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1 Introduction

Yang-Mills theory and its supersymmetric extensions have been studied extensively over

the years, and are of particular relevance in four dimensions, in which case they define

renormalizable quantum field theories. It is well known that these theories are not renor-

malizable by power counting in higher dimensions, but they nonetheless provide effective

theory descriptions of some particular low energy sectors of string theory, such as D5-

brane dynamics and open string theory compactifications. In this paper, we concentrate

on 6D supersymmetric Yang-Mills (SYM) theory. Only the maximally supersymmetric

N = (1, 1) theory, involving both left-handed and right-handed supercharges, is anomaly

free in six dimensions [1–4], and is therefore physically relevant. The effective action for

coincident D5-branes defines a non-abelian generalization of Born-Infeld theory represent-

ing an infinite series that involves the standard N = (1, 1) supersymmetric 6D Yang-Mills

Lagrangian and higher-derivative corrections [5–9].

We wish to note right away that the individual terms in the effective action need not

and do not possess the full extended supersymmetry that string theory enjoys. Only the

whole infinite series has this property. We will discuss this issue in detail later.

The higher-derivative supersymmetric structures similar to those that appear in the

Born-Infeld action define also the candidate counterterms for the ultra-violet (UV) loga-

rithmic divergences in the 6D SYM theory. The supersymmetric Ward identities for the

on-shell amplitudes only require these counterterms (at least, the counterterms that are

responsible for first logarithmic divergences ∼ ln ΛUV in the amplitudes) to be invariant

under extended supersymmetry transformations on mass shell, i.e. modulo the equations

of motion of the 6D SYM theory. Only when one can give a superspace formulation of the

theory and use a symmetry-preserving regularization, the counterterms should possess the

corresponding supersymmetry off shell.

There is no off-shell N = (1, 1) superspace formulation of the maximally supersym-

metric 6D SYM theory. Thus, we cannot expect the counterterms to enjoy the full off-shell

supersymmetry of the original action. The on-shell N = (1, 1) supersymmetry should,

however, be there. On the other hand, there exists a N = (1, 0) superspace formulation,

and the relevant counterterms should be N = (1, 0) off-shell [and N = (1, 1) on-shell]

supersymmetric. A limited symmetry of relevant counterterms is a specific feature of the-

ories with extended supersymmetry. In more simple cases (think of the Euler-Heisenberg

effective Lagrangian for QED or of higher-dimensional counterterms in the effective chi-

ral theory describing the low-energy sector of QCD), all individual terms in the effective

Lagrangian possess the same off-shell symmetries as the leading term.
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The structure of higher-dimensional counterterms was previously studied in the con-

ventional superspace approach [10] and in (on-shell) harmonic superspace in [11]. A conve-

nient way to determine the structure of these counterterms is using the (off-shell) harmonic

superspace technique developed in [12, 13] and extended to six dimensions in [14–16]. That

is what we do in the present paper.

We make use of the N = (1, 0) off-shell harmonic superspace formalism of refs. [14–16],

to define in detail the N = (1, 1) on-shell harmonic superspace invariants introduced in [11].

We rewrite the standard superspace N = (1, 1) SYM constraints in N = (1, 1) harmonic

superspace. The main new result here is to solve explicitly these constraints in terms ofN =

(1, 0) superfields. Since the constraints put the theory on shell, the N = (1, 0) superfields

are necessarily subjected to their equations of motion. Nevertheless, while constructing the

invariants from the constrained N = (1, 1) superfield strength as integrals over superspaces

involving the full N = (1, 0) superspace as a subspace, these superfields can still be treated

as off-shell ones. The on-shell conditions are needed only while checking the hidden N =

(0, 1) supersymmetry of these invariants. The N = (1, 1) harmonic superspace formalism

allowed us to write down explicit analytic expressions in off-shell N = (1, 0) harmonic

superspace for the candidate counterterms. Their analysis may help to understand the

reason why certain possible a priori logarithmically divergent structures in the scattering

amplitudes happen to be absent, as was displayed in explicit 3-loop calculations [17–19].1

The algebraic renormalization method [20] was generalized to non-renormalizable su-

persymmetric theories in [11] as a tool to determine whether some counterterms could sup-

port logarithmic divergences. This allowed to explain the absence of 2-loop divergences.

But the same arguments fail to explain the absence of non-planar divergences at the 3-loop

level [21]. Arguments using the pure spinor formalism [22–24] allow to explain this result,

but there is no direct quantum field theory understanding of this non-renormalization the-

orem. We will see that the absence of 2-loop divergences can also be understood in the

N = (1, 0) harmonic superspace framework through the absence of an N = (1, 0) off-shell

supersymmetric and manifestly gauge invariant counterterm of canonical dimension d = 8.2

At the 3-loop level (d = 10), both planar (or single-trace) and non-planar (or double-trace)

supersymmetric counterterms can be constructed. We shall argue, however, that Ward

identities combining the algebraic approach for non-linear hidden supersymmetry with the

off-shell N = (1, 0) harmonic superspace methods could potentially explain the 3-loop

non-renormalization theorem.

The 6D SYM theory also represents an interest as a toy model for more complicated

extended supergravity theories. In particular, the absence of divergences for the double-

trace structure in the 3-loop amplitude in six dimensions obtained by explicit computations

is somehow similar to the absence of divergences which was observed for the four-graviton

amplitude in N = 4 supergravity in four dimensions at the 3-loop level and in N = 5

supergravity at the 4-loop level [25–28].

1We are talking here only about logarithmic divergences; power UV divergences characteristic of a non-

renormalizable theory are present starting from the first loop in certain UV regularization schemes —

Slavnov’s higher-derivative scheme or lattice regularization. These power divergences cannot be cared of

by calculations in the papers just cited.
2Hereafter, we denote by d the canonical dimension (in mass units) of the relevant component 6D

Lagrangian.
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Indeed, for pure N = 4 supergravity (without matter), the first available supersym-

metric counterterm appears at the 3-loop level [29, 30]. The absence of anomaly for the

Cremmer-Julia symmetry for N -extended supergravity with N ≥ 5 [31] and inspection

of the possible supersymmetry invariants exhibit that the first available counterterm only

appears at (N − 1)-loop order [32–34]. This allows to understand the good ultra-violet

behavior of N = 8 supergravity amplitudes which was observed in [35–37] through four

loops. However, this symmetry principle fails to explain the absence of divergences at

three loops in pure N = 4 supergravity [38], as well as at four loops in N = 5 super-

gravity. These unexplained cancelations suggest that, by the same currently unexplained

reason, maximal supergravity may not diverge at seven loops, in spite of the presence of

a counterterm satisfying all symmetries [34]. On the other hand, the 4-loop amplitudes

in N = 4 supergravity are known to involve logarithmic divergences, and one might think

that the same is true for the 8-loop amplitudes in the maximal N = 8 supergravity, as was

predicted long time ago in [39].

Although the non-renormalization theorems in 6D SYM theory and in supergrav-

ity were proven using different methods, one may hope that a future proof of the non-

renormalization theorem for the non-planar 3-loop logarithm divergence in Yang-Mills the-

ory could shed some light on possible generalizations to supergravity.

The structure of the paper is the following.

In section 2, we attempt to give a pedagogical explanation of the above-mentioned fact

that the individual terms in the supersymmetric effective Lagrangian do not necessarily

possess all the symmetries of the leading term. We illustrate this for the toy supersymmetric

quantum mechanical model with only one bosonic degree of freedom.

In section 3, we recall the basic notions and introduce notation for 6-dimensional N =

(1, 0) harmonic superspace. In section 4, we use this formalism to construct the classical

invariant actions of canonical dimension 4 involving the N = (1, 0) vector multiplet and the

hypermultiplet. One of such actions enjoys the extended N = (1, 1) supersymmetry, with

the N = (0, 1) part of this symmetry being realized via the transformations of N = (1, 0)

harmonic superfields.

In section 5, still working in the N = (1, 0) superspace framework, we analyze higher-

dimensional N = (1, 1) supersymmetric Lagrangians. We show that

• At the 1-loop level (d = 6), all the candidate counterterms vanish on mass shell [40,

41]. We demonstrate in section 6.1 and, in more details, in appendix B that no d = 6

off-shell N = (1, 1) supersymmetric Lagrangian can be constructed.

• At the 2-loop level (d = 8), the candidate counterterms also vanish on mass shell, if

we require them to be N = (1, 0) off-shell supersymmetric and gauge invariant.3

3These requirements should be imposed under the assumption that the perturbative calculations can be

done in a way that preserves at all steps the off-shellN = (1, 0) supersymmetry and gauge invariance, both of

them being kept by regularization. This assumption is very natural: the existence of N = (1, 0) superspace

implies the existence of supergraph technique, and the higher-derivative ultraviolet regularization keeps

gauge invariance and N = (1, 0) supersymmetry, but we are not aware of its formal rigorous proof.

– 3 –
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• On the other hand, one can construct an on-shell d = 8 gauge-invariant Lagrangian

involving both the vector multiplet and hypermultiplet and possessing both N =

(1, 0) and N = (0, 1) supersymmetries only on shell. Its bosonic part starts with

the structure ∼ F 4. It does not appear as a counterterm for the N = (1, 1), 6D

SYM theory, but is present in the derivative expansion of the Born-Infeld action for

coincident D5-branes.

The methods of section 5 where the extra N = (0, 1) supersymmetry is “hidden” in the

superfield transformations proved not to be too efficient for constructing the 3-loop d = 10

invariants; even the construction of the d = 8 invariants by this “brute force” method is

rather complicated technically. To perform such a study in a more systematic way, we

developed in section 6 and 7 the on-shell N = (1, 1) harmonic superfield formalism. It

involves a double set of harmonics, u±i and u±̂A, as well as the extra SU(2) doublet of the

(0, 1) chiral 6D fermionic superspace coordinates. We show that

• The known superspace constraints on the covariant spinor derivatives, which define

the N = (1, 1) SYM theory [10, 42], admit a compact rewriting in this bi-harmonic

superspace as the conditions for the two types of covariant Grassmann harmonic

analyticities.

• These constraints are explicitly solved in section 7 in terms of the N = (1, 0) SYM

gauge superfield and hypermultiplet, simultaneously providing the N = (1, 0) Grass-

mann harmonic analyticity and the on-shell conditions for these superfields.

• These N = (1, 0) constituents are encompassed by the single double-analytic N =

(1, 1) superfield strength with simple transformation properties under the N = (0, 1)

supersymmetry.

In section 8, we write various invariant actions in terms of this N = (1, 1) superfield

strength as integrals over the full N = (1, 1) superspace or its 1/2 or 3/4 analytic subspaces

and further rewrite these invariants in the N = (1, 0) superspaces.

