nf/2

These are the dualities previously described in [10] (for n = 0, 1 and ∞) and in [32]

(for n = −1). For general n, we cannot integrate out b without generating fractional

Chern-Simons levels. In this case, the correct form of the duality is (1.3).

Exploring quantum Hall states

The purpose of this paper is to provide evidence for the bosonization dualities described

above by studying each theory in the quantum Hall regime. To access this regime, we need

to deform both sides of the duality. This is achieved by first turning on mass deformations

so that the theories sit in a gapped phase. We then we take the non-relativistic limit. This

involves taking the mass to infinity while simultaneously turning on a chemical potential

which is tuned to the gap. (See, for example, [33] for more details on how to take this

limit.)

The retreat to a non-relativistic corner of the theories throws away much of the dynam-

ics that makes bosonization dualities non-trivial. Indeed, here the dualities are souped-up

version of flux attachment, which is used to transmute the statistics of particles in quantum

mechanics [34]. Nonetheless, there remains a lot of interesting physics to extract in this

limit and a number of conceptual issues must be understood before we will ultimately find

agreement between the two theories.

The full Lagrangians for the bosonic and fermionic non-relativistic theories will be

described in sections 2 and 3 respectively. In short, they are

Theory A: U(N)k, k+nN coupled to Nf fundamental scalars.

Theory B: U(k)−N+Nf
coupled to Nf fundamental fermions and, through a BF coupling,

to U(1)n.

Note the shift in the Chern-Simons level of the fermionic theory from −N + Nf/2 to

−N +Nf ; this arises because taking the non-relativistic limit involves integrating out the

Dirac sea of filled fermionic states.

The dynamics of Theory A is particularly rich in a phase where the gauge symmetry

is fully broken so that the theory admits topological vortex solutions. This only occurs

when Nf ≥ N .

In this paper, we will focus on the specific case Nf = N , which is the minimal number

of flavours to support such vortices. The two dual theories are then

Theory A: U(N)k, k+nN coupled to Nf = N fundamental scalars.

Theory B: U(k)0 coupled to Nf = N fundamental fermions and, through a BF coupling,

to U(1)n

– 3 –
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We note in passing that there are few concrete tests of the bosonization dualities with

Nf > 1 and, indeed, it is thought to fail for Nf suitably large [32, 35]. Here we provide a

fairly detailed test of the dualities with Nf = N .

Our interest in this paper lies in the quantum Hall regime of the two dual theories.

As we will see in some detail below, this occurs when the two theories are subjected to a

chemical potential for their U(1) factors. We will ultimately find that both theories describe

the same quantum Hall states, but the way this arises in the two cases is rather different.

In Theory A, the emergence of quantum Hall physics involves the condensation of

the scalar field and the dynamics of the resulting vortices; this has been studied in some

detail in recent (and not so recent) papers [36–39] and will be reviewed in section 2 below.

In contrast, in Theory B there is no scalar field to condense. This immediately poses

the question: what is the dual of the condensed phase, and what excitations are dual to

vortices? We will answer this in section 3. We will show that the fermions experience an

effective background magnetic field, and the dual of the condensed phase is a fully filled

Landau level; the vortices are dual to holes in this Landau level.

2 The bosonic theory

Theory A consists of Nf = N non-relativistic scalars φi, interacting with a U(N)k, k′

Chern-Simons (CS) gauge field. The complete action is

S =

∫
d3x

[
iφ†iD0φi −

1

2m
~Dφ†i · ~Dφi −

π

mk′
(φ†iφi)

2 − π

mk
(φ†i t

αφi)(φ
†
jt
αφj)

]
+
k′N

4π
εµνρãµ∂ν ãρ +

k

4π
Tr εµνρ

(
aµ∂νaρ −

2i

3
aµaνaρ

)
− µNã0 (2.1)

Some comments on conventions: i = 1, . . . , Nf = N runs over the flavours; the SU(N)

generators tα are in the fundamental representation; aµ is the SU(N) gauge field and ãµ
the U(1) gauge field; each scalar φi transforms in the fundamental of SU(N), has charge 1

under U(1) and has mass m. As we mentioned in the introduction, the Chern-Simons level

must take the form k′ = k + nN with n ∈ Z.

