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dinger spacetime that demonstrates that the effective radius L(r) monotonically decreases

from the UV to the IR, where r is the bulk radial coordinate. This result assumes that

the bulk matter satisfies the null energy condition, but holds regardless of the value of

the critical exponent z. We also construct several numerical examples in a model where

the Schrödinger background is realized by a massive vector coupled to a real scalar. The

full Schrödinger group is realized when z = 2, and in this case it is possible to construct

solutions with constant effective z(r) = 2 along the entire flow.

Keywords: Holography and condensed matter physics (AdS/CMT), AdS-CFT Corre-

spondence, Renormalization Group

ArXiv ePrint: 1510.06975

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2015)179

mailto:jimliu@umich.edu
mailto:wilsonzh@umich.edu
http://arxiv.org/abs/1510.06975
http://dx.doi.org/10.1007/JHEP12(2015)179


J
H
E
P
1
2
(
2
0
1
5
)
1
7
9

Contents

1 Introduction 1

2 Holographic c-theorem in Schrödinger spacetime 3

2.1 Applying the null energy condition 4

3 Schrödinger flows in a phenomenological model 5

3.1 Fixed points 6

3.2 Linearized analysis 7

3.3 Numerical solution 8

3.3.1 Schrödinger flow with constant z = 2 9

3.3.2 Schrödinger flow with zUV = zIR = 2, but changing z in between 11

3.3.3 Schrödinger flow between different zUV and zIR 12

4 Discussion 12

A Modified weak energy condition for Lifshitz spacetime 14

A.1 Weak energy condition 14

A.2 Modified weak energy condition with an effective cosmological constant 15

A.3 Modified weak energy condition with a Ricci scalar 15

1 Introduction

In a relativistic conformal field theory, the Weyl anomaly 〈Tµµ 〉 = A signifies a breakdown

of conformal invariance at the quantum level, and plays an important role in the char-

acterization of the theory. This is especially true in two dimensions, where the Cardy

formula relates the central charge c to the degrees of freedom of the theory [1]. More-

over, the Zamolodchikov c-theorem demonstrates that it is possible to define a c-function

that is monotonic decreasing along renormalization group flows from the UV to the IR [2].

These powerful statements have seen recent generalizations to four and higher dimensions

as well [3–5].

From a relativistic AdS/CFT point of view, the leading holographic Weyl anomaly is

easily obtained from the behavior of the on-shell action under rescaling of the boundary

metric [6]. For example, for AdSd+1, the leading contribution to the a central charge is

a =
2dπd/2

κ2(d/2)!2
Ld−1, (1.1)

where L is the AdS radius and κ is the gravitational coupling. While this is the result for

pure, a holographic renormalization group flow may be realized geometrically by turning
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on a relevant deformation and then solving the equations of motion for radial evolution in

the bulk. In particular, the AdS metric in the Poincaré patch

ds2
d+1 = e2r/L(−dt2 + d~x2

d−1) + dr2, (1.2)

has a natural domain wall generalization

ds2
d+1 = e2A(r)(−dt2 + d~x2

d−1) + dr2. (1.3)

A flow between UV and IR fixed points is then given by the solution for A(r) satisfying

A ∼ r/LUV as r → ∞ and A ∼ r/LIR as r → −∞. For such a flow, we may define

an a-function by replacing the constant AdS radius L in (1.1) by the effective radius

L(r) = 1/A′(r).

In this context, the holographic c-theorem [7–10] states that the effective AdS radius

L(r) (and hence the a function) is monotonic decreasing towards the IR. For Einstein

gravity in the bulk, this follows directly from the null energy condition

Rµν l
µlν = κ2Tµν l

µlν ≥ 0, (1.4)

for all future-directed null vectors lµ. In particular, choosing lµ in the t–r direction gives

Rrr −Rtt = −(d− 1)A′′ ≥ 0 ⇒ L′ = − A′′

(A′)2
≥ 0. (1.5)

So long as we restrict to classical Einstein gravity in the bulk, the statement L′ ≥ 0 is

completely general (as long as we impose the null energy condition), and moreover holds

in any spacetime dimension.

