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1 Introduction

In a strongly coupled Yang-Mills plasma, such as that of maximally supersymmetric Yang-

Mills (N = 4 SYM) theory, the typical time scale for relaxation of non-hydrodynamic per-

turbations is set by the inverse temperature T−1. In a dual holographic description, this

scale may be interpreted as the characteristic gravitational infall time for perturbations

falling through the horizon of black brane geometries which describe near-equilibrium

states [1, 2].

However, even in the strong coupling limit, sufficiently high momentum excitations are

only weakly damped. This may, for example, be seen in the large wavenumber asymptotics

of the quasinormal mode (QNM) spectrum. At zero temperature in N = 4 SYM, Fourier

transformed two-point correlation functions, viewed as functions of frequency ω at fixed
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wavenumber q, have branch cuts starting at the lightcone, ω = ±|q|.1 At non-zero tem-

perature, and in the N → ∞ limit, this branch cut breaks up into a closely spaced series

of poles at locations ω = {ω±n (q)} known as quasinormal mode frequencies [3–5]. Festuccia

and Liu [6] studied the large-q asymptotics of the quasinormal mode spectrum for scalar

perturbations (or helicity ±2 stress-energy perturbations) and found that as |q| → ∞,

ω±n (q)/|q| ∼ ±
[
1 + cn e

∓iπ/3 (πT/|q|)4/3
]
, (1.1)

with real “spectral deviation” coefficients {cn} which are discussed below. The small imag-

inary part (relative to the real part), Imω±n (q)/Reω±n (q) = O(T/|q|)4/3, demonstrates the

weak damping for |q| � T , and shows that these high energy, short wavelength excitations

may, in some respects, be regarded as quasiparticles, i.e., excitations whose mean free path

is much longer than their de Broglie wavelength. However, because |q| � T , these are

highly athermal excitations which are exponentially rare in equilibrium. Moreover, be-

cause the spacing in energy between successive quasinormal modes is comparable to their

width, |ω±n+1(q) − ω±n (q)| ∼ | Imω±n (q)|, the spectral densities of correlation functions, at

large q, do not have distinct narrow peaks in frequency associated with each quasinor-

mal mode; instead the contributions of multiple QNMs merge to produce a slowly varying

spectral density [7].

The weak damping of high q excitations may also be seen in the behavior of planar

shocks.2 At zero temperature, planar shocks propagate at the speed of light without

dispersion or attenuation. At non-zero but low temperatures (small compared to the inverse

width of the shock), the shock experiences weak thermal drag [8]. This slowly attenuates

the amplitude of the shock and introduces dispersion, but this weak damping vanishes

as T → 0.

In this paper, we study the damping of high q excitations in N = 4 SYM theory in

greater detail. In section 2 we perform our own WKB analysis of the large-q asymptotics

of helicity ±2 quasinormal mode frequencies. We confirm the relative |q|−4/3 form (1.1)

of the leading corrections to a lightlike dispersion relation, with a universal ∓π/3 phase.

However, we find values for the coefficients {cn} of these corrections which disagree in two

respects with the result given in ref. [6], which was

cn = KFL (2n+ 1)4/3 , n = 1, 2, · · · , [Festuccia & Liu] , (1.2)

with KFL = [
√
π Γ
(
7
4

)
/Γ
(
1
4

)
]4/3 = 0.344127 · · · . The (2n + 1)4/3 dependence on mode

number is asymptotically correct for high-lying modes, but is not accurate for low order

modes. Moreover, the coefficient KFL differs by a factor of 25/3 from the correct value in

the large order asymptotic form,

cn ∼ K (2n+ 1)4/3 , n� 1 , (1.3a)

1Throughout this paper, we consider N = 4 SYM theory on R4, or the dual gravitational theory on the

Poincaré patch of the AdS5-Schwarzschild geometry.
2By “planar shock” we mean a state with an energy density distribution resembling a uniform infinite

planar sheet, with a longitudinal profile characterized by some width w, and propagating in a direction

normal to the sheet.
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with

K =
1

2

[√
π Γ

(
7

4

)
/Γ

(
5

4

)]4/3
= 1.092535 · · · . (1.3b)

The need for a 25/3 correction factor in the value of the coefficient KFL for AdS5 black

holes was noted earlier in ref. [9],3 but the inaccuracy of the estimate (1.3) for low order

modes seems not to have been previously appreciated.

Complementary numerical results confirming the WKB analysis, examining the ap-

proach to the asymptotic regime, and studying helicity 0 and ±1 modes in addition to

helicity ±2, are presented in section 3. We calculate accurate results for the lowest fifteen

quasinormal modes in each helicity channel for wavevectors up to |q|/(πT ) = 160. This

extends previous results given in ref. [5]. For helicity ±2 perturbations, comparison of the

numerical results with the WKB asymptotics clearly confirms the validity of the asymptotic

analysis and shows that for low order modes the large-q asymptotic form (1.1) becomes

a good approximation starting at modest wavenumbers of a few times πT . For helicity

±1 and 0 perturbations (which satisfy significantly more complicated equations) we have

not performed a full WKB asymptotic analysis. However, our numerical results for these

helicities very clearly support the assertion that the asymptotic form (1.1) is equally valid

for these perturbations. Moreover, our extrapolated numerical values for the first fifteen

spectral deviation coefficients cn strongly suggest that in these helicity channels the large

order asymptotic form is

cn ∼

{
K (2n)4/3 , helicity ±1;

K (2n− 1)4/3 , helicity 0,
(1.4)

with exactly the same prefactor K = 1
2 [
√
π Γ
(
7
4

)
/Γ
(
5
4

)
]4/3 as for helicity ±2.

As an application of our results, we discuss the propagation of narrow planar shocks

in section 4. A sufficiently weak shock may be viewed as a coherent superposition of

quasinormal modes. As noted above, as the shock moves through the dispersive N = 4 SYM

plasma at temperature T it experiences friction; the maximum amplitude will decrease and

the longitudinal energy density profile will evolve. We specifically study narrow planar

shocks whose quasinormal mode spectrum is dominated by wavevectors large compared to

T and discuss characteristic features of the resulting evolution. The final section 5 contains

a few concluding remarks. Appendix A presents tabular data for QNM frequencies. Three

subsequent appendices provide details on the numerical analysis, transformation to infalling

coordinates, and the large wavevector, large order asymptotic analysis.

2 Quasinormal mode frequencies: large-q asymptotics

We wish to study the dynamics of linearized perturbations on the background geometry of

an AdS5 black brane, which is dual to the thermal equilibrium state (at vanishing chemical

potentials) of N = 4 SYM theory. We find it convenient to use infalling coordinates (t,x, u)

3We thank G. Festuccia for making us aware of this reference.
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with x ≡ (x1, x2, x3) denoting ordinary spatial coordinates and u an (inverted) bulk radial

coordinate. Choosing to set the AdS curvature scale L equal to unity, the metric reads

g = u−2
[
−dt⊗ du− du⊗ dt−

(
1−mu4

)
dt2 + dx2

]
. (2.1)

The conformal boundary is at u = 0 and the horizon lies at uh ≡ (πT )−1, with

m ≡ u−4h = (πT )4 . (2.2)

The metric is translationally invariant in the Minkowski directions (t,x). Hence, it is

natural to Fourier decompose the dependence of perturbations on these directions and, for

non-zero wavevectors, to classify according to the helicity of the perturbation under the

SO(2) little group [10]. In this section we focus, for simplicity, on helicity ±2 perturbations.

Choosing the wavevector q to lie along the x3-direction (with magnitude q), we consider a

metric perturbation of the form

δg = u2 h(u) ei(qx3−ωt) (dx1 ⊗ dx2 + dx2 ⊗ dx1) , (2.3)

with h an undetermined function of u. Factoring out two powers of u, as shown, is conve-

nient as the appropriate boundary condition for h at u = 0 then becomes just regularity.

Similarly, because our infalling coordinates are non-singular across the future horizon, in-

going boundary conditions at the horizon correspond to h also remaining regular at u = uh.

With this choice of perturbation, the only non-trivial part of the linearized Einstein’s

equations is the xy component, and the resulting equation reads

h′′ +
5− 9mu4 + 2iuω

u (1−mu4)
h′ − q2u+ 16mu3 − 5iω

u (1−mu4)
h = 0 . (2.4)

Henceforth, it is convenient to choose units such that m = 1 (or equivalently, to measure

ω and q in units of πT ), so that the helicity ±2 perturbation equation becomes4

h′′ +
5− 9u4 + 2iuω

u (1− u4)
h′ − q2u+ 16u3 − 5iω

u (1− u4)
h = 0 . (2.5)

It will also prove convenient to denote the frequency to wavevector ratio by

s ≡ ω/q . (2.6)

This ratio will be complex and wavenumber dependent [i.e., s = s(q)], although this depen-

dence will not always be indicated explicitly. From the quasinormal mode equation (2.5)

it is apparent that if h(u) is a solution with frequency ω then h(u)∗ is also a solution with

frequency −ω∗, showing that quasinormal mode frequencies (which are not pure imaginary)

come in pairs with opposite real parts. Hence, it is sufficient to focus on solutions with

Re s ≥ 0.

One may eliminate first derivative terms in the helicity ±2 equation (2.5) by suitably

redefining the radial function. Let

h(u) = e−iωf(z) z−3/2 (1−z2)−1/2 ĥ(z) , (2.7)

4Factors of πT can always be reinstated by rescaling ω → ω/(πT ) and q → q/(πT ), along with u→ uπT .
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with

f(z) ≡ 1

2

[
tan−1(

√
z) + tanh−1(

√
z)
]

(2.8)

and z ≡ u2. Then ĥ(z) satisfies a zero-energy Schrödinger equation,

− ĥ′′ + V (z) ĥ = 0 , (2.9)

with

V (z) ≡ q2 1− s2 − z2

4z (1−z2)2
+

3− 6z2 − z4

4z2 (1−z2)2
. (2.10)

Boundary conditions on ĥ (corresponding to regularity of h at horizon and boundary) are

ĥ(z) = O
(
z3/2

)
, as z → 0 ; (2.11a)

ĥ(z) = O
(
(1−z)1/2−iω/4

)
, as z → 1− . (2.11b)

The six singular points of eq. (2.5) (at u = 0, u = ∞, and u4 = 1) are reduced to four in

eq. (2.9): z = 0, z =∞, and z = ±1. The resulting equation (2.9) is thus of the Heun type.