The quartic terms in the first line of (2.1) are a remnant of similar interactions in the

parent, relativistic Theory A which contained Wilson-Fisher scalars. In the non-relativistic

context, they give rise to delta-function interactions between particles. The final term in

the action is a U(1) charge density µN . This will prove to be important.

The Gauss law constraints for both Abelian and non-Abelian gauge fields are

k′N

2π
f̃12 = φ†iφi − µN ,

k

2π
fα12 = φ†i t

αφi (2.2)

There are two translationally invariant ground states which are degenerate in energy:

Phase 1: f̃12 = −2πµ

k′
, φi = 0

Phase 2: f̃12 = 0 , φ†iφi = µN

– 4 –
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In Phase 1, the U(N) gauge group is unbroken and the dynamics includes a Chern-Simons

gauge field. This is the quantum Hall phase. However, our interest will initially lie in

phase 2, in which the scalars condense and the gauge group is broken. The story we want

to explore is how Phase 1 emerges from Phase 2.

We have chosen to work the smallest number of flavours, Nf = N , which can break

the gauge symmetry completely. In Phase 2, the scalars pick up expectation values φi,a =
√
µ δia with a = 1, . . . N the gauge index and i = 1, . . . , N the flavour index. The resulting

symmetry breaking pattern is

U(N)gauge × SU(N)flavour −→ SU(N)diag (2.3)

Vortices

The condensed state admits a new class of excitations: vortices. These are BPS: they are

solutions to the Gauss law constraints (2.2), together with the first order equation

Dzφi = 0

The single vortex solution has Abelian flux
∫
f̃12 = −2π/N . Such fractional flux is allowed

because of the ZN quotient in the gauge group (1.1). Inside the vortex, the φ field decays

to zero and Gauss’ law (2.2) ensures that the vortices are accompanied by a charge deficit

of k′ relative to the condensate.

Interesting things happen when we consider a large number of vortices together. The

resulting physics was studied in some detail in [38, 39], following earlier work on the Abelian

theory [36, 37]. Here we summarise the main results.

The BPS nature of the vortices means that there is no unique classical solution; in

particular, the vortices can be placed anywhere on the plane. It is simple to rectify this

by adding a harmonic trap which forces the vortices towards the origin. (Such a trap

is most easily constructed by taking it proportional to the angular momentum of the

vortex configuration.) In the presence of this trap, there is a unique minimum energy

vortex configuration which consists of a large, circular droplet, inside of which φi = 0 and

f̃12 = −2πµ/k′. The total flux carried by M vortices is simply −2πM/N . Equating this

to the flux [−2πµ/k′]πR2, we learn that the area of the droplet containing M vortices is

πR2 ≈ k′M

µN
(2.4)

The upshot of this argument is that adding a macroscopically large number, M , of vortices

creates a macroscopically large region of space in which the gauge symmetry is unbroken.

In other words, we have succeeded in constructing a finite region of Phase 1 (the quantum

Hall phase) that sits inside Phase 2.

The advantage of this construction is that the vortices also give us a handle on mi-

croscopic aspects of the quantum Hall state. In particular, by quantising the low-energy

dynamics of the vortices, we can reconstruct various properties of the quantum Hall state.

First, let’s build some expectations. One key fact is that as the vortices move, they ex-

perience a background magnetic field. This follows from a simple duality argument: the

– 5 –
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term µNã0 in the action (2.1) is a background charge density for electric states, but acts

like a background magnetic field B = 2πµ for magnetic states. On general grounds, we

expect that the density of states in the lowest Landau level is given by B/2π = µ. Yet,

from (2.4), we see that the density of vortices sitting in our droplet is ρv = µN/k′. This

suggests that the quantum Hall state of vortices has filling fraction

ν =
ρv

B/2π
=
N

k′
(2.5)

The next step is to understand the quantum Hall wavefunctions which describe this state.

Here there are two possible methods: one direct, one indirect:

• The direct method is to construct the quantum mechanics of M vortices and solve

for its ground state wavefunction. This involves solving a complicated many-body

system and, in general, is not easy. Nonetheless, as we review below, progress can be

made in the special case of k′ = k +N (or n = 1).