• We rederive in this way the on-shell d = 8 invariant obtained in section 5 and also

derive nontrivial expressions for the single-trace and double-trace d = 10 invariants

in terms of N = (1, 0) superfields. We note that the single-trace invariant can

be represented as a full N = (1, 1) superspace integral, whereas the double-trace

invariant cannot. We suggest that, using the algebraic method inN = (1, 0) harmonic

superspace, this may be enough for proving a non-renormalization theorem preventing

the appearance of the double trace as a counterterm.

• We also present an alternative view of constructing higher-order invariants on the

d = 8 example. One can keep the off-shell N = (1, 0) supersymmetry, but allow for

the gauge invariance to be deformed, or modify the definition of the Yang-Mills field

strength curvature [43]. We write the explicit expression for the d = 8 action thus

obtained. This may provide an alternative way to construct the supersymmetric

Born-Infeld Lagrangian in N = (1, 0) harmonic superspace, although we do not

investigate this issue in this paper.

– 4 –
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There are three technical appendices. In appendix A, we derive certain Bianchi identities

relating different N = (1, 0) superfields that are used in section 5. In appendix B, we

describe a failed attempt to construct an off-shell N = (1, 1) invariant d = 6 action. We

conclude that such an action in all probability does not exist. In appendix C, we give an

alternative derivation of the d = 8 on-shell N = (1, 1) supersymmetric Lagrangian, directly

in the N = (1, 0) superspace.

2 Off-shell vs. on-shell

In this pedagogical section, we clarify generic features of effective supersymmetric La-

grangians by studying in detail two toy supersymmetric quantum mechanical models and

recalling the familiar situation for 4D field theories.

2.1 Witten’s model

The simplest possible example is Witten’s supersymmetric quantum mechanical system

involving one bosonic degree of freedom with the Lagrangian [44]

L0 =
ẋ2 − [V ′(x)]2

2
+

i

2

(
ψ̇ψ̄ − ψ ˙̄ψ

)
+ V ′′(x)ψ̄ψ . (2.1)

The corresponding equations of motion are

ẍ+ V ′(x)V ′′(x)− V ′′′(x)ψ̄ψ = 0 ,

iψ̇ − V ′′(x)ψ = 0 ,

i ˙̄ψ + V ′′(x)ψ̄ = 0 . (2.2)

The Lagrangian (2.1) is invariant (up to a total time derivative) under the following

nonlinear supersymmetry transformations

δx ≡ δǫx+ δǭx = ǫψ̄ + ψǭ,

δψ ≡ δǫψ = −ǫ[iẋ+ V ′(x)],

δψ̄ ≡ δǭψ̄ = ǭ[iẋ− V ′(x)] . (2.3)

Note now that it is impossible to write a Lagrangian depending on the fields x, ψ, ψ̄ and

involving their higher time derivatives which would be invariant under the transforma-

tions (2.3). This is due to the well-known fact that the Lie brackets of the transforma-

tions (2.3) do not close off mass shell, but only on mass shell. When acting on the variable

x(t), the Lie bracket (δǭδξ − δξδǭ) boils down to a total time derivative. But it is not so for

the fermion variables. For example,

(δǭδξ − δξδǭ)ψ = ξǭ[iψ̇ + V ′′(x)ψ] = 2iξǭ ψ̇ + ξǭ
∂L

∂ψ̄
. (2.4)

The presence of the second term in (2.4) does not affect the invariance of L0 under (2.3).

Indeed,

(δǭδξ − δξδǭ)L0 = 2iξǭ L̇0 + ξǭ

(
∂L0

∂ψ

∂L0

∂ψ̄
+

∂L0

∂ψ̄

∂L0

∂ψ

)
= 2iξǭ L̇0 . (2.5)

But, for L 6= L0, the second term in the Lie bracket (δǭδξ − δξδǭ)L vanishes only on the

mass shell of L0.

– 5 –
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The standard way to solve this problem and to construct fully supersymmetric actions

of any dimension is to introduce a superfield

X(t, θ, θ̄) = x+ θψ̄ + ψθ̄ + Fθθ̄ . (2.6)

The transformations of the superspace coordinates generate linear supersymmetry trans-

formations of the dynamic variables,

δx = ǫψ̄ + ψǭ,

δψ = ǫ(F − iẋ),

δψ̄ = ǭ(F + iẋ),

δF = i(ǫ ˙̄ψ − ψ̇ǭ) . (2.7)

Any higher-derivative action of the form

S =

∫
dt dθ̄dθ

(
1

2
D̄XP

[
∂

∂t

]
DX + V (X)

)
, (2.8)

where P (∂/∂t) is an arbitrary polynomial and

D =
∂

∂θ
+ iθ̄

∂

∂t
, D̄ = −

∂

∂θ̄
− iθ

∂

∂t
(2.9)

are the supersymmetric covariant derivatives, is invariant under (2.7).

For a linear polynomial P (z) = a + bz, one obtains an interesting higher-derivative

model whose Hamiltonian is Hermitian in spite of the presence of the ghosts (no ground

state in the spectrum) [45]. For higher-order polynomials, the Hermiticity is lost, but we

need not worry about it, we use this as a toy model displaying the structure of the effective

Wilsonian Lagrangian in a field theory of interest. We choose P (z) = 1− gz2. One obtains

then the following component Lagrangian,

L =
1

2
(ẋ2 + F 2) + i ˙̄ψψ + FV ′(x) + V ′′(x)ψ̄ψ + g

1

2

(
ẍ2 + Ḟ 2 + 2i ¨̄ψψ̇

)
. (2.10)

This Lagrangian is invariant under the transformations (2.7). On the other hand, the

formerly auxiliary field F has become dynamical and cannot be algebraically eliminated as

it can in Witten’s model with g = 0. Still, one can integrate out the field F perturbatively

through the formal power series solution

F = −
∞∑

n=0

gn
d2nV ′(x)

dt2n
. (2.11)

One obtains in this way the Lagrangian

L =
1

2

(
ẋ2 + gẍ2

)
+ i ˙̄ψψ + ig ¨̄ψψ̇ −

1

2

∞∑

n=0

(−g)n
(
dnV ′(x)

dtn

)2

+ V ′′(x)ψ̄ψ , (2.12)

– 6 –
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which is by construction invariant with respect to the nonlinear supersymmetry transfor-

mations

δx = ǫψ̄ + ψǭ ,

δψ = ǫ

(
−iẋ−

∞∑

n=0

gn
d2nV ′(x)

dt2n

)
, δψ̄ = ǭ

(
iẋ−

∞∑

n=0

gn
d2nV ′(x)

dt2n

)
, (2.13)

that close modulo the equations of motion for the full Lagrangian (2.12). For example,

(δǫ1δǫ2 − δǫ2δǫ1)ψ = −2ǫ1ǫ2

∞∑

n=0

gn
d2n

dt2n

(
∂L

∂ψ

)
. (2.14)

The Lagrangian (2.12) represents a perturbative series in g,

L =
∞∑

n=0

gnLn = L0 + gL1 + g2L2 + . . . (2.15)

and similarly for δ = δ0 + gδ1 + . . . , where L0 is written in (2.1) and δ0 in (2.3). It follows

by construction that the first-order correction,

L1 =
1

2
ẍ2 + i ¨̄ψψ̇ +

1

2
ẋ2

(
V ′′(x)

)2
, (2.16)

is invariant under the action of δ0 modulo the classical equations of motion (2.2) and a

total time derivative,

δ0L1 + δ1L0 =
d

dt
(· · · ) . (2.17)

In other words, the action
∫
dtL1 is invariant with respect to nonlinear supersymmetry

transformations (2.3) on shell, but not off shell.

On the contrary, the second-order correction

L2 = −
1

2

(
ẍV ′′(x) + ẋ2V ′′′(x)

)2
, (2.18)

is not invariant with respect to δ0, but satisfies instead

δ0L2 + δ1L1 + δ2L0 =
d

dt
(· · · ) . (2.19)

The situation when the effective Lagrangian represents an infinite series of higher-

derivative terms, like in (2.12), and this Lagrangian is invariant under modified supersym-

metry transformations also representing an infinite series, is quite general. One known

example is the Born-Infeld effective Lagrangian mentioned in the introduction.

2.2 4D supersymmetric gauge theories

Consider first the N = 1, 4D supersymmetric SYM Lagrangian. It involves the gauge

fields and gluinos and is invariant under certain nonlinear supersymmetry transformations.

One also can write higher-derivative off-shell supersymmetric Lagrangians of canonical

– 7 –
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dimensions d = 6, 8, etc., but they necessarily include the auxiliary field D of the vector

multiplet, which now becomes dynamical. In this case, supersymmetry is realized linearly.

The same is true for the N = 2 supersymmetric SYM theory. We have a scalar

superfield W involving a triplet of auxiliary fields DA. Higher-derivatives supersymmetric

Lagrangians, like L ∼ Tr
∫
d8θW2W̄2, can be written, and they involve the derivatives of

DA. For the “matter” fields belonging to the N = 2 hypermultiplet, the full set of the

auxiliary fields is infinite. The latter can be presented as components of a certain N = 2

harmonic superfield. Higher-derivative off-shell invariant actions can also be written in

that case.

But for the N = 4 theory, the situation is different. Superfield formalism, with all

supersymmetries being manifest and off-shell, is not developed, the full set of auxiliary

fields is not known and probably does not exist. Thus, one cannot write in this case an

off-shell supersymmetric higher-derivative action. On the other hand, nontrivial higher-

derivative actions enjoying on-shell N = 4 supersymmetry exist (see, e.g., [9, 46–48]).

In four dimensions, these higher-derivative invariants are not relevant for perturbative

calculations — they do not appear as counterterms for a renormalizable (even finite for

N = 4) theory.4 But such invariants are relevant in six dimensions. As far as their structure

is concerned, the situation is the same as in four dimensions. Using harmonic approach,

one can develop N = (1, 0) harmonic superfield formalism and write down many off-shell

N = (1, 0) invariants. On the other hand, we have no off-shell N = (1, 1) superfield

formalism and off-shell N = (1, 1) invariants probably do not exist. However, it is possible

to write down many on-shell N = (1, 1) invariants, and we will do it explicitly for the

canonical dimensions d = 8 and d = 10.

3 Harmonic superspace and harmonic superfields

We give here some basic facts about the 6D spinor algebra, the ordinary and harmonic

N=(1, 0) superspaces and N=(1, 0) superfields. For more details, see refs. [40, 41].

3.1 Spinor algebra

The group Spin(5, 1) possesses two different spinor representations, the complex 4-

component spinors λa and the complex 4-component spinors ψa. In contrast to Spin(6) ≡

SU(4), where two 4-dimensional representations are related to each other by complex con-

jugation, in Spin(5, 1), they are completely independent. The situation is opposite to that

in 4D where the group Spin(3, 1) involves two complex conjugate spinor representations,

while in Spin(4) ≡ SU(2)× SU(2) these representations are independent.