2.1 Leading behavior

As mentioned earlier, in the large q (or low temperature) limit, where the spatial wavevector

is arbitrarily large compared to πT , quasinormal mode frequencies should approach the

zero-temperature branch points at ω2 = q2. To demonstrate that this is indeed the case,

we insert an ansatz for the asymptotic behavior of the ratio s = ω/q,

s(q) = s0 + sα(q) q−α , (2.12)

with exponent α > 0 and the “dispersive correction” sα(q) a smooth function of q which

approaches a finite non-zero limit,

s∞α ≡ lim
q→∞

sα(q) , (2.13)

with corrections vanishing as an inverse power of q.

First, to show that s0 must equal ±1, we make a proof by contradiction: assume that

s20 6= 1 and demonstrate that there are no solutions. Eq. (2.9) becomes

q−2 ĥ′′ =
(
Q0 + q−αQα + q−2Q2 + q−2αQ2α

)
ĥ , (2.14)

where

Q0(z) ≡ 1− s20 − z2

4z (1−z2)2
, Qα(z) ≡ −s0 sα(q)

2z (1−z2)2
, (2.15a)

Q2(z) ≡ 3− 6z2 − z4

4z2 (1−z2)2
, Q2α(z) ≡ −sα(q)2

4z (1−z2)2
. (2.15b)

An appropriate ansatz for a WKB approximation to the solution is

ĥWKB(z) = exp
{
q
[
T0(z) + q−1 T1(z) + q−α Tα(z) + · · ·

]}
. (2.16)
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Subsequent terms in the exponent involve higher integer powers of q−1 and q−α. The

ordering of the terms will be explained a-posteriori, when we find that α is non-integer and

1 < α < 2. Inserting the expansion (2.16) into the radial equation (2.14) and collecting

like powers of q produces the conditions:

(T ′0)
2 = Q0 , T ′′0 + 2T ′0 T

′
1 = 0 , 2T ′0 T

′
α = Qα . (2.17)

Solving for T0, T1, and Tα yields two solutions (due to the sign ambiguity in
√
Q0). One

choice gives

T0 =

∫
dz
√
Q0 , T1 = −1

4
logQ0 , Tα =

∫
dz

Qα
2
√
Q0

, (2.18)

where we define
√
Q0(z) as the branch which approaches +is0/[2

√
z (1−z2)] as s0 → ∞

(with
√
z ≥ 0 for z ∈ [0, 1]). The other choice is obtained by replacing

√
Q0 with −

√
Q0.

The resulting WKB approximations for two linearly independent solutions, which we denote

by ĥ±WKB, have the form

ĥ±WKB(z) = Q0(z)−1/4 e
±q

∫ z dz′ [Q1/2
0 + 1

2
q−αQαQ

−1/2
0 +···

]
. (2.19)

The most general solution is an arbitrary linear combination of the solutions ĥ±WKB. Sub-

leading terms in these WKB approximations are negligible provided that |1−s20−z2| � q−α

and |1 − s20 − z2| z � q−2. The first condition ensures that the Q0(z) term in eq. (2.14)

is large compared to Qα(z), while the second condition ensures that Q0(z) also dominates

the Q2(z) term.

Near the horizon, 1−z � 1, we have
√
Q0 ∼ i

4s0/(1−z) and eq
∫ z dz′ Q1/2

0 ∼ (1−z)−
1
4
iqs0 .

Hence

ĥ+WKB(z) ∼ (1−z)
1
2
− 1

4
iqs0 , ĥ−WKB(z) ∼ (1−z)

1
2
+ 1

4
iqs0 . (2.20)

Only the behavior of ĥ+WKB matches the required near-horizon condition (2.11b), so this is

the solution of interest.

Near the boundary, z � 1, we have
√
Q0 ∼ −1

2

√
(1−s20)/z, with

√
1−s20 defined

to be positive just above the branch cut running from −1 to 1. Hence
∫ z
dz′ Q

1/2
0 ∼

−
√

(1−s20)z and

ĥ+WKB(z) ∼ [z/(1−s20)]1/4 e−q
√

(1−s20)z . (2.21)

The form (2.21) cannot, however, be directly compared with the required boundary condi-

tion (2.11a), as the WKB approximation (2.19) is not valid all the way to z = 0; as noted

above, the WKB approximation is limited to z � q−2/|1−s20|. Therefore, we must match

the WKB solution to a suitable near-boundary approximation.5

5If s20 /∈ [0, 1], then the WKB approximation is valid for all z ∈ [ε, 1] for any ε � q−2/|1−s20|. But if s20
is real and lies inside the interval [0, 1] then there is a quadratic turning point at z∗ = 1−s20. The WKB

approximation (2.19) is not accurate in a neighborhood of this turning point. Nevertheless, this does not

invalidate the following argument matching WKB and near-boundary approximations, as one may deform

the contour in z along which one works from the real interval [0, 1] to a complex contour which runs from 0

to 1 but avoids the turning point at z∗. This contour deformation argument does not apply when s20 → 1,

as the endpoints of the contour in z are necessarily fixed at 0 and 1.
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Provided s2 6= 1, the Schrödinger equation (2.9) for ĥ simplifies near the boundary,

z � 1, to

ĥ′′ =

[
1

4
q2 (1−s2) z−1 +

3

4
z−2
]
ĥ , (2.22)

with solutions given by regular or irregular modified Bessel functions,

ĥreg(z) =
√
z I2
(
q
√

(1−s2) z
)
, ĥirr(z) =

√
z K2

(
q
√

(1−s2) z
)
. (2.23)

These forms are valid for z � 1, regardless of the size of q2z, up to relative corrections

of order z2. In the overlap region 1 � z � q−2/|1−s20|, both WKB and near-boundary

approximations are valid. Within this region, the arguments of the Bessel functions in the

near-boundary approximations (2.23) are large and these solutions behave as6

ĥreg(z) ∼ (2πq)−1/2 (z/(1−s2))1/4 eq
√

(1−s2)z , (2.24a)

ĥirr(z) ∼ (2q/π)−1/2 (z/(1−s2))1/4 e−q
√

(1−s2)z . (2.24b)

Comparing these forms to the WKB behavior (2.21), one sees that ĥ+WKB is proportional

to the near-boundary solution ĥirr, not to ĥreg. However, only the regular near-boundary

solution ĥreg satisfies the boundary condition (2.11a) requiring O(z3/2) behavior as z → 0.

The irregular solution ĥirr diverges as O(z−1/2) as z → 0, violating the required regularity

condition. Consequently, the assumption that s20 6= 1 is inconsistent with the boundary

conditions (2.11); solutions which satisfy the boundary condition at one end of our interval

in z fail to satisfy the required boundary condition at the other end. Therefore, the

only solutions which satisfy both boundary conditions must have s20 = 1, implying that

quasinormal mode frequencies approach ±q as q →∞.

2.2 Subleading behavior

Specializing (without loss of generality) to the case of s0 = +1, the integrals appearing in

the WKB functions (2.18) may be explicitly evaluated and give:

T0(z) = − i
2

[
tan−1(

√
z)− tanh−1(

√
z)
]
, Tα(z) = sα

[
T0(z)− iz−1/2

]
. (2.25)

Hence, the relevant WKB solution has the form

ĥ+WKB(z) = e−iπ/4 z−1/4
√

2(1−z2) exp
{
q
[
(1 + sα q

−α)T0(z)− isα q−α z−1/2 + · · ·
]}

.

(2.26)

As discussed above, neglected higher order terms are negligible provided z2qα � 1 and

z q2 � 1. Once again, this solution will need to be matched, within a suitable overlap

region, to an appropriate near-boundary solution. For z � 1, T0(z) ∼ i
3 z

3/2 and (with no

6These asymptotic forms, and the following argument, are valid provided
√

(1−s2)z has positive real

part. As the phase of
√

1−s2 varies away from zero, it is convenient to perform the matching on the ray

arg z = − arg
√

1−s2, along which the arguments of the modified Bessel functions remain real.
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assumption on the size of z compared to inverse powers of q), the WKB solution (2.26)

behaves as

ĥ+WKB(z) ∼
√

2 e−iπ/4 z−1/4 exp

[
i

3
q z3/2 − isα q1−α z−1/2

]
. (2.27)

We now turn to the near-boundary region. Non-uniformity between the small z and s20 → 1

limits cause the near-boundary behavior for s20 = 1 to be qualitatively different from the

previously discussed s20 6= 1 case. So we must redo the analysis starting from eq. (2.9) and

specializing to s0 = 1. Assuming z � 1 and q � 1 (but making no assumptions about

products of the form zaq), the Schrödinger equation (2.9) simplifies to

ĥ′′ =

[
−1

4
q2 z − 1

2
sα q

2−α z−1 +
3

4
z−2
]
ĥ . (2.28)

It is helpful to introduce a rescaled coordinate,

y ≡ z q2/3 , (2.29)

so that h̃(y) ≡ ĥ(z(y)) satisfies

h̃′′ =

[
−1

4
y − 1

2
sα q

4/3−α y−1 +
3

4
y−2
]
h̃ . (2.30)

In terms of this rescaled coordinate, the small-z form (2.27) of the WKB solution becomes

ĥWKB(z(y)) ∼ y−1/4 exp

[
i

3
y3/2 − isα q4/3−α y−1/2

]
, (2.31)

and is valid for y2 � q4/3−α. Clearly, if7

α =
4

3
, (2.32)

then we have a consistent description for asymptotically large q: the WKB solution

has a universal small-z form, ĥWKB(z(y)) ∼ y−1/4 exp
[
i
3 y

3/2 − is∞α y−1/2
]
, valid for

y � 1, which can smoothly match onto a solution h̃(y) of the q-independent near-

boundary equation,

h̃′′ =

[
−1

4
y − 1

2
s∞α y−1 +

3

4
y−2
]
h̃ . (2.33)

To determine allowed values for the constant s∞α , one must find solutions to eq. (2.33)

which are O(y3/2) as y → 0 and approach y−1/4 exp
[
i
3 y

3/2 − is∞α y−1/2
]

up to an irrelevant

overall constant when y � 1.