Given recent interest in non-relativistic holography, it is natural to ask whether a

similar c-theorem can be shown in the context of Lifshitz [11, 12] or Schrödinger [13, 14]

backgrounds. (The Schrödinger case has been considered previously in [15].) In the Lifshitz

case, however, it was shown in [16] that the null energy condition does not constrain the

effective radius L(r), so that it is not necessarily monotonic along the flow and can actually

increase toward the IR. In particular, starting from the Lifshitz metric

ds2
d+2 = −e2zr/Ldt2 + e2r/Ld~x2

d + dr2, (1.6)

with critical exponent z, we may construct a domain wall solution of the form

ds2
d+2 = −e2A(r)dt2 + e2B(r)d~x2

d + dr2. (1.7)

In order to study Lifshitz flows, it is useful to define the flow functions

L(r) =
1

B′(r)
, z(r) =

A′(r)

B′(r)
. (1.8)

When applying the null energy condition, we may choose a null vector either along t–x or

along t–r. Assuming z ≥ 1, we are led to two inequalities [16]

L′ ≥ −(z − 1), z′ ≥ −(z − 1)(d+ 2z − 1)/L. (1.9)
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However, since the right-hand sides of both expressions are negative for z > 1, neither

inequality leads to monotonicity of the respective flow functions.

The Lifshitz flow reduces to the relativistic case in the limit A = B (or equivalently

z = 1). In this limit, the first inequality in (1.9) reduces to L′ ≥ 0, which reproduces

the relativistic c-theorem, while the second becomes trivial. This suggests that additional

symmetry beyond that of the Lifshitz metric is required to obtain monotonic behavior of

the flow functions. One natural possibility is to consider Schrödinger holography [13, 14]

where the metric can be written in the form

ds2
d+3 = −e2zr/Ldt2 + e2r/L(2 dt dξ + d~x2

d) + dr2. (1.10)

In addition to the radial direction r, the Schrödinger metric also includes ξ which is the

coordinate conjugate to conserved particle number. In this paper, we show that, in contrast

with the Lifshitz case, the null energy condition and the Einstein equation is sufficient to

demonstrate the monotonicity of the effective radius L(r).1

In addition to proving that L(r) is monotonic in Schrödinger backgrounds, we inves-

tigate holographic RG flows in a simple model where the bulk metric is supported by a

massive vector coupled to a real scalar. By choosing appropriate potentials, we can re-

alize flows with zUV = zIR as well as with zUV 6= zIR. While L(r) is indeed monotonic

along flows, we find it easy to construct numerical flows where the effective z(r) fails to be

monotonic. Additional symmetry arises for z = 2 Schrödinger, and we see that in this case

a judicious choice of potentials allows us to construct solutions where z = 2 is constant

along the entire flow. Holographic flows from z = 1 AdS to z = 2 Schrödinger have been

constructed previously in [18] in the context of a consistent truncations of IIB supergravity

and M-theory.

This paper is organized as follows. In section 2, we study the consequences of the null

energy condition and prove a Schrödinger c-theorem showing that L′ ≥ 0. Although the

full Schrödinger symmetry is only realized for z = 2, monotonicity of L holds for arbitrary

z ≥ 1. In section 3, we study numerical flows in a simple massive vector coupled to scalar

model. Finally, we conclude in section 4 with a brief mention of the connection between

the effective radius L(r) and non-relativistic scale anomalies. Although the null energy

condition does not lead to monotonicity of L(r) in Lifshitz holography, we consider the

possibility of using the weak energy condition to derive a corresponding Lifshitz c-theorem

in the appendix.

2 Holographic c-theorem in Schrödinger spacetime

In order to describe a Schrödinger flow, we generalize the metric (1.10) away from fixed

points by taking

ds2
d+3 = −e2A(r)dt2 + e2B(r)(2 dt dξ + d~x2

d) + dr2. (2.1)

1Apparently scalars with sufficiently negative m2 can exhibit limit cycle behavior in z = 2 Schrödinger

spacetimes [17]. It would be interesting to see how that ties in with monotonicity of L(r).
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Note that ∂/∂ξ remains a null Killing vector everywhere along the flow. Following [16], we

use the same definitions of the flow functions (1.8) as was used in the Lifshitz case. Both

L(r) and z(r) approach constants LUV, zUV and LIR, zIR at the fixed points of the flow.

2.1 Applying the null energy condition

In order to apply the null energy condition, we first compute the Ricci tensor for the

metric (2.1) in terms of the flow functions L(r) and z(r). The result is

Rtt = −gtt
L2

(2z2 + (d− 2)z + 2 + z′L− zL′),

Rij = −gij
L2

(d+ 2− L′),

Rtξ = −
gtξ
L2

(d+ 2− L′),

Rrr = − 1

L2
(d+ 2)(1− L′).