For the vectors, it is convenient to introduce the notation

Vab =
1

2
(γM )abVM , (3.1)

4Though they can appear in the Wilsonian effective actions.

– 8 –
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where M = 0, . . . , 5 and (γM )ab are antisymmetric 6D matrices (the 6D analog of σµ)

satisfying

γM γ̃N + γN γ̃M = −2ηMN , ηMN = diag(1,−1,−1,−1,−1,−1) , (3.2)

with

(γ̃M )ab =
1

2
εabcd(γM )cd . (3.3)

One of the possible explicit representations of these matrices is

γ0 = γ̃0 = iσ2 ⊗ 11; γ1 = −γ̃1 = iσ2 ⊗ σ1; γ2 = −γ̃2 = i11⊗ σ2;

γ3 = −γ̃3 = iσ2 ⊗ σ3; γ4 = γ̃4 = σ1 ⊗ σ2; γ5 = γ̃5 = σ3 ⊗ σ2 . (3.4)

Note the properties

Tr{γM γ̃NγP γ̃QγRγ̃S} = −Tr{γ̃MγN γ̃PγQγ̃RγS} = 4 εMNPQRS + symmetric part (3.5)

(ε012345 = 1) and

(γA)ab(γA)cd = 2εabcd, (γ̃A)ab(γ̃A)
cd = 2εabcd . (3.6)

The Dirac gamma-matrices ΓM satisfying the standard Clifford algebra

ΓMΓN + ΓNΓM = 2ηMN

can be chosen as

ΓM =

(
0 γ̃M

−γM 0

)
. (3.7)

One can also introduce

Γ7 = Γ0Γ1Γ2Γ3Γ4Γ5 (3.8)

and observe that the spinors λa, ψa are the chiral left-handed and right-handed projections

of a 8-component Dirac spinor, i.e. λ, ψ = (1± Γ7)Ψ/2.

The Spin(5, 1) generators are

(σMN )ab =
1

2
(γ̃MγN − γ̃NγM )ab =

1

2
(γN γ̃M − γM γ̃N ) a

b . (3.9)

They are real.5 This makes it convenient to define, instead of a complex 4-component

spinor λa, a couple of spinors λa
j=1,2 obeying the pseudoreality condition

λa
j ≡ −Ca

b(λ
b
j)

∗ = εjkλa
k , (3.10)

where C is the charge conjugation matrix with the properties C = −CT , C2 = −1. It can

be chosen as C = γ̃0γ5.

Similarly, instead of a generic complex ψa, one can introduce a couple of right-handed

spinors ψA
a related by the pseudoreality condition.

5Thus, the algebra spin(5, 1) represents a real form of spin(6) ≡ su(4) and is sometimes denoted su∗(4).

– 9 –



J
H
E
P
1
2
(
2
0
1
5
)
0
8
5

3.2 Superspace

The standard N=(1, 0) superspace involves the coordinates

z = (xM , θai ), (3.11)

where θai are Grassmann pseudoreal left-handed spinors.

Next we introduce the harmonics u±i (u−i = (u+i )
∗, u+iu−i = 1), which describe the

“harmonic sphere” SU(2)R/U(1), where SU(2)R is R-symmetry group of the N = (1, 0)

Poincaré superalgebra.6 The harmonic N=(1, 0), 6D superspace in the central basis is

parametrized by the coordinates

Z := (z, u) = (xM , θai , u
±i) . (3.12)

The harmonic superspace in the analytic basis involves the harmonics and the coordinates

xM(an), θ
±a:

Z(an) := (xM(an), θ
±a, u±i) , (3.13)

xM(an) = xM +
i

2
θakγ

M
ab θ

b
l u

+ku−l, θ±a = u±k θ
ak. (3.14)

A very important property of the analytic basis is that the set of coordinates

ζ := (xM(an), θ
+a, u±i) , (3.15)

involving only a half of the original Grassmann coordinates forms a subspace closed under

the action of N=(1, 0) , 6D supersymmetry. The set (3.15) parametrizes what is called

“harmonic analytic superspace”.

It is convenient to define the differential operators called spinor and harmonic deriva-

tives. In the analytic basis, they are expressed as

D+
a =∂−a, D

−
a =−∂+a−2iθ−b∂ab, D0=u+i ∂

∂u+i
−u−i ∂

∂u−i
+θ+a∂+a−θ−a∂−a, (3.16)

D++=∂+++iθ+aθ+b∂ab+θ+a∂−a, D−−=∂−−+iθ−aθ−b∂ab+θ−a∂+a , (3.17)

where ∂±aθ
±b = δba and

∂++ = u+i ∂

∂u−i
, ∂−− = u−i ∂

∂u+i
.

The following commutation relations hold

{D+
a , D

−
b } = 2i∂ab, [D++, D−−] = D0 , (3.18)

[D++, D+
a ] = [D−−, D−

a ] = 0 , [D++, D−
a ] = D+

a , [D−−, D+
a ] = D−

a . (3.19)

6The constraint u+iu−

i
= 1 leaves in u±

i
3 degrees of freedom. One more degree of freedom is neutralized

due to the strict preservation of the harmonic U(1) charge in all invariant actions in the harmonic superspace.
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We shall use the notation

(D±)4 = −
1

24
εabcdD±

a D
±
b D

±
c D

±
d , (D±)3a = −

1

6
εabcdD±

b D
±
c D

±
d ,

(θ±)4 = −
1

24
εabcdθ

±aθ±bθ±cθ±d , (D±)4(θ∓)4 = 1 , (3.20)

and the following conventions for the full and analytic superspace integration measures:

dZ(an) = d6x(an) du(D
−)4(D+)4, dζ(−4) = d6x(an)du (D

−)4. (3.21)

The measure dZ(an) has canonical dimension −2 and dζ(−4) — dimension −4. In what

follows we will frequently suppress the subscript “(an)” of the analytic basis coordinate x

and the integration measure.

The harmonic integrals
∫
F du are nonzero only if the integrand F has zero harmonic

charge, D0F = 0. They can be computed using the rules
∫

duu+j u
−
k =

1

2
ǫjk ,

∫
duu+j u

+
k u

−
mu−n =

1

6
(ǫjmǫkn + ǫjnǫkm) ,

∫
duu+j u

+
k u

+
mu−n u

−
l u

−
p =

1

24
(ǫjnǫklǫmp + 5 more terms) , (3.22)

etc.

3.3 Superfields

A general 6D superfield depends on 8 odd coordinates θai (or θ±a), which makes their

component expansion rather complicated. There is, however, an important class of super-

fields, Grassmann-analytic superfields, which are defined on the analytic superspace (3.15)

and so depend only on the half of the original Grassmann coordinates. The structure

of Grassmann-analytic (G-analytic) superfields is much simpler than that of a general

superfield.

A G-analytic superfield φ(ζ) satisfies the constraint D+
a φ = 0.7 In the analytic basis,

D+
a is reduced to the partial derivative ∂/∂θ−a and this constraint simply means that φ

lives in the superspace (3.15).

The superfields can be classified according to their harmonic charge q, the eigenvalue

of D0. The pure 6D SYM theory is formulated in terms of the G-analytic anti-Hermitian

superfield gauge potential which has charge +2 and is denoted V ++. It defines the covariant

harmonic derivative

∇++ = D++ + V ++ , δV ++ = −∇++Λ , (3.23)

where Λ = Λ(ζ) is an arbitrary analytic gauge parameter in the adjoint representation of

the gauge group. It is convenient to introduce also a non-analytic gauge connection V −−

which covariantizes the harmonic derivative D−−

∇−− = D−− + V −− , δV −− = −∇−−Λ . (3.24)

7It is quite analogous to the habitual chirality constraint Dαφ = 0 in four dimensions.
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Requiring ∇++ and ∇−− to satisfy the same algebra as their flat counterparts,

[∇++,∇−−] = D0 , (3.25)

implies the harmonic zero-curvature condition

D++V −− −D−−V ++ + [V ++, V −−] = 0 . (3.26)

It can be used to solve for V −− in terms of V ++ as a series over products of V ++ taken at

different harmonic “points”,

V −−(z, u) =
∞∑

n=1

(−1)n
∫

du1 . . . dun
V ++(z, u1) . . . V

++(z, un)

(u+u+1 )(u
+
1 u

+
2 ) . . . (u

+
n u+)

. (3.27)

Here, the factors (u+u+1 )
−1, etc are the harmonic distributions [13] and the central basis

coordinates z are defined in (3.11).

For further use, note the following tensor relation between arbitrary variations of har-

monic connections:

δV −− =
1

2
(∇−−)2δV ++ −

1

2
∇++(∇−−δV −−) . (3.28)

It follows from

∇−−δV ++ = ∇++δV −− , (3.29)

which in turn follows from (3.26).

The connection V −− can be used to build up spinor and vector superfield connections,

A−
a (V ) = −D+

a V
−−, Aab(V ) =

i

2
D+

a D
+
b V

−−, (3.30)

and the corresponding covariant spinor and vector derivatives,

∇−
a = D−

a +A−
a , ∇ab = ∂ab +Aab , (3.31)

δA−
a = −∇−

a Λ , δAab = −∇abΛ . (3.32)

The covariant derivatives (3.23), (3.24), (3.31) and ∇+
a (in the G-analytic basis, it

keeps its flat form D+
a = ∂−a.) obey the same (anti)commutation relations (3.18) as the

flat ones,

[∇−−, D+
a ] = ∇−

a , [∇++,∇−
a ] = D+

a , [∇++, D+
a ] = [∇−−,∇−

a ] = 0 ,

[D+
a ,∇

−
b ] = 2i∇ab . (3.33)

In addition,

[∇++,∇ab] = 0 .

On the other hand, the commutators of spinor covariant derivatives with ∇ab do not

vanish,

[D+
a ,∇bc] =

i

2
εabcdW

+d , [∇−
a ,∇bc] =

i

2
εabcdW

−d , (3.34)
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where W±a are the covariant (1,0) spinor superfield strengths,

W+a = −
1

6
εabcdD+

b D
+
c D

+
d V

−− , (3.35)

W−a := ∇−−W+a . (3.36)

One can also define the G-analytic superfield

F++ =
1

4
D+

a W
+a = (D+)4V −− , D+

a F
++ = 0 . (3.37)

From the harmonic zero-curvature condition (3.26) and G-analyticity of V ++, the impor-

tant properties follow

∇++W+a = ∇−−W−a = 0 , ∇++W−a = W+a , (3.38)

D+
b W

+a = δabF
++ , (3.39)

∇++F++ = 0 . (3.40)

Note that all these objects are homogeneously transformed by the gauge group

δW±a = −[W±a,Λ] , δF++ = −[F++,Λ] . (3.41)

More details on the algebra of gauge-covariant derivatives and the relevant Bianchi identi-

ties are collected in appendix A.