Although it may seem most natural to work on the ray with arg y = 0 (corresponding

to the original physical domain of z ∈ [0, 1]) when performing this matching, this is not

7If α > 4/3, then all dependence on sα in eqs. (2.30) and (2.31) vanishes in the q → ∞ limit, and the

solution to eq. (2.30) which matches onto the WKB solution for large y fails to satisfy the O(y3/2) regularity

condition at y = 0. This shows that the ratio s = ω/q must deviate from unity by terms at least as large

as O(q−4/3).
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helicity ±2 modes

n cn n cn n cn n cn

1 4.464041100 7 40.32733993 13 88.43518883 19 144.4485811

2 9.155136716 8 47.67478411 14 97.28444537 20 154.4136692

3 14.48139869 9 55.31510291 15 106.3392576 21 164.5420243

4 20.32785188 10 63.22753437 16 115.5907121 22 174.8285514

5 26.61804258 11 71.39462943 17 125.0308016 23 185.2685346

6 33.29797173 12 79.80148278 18 134.6522859 24 195.8575945

Table 1. Values of the asymptotic spectral deviation coefficients {cn} for the first 24 helicity ±2

quasinormal frequencies, where ωn/q = 1+ cn e
−iπ/3 q−4/3 +O(q−2). All digits shown are accurate.

required. For reasons which will momentarily become apparent, it is more convenient to

work along the rotated ray arg y = π/3. So we define

y ≡ eiπ/3w , (2.34)

with w real and positive. Then h(w) ≡ h̃(y(w)) satisfies

h′′ =

[
1

4
w − λw−1 +

3

4
w−2

]
h , (2.35)

where λ ≡ 1
2s
∞
α eiπ/3. Boundary conditions become h(w) ∼ w−1/4 exp

[
−1

3 w
3/2−2λw−1/2

]
for w � 1, and h(w) = O(w3/2) as w → 0. In other words, by rotating the contour, our

desired solution now vanishes exponentially for large argument. Moreover, with these

boundary conditions eq. (2.35) is a self-adjoint eigenvalue problem. Specifically, λ is an

eigenvalue of the self-adjoint positive operator
√
w
(
−∂2w + 1

4w + 3
4w
−2)√w. From the

form of the effective potential appearing in this operator, it is clear that it has a pure

point spectrum. So the eigenvalues {λn} must form a discrete set of real, positive values.

Consequently, the subleading asymptotic coefficient s∞α must have the form

s∞α = cn e
−iπ/3 , (2.36)

with a real, positive sequence of values {c1, c2, · · · } equal to twice the eigenvalues {λn}.
The Schrödinger equation (2.35) has an irregular singular point at w =∞ along with

a regular singular point at w = 0. An analytic solution does not appear to be possible, but

solving this equation numerically is relatively straightforward. We describe our numerical

techniques in appendix B and present the resulting values for the first 24 spectral deviation

coefficients {cn} in table 1.

The values of cn rapidly increase with increasing mode number n. For n� 1, one may

use a further WKB approximation to find the large n asymptotics of these coefficients.

When the eigenvalue λ is large, a simple WKB approximation for high order eigenfunctions

is valid in regions where the potential 1
4 w−λw

−1+ 3
4 w
−2 is sufficiently slowly varying. One

must appropriately match to a near-boundary approximation (given by a Bessel function)

for small w, and also match across the linear turning point at w ≈ 2
√
λ. Details of

– 9 –
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Figure 1. A plot of the ratio c∞n /cn of the asymptotic form (2.37) to the numerical results in

table 1 for the helicity ±2 spectral deviation coefficients cn.

this exercise are presented in appendix D. One finds that solutions satisfying the required

boundary conditions exist when cn = c∞n (1 +O(1/n2)), where

c∞n ≡ K (2n+ 1)4/3 , (2.37)

with

K ≡ 1

2

[√
π Γ

(
7

4

)/
Γ

(
5

4

)]4/3
≈ 1.092535 . (2.38)

Figure 1 shows a comparison of this asymptotic form with the numerical results in

table 1. For the lowest n = 1 mode, the deviation from the asymptotic scaling (2.37) is

approximately 6% (far larger than the precision of the results in table 1). But by n = 5 the

asymptotic form is accurate to about half a percent. The rapid approach to the asymptotic

form (2.37) could have been anticipated from the fact that already for modest values of

n the coefficients cn become quite large compared to unity. Examination of the rate of

convergence confirms the expected 1/n2 scaling of the deviation.

To summarize, we have shown that helicity ±2 quasinormal mode frequencies, for large

wavenumbers, have the form (2.12) with α = 4/3 and s∞α having phase −π/3. Continuing

the WKB analysis, it is straightforward to show that the next term in the large-q expansion

is O(q−1). Therefore, for large wavenumbers, helicity ±2 quasinormal mode frequencies

are given by

ωn(q) = q + cn e
−iπ/3 q−1/3 +O(q−1) , (2.39)

plus reflected frequencies −ωn(q)∗, with the real coefficients {cn} shown in table 1. These

coefficients have the large order asymptotic form (2.37). Restoring factors of πT gives the

result (1.1) quoted in the introduction.

3 Quasinormal mode frequencies: numerics

To validate the large-q asymptotics (2.39) and examine the accuracy of this approximation

for intermediate ranges of wavenumber, we use pseudo-spectral methods [11] to solve nu-
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merically the quasinormal mode equations for a wide range of wavenumbers.8 This extends

previous work in ref. [5]. We consider first the helicity ±2 case, and then examine helicity

±1 and 0.

3.1 Helicity ±2

As previously noted, frequencies for which the helicity ±2 quasinormal mode equation (2.5)

has solutions satisfying the required regularity conditions at horizon and boundary come

in pairs with opposite real parts (and identical imaginary parts): {ωn} and {−ω∗n}. So it

is sufficient to consider only the positive frequency spectrum, i.e., Re ω ≥ 0.

To apply spectral methods, it is convenient to return to the original form (2.5) of the

helicity ±2 QNM equation. Representing h as a (truncated) series of Chebyshev polyno-

mials,

h(u) =
M∑
k=0

fk Tk(2u−1) , (3.1)

automatically satisfies the required regularity conditions at u = 0 and 1. Demanding

that equation (2.5) [multiplied by u(1−u2)] be satisfied at each point u = uk on the

collocation grid,

uk ≡
1

2
[1− cos(kπ/M)] , (3.2)

for k = 0, · · ·,M , yields a finite set of linear equations of the form

(A− ωB) ~f = 0 , (3.3)

where, given an explicit choice of the wavevector q, A and B are numerical (M+1)×(M+1)

matrices. The generalized eigenvalue problem (3.3) may be efficiently solved in O(M3)

time using standard methods. Results for the first fifteen helicity ±2 quasinormal mode

frequencies ωn(q) [or rather, the deviation (ωn(q)−q)], for wavevectors q = 10, 20, 40, 80

and 160, are shown in table 4 of appendix A.

The real and imaginary parts of the first five helicity ±2 quasinormal modes are plotted

in figure 2 for modest wavenumbers up to 4πT . We have verified that our quasinormal

frequencies for q=2 agree with those given in appendix B of ref. [5].9 To present results

for larger wavenumbers in a manner which allows easy comparison with the asymptotic

form (2.39), we use the definition (2.12) of the dispersive correction function (with α = 4/3),

repeated here,

ωn(q) ≡ q + sα,n(q) q−1/3 . (3.4)

The magnitude and phase of the dispersive correction sα,n(q) for the first 5 modes are

shown in figure 3 for wavenumbers up to q/(πT ) = 50. One sees, as expected, that sα,n(q)

approaches the asymptotic value cn e
−iπ/3 extracted from the WKB analysis. Lower modes

8The fact that equation (2.9) is of the Heun type can be used to derive an algebraic continued-fraction

equation satisfied by the quasinormal mode frequencies. We have used this to independently validate

our numerical results which were obtained by solving the differential equation (2.5) using pseudo-spectral

methods. However, the spectral approach proved to be computationally more robust.
9Note that Kovtun and Starinets [5] give results in units of 2πT , not πT .
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Figure 2. Real (left) and imaginary (right) parts of the first five helicity ±2 quasinormal frequen-

cies, in units of πT , for small and intermediate wavevectors, q ≤ 4πT .
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Figure 3. Modulus (left) and phase (right) of the dispersive correction function sα,n(q) for the first

five helicity ±2 quasinormal modes, as a function of wavenumber q (in units of πT ). The complete

quasinormal mode frequency is related to sα,n(q) by eq. (3.4). The horizontal dashed lines show

the asymptotic values cn given in table 1. For each mode, one sees that the magnitude of sα,n(q)

approaches the asymptotic value cn while the phase approaches −π/3. Convergence is fastest for

the lowest modes.

converge faster than higher modes. The rapid rise of the magnitude |sα,n(q)| as q increases

from zero is an artifact of definition (3.4) (since ωn(q) has a finite q → 0 limit). But

the leveling off of the magnitude after this rise provides a clear visual indicator of the

onset of the asymptotic regime. From the figure it might appear that the convergence of

the magnitude of sα,n(q) toward its asymptotic value cn is considerably faster than the

convergence of the phase to −π/3. This, however, is an illusion produced by the rather

compressed range of the ordinate in the right hand plot (which was chosen to make the

different phase curves visually distinct).

One may parameterize the raw data in table 4 of appendix A using the functional form

ωn(q)− q = A(1)
n q−1/3 +A(2)

n q−1 +A(3)
n q−5/3 +A(4)

n q−7/3 +A(5)
n q−3, (3.5)

and demanding that the result reproduce the values in table 4. This form is a truncation

of the series which is generated by higher order asymptotic analysis.10 The resulting values

10The powers of q in the A
(1)
n and A

(2)
n terms reflect the result (2.39) of section 2.2. When recast as an

expansion of ω(q)/q, higher order terms involve products of positive integer powers of q−4/3 and q−2 arising

from the decomposition (2.14) of the effective potential, and form a series in integer powers of q−2/3.
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for the first coefficient A
(1)
n , when multiplied by eiπ/3, provide independent estimates of the

asymptotic coefficients {cn}. These estimates, based on what is effectively an extrapolation

to q = ∞, are less accurate than the values listed in table 1, but the agreement is quite

good. The deviation is less than a part in 104 for the first few modes, but grows to about

half a percent for n = 15. (This reflects the slower approach to the large-q asymptotic

form of progressively higher modes.) Moreover, we have explicitly tested that using the

parameterization (3.5) of the data in table 4, the resulting functions reproduce the directly

calculated values of the quasinormal mode frequencies used to produce figure 3 (showing

the range 10 ≤ q ≤ 50) to within a precision of two parts in 104.