(2.2)

We now consider the null energy condition (1.4). In contrast with the relativistic case, the

condition depends on the choice of the null vector field, and we find

(d+ 2z)(z − 1) + z′L− (z − 1)L′ + α(d+ 1)L′ ≥ 0, (2.3)

where

α =

∣∣∣∣grrlrlrgttltlt

∣∣∣∣ ≥ 0. (2.4)

The value of α depends on the null vector field, and ranges from 0 (e.g. for a null vector in

the t–x direction) to ∞, which is obtained in the limit when lµ points mostly along the ξ

direction:

lµ
∂

∂xµ
= εe−A

∂

∂t
− eA−2B

2ε

∂

∂ξ
+
√

1 + ε2
∂

∂r
as ε→ 0. (2.5)

The limiting values of α give rise to two inequalities

L′ ≥ 0, (z − 1)L′ ≤ (d+ 2z)(z − 1) + z′L. (2.6)

The first inequality demonstrates that the effective radius L(r) is monotonically increasing

towards the UV. This may be viewed as a non-relativistic generalization of the holographic

c-theorem, (1.5). It is worth noting that this inequality arises in the limiting case when

the null vector lµ is directed along ξ–r, as in (2.5). This singles out the metric function

B(r), and hence isolates the effective radius L(r) = 1/B′(r). In particular, this choice is

unavailable in the Lifshitz case, where the metric takes the form (1.7), and where the null

vector must necessarily include the A(r) function. This is the underlying reason for the

lack of monotonicity of the effective radius in Lifshitz flows [16].

If we restrict to the case z > 1, then (2.6) also gives an upper bound on L′

0 ≤ L′ ≤ d+ 2z +
z′L

z − 1
. (2.7)
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Combining both inequalities then yields a lower bound on z′

z′ ≥ −(z − 1)(d+ 2z)/L. (2.8)

This is similar to the bound (1.9) obtained for Lifshitz flows, except that the effective

dimension d+ 2z is increased by one (corresponding to the addition of the ξ coordinate in

the Schrödinger bulk).

For the relativistic case, z = 1, the second inequality in (2.6) becomes trivial, and the

upper limit on L′ is removed. As a result, we recover the relativistic c-theorem [7–10]. For

z < 1, both inequalities in (2.6) provide lower bounds on L′. However, note that such flows

cannot have any fixed points, as setting L′ = z′ = 0 in (2.6) yields (z − 1)(d+ 2z) ≥ 0, so

that z ≥ 1 at fixed points. (Here we ignore the possibility that z ≤ −d/2.)

3 Schrödinger flows in a phenomenological model

We now turn to some examples of Schrödinger flows between UV and IR fixed points. Our

starting point is the massive vector (or equivalently abelian Higgs in its broken phase)

model with action [13, 14]

S =

∫
dd+3x

√
−g
(
R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ

)
. (3.1)

This admits a solution where the Schrödinger metric (1.10) is supported by the vector field

A =

√
2(z − 1)

z
ezr/Ldt. (3.2)

The constants z and L are related to the theory parameters m2 and Λ according to

m2 =
z(z + d)

L2
, Λ = −(d+ 1)(d+ 2)

2L2
. (3.3)

In particular, once m2 and Λ are chosen, the scaling behavior is uniquely determined. This

is in contrast with the Lifshitz case [19], where it is possible to have two fixed points (and

hence flows between fixed points) for the same theory parameters.

In order to construct flows between different Schrödinger fixed points, we general-

ize (3.1) to allow for dynamical m2 and Λ by adding a real scalar field

S =

∫
dd+3x

√
−g
(
R− 2V (φ)− 1

2
∂µφ∂

µφ− 1

4
FµνF

µν − 1

2
W (φ)AµA

µ

)
. (3.4)

This model was previously considered in [16] in the Lifshitz context. To proceed, we use

the domain wall ansatz (2.1) and take matter fields to be

A = H(r)eA(r)dt , φ = φ(r) . (3.5)

The scalar and vector equations of motion are

0 = φ′′ + (d+ 2)φ′B′ − 2∂φV,

0 = A′′H +A′2H + 2A′H ′ + dB′(H ′ +A′H) +H ′′ −WH,
(3.6)

– 5 –



J
H
E
P
1
2
(
2
0
1
5
)
1
7
9

and the Einstein equations give rise to

0 = A′′ −B′′ + 2A′2 + (d− 2)A′B′ − dB′2 − 1

2
[(H ′ +A′H)2 +WH2],

0 = (d+ 1)B′′ +
1

2
φ′2,

(3.7)

along with the constraint equation

0 =
(d+ 1)(d+ 2)