The matter hypermultiplet is described by a pair of the G-analytic superfields q+A(ζ),

A = 1, 2. If they belong to the real representation of the gauge group (e.g. the adjoint one),

they can be subjected to the reality condition q̃+A = ǫABq
+B, where the ˜ conjugation is

the product of the ordinary complex conjugation and an antipodal map on the harmonic

sphere S2 ∼ SU(2)/U(1) (see [13] for details). Note that the gauge prepotentials V ±±

defined above, as well as the connections A−
a , Aab and covariant strengths W±a, are anti-

Hermitian with respect to this generalized conjugation. Since, in what follows, we will deal

with the adjoint hypermultiplets, it is worth to give how such q+A are transformed under

the gauge group

δq+A = −[q+A,Λ] . (3.42)

Finally, we note the useful Lemma:

∇++F−n = 0 ⇒ F−n = 0 for n ≥ 1 , (3.43)

where the N = (1, 0) superfield F−n transforms in some representation of the gauge group

and we suppressed the “color” indices. This statement can be proved by passing to the

central basis of the harmonic superspace, where D++ = ∂++, and the so called τ -frame for

the gauge fields, where ∇++ = e−iV ∂++eiV and V is a harmonic superfield taking values in

the algebra of the gauge group generators in the given representation and called “bridge”.

For the superfield F̃−n := eiV F−n the constraint in (3.43) implies ∂++F̃−n = 0, whence

F̃−n = 0 (see eqs. (4.20), (4.21) in [13]) and F−n = 0. Note also that the constraint

∇++F+n = 0 , n ≥ 0 , implies F+n = e−iV F i1···inu+i1 · · ·u
+
in
. This property will be widely

used in section 7.
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4 Invariant actions of the N = (1, 0) vector multiplet and a hyper-

multiplet

In this section we present the actions of canonical dimension d = 4 containing the standard

kinetic terms of the N = (1, 0) vector gauge multiplet and a hypermultiplet.

4.1 The dimension 4 Lagrangian of the gauge multiplet

The superfield action providing the supersymmetric extension of the standard d = 4 Yang-

Mills Lagrangian for the 6D gauge fields ∼ Tr(FMNFMN ) is given by the following expres-

sion which is non-local in harmonics [15],

SSYM =
1

f2

∞∑

n=2

(−1)n

n
Tr

∫
d6x d8θ du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+1 u
+
2 ) . . . (u

+
n u

+
1 )

, (4.1)

where f is a coupling constant carrying the dimension of inverse mass. This action is

invariant under the supergauge transformations (recall (3.23), (3.24))

δV ++ = −∇++Λ . (4.2)

The gauge freedom (4.2) allows one to bring the superfield V ++ in the Wess-Zumino

gauge,

V ++ = θ+aθ+bAab + 2(θ+)3aλ
−a − 3(θ+)4D−− , (4.3)

where Aab is the gauge field, λ−a = λaiu−i is the gaugino and D−− = Diku−i u
−
k , where

Dik = Dki are the auxiliary fields. The component fields entering (4.3) depend only on the

coordinates xM , but not on the harmonic variables.

The component Lagrangian derived from (4.1) has a simple form,

L =
1

2f2
Tr

(
−F 2

MN + iλkγM∇Mλk −DikDik

)
, (4.4)

with FMN = ∂MAN − ∂NAM − i[AM , AN ] and ∇M = ∂M − iAM . It gives rise to the

standard equations of motion of the second order for the gauge fields and of the first order

for the fermions.

These equations can be derived from the superfield equation of motion following

from (4.1) by using the general formula for variation of SSYM,

δSSYM =
1

f2
Tr

∫
dZ δV ++V −− =

1

f2
Tr

∫
dζ(−4)δV ++F++ . (4.5)

This gives the extremely simple equation of motion

F++ = 0 . (4.6)
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4.2 The dimension 4 hypermultiplet Lagrangian

The invariant action for the hypermultiplet in the adjoint representation (being interested in

N = (1, 1) extension, we will deal only with this assignment of the hypermultiplet), giving

rise to the Lagrangian of the canonical dimension 4, is given by the following integral over

the analytic superspace

Sq = −
1

2f2
Tr

∫
dζ(−4)q+A∇++q+A , ∇++q+A = D++q+A + [V ++, q+A ] . (4.7)

The coupling constant can be chosen the same as in SSYM, keeping in mind a freedom of

rescaling of q+A. The corresponding equation of motion is

E+3 := ∇++q+A = 0 . (4.8)

An equivalent form of the same equation is

(∇−−)2q+A = ∇−−q−A = 0 , q−A := ∇−−q+A . (4.9)

This can be proved by acting on the l.h.s. of (4.9) by ∇++, observing that the result is zero

as a consequence of (4.8), and then applying the Lemma of the previous section. Note

also the useful relations

D+
a q

−A = −∇−
a q

+A , ∇−
a q

−A = 0 , (4.10)

which follow from the analyticity of q+A and the equations of motion (4.9).

As an instructive example, we consider the superfield action of the free hypermultiplet

Sq
free =

∫
dζ(−4) q+AD++q+A . (4.11)

The corresponding equation of motion is

D++q+A = 0 . (4.12)

The on-shell constraint (4.12) together with the G-analyticity condition D+
a q

+A = 0 can

be resolved to find

q+A = ϕ+A − θ+aψA
a − iθ+aθ+b∂abϕ

−A , (4.13)

where ϕ±A = ϕjAu±j are physical harmonic-independent on-shell scalar fields. They satisfy

the free equation of motion �ϕ = 0. And ψA
a are right-handed on-shell fermionic fields

satisfying the free Dirac equation.

4.3 The N = (1, 1) SYM action and its hidden N = (0, 1) supersymmetry

We now consider the actions (4.1) and (4.7) together and write

SV q+ = SSYM + Sq =
1

f2

(∫
dZLSYM −

1

2
Tr

∫
dζ(−4)q+A∇++q+A

)
. (4.14)
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The sum (4.14) exhibits invariance under the extra hidden N = (0, 1) supersymmetry,

δ0V
++ = ǫ+Aq+A , δ0q

+A = −(D+)4(ǫ−AV
−−) , ǫ±A = ǫaAθ

±a , (4.15)

which completes the manifest N = (1, 0) supersymmetry to N = (1, 1). This means

that (4.14) is in fact the N = (1, 0) form of the N = (1, 1) SYM theory action. Note a

useful representation for the variation δ0q
+A through the superfield strengths F++ andW+

a :

δ0q
+
A = −ǫaA(θ

−aF++ −W+a). (4.16)

It is consistent with the analyticity of q+A because of the analyticity of F++ and the

relation (3.39).

The invariance (4.15) is quite analogous to the hidden N = 2, 4D supersymmetry

which completes the manifest N = 2, 4D supersymmetry of the sum of the harmonic

superspace actions for the N = 2, 4D SYM field and the adjoint hypermultiplet to N = 4

supersymmetry [13]. This sum is thus nothing but a representation of the N = 4, 4D

SYM action in terms of N = 2 superfields.

Like in the N = 4, 4D case, the transformations (4.15) have the correct closure with

themselves and with the manifest N = (1, 0) supersymmetry only on mass shell, when the

equations of motion corresponding to the action (4.14),

E++ := F++ +
1

2
[q+A, q+A ] = 0 , E+3 := ∇++q+A = 0 , (4.17)

are satisfied.

A direct calculation shows that (δ2δ1 − δ1δ2)V
++ amounts to

(δ2δ1 − δ1δ2)V
++ = −∇++Λ + iεabcdf21[ab]∂cdV

++ , f21[ab] := ǫA2[aǫ1b]A , (4.18)

where

Λ = (D+)4
[
(ǫ−A

1 ǫ−2A)V
−−

]
(4.19)

is a gauge transformation superfield parameter. Thus, the hidden supersymmetry has the

correct off-shell closure on V ++. This is not the case for q+A . The same bracket yields

(δ2δ1 − δ1δ2)q
+
A = [Λ, q+A ] + iεabcdf21[ab]∂cdq

+
A − (D+)4[ǫ−2Aδ̃1V

−− − [ǫ−1Aδ̃2V
−−] , (4.20)

where δ̃V −− is defined from the relation

δ0V
−− = ǫ−A∇−−q+A + δ̃V −− , (4.21)

and involves the terms vanishing on the hypermultiplet equations of motion (4.8), (4.9).

Thus, in the full analogy with (2.4), (δ2δ1−δ1δ2)q
+A involves a nontrivial extra term which

vanishes only on mass shell.

Let us now consider the commutators of the hidden supersymmetry with the manifest

one, i.e. with

δ̂(q+A , V
++) = η+aQ−

a (q
+
A , V

++) Q−
a =

∂

∂θ+a
+ . . . , η+a = ηiau+i . (4.22)
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We find

(δ̂δ0 − δ0δ̂)V
++ = (ηiaǫBa u

+
i )q

+
B := fBiu+i q+B . (4.23)

This variation can be identically rewritten as

fBiu+i q+B = ∇++(fBiu−i q+B)− fBiu−i ∇
++q+B , (4.24)

i.e., once again, it is reduced to some analytic gauge transformation of V ++ only on the

hypermultiplet mass shell, i.e., with ∇++q+A = 0.

Analogously,

(δ̂δ0 − δ0δ̂)q
+
A = −[fBiu−i q

+
B , q

+
A ]− f i

Au
−
i

(
F++ +

1

2
[q+C , q+C ]

)
, (4.25)

i.e., it is reduced to the pure gauge transformation on the mass shell for V ++.

We conclude that the correct N = (1, 1) closure of the transformations (4.15) with

themselves and with the manifest N = (1, 0) transformations is achieved only on the mass

shell for both superfields V ++ and q+A. To avoid a possible confusion, we point out that

the action (4.14) is invariant under the transformations (4.15) off shell, with V ++ and q+A

being unconstrained analytic superfields. The mass-shell conditions are required to ensure

the correct N = (1, 1) closure for these transformations.

It is instructive to see how the superfield equations of motion (4.17) are transformed

into each other under the transformations (4.15). Using the properties (3.40), we find

δ0E
+3
A = −ǫ+A E++ . (4.26)

It is a little more complicated to see that the variation of E++ is actually expressed through

E+3 and the alternative form (4.9) of the hypermultiplet equation of motion (4.8). It is

easy to show that

δ0V
−− = ǫ−A∇−−q+A + terms containing (∇−−)2q+B and ∇++q+B . (4.27)

Then it can be shown that the contribution of the first “dangerous” term in (4.27) to δ0F
++

is exactly canceled by the variation of the second term in E++, so δ0E
++ is expressed

through the terms containing the equivalent forms (4.9) of the hypermultiplet equation of

motion.