• For a more indirect method, recall that the gauge group is unbroken inside the droplet

of vortices, but broken outside. This means that the low-energy dynamics includes a

U(N)k, k′ Chern-Simons theory which, on the edge of the droplet, induces a U(N)k, k′

WZW conformal field theory. Now we use an insight due to Moore and Read [40]

sometimes known as the bulk-boundary correspondence. (It can be thought of as

a baby version of de Sitter holography.) This says that the bulk quantum Hall

wavefunction can be identified with a suitable correlation function in the boundary

conformal field theory. (A review of the bulk-boundary correspondence applied to

quantum Hall physics can be found in the lecture notes [41].)

We now review how we can construct the quantum Hall states using both of these methods.

The indirect method: conformal field theory

We start with the indirect method in which the wavefunction is identified with a suitable

correlation function of the U(N)k, k′ WZW conformal field theory.

For N = 1, the WZW model is simply a compact boson and the resulting wavefunctions

are the Laughlin states [40]. For N > 1, the appropriate correlation functions were first

computed by Blok and Wen and give rise to non-Abelian quantum Hall states. A slightly

different presentation of these wavefunctions was offered in [38] and this is the notation we

use here.

Let us first think about the kind of wavefunction that we expect. It is simple to

check that a single vortex transforms in the kth symmetric representation of the SU(N)diag

symmetry (2.3). This means that the vortex carries an internal “spin” degree of freedom;

the wavefunction will depend on both the position z and the spin σ of each vortex.

The SU(N) quantum numbers are sufficient to identify the boundary operator OR
that corresponds to the vortex: it is the primary operator with R the kth symmetric

representation. Roughly speaking, we then identify the bulk wavefunction as

Ψ(z, σ) ∼ 〈OR(z1) . . .OR(zM )〉

– 6 –
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(A more precise statement involves a careful treatment of the U(1) ⊂ U(k) part of the

WZW model; details can be found in [38].)

We describe the wavefunction when the number of vortices, M , is divisible by N . Here

things are somewhat simpler as the wavefunction turns out to be an SU(N) singlet. To

proceed, it is useful to attach an internal state |σa〉 to each vortex, with σa ∈ {1, . . . , N}.
This is slightly unnatural because, as we mentioned above, the vortices transform in the kth

symmetric product of SU(N) rather than the fundamental. However, in the wavefunction

there will be k states |σam〉 per vortex, suitably symmetrised, filling out this representation.

We define the baryon to be a combination of N vortices, with auxiliary spins arranged to

form a singlet: Ba1...aN = εσa1 ...σaN |σa1〉 . . . |σaN 〉. The correlation function in the CFT

gives the bulk wavefunction in the form

Ψ(z, σ) =
M∏
a<b

(za − zb)n Sym
[
Φk(z, σ)

]
e−2πµ

∑
a |za|2/4 (2.6)

where

Φ(z, σ) = εa1...aM (za1 . . . zaN )0(zaN+1 . . . za2N )1 . . . (zaM−N+1 . . . zaM )M/N−1

× Ba1...aNBaN+1...a2N . . . BaM−N+1...aM (2.7)

and the symbol Sym[. . .] projects onto the symmetrised product of spin states, ensuring

that each particle transforms in the kth symmetric representation of SU(N).

The wavefunctions (2.6) are the Blok-Wen states. They have the anticipated filling

fraction (2.5). They are an example of an N -clustered state, meaning that the wavefunction

vanishes only if N + 1 or more particles coincide. For N = 2 and k = 2, the wavefunction

is a spin-singlet generalisation of the well-known Moore-Read state [40]. For N > 2 and

k = 2, it is a spin-singlet generalisation of the Read-Rezayi states [47].

The direct method: vortex matrix model

The method described above requires us to invoke the somewhat magical correspondence

between boundary correlation functions and bulk wavefunctions. A much more direct

approach is as follows: determine the interactions between vortices and then solve for the

ground state wavefunction. Both of these steps are difficult and in general there is no

reason to believe that this is any easier than other many-body problems. Nonetheless,

progress can be made in the special case of

k′ = k +N (or n = 1)

In this case, one can construct a description of the vortex dynamics in terms of a U(M)

matrix model. This was studied in detail in [36–38].2 The matrix model turns out to be

solvable and allows us to determine in the properties of the vortex ground state as well as

the spectrum of excited states. Here we describe only the main results

2A warning on notation: in the matrix model papers [37, 38] we described N vortices in a U(p) Chern-

Simons theory by a U(N) matrix quantum mechanics. This, of course, differs from the use of these variables

in the present paper where we have instead opted for consistency with the bosonization literature.