2
B′2 + V − 1

4
φ′2. (3.8)

The above equations of motion can be rewritten in terms of the flow functions L(r)

and z(r) defined in (1.8). The result is

0 =
z′L− L′z

L2
H +

z2

L2
H +

2z

L
H ′ +

d

L

(
H ′ +

z

L
H
)

+H ′′ −WH,

0 = φ′′ +
d+ 2

L
φ′ − 2∂φV,

0 =
1

L2
[z′L+ (1− z)L′ + (d+ 2z)(z − 1)]− 1

2

[(
H ′ +

z

L
H
)2

+WH2

]
,

0 = −d+ 1

L2
L′ +

1

2
φ′2.

(3.9)

In addition, the constraint equation becomes

0 =
(d+ 1)(d+ 2)

2L2
+ V − 1

4
φ′2. (3.10)

It is evident that the last equation in (3.9) immediately gives rise to the restriction L′ ≥ 0,

in agreement with the lower bound from the c-theorem, (2.7). Note, however, that the null

energy condition, as a constraint on the stress-energy tensor, requires that

W (φ) ≥ − z

L2
. (3.11)

Any W (φ) we choose must satisfy this requirement everywhere along the flow.

3.1 Fixed points

Before turning to flows, we first examine the fixed point behavior of this system. Substi-

tuting the constant values

L(r) = L0 , z(r) = z0 , φ(r) = φ0, (3.12)

into the equations of motion (3.9) and (3.10) gives

W (φ0) =
z0(z0 + d)

L2
0

,

V (φ0) = −(d+ 1)(d+ 2)

2L2
0

,

∂φV (φ0) = 0,

H0 =

√
2(z0 − 1)

z0
,

(3.13)

which, not surprisingly, agrees with (3.3).
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3.2 Linearized analysis

As a guide for constructing flows, we now proceed to linearize the equations of motion (3.9)

in the vicinity of a fixed point according to the following recipe

L = L0 + εL̂, z = z0 + εẑ, φ = φ0 + εφ̂, H = H0 + εĤ. (3.14)

Although the first two equations in (3.9) are second order in H and φ, they may be rewritten

as a set of first order equations by introducing Ĥ ′ and φ̂′ as independent functions. For

ε� 1, we end up with a system of first order linear differential equations

V ′ =MV , (3.15)

where

V = (L̂ , ẑ , φ̂ , φ̂′ , Ĥ , Ĥ ′)T , (3.16)

and

M =



0 0 0 0 0 0
2(z0−1)(d+z0)

L2
0

−d+2z0
L0

L0W1(z0−1)
z0

0 z0H0(d+2z0)
L0

z0H0

0 0 0 1 0 0

0 0 2V2 −d+2
L0

0 0

0 0 0 0 0 1
2H0(d+z0)

L3
0

0 H0W1
z0

0 −2(z0−1)(d+2z0)
L2
0

−d+4z0−2
L0


. (3.17)

Note that we have expand the potential V (φ) and effective mass term W (φ) around the

fixed point φ = φ0

V (φ) = V0 + V1(φ− φ0) +
1

2
V2(φ− φ0)2 + · · · ,

W (φ) = W0 +W1(φ− φ0) +
1

2
W2(φ− φ0)2 + · · · .

(3.18)

The solution to this system of first order equations may be written in the general form

V(r) =
∑
i

Vieλir, (3.19)

where {λi} are the eigenvalues of M and {Vi} are the corresponding eigenvectors. Taking

r →∞ to be the UV, the negative eigenvalues λ < 0 correspond to relevant deformations,

as they correspond to flows away from the fixed point as r is decreased towards the IR. To

have a stable flow from the UV to the IR, we must move away from the UV in a relevant

direction (λUV < 0) and approach the IR along an irrelevant direction (λIR > 0).

The eigenvalues of the system can be determined by solving the secular equation.

There is one marginal deformation with

λ1 = 0, V1 =

(
L0(z0 − 1)

d+ 2z0

d+ z0
, 2z0(z0 − 1), 0, 0, H0, 0

)
, (3.20)
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corresponding to a shift in z0 and L0 leaving W (φ0) unchanged in (3.13). Note, however,

that this shift will affect the value of V (φ0), so it is actually removed by the constraint

equation (3.10). We also find a relevant deformation with

λ2 = −d+ 2z0

L0
, V2 = (0, 1, 0, 0, 0, 0) . (3.21)

This corresponds to a flow in z with fixed L, at least initially along the flow.