In what follows we will meet the situation when the superfields involved in theN=(0, 1)

transformations above satisfy themselves the mass-shell equations (4.17), (4.8) or (4.9). The

various superfields defined earlier are transformed on shell as

δq±A = δ̂q±A − [ǫ−Bq+B , q
±A] , δ̂q±A = ǫAa W±a , (4.28)

δW±a = δ̂W±a − [ǫ−Bq+B , W
±a] , δ̂W±a = −iεabcdǫAb ∇cdq

±
A . (4.29)

Note that the transformation (4.28) immediately follows from (4.16) upon using the equa-

tion of motion E++ = 0 from the set (4.17).
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We will need also the on-shell transformation rules for the spinor and vector derivatives

of q±A:

δ(∇bcq
±
A) = ǫaA∇bcW

±a +
i

2

(
ǫBb [∇

−
c q

+
B , q

±
A ]− ǫBc [∇

−
b q

+
B , q

±
A ]
)
− [ǫ−Bq+B , ∇bcq

±
A ] , (4.30)

δ(D+
a q

−
A) = −δ(∇−

a q
+
A) = −ǫbAD+

a W
−b + ǫBa [q+B , q

−
A ]− [ǫ−Bq+B , D

+
a q

−
A ] . (4.31)

Note that the last terms in the variations (4.28)–(4.31) are some field-dependent gauge

transformations and they do not contribute to the variation of the gauge-invariant La-

grangian involving the traces over the “color” indices.

5 Higher-dimensional N = (1, 0) and N = (1, 1) invariants

Now we turn to the discussion of higher-dimensional invariants. As was mentioned in

the very beginning, the pure 6D gauge theories are chiral theories, they involve only the

left-handed gaugino field and hence are plagued by the chiral anomaly [1–4]. In other

words, gauge symmetry is broken there by quantum effects, which restricts their physical

interest. Anomaly can be canceled and the gauge symmetry kept intact in the theories

involving, besides the left-handed gauginos, also right-handed fermions belonging to the

matter hypermultiplet. This condition is obviously satisfied in the N = (1, 1) gauge theory.

We will be mainly interested in this section in the on-shellN = (1, 1) invariant gauge theory,

which is written in terms of N = (1, 0) superfields and may or may not possess the full

off-shell N = (1, 0) supersymmetry.

For a higher-dimensional operator to be a counterterm giving a logarithmically diver-

gent contribution to the scattering amplitudes ∼ ln ΛUV , it must not vanish on mass shell,

but its supersymmetric variation under the on-shell N = (1, 1) transformations should be

reduced to a total derivative. We first discuss the operators of canonical dimension 6.

5.1 d = 6

It is very easy to write down the superfield gauge-invariant action of canonical physical

dimension 6 in the gauge field sector. It has the following unique form [40]:

S
(6)
SYM =

1

2g2
Tr

∫
dζ(−4)du

(
F++

)2
. (5.1)

Here the coupling constant g is dimensionless.8 The component expression for (5.1) involves

extra derivatives,

S = −
1

2g2
Tr

∫ [
(∇MFML)

2 +
1

2
(∇MDjk)

2 +DlkD
kjD l

j + fermion terms
]
. (5.2)

We see that the auxiliary fields of the Lagrangian (4.4) enter the d = 6 Lagrangian with

derivatives — the same phenomenon that we observed in section 2 in a toy SQM model;

8Indeed, the superfields V ++, V −− are dimensionless, and it follows that F++ defined in (3.37) has

canonical dimension 2.
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the higher-dimensional Lagrangian (5.2) is related to the Lagrangian (4.4) in the same way

as the higher-dimensional Lagrangian (2.10) to the Witten Lagrangian (2.1).

We observe that the integrand in (5.1) is just the square of the equation of motion (4.6)

and therefore this d = 6 action vanishes on mass shell modulo possible hypermultiplet

terms. Now we are going to show that the same remains true for the d = 6 actions taking

into account the hypermultiplet terms.

One can write a series of new hypermultiplet d = 6 actions Sn representing full super-

space integrals [41],

Sn ∼ Tr

∫
dudZq+A(∇−−)n(∇++)n−1q+A . (5.3)

All the terms with n > 1 vanish on mass shell. Using (3.37), it is convenient to represent

the non-vanishing action S1 as an integral over the analytic superspace,

Tr

∫
dZq+A∇−−q+A = Tr

∫
dζ(−4) F++[q+A , q

+A] . (5.4)

There is one more d = 6 interaction involving the hypermultiplet field. It does not

contain harmonic derivatives and is given by the analytic superspace integral,

Squart ∼ Tr

∫
dudζ(−4)[q+A, q+A ]

2 . (5.5)

Thus, if disregarding the terms vanishing on the mass shell, a generic N = (1, 0)

invariant Lagrangian reads

Ld=6 =
1

2g2
Tr

∫
dudζ(−4)

[
(F++)2 + αF++[q+A, q+A ] + β[q+A, q+A ]

2
]
. (5.6)

The requirement that its N = (0, 1) variation vanishes on mass shell imposes the restriction

α = 2β + 1/2 such that the Lagrangian acquires the form

Ld=6 =
1

2g2
Tr

∫
dudζ(−4)

(
F++ +

1

2
[q+A, q+A ]

)(
F++ + 2β[q+A, q+A ]

)
, (5.7)

which vanishes on shell due to (4.17).

We have thus shown that the non-vanishing on-mass-shell counterterms of canonical

dimension 6 are absent, and this proves the one-loop finiteness of the theory (4.14).

The fact that the algebra of extended supertransformations does not close off shell

suggests that an action corresponding to (5.7) with some fixed β, to which a series of

the actions Sn in (5.3) with arbitrary coefficients is added, cannot be invariant off shell.

Indeed, when one tries to construct such an invariant (the corresponding calculations are

presented in appendix B), one meets obstacles that seem to be unsurmountable. It is easy

to see that, in order to ensure the cancelation of the terms ∝ (q+)3 in the variation, the

coefficient β in (5.7) should be fixed to β = 1/4. But the linear in q+A terms do not want

to be canceled among themselves, no matter what you try.

We thus conjecture that a d = 6 off-shell N = (1, 1) supersymmetric invariant does

not exist.9

9We did not rigourously prove it, however — it is always difficult to prove the absence of something.
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5.2 d = 8

Once again, we begin with the gauge field sector and write appropriate off-shell N = (1, 0)

supersymmetric gauge invariants of canonical dimension d = 8, having in mind to extend

them to the N = (1, 1) invariants by adding some hypermultiplet terms. It turns out

that all such purely gauge field terms vanish on the mass shell of (4.4), in agreement

with [10]. Then we write the full list of different possible d = 8, N = (1, 0) superfield

terms involving the hypermultiplet contributions and demonstrate that, on the equations

of motion corresponding to the total N = (1, 1) action (4.14), they are all reduced to a

single expression, which is not invariant under the hidden supersymmetry (4.15), (4.28)–

(4.31) (and there is no way to make it invariant).

We consider first the d = 8 terms in the pure gauge field sector. The SYM equations

of motion are F++ = 0. The vanishing of some structures (like Tr
∫
dZ∇−

a W
−aF++), is

obvious. We consider now a couple of less trivial examples.

• Let

S
(8)
1 = Tr

∫
dZ (∇−

a W
+a)(D+

a W
−a) , (5.8)

where W−a = ∇−−W+a. We use the identity

∇−
a W

+a = D+
a W

−a , (5.9)

which is derived in appendix A as a corollary of certain Bianchi identities. We obtain

S
(8)
1 = Tr

∫
dZ (∇−

a W
+a)2 = Tr

∫
dζ(−4)(D+)4(∇−

a W
+a)2 . (5.10)

The terms involving (D+)3(∇−
a W

+a) and (D+)4(∇−
a W

+a) contain F++ and vanish

on mass shell. We are left with the structure

∝ ǫcdefD+
c D

+
d (∇

−
a W

+a)D+
e D

+
f (∇

−
b W

+b) .

On mass shell, it is equivalent to

∝ ǫcdef ǫcdam{W+m,W+a}ǫefbn{W
+n,W+b} ∼ ǫmanb{W

+m,W+a}{W+n,W+b} ,

which vanishes as the anticommutator {W+m,W+a} is symmetric under m ↔ a.

• Let

S
(8)
2 = Tr

∫
dZ (∇−

a W
+b)(D+

b W
−a) . (5.11)

Integrating by parts with respect to ∇−
a , using the commutation relation

{D+
b ,∇

−
a } = 2i∇ba = −2i∇ab = −{D+

a ,∇
−
b } , (5.12)

disregarding the terms involving F++, and integrating by parts once again, we re-

duce (5.11) to (5.8).
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Now we turn to the general proof that there exist no N = (1, 0) supersymmetric off-

shell invariants of the dimension 8 which could respect the on-shell N = (1, 1) invariance.

To this end, we construct the full set of the superfield Lagrangians of dimension 4 in

the full N = (1, 0) harmonic superspace (they correspond to the dimension 8 component

Lagrangians):10

L
(1)
W = ∇−

a W
−aD+

b W
+b , L

(2)
W = ∇−

a W
+aD+

b W
−b , L

(3)
W = ∇−

a W
+bD+

b W
−a ,

L
(4)
W = ∇−

a W
+b∇−

b W
+a , L

(5)
W = D+

a W
−bD+

b W
−a , (5.13)

L(1)
q = iSA

a ∇bcSdAε
abcd , L(2)

q = [q+(A, q−B)][q+A , q
−
B ] , L

(3)
q = [q−A, q−A ][q

+B, q+B ] . (5.14)

Note that a conceivable term ∼ W+a∇abW
−b is reduced to the other structures in the

list (5.13), (5.14) by integrating by parts with respect to the spinor derivatives under the

(undisplayed) trace.

Using the off-shell relations (A.3), (A.4) and (5.9) and also bearing in mind that

{D+
a , D

+
b } = {∇−

a , ∇
−
b } = 0, it is easy to show that all Lagrangians in the set (5.13) are

reduced to L
(2)
W or to L

(1)
W , which in turn are related to each other by integrating by parts

with respect to ∇−−. This proof is valid off shell and does not require passing to the

analytic subspace at any intermediate step.

Next, using the on-shell relations (A.8), it is straightforward to show that

L
(1)
W (on-shell) ⇒ 4L(3)

q . (5.15)

Also, using simple algebraic manipulations and integrating by parts with respect to har-

monic derivatives, one can show that

L(2)
q (on-shell) ⇒

3

4
L(3)
q . (5.16)

It remains to work out L
(1)
q . Integrating by parts, it can be reduced to

L(1)
q ⇒ −iεabcdq−AD+

a ∇bcD
+
d q

−
A . (5.17)

Using the on-shell relation (A.19) and, once again, integrating the term q−A{W+a, ∇−
a q

+
A}

by parts with respect to ∇−
a , one reduces L

(1)
q , up to a total harmonic derivative, to 2L

(3)
q .