– 7 –
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• When N = 1, we have an Abelian quantum Hall state. The vortex dynamics was

shown in [36, 37] to be described by a matrix model previously studied by Polychron-

akos [42] (who, in turn, was inspired by [43]). The ground state of this matrix model

is known to coincide (asymptotically) with the Laughlin wavefunction [42, 44, 45].

• For N > 1, the vortices carry an internal spin which, as we mentioned above, trans-

forms in the kth symmetric representation of the SU(N)diag symmetry. If we place

M vortices in a harmonic trap, then the representation of the resulting ground state

depends on the value of M mod N . Writing M = m mod N , the configuration

of vortices transforms in the in the kth symmetrisation of the mth antisymmetric

representation. In terms of Young diagrams, this is

m

{ k︷ ︸︸ ︷
(2.8)

In particular, when M is divisible by N the ground state is a singlet under SU(N).

• For N > 1, the ground state of the matrix model coincides with the Blok-Wen

states (2.6).

• Finally, we can relate this discussion to the indirect method described above. The

excitations of the vortex configuration are chiral modes, living on the edge of the

droplet. In the large N limit, the dynamics of these excitations can be shown to

coincide with those of the U(N)k, k′ WZW conformal field theory [39].

3 The fermionic theory

Now we turn to the Theory B. Our task is to reproduce the properties of vortices described

above in terms of fermions. The theory consists of Nf = N non-relativistic fermions ψi.

These interact with a U(k)0 gauge field; we denote the SU(k) part as c and the U(1) ⊂ U(k)

part as c̃. As described in the introduction, this is subsequently coupled to a further U(1)n
gauge field, b. The full action is

S =

∫
d3x

[
iψ†iD0ψi −

1

2m
~Dψ†i · ~Dψi − ψ

†
iGψi

]
+

k

2π
εµνρc̃µ∂νbρ +

n

4π
εµνρbµ∂νbρ −

µk

n
c̃0 (3.1)

The third term in the action couples the fermions to the background magnetic field, G =

g12+g̃121k, where g = dc−i[c, c] and g̃ = dc̃ are the non-Abelian and Abelian field strengths

respectively. This term arises from the non-relativistic limit of the Dirac equation.

Note that the duality maps the chemical potential µN of Theory A into a chemical

potential µk/n of Theory B. This map can be explicitly checked (at least in the Abelian

case) using the techniques of [25, 26]; for non-Abelian gauge groups considered here, the

map between chemical potentials includes a rescaling by the rank of the gauge group. As

– 8 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
7

an alternative, one can change the term in eq. (3.1) for a chemical potential for b; in this

case it takes the simpler form −µkc̃0/n → +µb0. The physics which follows is identical.

This allows a clearer extension to n = 0.

Our task is to reproduce the quantum Hall physics found in the bosonic theory. The

essence of the problem becomes immediately apparent if we look at the Gauss’ law con-

straints. Because the SU(k) Chern-Simons level is vanishing, the dynamics of the non-

Abelian field c is solely governed by the Yang-Mills regulator whose coupling is taken to be

large; thus, this gauge theory is confined and only SU(k) singlets are allowed. In contrast,

the Abelian Gauss’ law arising from c̃ and b read

ψ†iψi −
µk

n
+

k

2π
db = 0 (3.2)

k

2π
dc̃+

n

2π
db = 0

Now we see the difficulty. There is only one obvious, translationally invariant solution,

given by db = −(k/n)dc̃ and

Phase 1′: dc̃ = g̃12 = −2πµ

k
, 〈ψ†iψi〉 = 0

This provides the dual to Phase 1 of the bosonic theory. However, life is more difficult

if we want to write down the dual of Phase 2 in the bosonic theory because we cannot

simply condense the fermions to saturate the background charge. How, then, to construct

Phase 2?