The remaining four eigenvalues come in two pairs. The first pair is

λ3 = −d+ 2z0

L0
, V3 = (0, 0, 0, 0, L0,−(d+ 2z0)) ,

λ4 = −2(z0 − 1)

L0
, V4 = (0, z0H0L0, 0, 0, L0,−2(z0 − 1)) .

(3.22)

Both of these deformations are relevant. Moreover, since the corresponding eigenvectors

are involve Ĥ and Ĥ ′ but not φ̂ nor φ̂′, we denote these flows as ‘vector field driven’. In

contrast, the final two flows are ‘scalar field driven’, and have eigenvalues

λ5,6 = −∆±
L0

, V5,6 =

(
0, 0, 1,−∆±

L0
, 0, 0

)
+
W1L0

2z0Ξ±
(0,−L0(z0 − 1)(∆± − 2z0), 0, 0, H0L0,−H0∆±) ,

(3.23)

where

∆± =
d+ 2±

√
(d+ 2)2 + 8V2L2

0

2
,

Ξ± = V2L
2
0 + (z0 − 1)

(
2(z0 − 1)∓

√
(d+ 2)2 + 8V2L2

0

)
.

(3.24)

Note that the eigenvectors simplify considerably when W1 = 0, in which case the linear

coupling between φ and A2
µ vanishes at the fixed point. The deformation corresponding to

∆+ is always relevant, while the deformation corresponding to ∆− is irrelevant for V2 > 0,

marginal for V2 = 0 and relevant for −(d+ 2)2/8L2
0 ≤ V2 < 0.

3.3 Numerical solution

We construct flows by solving the equations of motion (3.9) using the shooting method. Ig-

noring the marginal deformation (3.20) which takes us out of the vacuum imposed by (3.10),

at any fixed point there are four relevant deformations and a fifth deformation that is either

relevant or irrelevant depending on the second derivative of the potential. It is thus natural

to shoot from the IR fixed point to the UV by moving along the single irrelevant direction.

We must, of course, specify the potential V (φ) and scalar coupling W (φ) before pro-

ceeding. Since we aim to flow between two fixed points, we need a potential with at least

two critical points. For the simplest case, we take cubic functions

V (φ) = V0 + V1φ+
1

2
V2φ

2 +
1

6
V3φ

3,

W (φ) = W0 +W1φ+
1

2
W2φ

2 +
1

6
W3φ

3.

(3.25)
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Assuming a flow from φ = 0 in the IR to φ = φ0 in the UV, and taking the first derivative

of W (φ) to vanish at fixed points, the fixed point conditions (3.13) give rise to the unique

set of coefficients

V0 = −(d+ 1)(d+ 2)

2L2
IR

,

V1 = 0,

V2φ
2
0 = −3(d+ 1)(d+ 2)

(
1

L2
UV

− 1

L2
IR

)
,

V3φ
3
0 = 6(d+ 1)(d+ 2)

(
1

L2
UV

− 1

L2
IR

)
,

(3.26)

and

W0 =
zIR(d+ zIR)

L2
IR

,

W1 = 0,

W2φ
2
0 = 6

(
zUV(d+ zUV)

L2
UV

− zIR(d+ zIR)

L2
IR

)
,

W3φ
3
0 = 12

(
zIR(d+ zIR)

L2
IR

− zUV(d+ zUV)

L2
UV

)
.

(3.27)

Note that the cubic form of W (φ) is unbounded from below, and will not satisfy the null

energy constraint (3.11) for all values of the field φ. However, so long as (3.11) is satisfied

everywhere along the flow, then the null energy condition will continue to hold for the

classical domain wall solution. We verify that this is indeed the case for the numerical

solutions constructed below.

For the numerical solution, we set φ0 = 1 and start at the IR fixed point specified by

(LIR, zIR, φIR, HIR) with φIR = 0 and

HIR =

√
2(zIR − 1)

zIR
. (3.28)

We then move slightly away from the fixed point along the λ6 direction in (3.23). As a

result, this flow is inherently scalar field driven. In order to ensure that this is an irrelevant

direction, we must take V2 > 0. In this case, the expression for V2 in (3.26) immediately

demands LUV > LIR. (Although this is clearly compatible with (2.7), it is by no means a

proof of the c-theorem, as the c-theorem is a general result, while here we are only working

in a particular toy model.)