Thus, all possible superfield Lagrangians of the dimension 4 are reduced on mass shell

to the single non-vanishing structure

L(3)
q = [q−A, q−A ][q

+B, q+B ] . (5.18)

Bearing in mind the overall trace, the variation of L
(3)
q under the hidden N = (0, 1)

supersymmetry (4.28) is given by

δǫL
(3)
q ∼ ǫaA[q

−B, q−B ][q
+A, W+a] . (5.19)

10For brevity, we omit here the Tr symbol with respect to “color” indices, but we will always have

it in mind.
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It is non-vanishing, and no terms can be invented to cancel (5.19). Thus, no N = (1, 1)

invariant terms of the dimension 8 can be constructed out of the N = (1, 0) superfields.

It is worth noting that in the hypermultiplet sector one can contemplate N = (1, 0) in-

variants which are not reduced to the product of “color” anticommutators as in (5.18), e.g.,

∼ q+Aq−Aq
+Bq−B , or ∼ q+Aq−Bq+Aq

−
B . (5.20)

Nevertheless, it is impossible to ensure the mutual cancelations of the N = (0, 1) variations

of such terms, while keeping the requirement for the Lagrangian not to vanish on mass

shell. To check this, we wrote down all the independent terms of this kind, calculated their

variations (reducing δq−A = ∇−−δq+A to δq+A through integrating by parts) and found

the unique combination of such terms, ∼ Tr
(
q+Aq−Aq

+Bq−B + q+Aq−Bq+Bq
−
A

)
, the variation

of which is zero up to a total harmonic derivative. However, it is easy to show that, on the

mass shell of q+A, this combination is a total harmonic derivative on its own.

Surprisingly, the d = 8 superfield expression which is non-vanishing on shell and re-

spects the on-shell N = (1, 1) supersymmetry can be constructed if we give up the require-

ment of off-shell N = (1, 0) supersymmetry.

5.3 On-shell N = (1, 0) and N = (1, 1) invariants

As the complete off-shell N = (1, 1) superfield formalism is absent, it is not possible to

write down operators of a fixed canonical dimension d > 4 which would be invariant off

shell under the N = (1, 1) transformations. This concerns the operators of dimension

d = 8 and d = 10. However, in contrast to the case d = 6, the on-shell d = 8 and d = 10

invariants exist, and it is possible to find them. The basic idea is to seek for the invariants,

in which not only the hidden N = (0, 1) supersymmetry is realized on shell, but which are

N = (1, 0) supersymmetric also only on shell.

Once again, we start our consideration from the simple example in the gauge field sec-

tor. If we lift the requirement of off-shell N = (1, 0) supersymmetry, we can define the non-

vanishing d = 8 operators that are supersymmetric only on mass shell. One of them reads

S̃
(8)
1 =

1

4
Tr

∫
dζ(−4) εabcdW

+aW+bW+cW+d , (5.21)

where the factor 1
4 was introduced for further convenience. Indeed, eq. (3.39) tells us that

D+
a W

+b = δbaF
++, which vanishes on mass shell. Thus, when disregarding the terms pro-

portional to the equations of motion, W+a is a G-analytic superfield and so the action (5.21)

respects N = (1, 0) supersymmetry on shell.11 Being expressed through components, the

bosonic part of (5.21) gives the known F 4 structure [50],

[L(8)
an ]bos =

1

2 · 81
Tr(s)

[
2FMNFMNFPQF

PQ + FMNFPQF
MNFPQ

− 4FNMFMRF
RSFSN − 8FNMFMQFNRF

RQ
]
. (5.22)

11Note that a similar on-shell invariant appears as a one-loop contribution to the quantum effective action

of the N = (1, 0) gauge theory in the 6D harmonic superspace in a special background [49].
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This expression can be derived using the component representation for W+a [40, 51],

W+a =
i

6
FMN (σMN )abθ

+b+fermion terms + terms vanishing on shell+O[(θ+)2], (5.23)

as well as the identities (3.5), (3.6). Note the presence of the symmetrized color traces

Tr(s) ∼ TrX(Y ZU + UY Z + ZUY ) in (5.22).

This tensor structure reproduces indeed the so-called t8 tensor obtained in the tree-

level four-gluon scattering amplitude [50]. The complete component form of the associated

supersymmetry invariant in six dimensions was first obtained in [43].

It is also possible to write down an on-shell N = (1, 0) supersymmetric invariant

involving the product of two color traces,

S̃
(8)
2 =

1

4

∫
dζ(−4)εabcdTr(W

+aW+b) Tr(W+cW+d) . (5.24)

The next step is to seek for the on-shell N = (1, 1) completion of the d = 8 terms (5.21)

and (5.24). Clearly, it should be a collection of terms containing the hypermultiplet su-

perfield q+A. First one should construct the full list of the dimension d = 8 operators

which are G-analytic on the shell of the full set of equations of motion following from the

action (4.14), i.e. eqs. (4.17) and (4.8) [or (4.9)]. Next one needs to select the N = (0, 1)

invariant combination of such operators (if it exists).

The minimal on-shell G-analytic extension of (5.21) [i.e. the expression analytic as a

consequence of the full set of equations (4.17), (4.8)] is given by the following expression:

L+4
0 = Tr

{
1

4
εabcdW

+aW+bW+cW+d − i∇abq
+A

(
W+aq+AW

+b + 2q+AW
+aW+b

)

−W+aD+
a q

−A

[
q+A(q

+)2 +
1

2
(q+)2q+A

]
+ (q+)2D+

a q
−A

(
q+AW

+a +
1

2
W+aq+A

)

− 2(q+)2
[
q−Aq+A(q

+)2 +
1

2
q−A(q+)2q+A

]}
, (5.25)

where (q+)2 := q+Aq+A = 1
2 [q

+A, q+A ]. The full list of other possible d = 8 superfield G-

analytic terms involving the single trace is given in appendix C. It is shown there that, by

integrating by parts, they all can be reduced to the two independent structures, L+4
2 and

L+4
3 [eqs. (C.3) and (C.4)]. Then the N = (1, 1) supersymmetric combination is uniquely

determined to be

L+4
(1,1) = L+4

0 + L+4
3 . (5.26)

It is instructive to see how the proof goes on in the abelian case. Passing to the abelian

limit in (5.25) and (C.4), we write

L+4
(1,1) =

1

4
εabcdW

+aW+bW+cW+d + 3iq+A∂abq
+
AW

+aW+b − q+A∂abq
+
A q+B∂abq+B

≡ L+4
(I) + L+4

(II) + L+4
(III) . (5.27)

Our task is to prove that it is invariant on mass shell under the transformations

δq+A = ǫAaW
+a, δW+a = −2iǫAb ∂

abq+A . (5.28)

– 23 –



J
H
E
P
1
2
(
2
0
1
5
)
0
8
5

It is easy to see that the linear in q terms in the sum of δL+4
(I) and δL+4

(II) vanish. We

are left with

∆ := δL+4
(I) + δL+4

(II) = 6ǫBc ε
acdeq+A∂abq

+
A ∂deq

+
B W+b , (5.29)

The variation of L+4
(III) is

δL+4
(III) = −2ǫBc εabedq+A∂abq

+
A ∂edq

+
B W+c . (5.30)

To see the cancelation of (5.29) and (5.30), one should use the cyclic identities

εabcdδef + εbcdeδaf + εcdeaδbf + εdeabδcf + εeabcδdf = 0 ,

εABδCD + εBCδAD + εCAδBD = 0 (5.31)

and the equations of motion ∂abW
+b = 0, �q+A = 0.

Namely, we represent

∆ = −6ǫBc q
+A∂abq

+
A ∂deq

+
B W+f

[
εcdebδaf + εdebaδcf + εebacδdf + εbacdδef

]
≡ A+ B + C +D

(5.32)

and then observe that A = −∆, B = −3δL+4
(III) and

C = D = −6ǫBc εabceq+A∂abq
+
A ∂deq

+
B W+d . (5.33)

Next, using the second identity in (5.31) and integrating by parts, we derive that (on shell

! ) C = −∆− C and hence C = −∆/2. This gives

∆ = −∆− 3δL+4
(III) −

1

2
∆−

1

2
∆ ,

and, finally, ∆ = −δL+4
(III).

The proof in the non-abelian case is much more complicated since there is a lot of

various terms coming from different sources. Nevertheless, we checked that (5.26) is still

invariant up to a total derivative. However, this direct method is very cumbersome and it

is natural to seek for another more universal and easier approach. It will be developed in

the next sections. As the important preparatory step, we note here that (5.26) admits the

following equivalent representation through the symmetrized trace:

L+4
(1,1) = Tr(S)

{
1

4
εabcdW

+aW+bW+cW+d + 3iq+A∇abq
+
AW

+aW+b − q+A∇abq
+
A q+B∇abq+B

−W+a[D+
a q

−
A , q

+
B ]q

+Aq+B −
1

2
[q+C , q+C ][q

−
A , q

+
B ]q

+Aq+B

}
. (5.34)

The subscript S stands for the symmetrization, meaning that the expression is symmetrized

with respect to the permutation of the four arguments,

Tr(S)

(
A1A2A3A4

)

=
1

6
Tr

(
A1A2A3A4 +A2A3A1A4 +A3A1A2A4 +A3A2A1A4 +A2A1A3A4 +A1A3A2A4

)
,
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any commutator being understood as one argument. One can now directly verify, in par-

ticular, that

D+
a L

+4
(1,1) = Tr(S)

{
E++

(
εabcdW

+bW+cW+d + 6iq+B∇abq
+
B W+b − [D+

a q
−
A , q

+
B ]q

+Aq+B
)}

,

where E++ = F++ + 1
2 [q

+A, q+A ] = 0. This vanishes on mass shell.

Our final comment in this section is that the double-trace invariant (5.24) also ad-

mits an N = (1, 1) completion. Here we present only the minimal G-analytic extension

[analogous to the extension (5.25)]. It reads

L̃+4
0 =

1

4
εabcdTr (W

+aW+b) Tr (W+cW+d)− iTr (∇abq
+Aq+A) Tr (W

+aW+b)

+ Tr (D+
a q

−Aq+A) Tr[W
+a(q+)2]− Tr (q−Aq+A) Tr [(q

+)2(q+)2] . (5.35)

It is straightforward to check that this expression is indeed annihilated by D+
a on the mass

shell. There exists a freedom of adding other on-shell analytic Lagrangians, like in the

single-trace case. They all vanish in the limit of vanishing q+A.

The double-trace analog of the on-shell N = (1, 1) invariant (5.26), (5.34) will be

derived in the next sections, based on the universal method we are going to expose now.