3.2 Helicity ±1 and 0

To analyze perturbations with helicity ±1 and 0, it is convenient to use the gauge invariant

linear combinations of metric perturbations introduced by Kovtun and Starinets [5]. With

a Fefferman-Graham form for the metric of the black brane geometry,

ds2 =
1

z

[
−(1−z2) dτ2 + dx2

]
+

dz2

4z2(1−z2)
, (3.6)

helicity ±1 and 0 linear combinations are, respectively,

Z1 ≡ z (q δgτx1 +ω δgux1) , (3.7a)

Z2 ≡ z
{
ω2δgx3x3 +2ωqδgτx3 +q2δgττ+q2

[
(1−z2)+2u2−ω2/q2

]
(δgx1x1 +δgx2x2)

}
. (3.7b)

Decoupled second order linear equations satisfied by these fluctuations were derived in

ref. [5]. Converting to our preferred infalling coordinates leads to the following equations

for these perturbations,

0 = Z̃ ′′1 +

[
5

u
+

2iω

f
− 4u3ω2

f (ω2 − q2f)

]
Z̃ ′1 +

[
iω − uq2

uf
− 4ω

4u3ω + i(q2 − ω2)

uf (ω2 − q2f)

]
Z̃1 , (3.8)

0 = Z̃ ′′2 +

[
1

u
+

2iω

f
+

4u4(2q2 − 3ω2)− 12(q2−ω2)f

uf (3ω2 − (f+2) q2)

]
Z̃ ′2

+

[
−q

2

f
+

16(q2 − 3ω2)− 15iω (q2−ω2)− 3iq2ωu4

uf (3ω2 − (f+2) q2)

]
Z̃2 , (3.9)

with f(u) ≡ 1 − u4. Details of the transformation yielding these equations are given in

appendix C. The required boundary conditions for the functions Z̃1(u) and Z̃2(u) are just

regularity at both horizon (u=1) and boundary (u=0). Frequencies for which solutions

satisfying these boundary conditions exist are either pure imaginary, or else come in pairs

with opposite real parts, ω and −ω∗. Therefore, without loss of generality, in the following

discussion we consider Reω ≥ 0.

After multiplying the helicity ±1 equation (3.8) by its frequency-dependent denomi-

nator ω2 − q2f , and likewise multiplying the helicity 0 equation (3.9) by 3ω2 − (f+2) q2,

both equations become cubic generalized eigenvalue problems of the form(
ω3O3 + ω2O2 + ωO1 +O0

)
Z̃ = 0 , (3.10)
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Figure 4. Real (left) and imaginary (right) parts of the first five helicity ±1 quasinormal mode

frequencies in units of πT , for small and intermediate wavevectors, q ≤ 4πT . There is one diffusive

mode with pure imaginary frequency which approaches zero as q → 0. The frequency of this

hydrodynamic shear mode is shown with a dashed curve in both plots.

where each Oi is a linear operator. By replicating the function space on which one works,

this may be converted into a conventional generalized eigenvalue problem, AX = ωBX,

where X ≡ (ω2Z̃, ωZ̃, Z̃) and11

A ≡

O2 O1 O0

1 0 0

0 1 0

 , B ≡

−O3 0 0

0 1 0

0 0 1

 . (3.11)

Applying pseudo-spectral methods to convert the linear radial differential operators Oi
into matrices and solving the resulting finite dimensional generalized eigenvalue problem

proceeds in the same manner described previously. Results for the first fifteen helicity

±1 and 0 quasinormal mode frequencies ωn(q) [or rather, the deviation (ωn(q)−q)], for

wavevectors q = 10, 20, 40, 80 and 160, are given in tables 5 and 6 of appendix A.

We first discuss helicity ±1 perturbations. The real and imaginary parts of the first five

quasinormal frequencies are plotted in figure 4 for q ≤ 4πT .12 For modest wavenumbers,

q . 2.6πT , the most weakly damped mode is a hydrodynamic shear mode whose frequency

is pure imaginary and vanishes as q → 0. This frequency, which is shown by dashed lines in

figure 4, moves down the imaginary axis as q increases. As seen in the figure and noted in

ref. [12], the frequency of this mode crosses the imaginary parts of other mode frequencies

(having non-zero real parts) at various intermediate values of q. For q � T , this mode

becomes highly damped and is not among the minimally damped modes discussed below.

To examine larger values of q and the approach to the asymptotic regime, we plot in

figure 5 the magnitude and phase of the dispersive correction sα,n(q), defined via eq. (3.4),

of the lowest five helicity ±1 modes (excluding the hydrodynamic shear mode) for q/(πT )

11This procedure is just a restatement of the fact that a single linear equation third order in time

derivatives can be converted into a system of three coupled equations, each first order in time derivatives.
12Our numerical results are consistent with the values given for the non-hydrodynamic quasinormal modes

in appendix B of ref. [5]. (Hydrodynamic modes were excluded from their table.) For the hydrodynamic

modes at q = 2πT , we find ω/(πT ) = −1.19613i for the diffusive purely imaginary helicity ±1 shear mode,

and ω/(πT ) = 1.48286− 0.57256i for the helicity 0 propagating sound mode.
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Figure 5. Modulus (left) and phase (right) of the dispersive correction sα,n(q) for the first five

(non-hydrodynamic) helicity ±1 quasinormal modes, as a function of wavenumber q (in units of πT ).

The complete quasinormal mode frequency is related to sα,n(q) by eq. (3.4). For each mode, one sees

that the magnitude |sα,n(q)| becomes approximately constant as q increases, and the corresponding

phase approaches a value close to −π/3. Horizontal dashed lines show the asymptotic values

extracted using the parameterization (3.5) applied to the data in table 5, and listed in table 2.

Near-asymptotic behavior sets in for moderate values of wavevector, q/(πT ) ≈ 5.

helicity ±1 modes

n |cn| arg(cn) n |cn| arg(cn) n |cn| arg(cn)

1 2.69717 0.000001 6 30.0107 0.00051 11 67.2833 0.00283

2 6.90578 0.000003 7 36.8644 0.00087 12 75.5084 0.00325

3 11.8887 0.000022 8 44.0488 0.00133 13 83.9421 0.00354

4 17.4637 0.000093 9 51.5313 0.00183 14 92.5695 0.00369

5 23.5271 0.000248 10 59.2841 0.00235 15 101.379 0.00366

Table 2. Estimates for the magnitude and phase of the asymptotic spectral deviation coefficients

{cn} for the first fifteen helicity ±1 quasinormal mode frequencies, extracted from the param-

eterization (3.5) of the helicity ±1 data in table 5 of appendix A. Within the accuracy of the

parameterization, the phases of cn are all compatible with zero.

up to 20. Unlike the helicity ±2 case, one sees non-monotonic behavior in the lowest modes

as q increases. Although we have not done an independent WKB calculation for helicity

±1 to determine asymptotic values directly, from the plots it certainly appears that the

magnitudes |sα,n(q)| are approaching constant values while all phases are converging to a

value near −π/3. Near-asymptotic behavior begins to be apparent for quite modest values

of wavenumber, q/(πT ) ≈ 5.

One may parameterize the helicity ±1 data in table 5 of appendix A using the same

functional form (3.5) suggested by the helicity ±2 WKB analysis. The resulting parameter-

izations reproduce the directly calculated values of quasinormal mode frequencies used to

produce figure 5 (showing the range 10 ≤ q ≤ 20) to within a precision of five parts in 104.

Although not a formal proof, the consistency and accuracy of the parameterization (3.5),

when applied to our helicity ±1 data, strongly suggests that helicity ±1 quasinormal mode

frequencies have the same large-q asymptotic form (2.39) as do helicity ±2 modes. The first

coefficients {A(1)
n } of the parameterization, when multiplied by eiπ/3, directly give estimates
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Figure 6. Real (left) and imaginary (right) parts of the first five helicity 0 quasinormal frequencies

in units of πT , for small and intermediate wavevectors, q ≤ 4πT . There is one hydrodynamic

(sound) mode whose frequency vanishes as q → 0.

of the asymptotic spectral deviation coefficients {cn} for helicity ±1 modes. Table 2 lists

these estimates for the first fifteen modes. Within the accuracy of the parameterization

(as determined by our tests with 10 < q < 20), the phases of the asymptotic coefficients cn
are all compatible with zero.

We now turn to helicity 0 modes, whose behavior largely parallels that of the helicity

±1 modes just discussed. Figure 6 plots the real and imaginary parts of the first five helicity

0 quasinormal modes for q/(πT ) ≤ 4. There is one hydrodynamic helicity 0 (sound) mode,

whose frequency vanishes as q → 0 (with Reω = O(q) and Imω = O(q2)). As noted in

ref. [13], the helicity 0 hydrodynamic sound mode smoothly evolves from small to large

values of q and always remains the most weakly damped mode. Its damping, as measured

by Imω/Reω, rises linearly from q = 0, reaches a maximum at q/(πT ) ≈ 2.120, and then

decreases as O(q−4/3) as q continues to grow. Figure 7 plots the modulus and phase of the

spectral deviation function sα,n(q) for these modes out to q/(πT ) = 20. From the figure

one sees, once again, that the magnitudes |sα,n(q)| are nearly constant for q/(πT ) & 5 and

all phases approach a value close to −π/3.

As before, one may parameterize the helicity 0 data in table 6 of appendix A with

the functional form (3.5) used earlier. The resulting parameterizations reproduce directly

calculated values of helicity 0 quasinormal mode frequencies for wavevectors throughout the

range 10 ≤ q ≤ 20 to within a precision of a part in 104. This consistency strongly suggests

that helicity 0 quasinormal mode frequencies also have the same asymptotic form (2.39).

Table 3 shows our resulting estimates, extracted from this simple parameterization, for

the spectral deviation coefficients {cn} for the first fifteen helicity 0 modes. Within the

accuracy of the parameterization, the phases of the asymptotic coefficients cn are, once

again, all compatible with zero.

In summary, we have compelling evidence that, for all helicities of metric perturbations,

quasinormal mode frequencies have the large q asymptotic form ωn(q) = q+cn e
−iπ/3 q−1/3+

O(q−1), with O(q−4/3) relative corrections to a massless ω = ±q dispersion relation, and

with real positive coefficients {cn} characterizing the dispersive correction. This large-q

asymptotic form is reasonably accurate, at least for low order modes, down to q/(πT ) ≈ 5.
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Figure 7. Modulus (left) and phase (right) of the dispersive correction sα,n(q) for the first five

helicity 0 quasinormal modes, as a function of wavevector q (in units of πT ). The complete quasi-

normal mode frequency is related to sα,n(q) by eq. (3.4). Once again, for each mode one sees

that the magnitude |sα,n(q)| becomes approximately constant as q increases, and the correspond-

ing phase approaches a value close to −π/3. Horizontal dashed lines show the asymptotic values

extracted using the parameterization (3.5) applied to the data in table 6, and listed in table 3.

Near-asymptotic behavior sets in for q/(πT ) ≈ 5.

helicity 0 modes

n |cn| arg(cn) n |cn| arg(cn) n |cn| arg(cn)

1 1.17236 0.000003 6 26.7489 0.000363 11 63.2685 0.002594

2 4.76469 0.000003 7 33.4190 0.000675 12 71.3809 0.003046

3 9.36737 0.000010 8 40.4393 0.001086 13 79.7103 0.003402

4 14.6512 0.000050 9 47.7737 0.001570 14 88.2406 0.003624

5 20.4734 0.000158 10 55.3920 0.002087 15 96.9584 0.003684

Table 3. Estimates for the magnitude and phase of the asymptotic spectral deviation coefficients

{cn} for the first fifteen helicity 0 quasinormal mode frequencies, extracted from the parameteriza-

tion (3.5) of the helicity 0 data in table 6 of appendix A. Within the accuracy of the parameteriza-

tion, the phases of cn are all compatible with zero.