3.3.1 Schrödinger flow with constant z = 2

Since the full Schrödinger symmetry is only realized for z = 2, we first consider a flow with

zUV = zIR = 2. We take, as an example

(LUV, zUV) = (11L0/10, 2),

(LIR, zIR) = (L0, 2).
(3.29)

– 9 –
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Figure 1. A solution with constant z = 2 everywhere during the flow. The fixed point parameters

are given by (3.29) along with d = 3 and φ0 = 1. The arrow indicates the flow direction from UV

to IR.

The numerical solution for the flow in the z–L plane is shown in figure 1. As is evident,

the solution has constant effective z(r) = 2 throughout the flow, even though this was

not implemented as a constraint in the massive vector coupled to scalar model of (3.4).

Moreover, the solution maintains H(r) = 1, so that the vector field is of the form Aµ∂µ = ∂ξ.

As far as we have investigated, no other solutions with z 6= 2 at the fixed points have

constant z(r) along the flow. This suggests that the additional Schrödinger symmetry for

z = 2 allows for consistent flows with constant z. In particular, imposing z(r) = 2 and

H(r) = 1 reduces the system of equations (3.9) into four equations for two unknowns, L(r)

and φ(r). Since this system is over-constrained, some additional symmetry is needed for

consistency. In this case, the key symmetry is the realization that Aµ∂µ is a null Killing

vector for this z = 2 flow. The combination of the Maxwell and Killing equations then give

the constraint

WAν = ∇µFµν = −2∇µ∇νAµ = −2∇ν∇µAµ − 2Rν
λAλ. (3.30)

Since the massive vector is divergence-free by its equation of motion, we are left with

RµνA
ν = −1

2
W (φ)Aµ. (3.31)

On the other hand, contraction of Aλ with the Einstein equation

Rµν =
1

2
∂µφ∂νφ+

1

2

(
FµλFν

λ − 1

2(d+ 1)
gµνF

2

)
+

2

d+ 1
gµνV +

1

2
AµAν , (3.32)

gives

RµνA
ν =

2

d+ 1
V (φ)Aµ, (3.33)

provided Aµ is a null Killing vector and Aµ∂µφ = 0. Combining (3.31) with (3.33) then

gives the condition

V (φ) = −d+ 1

4
W (φ), (3.34)

which indeed holds for zIR = zUV = 2 in the cubic potential (3.25).
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The relation (3.34) is a necessary condition for Aµ to be a null Killing vector. However,

it only removes one redundancy in the equations of motion. The second redundancy comes

from comparing the Maxwell equation in the first line of (3.9) with the combination of ii

and tt Einstein equations in the third line of (3.9). Setting H = 1 in these two equations

gives

0 = z′L− zL′ + z(z + d)−WL2,

0 = 2z′L− zL′ + z(z + d)−WL2 + (z − 2)(2z + d− L′).
(3.35)

These equations are redundant when z(r) = 2, and we are left with a relatively simple

system

0 = φ′′ +
d+ 2

L
φ′ − 2∂φV,

0 = L′ − (d+ 2)− 2L2

d+ 1
V.

(3.36)

for the two functions φ(r) and L(r). (Alternatively, the scalar equation can be replaced by

the constraint (3.10).)

What we have shown is that, when the potential satisfies (3.34), the massive vector

coupled to scalar model admits flows with z = 2 and H = 1 along the entire flow. Of

course, we can also ask what happens when this constraint is not satisfied. As we now

show, while it is still possible to flow from zUV = 2 to zIR = 2, the effective z(r) will not

be constant during the flow, and neither will H(r).

3.3.2 Schrödinger flow with zUV = zIR = 2, but changing z in between

Since the potential relation (3.34) provides an additional symmetry allowing for constant

z = 2 flows, we may break this symmetry by adding another term to V (φ) in (3.25). In

particular, we may add a quartic term to V (φ), while maintaining a cubic W (φ). One way

to do this without affecting the UV and IR fixed point parameters is to add a term of

the form

V (φ) = V0 + V1φ+
1

2
V2φ

2 +
1

6
V3φ

3 +
1

24
V4φ

2(φ− φ0)2, (3.37)

where V4 > 0, but is otherwise unconstrained. Since the flow is engineered to go from φ = 0

in the IR to φ = φ0 in the UV, the additional term and its first derivative vanishes at the

endpoints of the flow, thus ensuring that the fixed point data in (3.26) remains unchanged.