6 On-shell N = (1, 1) harmonic superfields

The most convenient way to construct on-shell N = (1, 1) invariants of the type we dis-

cussed in the subsection 5.3 is to define the on-shell superfields living in extended harmonic

N = (1, 1) superspace. This and the next two sections are devoted to this subject. Ex-

tended on-shell superfields of the similar kind were first discussed in [10, 42], but not in

the framework of harmonic superspace. We will see that “harmonization”, introduced first

in [11], helps a lot. In particular, it allowed us to resolve explicitly a set of constraints

which the on-shell N = (1, 1) SYM superfields must obey.

6.1 The standard and harmonic N = (1, 1) superspaces

We introduce the extended superspace involving, in addition to the odd pseudoreal left-

handed variables θai , also the odd pseudoreal right-handed variables θ̂Aa (A = 1, 2), which

belong to another spinor representation,

z = (xab, θai ) ⇒ ẑ = (xab, θai , θ̂
A
a ). (6.1)

We then consider the covariant spinor derivatives,

∇i
a =

∂

∂θai
− iθbi∂ab +Ai

a ,

∇̂aA =
∂

∂θ̂Aa

− iθ̂Ab ∂
ab + ÂaA , (6.2)
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where Ai
a and ÂaA are the spinor connections and the convention ∇ab = 1

2ε
abcd∇cd is

assumed. The superfields Ai
a, Â

aA are not arbitrary, but satisfy the constraints

{∇(i
a ,∇

j)
b } = {∇̂a(A, ∇̂bB)} = 0 , (6.3)

{∇i
a, ∇̂

bA} = δbaφ
iA . (6.4)

Bearing in mind the Bianchi identities, the constraints (6.3) and (6.4) imply

∇(i
a φ

j)A = ∇̂a(AφB)i = 0 . (6.5)

The constraints (6.3), (6.4), written in [10, 42], define the N = (1, 1), 6D supersymmetric

Yang-Mills theory. They are known to imply the equations of motion for the superfields

involved. Below we will show how this property comes about in the harmonic superfield

formalism.

We introduce now the harmonics u±̂A which parametrize the second SU(2) automor-

phism group acting on the indices A and have the same properties as u±i . Note, in partic-

ular, the identities

u+̂Au−̂A = 1, u+̂Au
−̂
B − u−̂Au

+̂
B = ǫAB . (6.6)

Respectively, we extend the N = (1, 0) harmonic superspace (3.12) to the N = (1, 1)

harmonic superspace

Z = (xab, θai , u
±
k ) ⇒ Ẑ = (xab, θai , θ̂

A
a , u

±
k , u

±̂
A) . (6.7)

The analytic basis of this extended harmonic superspace is defined as the set of coordinates

Ẑ(an) = (xab(an), θ
±a, θ±̂a , u

±
k , u

±̂
A), (6.8)

where θ±̂a := θ̂Aa u
±̂
A and

xab(an) = xab +
i

2
(θ+aθ−b − θ+bθ−a) +

i

2
εabcdθ+̂c θ

−̂
d . (6.9)

Next we define the harmonic projection φ++̂ = φiAu+i u
+̂
A. It is clear from (6.5) and

from the fact that φ++̂ does not depend on u−i and u−̂A that φ++̂ satisfies the constraints

∇+
a φ

++̂ = ∇a+̂φ++̂ = ∂++φ++̂ = ∂+̂+̂φ++̂ = 0 , (6.10)

where

∇+
a = ∇i

au
+
i , ∇+̂a = ∇̂aAu+̂A, ∂++ = u+i ∂

∂u−i
, ∂+̂+̂ = u+̂A ∂

∂u−̂A
. (6.11)

The spinor covariant derivatives obviously commute with ∂++ and ∂+̂+̂. The full set of

defining (anti)commutators of the gauge N = (1, 1), 6D theory in the central basis of the

considered bi-harmonic superspace are

{∇+
a ,∇

+
b } = {∇+̂a,∇+̂b} = 0, (6.12)

{∇+
a ,∇

+̂b} = δbaφ
++̂ , (6.13)

[∂++,∇+
a ] = [∂+̂+̂,∇+

a ] = [∂++,∇a+̂] = [∂+̂+̂,∇a+̂] = 0 . (6.14)
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Note that, having defined this set, we do not longer need to assume in advance that the

+ and +̂ components of the spinor derivatives are as in (6.11). It is the relations (6.14)

which force them to be linear in harmonics. Thus, the extended set of constraints (6.12)–

(6.14) is fully equivalent to the original constraints (6.3), (6.4) without any additional

assumptions. The constraints (6.10) naturally arise as a consequence of Bianchi identities

for (6.12)–(6.14).

6.2 From the central basis to the analytic basis

As usual in the harmonic superspace approach, at the next steps we should pass to the

analytic basis in order to solve the above constraints in terms of the appropriate analytic

superfield prepotentials and, in particular, to find the explicit form of the basic superfield

strength φ++̂. Due to the relation (6.13), the analyticities associated with the harmonic

sets u±i and u±̂A cannot be made manifest simultaneously. In what follows, we will choose

the basis in which the spinor derivative ∇+̂a is short, ∇+̂a = ∂/∂θ−̂a , so that the “hat”

analyticity is manifest.

Consider first the abelian case, which is much simpler. Our task is to find a field

φ++̂ that satisfies the constraints (6.10). In the abelian case, the field φ+̂+ does not

carry a charge with respect to the gauge U(1) group, and, as a result, the constraints

∇+
a φ

+̂+ = ∇+̂aφ+̂+ = 0 amount to D+
a φ

+̂+ = D+̂aφ+̂+ = 0 with flat spinor derivatives.

The anticommutator {D+
a , D

+̂b} vanishes, so these derivatives can be made “short” by

passing to the double analytic basis, where D+
a = ∂/∂θ−a and D+̂

a = ∂/∂θ−̂a . On the

contrary, the harmonic derivatives in this basis are lengthened:

D++ = ∂++ + iθ+aθ+b∂
(an)
ab + θ+a ∂

∂θ−a
,

D+̂+̂ = ∂+̂+̂ + iθ+̂a θ
+̂
b ∂

ab(an) + θ+̂a
∂

∂θ−̂a
. (6.15)

It is not difficult now to resolve the abelian constraints (6.10). The solution reads

φ++̂ = ϕ++̂ − θ+aψ+̂
a − θ+̂a λ

+a +
i

6
θ+̂a θ

+bF a
b − iθ+aθ+b∂abϕ

−+̂

− iθ+̂a θ
+̂
b ∂

abϕ+−̂ + iθ+̂a θ
+bθ+c∂bcλ

−a + iθ+aθ+̂b θ
+̂
c ∂

bcψ−̂
a

− θ+̂a θ
+̂
b θ

+cθ+d∂ab∂cdϕ
−−̂ . (6.16)

Here, the fermionic fields satisfy the Dirac equations ∂abλ
a = ∂abψa = 0, the scalar field

satisfies �ϕ = 0 and F a
b = (σMN )abFMN . We see that the superfield φ++̂ satisfying

our constraints automatically satisfies also the equations of motion, i.e. it is an on-shell

superfield.

For sure, this should not come as a surprise. The same is true for the free hypermul-

tiplet superfield q+ in the usual N = (1, 0) superspace. In the abelian case, this superfield

satisfies the constraints D+q+ = D++q+ = 0. Its component expansion in the analytic

basis is given by (4.13), with scalar and fermionic fields satisfying the free equations of
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motion. The component expansion (6.16) of the free superfield φ++̂ represents an obvious

generalization of (4.13).12

Now we come back to the general non-abelian case. Consider the constraint

{∇+̂a,∇+̂b} = 0. Its generic solution is

∇+̂a = eiV D+̂ae−iV , (6.17)

where V is a general bi-harmonic superfield (often called bridge). It is convenient now to

perform the similarity transformation

∇+̂a → D+̂a, φ++̂ → e−iV φ++̂eiV , ∇+
a → e−iV ∇+

a e
iV (6.18)

and define

∇++ = e−iV ∂++eiV = ∂++ + V ++, ∇+̂+̂ = e−iV ∂+̂+̂eiV = ∂+̂+̂ + V +̂+̂ , (6.19)

V ++ := e−iV
(
∂++eiV

)
, V +̂+̂ := e−iV

(
∂+̂+̂eiV

)
. (6.20)

The transformed spinor derivatives still satisfy the algebra (6.12)–(6.14) and commute with

the transformed harmonic derivatives (which involve now nontrivial harmonic connections

V ++ and V +̂+̂). As was anticipated, to resolve the constraints, we go to the “hat-analytic”

basis,13 where D+̂a = ∂/∂θ−̂a and ∂+̂+̂ goes over to D+̂+̂ defined in (6.15).

In the next section we will solve the system of constraints

∇+
a φ

++̂ = Da+̂φ++̂ = ∇++φ++̂ = ∇+̂+̂φ++̂ = 0 , (6.21)

with the spinor and harmonic covariant derivatives given in the analytic basis and frame

and satisfying the algebra

{∇+
a ,∇

+
b } = {D+̂a, D+̂b} = 0, (6.22)

{∇+
a , D

+̂b} = δbaφ
++̂ , (6.23)

[∇++,∇+
a ] = [∇+̂+̂,∇+

a ] = [∇++, Da+̂] = [∇+̂+̂, Da+̂] = 0 , (6.24)

[∇++,∇+̂+̂] = 0 , (6.25)

which directly follows from the constraints (6.12)–(6.14) written in the central basis.

One can now verify that an explicit solution of the system of equations (6.22)–(6.25) is

∇+
a = D+

a − θ+̂a q
+−̂ + θ−̂a φ

++̂ , (6.26)

V +̂+̂ = iθ+̂a θ
+̂
b Aab −

1

3
ǫabcdθ+̂a θ

+̂
b θ

+̂
c D+

d q
−−̂ +

1

8
ǫabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂, q−−̂] (6.27)

12It is also possible to define the off-shell harmonic N = (1, 0) superfield q+ whose expansion into har-

monics gives an infinite number of degrees of freedom. For the superfield φ++̂, this seems to be impossible.
13By performing the similarity transformation and going to this basis, we can get rid only of one of the

spinor connections, which we have chosen to be A+̂a. Alternatively, one could suppress A+

i
.
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and

φ++̂ = q++̂ − θ+̂a W
+a − iθ+̂a θ

+̂
b ∇

abq+−̂ +
1

6
εabcdθ+̂a θ

+̂
b θ

+̂
c [D

+
d q

−−̂, q+−̂]

+
1

24
εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q

+−̂, [q+−̂, q−−̂]] . (6.28)

Here the objects q+±̂ = q+Au±̂A and q+A, Aab, W+a, as well as V ++ entering the covariant

derivative ∇++, are the N = (1, 0) superfields discussed in the previous sections. For

self-consistency, they should satisfy their equations of motion, e.g., ∇++q+A = 0. In

the next section, we will present an accurate derivation of this solution from the set of

constraints (6.22)–(6.25) and show thereby that the solution (6.26)–(6.28) is unique. We

will also derive the variations of the on-shell superfields φ++̂ and V +̂+̂ under the N = (0, 1)

supersymmetry transformations and demonstrate that the particular representation (6.27)

for the gauge superfield V +̂+̂ in (6.27) is none other than the appropriate Wess-Zumino

gauge choice for it.