3.3 Large order asymptotics

Comparing the helicity ±2 spectral deviation coefficients listed in table 1 with our corre-

sponding helicity ±1 or 0 values shown in tables 2 and 3, it is clear by inspection that the

helicity ±1 and 0 spectral deviation coefficients grow about as fast with increasing mode

number as do the helicity ±2 coefficients. Given the known asymptotic behavior (2.37) of

the helicity ±2 coefficients, it is natural to try fitting our estimates of helicity ±1 and 0

spectral deviation coefficients using a function of the form b (2n+ a)4/3. It is also instruc-

tive, for comparison, to apply the same procedure to estimates of the helicity ±2 spectral

deviation coefficients generated by the parameterization (3.5) applied to the data of table 4.

In performing these fits, we set to zero the small residual phases in the cn estimates (which

are all compatible to zero, within the accuracy of the parameterizations).

For all helicities, the resulting best fit value of the overall coefficient b coincides with the

analytically known value (2.38) of the helicity ±2 coefficient K = 1
2

[√
π Γ(74)/Γ(54)

]4/3
=
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1.092 · · · to within a percent, and is quite insensitive to whether one fits all 15 modes or, for

example, just modes 6 to 10. We take this as compelling evidence that our fitting function

correctly describes the large order asymptotic behavior of spectral deviation coefficients

for helicities ±1 and 0, as well as ±2, with the same overall coefficient K for all helicities.

If one fixes the overall coefficient b = K, then the resulting best fit value for the

shift a is very close to an integer, and is reasonably insensitive to the limits of the fitting

range. For helicity ±2 the best fit value for the shift a equals the correct answer +1 to

within four percent. For helicity ±1, the best fit value for the shift a is quite close to

zero, somewhere in the interval −0.002 to −0.03 depending on the chosen limits of the

fitting range. And for helicity 0, the best fit value for the shift a equals −1 to within a

percent or two. Given that we are only fitting data up to n = 15, these results are nicely

consistent with the known large order asymptotic form (2.37) for the helicity ±2 spectral

deviation coefficients, and very clearly suggest corresponding large order asymptotic forms

for helicity ±1 and 0 coefficients, as reported in the introduction. Explicitly, for helicity s,

cn ∼ c∞n [1 +O(n−2)] with

c∞n ≡ K (2n+ |s| − 1)4/3 . (3.12)

Figure 8 shows, for each helicity, a comparison of this asymptotic form with our numerical

estimates for spectral deviation coefficients produced by using the functional form (3.5)

to parameterize the data of tables 4, 5 and 6 of appendix A. The uppermost curve shows

helicity ±2, the middle curve is helicity ±1, and the lower curve shows helicity 0. Fast

approach to the large order asymptotic form (3.12) is manifest. The helicity ±2 curve

shown here agrees with the plot in figure 8, which used the the highly accurate cn values

of table 1, up to a permille. Curiously, the approach to the asymptotic form is even faster

for helicity ±1 and 0 compared to helicity ±2. For helicity ±1, the deviation is only 2% for

the lowest n = 1 mode, and falls to half a percent or less for all higher modes. For helicity

0, the deviation is −7% for the lowest mode, but also falls to half a percent or less for all

higher modes.

4 Planar shocks propagating in N =4 SYM plasma

The general solution for the time evolution of linearized perturbations to the metric of the

AdS black brane geometry (with fixed boundary geometry and incoming conditions at the

horizon), may be represented as a linear combination of quasinormal modes,

δg(t,x, u) =
∑
n

∫
d3q

(2π)3
e−iωn(q)t+iq·xAn(q)u2 hn(u; q)Hn , (4.1)

where q ≡ |q|. The sum runs over all quasinormal modes (of metric perturbations) with

the symmetries of interest, An(q) is the amplitude of a given mode, and Hn encodes the

tensor structure of the mode, e.g., Hn = dx1 ⊗ dx2 + dx2 ⊗ dx1 for helicity ±2 modes

with the indicated polarization. Extracting a factor of u2, as shown, allows one to fix the

normalization of the radial profiles hn(u; q) by requiring that they have a fixed boundary

value, hn(0; q) = 1.
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Figure 8. Plots of the ratio c∞n /cn of the large order asymptotic form (3.12) of the spectral deviation

coefficients to the values (for the first ten modes) obtained from applying the parameterization (3.5)

to the data of appendix A. From top to bottom the curves correspond to helicity ±2, ±1, and 0.

The asymptotic form is c∞n = K(2n+ |s| − 1)4/3 for helicity s.

The corresponding change in the expectation value of the energy-momentum tensor of

the dual QFT is then [14]

〈δTµν(t,x)〉 = κ
∑
n

∫
d3q

(2π)3
e−iωn(q)t+iq·xAn(q)Hn,µν , (4.2)

where κ = m4L3/(4πG) with L the AdS curvature scale which, elsewhere, has been set

to unity. In terms of field theory quantities, κ = 1
2N

2
c π

2T 4, where Nc is the rank of the

SU(Nc) gauge group of N = 4 SYM.

Similarly, if one considers a perturbation to the equilibrium state created by a time

dependent source coupled to the QFT stress-energy tensor (i.e., a fluctuation in the space-

time geometry of the 4D field theory), then the induced response is given by a convolution

with the retarded stress-energy correlator,

〈δTµν(t,x)〉 =

∫
dω d3q

(2π)4
e−iωt+iq·xGR(ω,q) ρσ

µν j(ω,q)ρσ . (4.3)

Quasinormal mode frequencies correspond to the poles of the retarded Green’s function [15],

so evaluating the frequency integral using Cauchy’s theorem yields

〈δTµν(t,x)〉 =
∑
n

∫
d3q

(2π)3
e−iωn(q)t+iq·xRn(q) ρσ

µν j(ωn(q),q)ρσ , (4.4)

where Rn(q) denotes the residue of the retarded Green’s function GR(ω,q) at ωn(q).

Both expressions (4.2) and (4.4) represent the response as a sum of contributions from

quasinormal modes, and make it obvious that at sufficiently late times the response will

be dominated by those modes whose frequencies ωn(q) have the smallest (in magnitude)

negative imaginary parts. Specifically, these are long wavelength hydrodynamic modes

with q � T , together with the short wavelength modes with q � T discussed above.

To examine qualitative features of the resulting evolution, it will be sufficient to use the
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asymptotic form (2.39) of quasinormal mode frequencies, repeated here for convenience,

ωn(q) = ±
[
q +

1

2
cn (πT )4/3 q−1/3

]
− i
√

3

2
cn (πT )4/3 q−1/3 +O

(
T 3q−2

)
, (4.5)

which for low order modes, as discussed in section 3, is already quite accurate at interme-

diate values of q/T . (Explicit values of the coefficients cn are given in tables 1, 2 and 3.)

4.1 Fine structures outlive coarse

Consider a metric perturbation δg, represented in the form (4.1), which at time t = 0 has

rapid spatial variation and a spatial Fourier transform concentrated near some wavevector

q0 with |q0| � T . The asymptotic form (4.5) implies that the characteristic relaxation

time of such an excitation will be of order τ(q0) ≡ q1/30 (πT )−4/3, with higher modes (larger

n) damping faster than lower modes. At times comparable or larger than this relaxation

time, dominant contributions will come from the n=1 mode with wavenumbers near q0.
13

Provided the perturbation is sufficiently small, so a linearized treatment is valid, there is

no mode-mixing populating other ranges of wavevector. The resulting late-time energy-

momentum tensor (4.2) is then well described by just the n= 1 contribution,

〈δTµν〉 = κ

∫
d3q

(2π)3
eiφ(q) Ã(q)H1,µν , (4.6)

with a damped amplitude

Ã(q) ≡ A1(q) exp

[
−t
√

3

2
c1 (πT )4/3 q−1/3

]
, (4.7)

and rapidly varying phase

φ(q) ≡ q · x−
[
q +

1

2
c1 (πT )4/3 q−1/3

]
t . (4.8)

If one asks when a disturbance, initially localized near x = 0 at time 0, will reach a distant

point x, the dominant contributions to the integral (4.6) come from the neighborhood of

the stationary phase point where ∇φ(q) = 0. (provided Ã(q) is slowly varying on the scale

of |x|−1). This yields the standard result that disturbances localized in wavenumber near

q = q0 travel at the group velocity,

vg(q0) ≡ ∇Re(ω(q0)) = vg(q0) q̂0 , vg(q0) ∼ 1− 1

6
c1 (πT/q0)

4/3 , (4.9)

and hence arrive at position x = d q̂0 at time t = d/vg(q0).

The damping (4.7) decreases monotonically with increasing wavenumber, while the

group velocity (4.9) increases monotonically, asymptotically approaching the speed of light.

Hence, shorter wavelength features attenuate slower, and propagate faster, than longer

wavelength features. For disturbances with a significant range of wavenumbers, the overall

evolution will reflect a combination of the wavenumber dependent damping (4.7) and the

dispersive propagation (4.9).

13More precisely, dominant contributions can come from the lowest mode in each helicity channel. For

simplicity, we ignore the presence of multiple helicity channels in the following qualitative discussion.
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4.2 Planar shocks at late times

The evolution of planar shocks in a strongly coupled N = 4 SYM plasma provides an

interesting, concrete illustration of the above features. At zero temperature, planar shocks

(composed of helicity 0 perturbations) move at the speed of light with no dispersion or

damping. For a shock propagating in, say, the +x̂3 direction with an arbitrary longitudinal

energy density profile κh(x3), stress-energy components at time t are

δT 00(t,x) = δT 03(t,x) = δT 33(t,x) = κh(x3−t) , (4.10)

with all other components vanishing. Equivalently,

〈δTµν〉 = κ

∫
dq3
2π

eiq3(x3−t)A(q3) (dx3−dt)µ (dx3−dt)ν , (4.11)

with A(q3) the Fourier transform of h(x3). The dual geometry is an exact analytic solution

of Einstein’s equations [8]. Analogous planar stress-energy perturbations with helicity ±1

or ±2 tensor structures correspond to solutions of Einstein’s equations linearized about

AdS5, but analytic solutions at the non-linear level are not known.