As an example of a flow with non-constant z(r), we choose the same fixed point pa-

rameters (3.29) and take V4 = 24/φ2
0. The numerical flow is shown in figure 2. Although

z(r) is no longer a constant along the flow, it starts and ends at the expected z = 2 fixed

points. This shows explicitly that, while L(r) remains monotonic decreasing towards the

IR (as it must by the null energy condition), z(r) is certainly not monotonic.

– 11 –
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z

Figure 2. A solution with zUV = zIR = 2 using the potential (3.37). The fixed point parameters

are given by (3.29) along with d = 3, V4 = 24/φ20 and φ0 = 1. The arrow indicates the flow direction

from UV to IR.

3.3.3 Schrödinger flow between different zUV and zIR

The final example we consider is a flow with different fixed point z values. We use the

quartic V (φ) in (3.37) with V4 = 24/φ2
0 along with the fixed point parameters

(LIR, zIR) = (L0, 21/10),

(LUV, zUV) = (11L0/10, 2).
(3.38)

The numerical solution is shown in figure 3. This solution also exhibits monotonicity in

L toward the IR. However, it is worth noticing that this does not agree with the result

in the appendix of [15], which claims that LUV > LIR leads to zUV ≥ zIR in Schrödinger

spacetimes.

4 Discussion

Our formulation of a Schrödinger c-theorem is given in terms of the effective radius L(r).

In the relativistic case, the AdS radius is directly related to the a central charge according

to (1.1). Hence monotonicity of L(r) is equivalent to monotonicity of the corresponding

a(r) function. We would naturally like to make a similar connection between the effective

radius and the scale anomaly in the non-relativistic case.

The non-relativistic version of the Weyl anomaly is the quantum breakdown of the

Lifshitz scaling symmetry

t→ λzt, ~x→ λ~x. (4.1)

In particular, the anomaly is given by

z〈T tt 〉+ 〈T ii 〉 = A, (4.2)
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Figure 3. A solution flowing from zUV = 2 to zIR = 2.1. The fixed point parameters are given

by (3.29) along with d = 3, V4 = 24/φ20 and φ0 = 1. The arrow indicates the flow direction from

UV to IR.

where A can be constructed out of geometrical invariants. In contrast with the relativistic

case, non-relativistic scaling provides fewer constraints on the form of A [20–24]. Moreover,

the invariants that contribute have dimension d + z (where d is the number of spatial

dimensions) and may be formed out of a combination of time and space derivatives with

dimensions z and 1, respectively. As a result, the structure of A depends very much on

the values of z and d.

In the case of z = 2 and d = 2 Lifshitz, A is dimension four and has two possible terms,

with coefficients C1 for a two time-derivative anomaly and C2 for a four space-derivative

anomaly [23, 24]. A holographic calculation yields

C1 =
1

128π

2L

G
(4)
N

, C2 = 0, (4.3)

which demonstrates that the Lifshitz radius L is indeed directly related to the scale

anomaly. Similar results may be obtained for other values of z and d.

We are, of course, more directly interested in the Schrödinger case, where there are

additional Galilean symmetries. For z = 2 Schrödinger, the Weyl anomaly was inves-

tigated in [25], and was shown to vanish for even-dimensional spacetimes (odd d). For

odd-dimensional spacetimes, the lowest derivative anomaly has the same structure as the

relativistic case in one dimension higher. It would be of interest to more directly connect

this result with the radius L that appears in Schrödinger holography.
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A Modified weak energy condition for Lifshitz spacetime

In this appendix, we investigate the possibility of obtaining a holographic c-theorem from

a modified weak energy condition in Lifshitz spacetime. We begin with the Lifshitz met-

ric (1.7), which we repeat here for convenience

ds2
d+2 = −e2A(r)dt2 + e2B(r)d~x2

d + dr2, (A.1)

along with the definition (1.8) of the flow functions L(r) and z(r). The corresponding

Einstein tensor is

Gtt =
gtt
L2
d

(
−L′ + d+ 1

2

)
,

Gij =
gij
L2

(
z′L− (z + d− 1)L′ + z2 + (d− 1)z +

d(d− 1)

2

)
,

Grr =
d

L2

(
z +

d− 1

2

)
,

(A.2)

and the Ricci scalar is

R = − 2

L2

(
z′L− (z + d)L′ + z2 + dz +

d(d+ 1)

2

)
. (A.3)

The consequences of the null energy condition on L(r) and z(r) were investigated

in [16], and the resulting inequalities are

L′ ≥ −(z − 1), z′ ≥ (z − 1)(L′ − d− z)/L. (A.4)

When z ≥ 1, these inequalities may be combined to give (1.9). In any case, the null energy

condition does not lead to monotonicity of L(r). In an attempt to obtain a monotonic

Lifshitz flow, we turn instead to the weak energy condition.