To do this, we work self-consistently. Suppose there is a constant, background Abelian

field with strength g̃12. The fermionic excitations then form Landau levels. However,

crucially, the presence of the ψ†i g̃12ψi term in the action (3.1) means that the lowest Landau

level costs zero energy. (This is a familiar fact for relativistic fermions, and the direct

coupling to the field strength arises because (3.1) is the non-relativistic limit of a relativistic

theory.) This means that there is a second, translationally invariant ground state in which

the lowest Landau level is fully filled. The density of states in a Landau level is |g̃12|/2π
and, including both flavour and colour degrees of freedom, there are kN different fermions

which we can excite. Hence the fully filled lowest Landau level has 〈ψ†iψi〉 = kN |g̃12|/2π.

The self-consistent solution to (3.2) is then

Phase 2′: g̃12 = −2πµ

k′
, 〈ψ†iψi〉 =

µkN

k′

where k′ = k + nN . We claim that this phase is dual to Phase 2 of Theory A.3

Holes as vortices

Our next task is to understand the excitations above Phase 2′. These are the dual to the

vortices in Theory A. Since all physical states must be SU(k) singlets, the lowest energy

3One could also consider such self-consistent solutions for bosons. In this language, the condensed Phase

2 for bosons corresponds to filling the lowest Landau level an infinite number of times, a luxury not available

for fermions. Filling a finite number of times would appear to correspond to a fractionally filled Landau

level for the fermions; it would be interesting to explore this connection further.

– 9 –
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excitations are baryonic holes in the lowest Landau level. In the absence of a trap, these

cost zero energy and are created by operators

Hi1...ik(~x) = εm1...mkψi1m1(~x) · · ·ψikmk
(~x) (3.3)

where the colour indices range from m = 1, . . . , k and the flavour indices from i = 1, . . . , N .

Gauss’ law (3.2) ensures that each hole is accompanied by a flux db = −2π and g̃12 = 2πn/k.

We will now show that these holes share the same properties as the vortices in Theory A.

Theory B has an SU(N) flavour symmetry. In Phase 2′, this should be identified with

the SU(N)diag symmetry (2.3) of Theory A. Since the fermions in (3.3) are anti-commuting,

the hole operators Hi1...ik must transform in the kth symmetric representation of SU(N).

This coincides with the transformation of a single vortex in Theory A.

What happens as we introduce more and more baryonic holes? Clearly, we start to

construct a region that takes us back to Phase 1′. Just as it was useful to understand Phase

1 of the bosonic theory through the lens of the vortices, here we would like to understand

Phase 1′ through the lens of the holes. The first step is to notice that the holes feel as if they

are moving in a background magnetic field. This is because they carry flux g̃12 = 2πn/k

and, by the same kind of duality argument we used in section 2, the µk
n c̃0 term in the

action mimics a magnetic field for any magnetic excitation. The strength of this effective

magnetic field is B = 2πµ.

Meanwhile, the maximum density of holes is ρh = 〈ψ†iψi〉/k = µN/k′, because each

hole consists of k ψ excitations. This means that the holes can be packed at filling fraction

ν =
ρh

B/2π
=
N

k′

This coincides with the filling fraction of vortices (2.5) that we saw in Theory A.

The mapping of quantum numbers and density provides good evidence that non-

Abelian vortices map to holes in the lowest Landau level. The BPS nature of the vortices

is associated to vanishing energy of states in the lowest Landau level.

Our next task is to construct wavefunctions for these states. Since the holes created

by ψia experience a background magnetic field, wavefunctions for a single-hole are just

the familiar lowest Landau level states. In symmetric gauge, the quantum fields can be

expanded in angular momentum modes as

ψim(z, z̄) =

∞∑
q=0

zq e−B|z|
2/4 χqim (3.4)

where χqim is the creation operator for a fermion, labelled by i and m, in the qth angular

momentum state of the lowest Landau level.

We now look at states with N holes. This is trickier as we should take into account the

interaction between holes. We will proceed by neglecting this. Partial justification comes

from the fact that the SU(k) gauge interactions are strongest and we have already taken

these into account in forming the baryonic holes. Nonetheless, one may expect some resid-

ual short range interactions which we do not have control over. The fact that ultimately
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the ground state is gapped (and the agreement with the dual description) suggests that

this is valid.