We are interested in the modification in the evolution of planar shocks induced by the

presence of a background thermal plasma.14 We assume that the amplitude of the shock

is sufficiently small so that a linearized treatment is adequate. And, for simplicity, we

assume that the perturbation has a single tensor structure corresponding to either helicity

0, ±1, or ±2.

Planarity of the shock implies that the expression (4.2) for the stress-energy (at times

t ≥ 0) simplifies to a one-dimensional Fourier transform,

〈δTµν(t, x3)〉 = κ
∑
n

∫
dq3
2π

e−iωn(q3)t+iq3x3 An(q3)Hµν , (4.12)

with the coefficients {An(q3)} characterizing the chosen shock profile at time t = 0.

As discussed in the previous subsection, since large-q modes experience minimal damp-

ing, rapidly varying features in the longitudinal profile of the shock will outlive more slowly

varying features. A particularly clear picture emerges for narrow shocks. A shock with

narrow width w � 1/T will have a broad Fourier spectrum extending from small wavenum-

bers at least up to |q3| ∼ 1/w. More precisely, the breadth of the Fourier spectrum reflects

the (inverse) scale of variation of the sharpest spatial features. As a coherent superposition

of many different wavevectors, small differences in the propagation of different wavenum-

bers will imprint themselves on the evolution of the shock profile. In particular, since

the speed of propagation approaches the speed of light as |q3| → ∞, contributions from

the highest-wavenumber modes will accumulate very near the light cone, forming an in-

creasingly sharp leading edge. These sharp features will persist longer than contributions

from lower wavenumbers (except for very small q hydrodynamic modes) which attenuate

more quickly.

14Ensuring that initial data for Einstein’s equations are consistent with initial value constraints can be

tricky. But in infalling coordinates the identification of unconstrained initial data is easy, and it is consistent

to simply add a background energy density [8, 16] and start the evolution at time t = 0.
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To illustrate this explicitly with simple examples, we consider perturbations which are

dominated by the lowest quasinormal mode (of a given helicity), so that

〈δTµν(t, x3)〉 = κ

∫
dq3
2π

e−iω1(q3)t+iq3x3 A1(q3)Hµν . (4.13)

One may either regard this as fine-tuning the initial data, or the result of starting with

a more general perturbation and waiting to sufficiently late times where higher modes

are small compared to the lowest mode. For simplicity, we include only modes with

Re(q3 ω1(q3)) > 0 in the perturbation (4.13), with no corresponding contributions from

the reflected modes with frequency −ω1(q3)
∗; this means that we are focusing on right-

moving perturbations. We compare three different longitudinal profiles,15

AGauss
1 (q) = e−

1
2
σ2q2 , ABlob

1 (q) =
2J1(σq)

σq
, AStep

1 (q) =
sin(σq)

σq
. (4.14)

These are Fourier transforms of position space profiles h(x3) =
∫
dq/(2π) eiqx3 A1(q) which

are, respectively, a Gaussian, a semicircular “blob,” and a “top-hat” step function, each

normalized to unit area:

hGauss(x3) =
e−

1
2
x23/σ

2

√
2π σ

, hBlob(x3) =
2
√
σ2−x23
πσ2

Θ(σ2−x23) , hStep(x3) =
Θ(σ2−x23)

2σ
.

(4.15)

We choose σ = 1/10 for hGauss, and σ = 1/5 for hBlob and hStep.

For the dispersion relation ω1(q) we construct a cubic spline interpolating function from

the numerical results of section 3 for low and intermediate wavenumbers, which smoothly

connects to the large-q asymptotics of eq. (4.5). Since the large-q asymptotic form is

already quite accurate for intermediate values of q, this procedure is straightforward.16

Figure 9 shows plots of the resulting time evolution for perturbations with each of the above

profiles, for the helicity ±2 tensor structure dx1 ⊗ dx2 as well as the helicity 0 structure

(dx3−dt)⊗(dx3−dt). Comparing the plots, one clearly sees the stronger damping of helicity

±2 fluctuations relative to helicity 0, due to the larger values of the dispersive coefficient

c1 (cf. tables 1 and 3). For the helicity ±2 perturbations, shown on the left side of the

figure, the longest surviving features are associated with the steepest portions of the initial

profile. This is especially apparent for the “blob” and “step” profiles which have compact

support. At late times, one sees upward “spikes” which evolve from the portion of the

initial profile with large negative gradient, and downward spikes evolving from the steeply

rising part of the initial profile.

The helicity 0 evolution, shown on the right-hand side of the figure, shows similar

sharp high-q features but with the addition of a slowly varying hydrodynamic (sound)

contribution which moves slower than the leading features and gradually broadens. (The

speed of sound in the conformal N = 4 plasma is 1/
√

3 [5].) Hence, as time increases there

is an increasingly clear separation between the attenuating high-q and low-q remnants.

15Each of these profiles should be regarded as multiplied by some small parameter ε. But, as the entire

analysis is linearized, we shall omit writing ε explicitly.
16In fact, just näıvely using the large-q asymptotic form for all q, with a simple IR cut-off to regularize

the q−1/3 term, only mildly changes the helicity ±2 results. For helicity 0, such a naive approach omits

contributions from the q → 0 hydrodynamic mode.
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Figure 9. Time evolution of helicity ±2 perturbations [left] and helicity 0 perturbations [right] for

each of the three initial profiles (4.15): Gaussian, “Blob,” and “Step” [top to bottom]. Snapshots are

taken at times t = 0, 12 , 1,
3
2 , 2 for helicity ±2, and at t = 0, 1, 2, 3, 4, 5 for helicity 0; the different time

scales reflect the faster damping of helicity ±2 perturbations. For the helicity-2 perturbations one

sees that the longest surviving features are associated with the steepest portions of the initial profile.

This is especially apparent with the compactly-supported “blob” and “step” profiles. For helicity

0 there is, in addition, a visible slowly varying contribution from the hydrodynamic sound mode.

The helicity 0 planar shocks have a conserved energy (and linear momentum). At late

times, the energy and momentum of the shock is entirely carried by the q → 0 hydrody-

namic contribution; for the profiles of figure 9, the upward and downward high-q spikes

cancel each other upon integration. More generally, the long-lived fine structure carries

little net energy or momentum. This might seem odd, since high momentum quasiparti-

cles (or short wavelength waves) in other contexts can transport energy and momentum.

But stress-energy quasinormal modes in strongly coupled (and large Nc) SYM plasma are

perturbations in which the energy density, momentum density, and/or stress of the fluid
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vary sinusoidally (for non-zero q) and hence unavoidably vanish upon integration. This

is fundamentally different from, say, an electromagnetic wave in vacuum in which the EM

field varies sinusoidally but the energy density is quadratic in the wave amplitude and

always positive.

5 Discussion

We have extended and clarified previous work on quasinormal mode frequencies for metric

perturbations of AdS-Schwarzschild black branes, or equivalently stress-energy perturba-

tions in strongly coupled N = 4 SYM plasma. The large wavenumber asymptotic behavior

has the universal form (4.5), in all helicity channels, with mode-dependent spectral de-

viation coefficients shown in tables 1, 2 and 3. The relaxation rate of short wavelength

quasinormal modes vanishes asymptotically as T 4/3q−1/3. We find that the large-q asymp-

totic form (4.5) of quasinormal mode frequencies agrees well with the exact values (for low

order modes) already at rather moderate values of q/T , and thus provides a good approxi-

mation over a wide range of scales. The spectral deviation coefficients of high order modes

approach the asymptotic form (3.12) but the coefficients of low order modes deviate from

this simple expression.

In the strongly coupled SYM plasma it is noteworthy that hydrodynamic fluctuations

are not the only arbitrarily long-lived excitations. The asymptotic vanishing of relaxation

rates implies that there are two types of long-lived propagating excitations: long-wavelength

sound waves, moving at vs = c/
√

3, and short-wavelength fluctuations with group veloc-

ities asymptotically approaching c. As vividly seen in figure 9, illustrating examples of

planar shock propagation, the decreasing attenuation plus increasing group velocity (as the

wavevector q increases) combine to produce sharp, long-lived “spikes” which evolve from

the most rapidly varying parts of an initial waveform. This same phenomena is evident

in the study [13] by Chesler, Ho and Rajagopal of the “cyclotron radiation” produced by

circular stirring of an SYM plasma (see figure 3 of ref. [13]). Whether such long-lived “fine

structure” could have observable phenomenological consequences in heavy ion collisions is

an interesting open question.

There has been considerable discussion in the literature [7, 17–22] regarding “top-

down” thermalization in strongly coupled SYM, as compared with “bottom-up” thermal-

ization at weak coupling [23]. Evidence suggesting a top-down picture of thermalization

at strong coupling comes from the decreasing relaxation times of quasinormal modes as

the mode number increases at fixed wavenumber, and related observables probing similar

physics.17 However, interpreting this as top-down thermalization is, in our view, con-

flating the dephasing or decoherence of highly virtual off-shell excitations (|ω|2 � q2),

17In particular, calculations of the first finite coupling corrections to quasinormal mode frequencies [21, 22]

suggested that, for intermediate values of the ’t Hooft coupling, damping rates (for fixed wavenumber)

cease to monotonically increase with increasing mode number, implying a change in character of relaxation

processes as the coupling decreases from asymptotically large values. More recent work [24, 25] finds

that this behavior was a consequence of extrapolating next-to-leading order results outside their regime of

validity, with more complete calculations showing no sign of any change in monotonicity with mode order

as the coupling decreases.
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with relaxation of high momentum but near on-shell excitations (|ω − q|2 � q2). It is

these latter excitations, corresponding to large wavenumber but low order quasinormal

modes, which should be considered when discussing top-down versus bottom-up thermal-

ization. And these hard but low virtuality excitations thermalize slowly at both weak and

strong coupling.18

Finally, we limited our attention to metric (or stress-energy) perturbations. We expect

quasinormal mode frequencies for perturbations in other supergravity fields to have the

same universal asymptotic form (4.5), but it would be worthwhile to demonstrate (or

disprove) this explicitly, especially for fermionic fluctuations. We leave such questions for

future work.
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A Tabulated results

helicity ±2

n q = 10 q = 20 q = 40 q = 80 q = 160

1 1.05863− 1.75039 i 0.82995− 1.41031 i 0.65513− 1.12603 i 0.51880− 0.89583 i 0.41139− 0.71168 i

2 2.20415− 3.49828 i 1.71646− 2.86252 i 1.34867− 2.29987 i 1.06566− 1.83424 i 0.84425− 1.45862 i

3 3.52349− 5.37997 i 2.73704− 4.47509 i 2.14189− 3.62096 i 1.68857− 2.89602 i 1.33636− 2.30553 i