A.1 Weak energy condition

A conventional application of the weak energy condition is equivalent to the statement

Gµνt
µtν ≥ 0, (A.5)

for all future-directed time-like vectors tµ. In this case, an upper bound for L′ is achieved

in the limit when tµ approaches a null vector in the t–x plane. The result coincides with

the second inequality in (A.4), which may be expressed as

L′ ≤ z + d+
z′L

z − 1
(A.6)

(assuming z > 1). On the other hand, a lower bound

L′ ≥ d+ 1

2
, (A.7)

achieved when tµ is points purely at the time direction.

– 14 –
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Note that this lower bound on L′ is incompatible with having a Lifshitz fixed point

(where L would approach a constant). This is actually not surprising, as the presence of a

negative cosmological constant, which can be expected in a Lifshitz background, can violate

the weak energy condition. For a fixed cosmological constant, it is possible to modify the

weak energy condition to exclude its contribution. Of course, it is not always possible

to disentangle the contribution of a constant Λ from a dynamical Λeff . Nevertheless, we

investigate this possibility.

A.2 Modified weak energy condition with an effective cosmological constant

Since the lower bound on L′ given by (A.7) arises directly from the Gtt in (A.2), we may

remove the (d+ 1)/2 contribution by imposing a subtracted weak energy condition

(Gµν + Λeffgµν)tµtν ≥ 0. (A.8)

Choosing

Λeff = −d(d+ 1)

2L2
. (A.9)

then gives

0 ≤ L′ ≤ z + d+
z′L

z − 1
. (A.10)

Note that Λeff is precisely the cosmological constant of pure AdSd+2 with radius L.

Although this subtracted weak energy condition allows for both Lifshitz fixed points

and monotonic flows for L(r), it is not necessarily a well-defined energy condition on the

matter fields. In particular, Λeff is implicitly defined through the flow function L(r), which

in turn is obtained from the metric function A(r), and not directly from the matter sector.

We thus turn away from this possibility and consider another modification to the weak

energy condition that can be formulated more directly in terms of the stress tensor.

A.3 Modified weak energy condition with a Ricci scalar

Instead of an effective cosmological constant, we may add a geometric invariant to the

left-hand side of (A.5). An obvious choice would be to use the Ricci scalar, so we consider

a modification of the form

(Gµν + kgµνR)tµtν ≥ 0, (A.11)

where k is a constant that we adjust to achieve L′ ≥ 0.

In Lifshitz spacetime with critical exponent z, choosing k to be

k =

(
4z2

d(d+ 1)
+

4z

d+ 1
+ 2

)−1

, (A.12)

then gives rise to the inequality

0 ≤ L′ ≤ z + d, (A.13)

where the lower bound is again achieved when t points purely in the time direction, and

the upper bound is achieved when t approaches a null vector. Note that this result is the

same as (A.10) when z is constant.
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In fact, for k to be a constant, we must take z to be a constant as well. Thus this

modified weak energy condition is only applicable to Lifshitz flows where z is held fixed.

In this case, we can use the Einstein equation to rewrite (A.11) as a condition on the stress

tensor (
Tµν −

2k

d− 1
gµνT

)
tµtν ≥ 0. (A.14)

In order to better understand the meaning of this energy condition, we consider a perfect

fluid in Minkowski spacetime. In this case, (A.14) gives two conditions on the pressure p

and the density ρ

ρ+ p ≥ 0,

(
1− 2k

d

)
ρ+

(
6k

d

)
p ≥ 0. (A.15)

This naturally limits to the usual weak energy condition

ρ+ p ≥ 0, ρ ≥ 0, (A.16)

in the limit k → 0.

It is not entirely clear what the significance of such a modified weak energy condition

is. Moreover, many Lifshitz flows of interest would not necessarily be constrained to have

constant z. So, in the end, the possibility of obtaining a holographic c-theorem for Lifshitz

spacetimes based on a physically well-motivated energy condition in the bulk remains an

open question.

Open Access. This article is distributed under the terms of the Creative Commons
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