To provide an energetic distinction between different hole excitations, we introduce a

harmonic trap. As in Theory A, it is simplest to take the trap to be proportional to the

angular momentum q of the holes, with the convention that Phase 2′ has vanishing energy.

For each spatial wavefunction, we have Nk fermionic states ψim. Each hole is constructed

from k of these states. This means that the first N holes sit in the lowest, q = 0, state; the

next N holes sit in the q = 1 state, and so on.

What representation of SU(N) does the resulting ground state sit in? To see this, note

that we can equally well write the single hole creation operator (3.3) as

Hi1,...,ik = Symi[ψi1,1 . . . ψik, k]

where the symmetrisation is over all flavour indices. Now consider the product over two,

spatially coincident holes, Hi1,...,ikHj1,...,jk = Symi,j [ψi1,1 . . . ψik, kψj1,1 . . . ψjk, k] where we

symmetrise independently over i indices and over j indices. Clearly this state is anti-

symmetric under exchange of each pair, such as (i1, j1). The upshot is that this state

transforms in the kth symmetrisation of the anti-symmetric representation or, in terms of

Young diagrams,
k︷ ︸︸ ︷

By the same argument, we see that the ground state of M = m mod N holes transforms

in the same representation (2.8) as the ground state of vortices.

Before writing down the many-hole wavefunction, there is one final thing we should

remember. The holes are composite fermions/bosons; they have charge k and flux 2πn/k.

This means that when one hole circles another, it picks up a 2πn phase. To reflect this, we

should include the factor
∏

(za − zb)n in the wavefunction.

We’ve now described all the ingredients which go into constructing the wavefunction

for M holes. The only remaining difficulty is notational. For simplicity, we take M divisible

by N . Each hole, a = 1, . . . ,M , has an associated SU(N) spin Ha which lies in the kth

symmetric representation of SU(N)

Ha(~x) = (Ha)i1...ik(~x) |σi1〉 . . . |σik〉

where, as for the vortices, |σ〉 ∈ {1, . . . , N}. The wavefunction is then given by the overlap

Ψ(z, σ) =
M∏
a<b

(za − zb)n 〈LLL|H†a1(z1, z̄N ) . . .H†aN (zN , z̄N ) |M〉

where 〈LLL| is the ground state for Phase 2′, while |M〉 is the state with the M holes

removed in successive lowest angular momentum modes. To construct the explicit wave-

function now involves only Wick contractions of the creation operators χqim which appear

in (3.4). Despite its simplicity, this step is a little fiddly. It is easiest to focus on a specific

colour index, say m = 1. One can check that the resulting terms in the wavefunction are
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precisely those that appear in Φ(z, σ) defined in (2.7). Repeating this for each m = 1, . . . , k,

we find the Blok-Wen wavefunction (2.6), where the symmetrization naturally occurs for

the reasons described above.

Level rank duality

Comparing the construction of the wavefunction for holes and vortices, we see that there is

an interesting interplay the roles played by SU(k) and SU(N) on the two sides of the duality.

This is the essence of level-rank duality. In this section, we review some representation

theory which highlights this connection.

In building the hole wavefunctions, we find that each state in the lowest Landau level

comes in Nk varieties, each associated to a fermionic annihilation operator ψi,m with

i = 1, . . . , N and m = 1, . . . , k. These states naturally carry a representation of u(Nk)1.

This then has a decomposition into

u(1)Nk × su(k)N × su(N)k ⊂ u(Nk)1 (3.5)

The first factor, u(1)Nk simply counts the number of excited fermions. The second and

third factors correspond to our gauge and flavour groups respectively. (The levels arise

because there is a truncation on the dimension of each representation, which follows simply

from the fact that we have a finite number of Grassmann operators to play with.) Gauge

invariance means that we want to restrict to SU(k) singlet. The question we would like to

ask is: which SU(N) representations then emerge?

The general decomposition (3.5) has been well studied, not least because of the impor-

tant role it plays in level-rank duality. We label representations under the left-hand side

using triplets (q,R, R̃), where q is the number of excited fermions and R and R̃ denote the

Young diagrams for the representations of su(k)N and su(N)k respectively. Suppose that

the representation R appears on the left-hand side: then it is accompanied by R̃ = RT , or

its orbit under outer automorphisms. Let us first explain what this means.