4 4.97581− 7.33629 i 3.87015− 6.20226 i 3.01901− 5.05684 i 2.37469− 4.05696 i 1.87734− 3.23373 i

5 6.52930− 9.33352 i 5.09962− 8.01283 i 3.96941− 6.58524 i 3.11555− 5.30074 i 2.46028− 4.23071 i

6 8.15996− 11.3527 i 6.41236− 9.88471 i 4.98539− 8.18992 i 3.90521− 6.61561 i 3.08037− 5.28757 i

7 9.85002− 13.3833 i 7.79737− 11.8019 i 6.06096− 9.85842 i 4.73923− 7.99264 i 3.73400− 6.39761 i

8 11.5864− 15.4192 i 9.24519− 13.7526 i 7.19119− 11.5808 i 5.61417− 9.42475 i 4.41841− 7.55557 i

9 13.3592− 17.4572 i 10.7476− 15.7280 i 8.37186− 13.3490 i 6.52726− 10.9061 i 5.13137− 8.75720 i

10 15.1614− 19.4954 i 12.2977− 17.7217 i 9.59927− 15.1564 i 7.47616− 12.4320 i 5.87107− 9.99894 i

11 16.9874− 21.5328 i 13.8892− 19.7288 i 10.8701− 16.9972 i 8.45891− 13.9981 i 6.63596− 11.2778 i

12 18.8329− 23.5687 i 15.5171− 21.7457 i 12.1812− 18.8667 i 9.47378− 15.6008 i 7.42475− 12.5912 i

13 20.6946− 25.6031 i 17.1769− 23.7697 i 13.5299− 20.7609 i 10.5193− 17.2372 i 8.23632− 13.9368 i

14 22.5701− 27.6357 i 18.8647− 25.7988 i 14.9136− 22.6763 i 11.5940− 18.9042 i 9.06968− 15.3127 i

15 24.4571− 29.6665 i 20.5772− 27.8314 i 16.3299− 24.6099 i 12.6966− 20.5994 i 9.92396− 16.7170 i

Table 4. Dispersive corrections ωn(q)− q of the first fifteen helicity ±2 quasinormal mode frequen-

cies, for wavenumbers q = 10, 20, 40, 80 and 160. Both frequencies and wavenumbers are in units

of πT . Values were obtained by numerically solving eq. (2.5); all digits shown are accurate.

18This same point concerning the qualitative difference in thermalization properties of highly virtual

versus on-shell but large q fluctuations was observed and discussed much earlier in the seminal paper [26]

by Caron-Huot, Chesler and Teaney.
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helicity ±1

n q = 10 q = 20 q = 40 q = 80 q = 160

1 0.58720− 1.15903 i 0.48382− 0.88383 i 0.39014− 0.69032 i 0.31165− 0.54439 i 0.24799− 0.43098 i

2 1.58123− 2.81103 i 1.26570− 2.21333 i 1.00771− 1.75182 i 0.80074− 1.38891 i 0.63583− 1.10191 i

3 2.79183− 4.65861 i 2.20774− 3.75118 i 1.74488− 2.99701 i 1.38179− 2.38510 i 1.09564− 1.89507 i

4 4.16276− 6.60981 i 3.27674− 5.42911 i 2.57610− 4.37611 i 2.03409− 3.49506 i 1.61075− 2.78092 i

5 5.65418− 8.61660 i 4.45197− 7.20641 i 3.48687− 5.85979 i 2.74601− 4.69693 i 2.17175− 3.74256 i

6 7.23681− 10.6529 i 5.71811− 9.05590 i 4.46762− 7.42824 i 3.51003− 5.97618 i 2.77255− 4.76890 i

7 8.88910− 12.7042 i 7.06275− 10.9583 i 5.51134− 9.06690 i 4.32085− 7.32229 i 3.40884− 5.85199 i

8 10.5953− 14.7627 i 8.47545− 12.8998 i 6.61244− 10.7645 i 5.17446− 8.72715 i 4.07739− 6.98577 i

9 12.3438− 16.8240 i 9.94725− 14.8700 i 7.76630− 12.5119 i 6.06770− 10.1843 i 4.77567− 8.16543 i

10 14.1260− 18.8855 i 11.4705− 16.8615 i 8.96890− 14.3018 i 6.99800− 11.6883 i 5.50164− 9.38705 i

11 15.9354− 20.9461 i 13.0384− 18.8684 i 10.2167− 16.1280 i 7.96319− 13.2348 i 6.25361− 10.6473 i

12 17.7671− 23.0051 i 14.6455− 20.8867 i 11.5065− 17.9852 i 8.96143− 14.8197 i 7.03017− 11.9434 i

13 19.6174− 25.0620 i 16.2868− 22.9133 i 12.8353− 19.8690 i 9.99107− 16.4398 i 7.83008− 13.2730 i

14 21.4833− 27.1168 i 17.9582− 24.9457 i 14.2005− 21.7757 i 11.0507− 18.0920 i 8.65231− 14.6338 i

15 23.3624− 29.1695 i 19.6561− 26.9822 i 15.5995− 23.7021 i 12.1389− 19.7737 i 9.49590− 16.0240 i

Table 5. Dispersive corrections ωn(q)− q of the first fifteen helicity ±1 quasinormal mode frequen-

cies, for wavenumbers q = 10, 20, 40, 80 and 160. Both frequencies and wavenumbers are in units

of πT . Values were obtained by numerically solving eq. (3.8); all digits shown are accurate.

helicity 0

n q = 10 q = 20 q = 40 q = 80 q = 160

1 0.22331− 0.53674 i 0.20262− 0.39493 i 0.16745− 0.30347 i 0.13483− 0.23771 i 0.10760− 0.18768 i

2 1.03696− 2.01064 i 0.85842− 1.55109 i 0.69082− 1.21637 i 0.55112− 0.96076 i 0.43829− 0.76108 i

3 2.13166− 3.77754 i 1.71860− 2.99339 i 1.36816− 2.37364 i 1.08667− 1.88324 i 0.86267− 1.49450 i

4 3.41657− 5.68700 i 2.72292− 4.60793 i 2.15230− 3.68885 i 1.70369− 2.93794 i 1.35053− 2.33504 i

5 4.84199− 7.67141 i 3.84399− 6.34082 i 3.02311− 5.12263 i 2.38595− 4.09505 i 1.88883− 3.25950 i

6 6.37289− 9.69513 i 5.06377− 8.15857 i 3.96864− 6.65069 i 3.12398− 5.33655 i 2.46988− 4.25403 i

7 7.98371− 11.7388 i 6.36836− 10.0382 i 4.98063− 8.25598 i 3.91141− 6.65002 i 3.08852− 5.30917 i

8 9.65577− 13.7918 i 7.74630− 11.9633 i 6.05280− 9.92562 i 4.74359− 8.02619 i 3.74100− 6.41796 i

9 11.3754− 15.8482 i 9.18783− 13.9218 i 7.18006− 11.6495 i 5.61698− 9.45779 i 4.42446− 7.57498 i

10 13.1326− 17.9050 i 10.6846− 15.9050 i 8.35809− 13.4194 i 6.52870− 10.9389 i 5.13661− 8.77589 i

11 14.9197− 19.9603 i 12.2295− 17.9063 i 9.58311− 15.2286 i 7.47640− 12.4647 i 5.87560− 10.0171 i

12 16.7312− 22.0133 i 13.8163− 19.9208 i 10.8517− 17.0713 i 8.45806− 14.0308 i 6.63987− 11.2955 i

13 18.5628− 24.0635 i 15.4397− 21.9449 i 12.1609− 18.9428 i 9.47193− 15.6338 i 7.42811− 12.6085 i

14 20.4109− 26.1108 i 17.0953− 23.9759 i 13.5077− 20.8391 i 10.5165− 17.2703 i 8.23918− 13.9539 i

15 22.2731− 28.1552 i 18.7791− 26.0118 i 14.8897− 22.7565 i 11.5903− 18.9376 i 9.07208− 15.3295 i

Table 6. Dispersive corrections ωn(q)−q of the first fifteen helicity 0 quasinormal mode frequencies,

for wavenumbers q = 10, 20, 40, 80 and 160. Both frequencies and wavenumbers are in units of πT .

Values were obtained by numerically solving eq. (3.9); all digits shown are accurate.
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B Numerical techniques

For solving linear differential equations such as our quasinormal mode equations (2.5), (3.8)

and (3.9), (pseudo)spectral methods are superior to traditional short-range discretization

methods. Spectral methods converge faster, provide greater accuracy for a given number

of discretization points, and allow one to easily enforce boundary conditions at either end

of the computational domain without use of inefficient “shooting” techniques.19 The basic

approach, as sketched in section 3.1, is to represent the unknown function as a (truncated)

expansion in a set of basis functions, and demand that the original differential equation

be satisfied on a discrete set of points (the “collocation grid”) within the computational

interval. The optimal grid depends on the choice of basis functions. When using Chebyshev

polynomials up to order M , the Chebyshev-Gauss-Lobatto grid points (3.2), consisting

of the endpoints plus extrema of the highest order basis function, are an optimal grid.

For functions which are analytic (in a neighborhood of the computational interval), the

Chebyshev expansion converges exponentially rapidly with truncation size M .

To solve the helicity ±2 quasinormal mode equation (2.5), for a given numerical value

of q, one may directly represent the unknown function h(u) as a Chebyshev sum (3.1), as

the desired solution is regular at both u = 0 and u = 1. The radial equation (2.5) has a reg-

ular singular point at each endpoint, but if the entire equation is multiplied by the u(1−u4)
denominator, then every term remains well-behaved on the [0, 1] interval, including at the

endpoints (where the equation effectively becomes first order). As noted in section 3.1,

demanding that the resulting equation be satisfied on each point of the Chebyshev-Gauss-

Lobatto collocation grid (3.2) converts the original differential equation into a finite set

of homogeneous linear equations of the form M(ω) ~f = 0. The (M+1) × (M+1) coeffi-

cient matrix M(ω) is a linear function of the unknown frequency ω, so the determinant

detM(ω) is an (M+1)-order polynomial in ω. Constructing this characteristic equation

directly, by evaluating detM(ω) for unknown (symbolic) values of ω, is not an effective

computational strategy. But the linear equation may be trivially recast as a generalized

eigenvalue equation of the form A~f = ωB ~f , where A and B are purely numerical matrices.

Such generalized eigenvalue problems may be solved efficiently in O(M3) time.

The smallest eigenvalues (in absolute value) converge most rapidly as the truncation

size M increases, with any given eigenvalue ωn(q;M) showing exponential convergence for

sufficiently large M . For any given value of M , the largest eigenvalues will always be

sensitive to the truncation and hence dominated by discretization artifacts; at most some

fraction of the smallest eigenvalues will be well converged. As the chosen value of the

wavevector q increases, even the lowest quasinormal mode eigenfunction becomes highly

oscillatory, and this necessitates the use of a truncation size M which grows linearly with

q. For sufficiently large M , use of extended precision is also necessary to avoid excessive

round-off error. For these reasons, a direct numerical solution of the quasinormal mode

equation (2.5) becomes quite challenging for values of q beyond about 1000.

19A slightly more detailed discussion of spectral methods may be found in ref. [16]. For an extensive

treatment, ref. [11] is recommended.
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Such large-q computational difficulties are not present in the q-independent matching

equation (2.33) which emerged from the WKB analysis of section 2.2. However, this equa-

tion needs to be solved on the positive halfline, and the equation has an irregular singular

point at infinity plus a regular singular point at the origin. To find numerical solutions one

may work either on the original halfline y ∈ R+, or on the rotated halfline (2.34) where

y = eiπ/3w with w ∈ R+. To be definite, we describe here our approach when working

with the original form (2.33).

Solutions of interest have an essential singularity at infinity, h̄(y) ∼ y−1/4 exp[ i3y
3/2 −

is∞α y
−1/2], and O(y3/2) power-law behavior as y → 0. To apply pseudo-spectral methods to

eq. (2.33), we first make a function redefinition which strips off the leading large-y behavior,

h̄(y) = y−1/4 e
i
3
y3/2 H(y) . (B.1)

The redefined function H(y) satisfies

H ′′ +

(
iy1/2 − 1

2
y−1
)
H ′ +

1

2

(
s∞α y−1 − 7

8
y−2
)
H = 0 , (B.2)

and now remains finite and non-zero as y →∞. We then map the positive halfline to the

computationally convenient finite interval [0, 1] by introducing

u ≡
[
1 + y−1/2

]−1
, (B.3)

or y = u2(1−u)−2, and simultaneously extract the leading small y behavior by defining

H̃(u) ≡ u−3H(y(u)) . (B.4)

After writing the resulting equation in a form where all terms remain finite at u = 0 and

1, we arrive at

u2 (1−u)4 H̃ ′′ + 4u

[
(1−u)3 (1−2u) +

i

2
u3
]
H̃ ′

−
{

(1−u)2
[
12u (1−u) +

7

4

]
− 2u2 (s∞α + 3iu)

}
H̃ = 0 .

(B.5)

Solutions of interest to eq. (B.5) are now regular at both u = 0 and 1. Applying the same

pseudo-spectral approximation scheme described above converts the differential equation

to a generalized eigenvalue problem (with s∞α now the eigenvalue of interest). Before

doing so, however, we make one final variable transformation, setting u = v2 and using

a Chebyshev-Gauss-Lobatto grid in v, as this was found to improve convergence of the

spectral approximation. To obtain the results shown in table 1, accurate to more than 12

digits, truncations up to M = 600 were used.20

20Using the same strategy, convergence of the spectral approximation is even better when working with

the real form (2.35) on the rotated halfline. Roughly half as many grid points suffice for a given accuracy.
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C Transformation to infalling coordinates

With the Fefferman-Graham form of the metric (3.6), the gauge invariant helicity ±1

combination Z1, defined in eq. (3.7a), satisfies the equation [cf. (4.26) of ref. [5]],

Z ′′1 −
[

1

z
− ω2f ′

f(ω2 − fq2)

]
Z ′1 +

[
ω2 − fq2

4zf2

]
Z1 = 0 , (C.1)

where f(z) ≡ 1−z2, while the gauge invariant helicity 0 combination Z2, defined in

eq. (3.7b), satisfies

Z ′′2 −
[

1 + z2

zf
+

4q2z

q2(z2−3) + 3ω2

]
Z ′2 +

1

f

[
ω2 − fq2

4zf
− 4q2z2

q2(z2−3) + 3ω2

]
Z2 = 0 . (C.2)

The Fefferman-Graham incoming boundary condition at the horizon, Zi(z) ∼ (1−z)−iω/4

as z → 1, can be changed into one of regularity by transforming to infalling coordinates via

z = u2 , τ = t+
1

2
(tan−1 u+ tanh−1 u) . (C.3)

This converts the metric (3.6) into the infalling form (2.1) (with m set to unity). It is

convenient to introduce transformed gauge invariant perturbations Z̃i (i = 1, 2) such that

ei(qx3−ωτ) Zi = ei(qx3−ωt)u4 Z̃i . (C.4)

We insert the factor u4 so that the appropriate boundary condition on Z̃i is simply that it

be regular at u = 0. More explicitly, our redefinition is

Zi(z(u)) ≡ exp

[
i

2
ω (tan−1 u+ tanh−1 u)

]
u4 Z̃i(u) . (C.5)

This transformation converts eqs. (C.1) and (C.2) into eqs. (3.8) and (3.9), respectively.

D Large order, large-q asymptotics

To construct a WKB approximation for eigenfunctions satisfying eq. (2.35), valid for large

λ, it is convenient to rescale the coordinate w by a factor of
√
λ. If κ ≡

√
λ and v ≡ w/κ,

then f(v) ≡ h(κv) satisfies

κ−3 f ′′ =

[
1

4
v − v−1 +

3

4
κ−3 v−2

]
f . (D.1)

The linear term in the “potential” on the right dominates for large v. The last term v−2 is

dominant for small v, but this term is negligible for O(1) values of v. The first two terms in

the potential cancel at the point v = 2, which is a turning point in the WKB analysis. To

construct a consistent approximation on the entire halfline, one must piece together suitable

approximations for the solution in the near-boundary (NB), classically allowed (WKB-I),

turning point (TP), and classically forbidden (WKB-II) regions, illustrated here:

v= 0 v= 2 v=∞

WKB-I
TPNB

WKB-II
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In the near-boundary (NB) region, v � 1, the linear term in the potential is negligible

and (at the order of approximation we are interested in) may be entirely neglected. The

resulting equation, κ−3 f ′′ =
[
3
4 κ
−3 v−2 − v−1

]
f has solutions proportional to order-2

Bessel functions. Only the regular solution,

fNB(v) ≡
√
v J2(2κ

3/2√v) , (D.2)

satisfies the required boundary condition that the solution vanish as O(v3/2) as v → 0. For

v � κ−3, this solution (up to an irrelevant overall constant) behaves as

fNB(v) ∼ v1/4 cos

(
2κ3/2

√
v − 5

4
π

)
. (D.3)

A WKB ansatz of the usual form, fWKB = exp
[
κ3/2S0 + S1 + · · ·

]
, is applicable in

the classically allowed WKB-I region where κ−3 � v < 2 with 2−v � κ−1. This ansatz

generates a consistent expansion in powers of κ−3/2. At next-to-leading order only the first

two terms in the potential contribute, and one finds the oscillatory solutions,

f±(v) ≡
(
v−1 − 1

4
v

)−1/4
exp

[
±i κ3/2

∫ v

0
dv′
√
v′−1 − 1

4
v′

]
. (D.4)

(Setting to zero the lower limit of integration is a convenient choice for this arbitrary

constant.) The domain of validity of this solution overlaps that of the near-boundary

approximation when κ−3 � v � 1. The linear combination of the two solutions f± which

smoothly matches to the near-boundary solution is

fWKB−I(v) =

(
v−1 − 1

4
v

)−1/4
cos

[
κ3/2

(∫ v

0
dv′
√
v′−1 − 1

4
v′

)
− 5

4
π

]
. (D.5)

As v approaches the turning point at 2 (from below), this solution behaves as

fWKB−I(v) ∼ (2−v)−1/4 cos

{
κ3/2

[
I −
√

2

3
(2−v)3/2

]
− 5

4
π

}
, (D.6)

where

I ≡
∫ 2

0
dv

√
v−1 − 1

4
v =
√

2π Γ

(
5

4

) /
Γ

(
7

4

)
. (D.7)

In the classically forbidden region, v−2 � κ−1, there are exponentially growing and

decaying solutions. We require the exponentially decaying solution which behaves as

f(v) ∼ v−1/4 exp[−1
3(κv)3/2(1 + 6v−2)] when v → ∞. The next-to-leading order WKB

approximation to this solution is

fWKB−II(v) =

(
1

4
v − v−1

)−1/4
exp

[
−κ3/2

∫ v

2
dv′
√

1

4
v′ − v′−1

]
, (D.8)

where we have again made a convenient choice for the lower limit of integration. As v

approaches the turning point at 2 (from above), this solution behaves as

fWKB−II(v) ∼ (v−2)−1/4 exp

[
−
√

2

3
κ3/2 (v−2)3/2

]
. (D.9)
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The remaining task is to connect the WKB solutions (D.5) and (D.8) across the turning

point at v = 2. Within the turning point region, |v−2| � 1, the potential may be linearized

about v = 2 and, at the order of interest, the κ−3v−2 term in the potential may be neglected.

This gives κ−3 f ′′ = 1
2(v−2) f , whose solutions are Airy functions. Only the Airy function

of the first kind can match onto the decaying WKB-II solution at large v, so the solution

within the turning point region is

fTP(v) = Ai
(
κ(v−2)/21/3

)
. (D.10)

For v−2 � κ−1, the asymptotic behavior of this Airy function coincides with the near

turning point behavior (D.9) of the WKB-II solution, as required. On the other side of the

turning point, when 2−v � κ−1, the asymptotic behavior of the Airy function with large

negative argument gives

fTP(v) ∼ (2−v)−1/4 cos

[√
2

3
κ3/2 (2−v)3/2 − 1

4
π

]
. (D.11)

This agrees with the oscillatory behavior (D.6) of the WKB-I solution near the turning

point, up to a shift in the phase. For a consistent solution, these phase shifts must also agree

modulo π (since a difference of π can be absorbed by a sign flip of an overall coefficient).

Consequently, we require that

κ3/2 I =

(
n+

1

2

)
π , (D.12)

for some integer n. Solving for the eigenvalue λ = κ2 and inserting the value (D.7) of I

yields the next-to-leading approximation for large order eigenvalues,

λWKB
n =

[(
n+

1

2

)√
π

2
Γ

(
7

4

) /
Γ

(
5

4

)]4/3
. (D.13)

Inclusion of higher order terms in the WKB expansion will generate relative corrections

to this result of order κ−3 ∼ n−2. One may verify that the allowed region solution (D.5)

has n−1 nodes when λ = λWKB
n implying that, as written, n is the level number when

counting starts from 1. Recalling [from eq. (2.35)] that the eigenvalue λ = 1
2s
∞
α eiπ/3 = 1

2cn
one finds the result (2.37) quoted earlier for the large order behavior of the asymptotic

coefficients {cn}.
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