The outer automorphism group of SU(N)k is ZN . It is generated by the basic outer

automorphism operator σ which obeys σN = 1. This has an action on representations which

can be nicely explained using Young diagrams. We start with a given Young diagram R̃.

Then σ(R̃) is a second Young diagram which we construct using the following procedure:

first, add a row of length k to the top of R̃; next remove any columns of length N to

obtain a suitably reduced Young diagram. One may easily verify that this procedure gives

σN (R̃) = R̃ for any R̃.

The upshot of this is that the only representations of u(1)Nk × su(k)N × su(N)k that

can appear are
(
|R| + mk (mod kN), R, σm(RT )

)
, with m = 0, 1, . . . , N − 1. Here RT

denotes the transpose of the Young diagram R, and |R| is the number of boxes it contains.

For us, the above construction is particularly simple because we are interested in the

singlet representation R. These have |R| = 0, and RT is the singlet representation of

su(p). Under the action of outer automorphisms, the singlet representation is mapped into

representations which contain M complete rows of k boxes, with u(1)Nk charge Mk. This

means that the operators HM , with M < N , transform in the representation (2.8) which

we saw for vortices in Theory A.
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The discussion above was restricted to M < N baryonic holes. Each spatially distinct

state in the lowest Landau level has Nk fermionic states. This means that if we remove N

baryons then we empty one spatial bucket, leaving the state a singlet once more. Then we

must begin again from the next bucket, and the process repeats. So for M baryonic holes,

the representation is again given by (2.8), where M = m mod N . This again matches the

representation theory of the vortices.

4 Discussion

There are a bewildering number of descriptions of quantum Hall states. Many of these are

related by dualities, including the kinds of bosonization dualities described in this paper.

Here we try to place our results within this wider context.

The original effective field theory for the Laughlin state is due to Zhang, Hansson and

Kivelson [48]. It consists of an Abelian Chern-Simons theory with non-integer level set

by the filling fraction. The Chern-Simons field is coupled to non-relativistic scalars which,

through the process of flux attachment, become the electrons of the system. An alternative

description was offered by Lopez and Fradkin, [49] which again consists of an Abelian

Chern-Simons field at non-integer level, this time coupled to fermions. The equivalence of

these two descriptions for the long distance physics can be viewed as a simple example of

3d bosonization, albeit restricted to the non-relativistic regime of quantum mechanics.

The fact that the Chern-Simons level in [48, 49] is fractional means that these theories

miss aspects of the physics related to topological order. This was rectified in the work of

Wen and Zee [50], who presented an effective description of quantum Hall states in terms of

Abelian Chern-Simons theories with integer-valued levels. These are related to the earlier

papers through a kind of particle-vortex duality. In particular, the vortices now play the

role of the electrons in the system. The gauge fields are coupled to scalars whose excitations

describe the quasi-holes with anyonic statistics.

To our knowledge, a fermionic version of the Wen-Zee class of theories has not pre-

viously been constructed. This is what the bosonization duality achieves. For example,

the results of section 3 tell us that the Laughlin state at filling fraction ν = 1/(k + 1) is

described by a U(k)0,−k ∼= [U(1)−k2 × SU(k)0]/Zk Chern-Simons theory coupled to just

a single species of fermion. This viewpoint appears to be closely related to the partonic

construction of [51, 52].

The bosonic “Theory A” that we have described in section 2 should be viewed in the

same spirit as the Wen-Zee theories, with the obvious exception that it is a non-Abelian

gauge theory. It is a U(N)k, k′ Chern-Simons theory whose vortices are to be thought

of as the “electrons”, now endowed with internal spin degrees of freedom. The resulting

quantum Hall states were previously introduced by Blok and Wen. The bosonization

duality now tells us that the duals of these non-Abelian states can be constructed by

considering SU(k) singlets, coupled to further Abelian gauge fields. This is reminiscent of

the partonic description of these states previously presented in in [46, 53].

Finally, it would be interesting to understand to what extent the bosonization dualities

relating (1.2) and (1.3) underlie more general non-Abelian dualities in d = 2+1 dimensions.
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For example, are they related to other approaches such as [54, 55]? Can they be used as

building blocks to derive non-Abelian particle-vortex dualities, or their supersymmetric

counterparts constructed in [56, 57]?
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