In the abelian case, the commutators vanish, the covariant derivative ∇ab is replaced

by the ordinary one, and the superfield (6.28) is reduced to the abelian superfield (6.16)

(λa being the lowest component of W+a). Note that the non-abelian expression for φ++̂

does not enjoy anymore the symmetry under interchange θ ↔ θ̂. That is due to our choice

to work in the frame, where the hatted spin connection vanishes.

To close this section, we write the variations of the superfields (6.27), (6.28) under the

N = (0, 1) supertransformations, just anticipating their derivation in the next section:

δV +̂+̂ = −ǫ+̂a
∂

∂θ+̂a
V +̂+̂ − 2iǫ−̂a θ

+̂
b ∂

abφ++̂ +∇+̂+̂Λ(comp) , (6.29)

δφ++̂ = −ǫ+̂a
∂

∂θ+̂a
φ++̂ − 2iǫ−̂a θ

+̂
b ∂

abφ++̂ − [Λ(comp), φ++̂] , (6.30)

where the field-dependent compensating gauge parameter Λ(comp) is given by the expression

Λ(comp) = (ǫ−Bq+B) + 2iǫ−̂a θ
+̂
b A

ab −
1

2
εabcdǫ−̂a θ

+̂
b θ

+̂
c D

+
d q

−−̂

+
1

6
εabcdǫ−̂a θ

+̂
b θ

+̂
c θ

+̂
d [q

+−̂, q−−̂] . (6.31)

The first two terms in (6.30) and (6.29) are induced by the supersymmetric variations

of θ+̂a and xab. The third term is an extra gauge transformation needed to preserve the

Wess-Zumino form of the superfield V +̂+̂ after the supersymmetry transformation. It

is worth pointing out that the simple form (6.30) and (6.29) of the hidden N = (0, 1)

transformations is obtained, provided that the involvedN = (1, 0) superfields are subject to

their equations of motion. At the same time, under the manifest N = (1, 0) supersymmetry

the expressions (6.28) and (6.27) behave as the standard off-shell N = (1, 0) harmonic

superfields.

In fact, the transformations (6.30) and (6.29) can be derived directly from the on-shell

transformation laws (4.28)–(4.31) of the involved N = (1, 0) superfields, using the identities

listed in appendix A.
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7 Solving the N = (1, 1) SYM constraints in terms of N = (1, 0) super-

fields

In this section, we solve the constraints in the analytic basis and frame and show that their

general solution is given by eqs. (6.26), (6.27), (6.28).

7.1 Input and gauge-fixing

We start with the whole set of constraints (6.12)–(6.14) written in a more detailed form,

(a) {∇+
a ,∇

+
b } = 0, (b) {D+̂a, D+̂b} = 0, (c) {∇+

a , D
+̂b} = δbaφ

++̂, (7.1)

(a) [∇+̂+̂,∇+
a ] = 0, (b) [∇̃++,∇+

a ] = 0, (c) [∇+̂+̂, Da+̂] = 0, (d) [∇̃++, Da+̂] = 0, (7.2)

[∇̃++,∇+̂+̂] = 0. (7.3)

Here

∇+
a = D+

a +A+
a (Ẑ) , (7.4)

and the “hatted” spinor derivatives were chosen to be short, ∇+̂a = D+̂a = ∂/∂θ−̂a .
14 Thus,

in the chosen basis, the “hatted” G-analyticity is manifest15 and the constraints (7.2c)

and (7.2d) imply that both harmonic gauge connections in the harmonic derivatives ∇̃++

and ∇+̂+̂ are independent of the coordinates θ−̂b :

∇̃++ = D++ + Ṽ ++(ζ̂) , ∇+̂+̂ = D+̂+̂ + V +̂+̂(ζ̂) , (7.5)

where ζ̂ = (xab(an), θ
±a, θ+̂a , u

±
i , u

±̂
A). In what follows, we omit the index “(an)” for the

analytic coordinate x. We use the notation ∇̃++ in order to distinguish this harmonic

derivative acting in the full N = (1, 1) superspace from its N = (1, 0) counterpart.

At this step, both harmonic connections are arbitrary functions of the hatted ana-

lytic coordinates θ+̂a and the harmonics u±̂A, as well as of the full set of the N = (1, 0)

harmonic superspace coordinates. They are transformed with the hat-analytic superfield

parameter Λ(ζ̃):

δṼ ++ = ∇̃++Λ(ζ̂) , (7.6)

δV +̂+̂ = ∇+̂+̂Λ(ζ̂). (7.7)

The constraints (7.2c) and (7.2d) imply no other consequences.

As the next steps, we wish to show that the dependence of the harmonic connections

V +̂+̂ and Ṽ ++ on the coordinates θ+̂a , u±̂A can be drastically simplified (i) by choosing the

Wess-Zumino- type gauge for V +̂+̂ and (ii) by exploiting the constraint (7.3) for Ṽ ++ (see

the next subsection).

14One can always get rid of the spinor connection Â in the covariant derivatives ∇+̂a, capitalizing on

their anticommutativity in any basis and frame.
15In the general non-abelian case, one cannot make simultaneously manifest both the hatted and unhatted

G-analyticities because of the non-vanishing anticommutator (7.1c).
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It is straightforward to see that the gauge freedom associated with the superfield

transformation parameter Λ(ζ̂) can be partially fixed by putting V +̂+̂ in the “short” form,16

V +̂+̂ = iθ+̂a θ
+̂
b Â

ab +Ψ+̂3 dϕ−̂
d +Ψ+̂4D−̂2 , ϕ−̂

d = ϕA
d u

−̂
A , D−̂2 = D(AB)u−̂Au

−̂
B , (7.8)

where Âab, ϕA
d and D(AB) are some N = (1, 0) harmonic superfields, still arbitrary at this

step. While passing to (7.8), the (θ+̂a , u
±̂
A) dependence of Λ(ζ̂) was fully used up, so the

residual gauge freedom is associated with the gauge function Λint(x, u
±
i , θ

±a) , Λ → Λint.

Note that this gauge parameter still depends on θ−a. Now we are going to show that this

dependence can be fixed by a further gauge choice.

To this end, we need to inspect the structure of the spinor derivative ∇+
a = D+

a +A+
a .

First of all, the Bianchi identities, following from the full set (7.1), imply the G-analyticity

conditions for φ++̂,

(a) D+̂aφ++̂ = 0 , (b) ∇+
a φ

++̂ = 0 . (7.9)

Postponing the discussion of the condition (7.9b) to the next subsection, we focus here on

the constraint (7.9a). Due to the “shortness” of D+̂a, it implies that φ++̂ does not depend

on θ−̂a . In addition, this constraint together with (7.1c) uniquely fixes the spinor connection

A+
a to be

A+
a = Ã+

a + θ−̂a φ
++̂ , (7.10)

where

Ã+
a = f+

a + θ+̂b f
+−̂b
a + θ+̂b θ

+̂
c f

+−̂−̂bc
a +Ψ+̂3 df+−̂3

d +Ψ+̂4f+−̂4
a . (7.11)

The component superfields in this expansion depend on both the N = (1, 0) coordinates

(including the harmonics u±i ) and the extra harmonics u±̂A.

One of the consequences of the constraint (7.1a) is

D+
a f

+
b +D+

b f
+
a + {f+

a , f+
b } = 0 , (7.12)

whence f+
b = eiṽ(D+

b e
−iṽ), where ṽ is an additional “bridge” which does not depend on

θ+̂a (because f+
b does not). Using this bridge, we can pass to the frame where f+

b = 0 and

the residual gauge group is represented by the standard analytic superfield parameter Λ(ζ)

of the N = (1, 0) gauge theory. Indeed, the residual gauge transformations preserving the

condition f+
b = 0 commute with D+

a , whence D+
a Λ = 0.

Hereafter, we will use the spinor connection A+
a in the form (7.10), (7.11) with the

condition

f+
a = 0 , (7.13)

and the following θ+̂b expansions for the hat-analytic superfields φ++̂ and Ṽ ++,

φ++̂ = q++̂ − θ+̂a W
+a + θ+̂a θ

+̂
b β

+−̂ab +Ψ+̂3dG+−̂−̂
d +Ψ+̂4G+−̂3 , (7.14)

Ṽ ++ = V ++ + θ+̂a v
++−̂a + θ+̂a θ

+̂
b v

++−̂−̂ab +Ψ+̂3dv++−̂3
d +Ψ+̂4v++−̂4 . (7.15)

16For further convenience, we use the abbreviations Ψ+̂3d := εabcdθ+̂a θ
+̂

b
θ+̂c , Ψ

+̂4 := εabcdθ+̂a θ
+̂

b
θ+̂c θ

+̂

d
. The

identities θ+̂a θ
+̂

b
θ+̂c = 1

6
εabcdΨ

+̂3d , θ+̂a θ
+̂

b
θ+̂c θ

+̂

d
= 1

24
εabcdΨ

+̂4 , θ+̂a Ψ
+̂3b = − 1

4
δbaΨ

+̂4 hold.
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In (7.14), (7.15) we introduced the notation q++̂,W+a and V ++, having in mind that

these quantities will be finally identified with the N = (1, 0) superfields considered before.

However, at the present stage, all the coefficients in the expansions (7.14), (7.15) are still

generic N = (1, 0) superfields involving an extra dependence on the harmonics u±̂A.

Now we are ready to explore all the consequences of the constraints (7.1)–(7.3).

7.2 Harmonic equations

We start by showing that Ṽ ++ does not actually depend on the coordinates θ+̂a and u±̂A, if

fixing the gauge as in (7.8). This follows from the constraint (7.3), which amounts to the

mixed “harmonic flatness” condition

D++V +̂+̂ −D+̂+̂Ṽ ++ + [Ṽ ++, V +̂+̂] = 0 . (7.16)

Substituting the WZ expression (7.8) for V +̂+̂ and equating to zero the coefficients in the

θ−̂a expansion of the l.h.s. of (7.16), we find the set of equations

∂+̂+̂Ṽ ++ = 0 , ∂+̂+̂v++−̂a = 0 , (7.17)

∂+̂+̂v++−̂−̂ab − i(∇++Âab − ∂abṼ ++) = 0 , (7.18)

∂+̂+̂v++−̂3
d −∇++ϕA

d u
−̂
A = 0 , (7.19)

∂+̂+̂v++−̂4 −∇++DABu−̂Au
−̂
B = 0 . (7.20)

Eqs. (7.17) imply the independence of V ++ of the harmonics u±̂A and, bearing in mind the

Lemma (3.43), also the condition

v++−̂a = 0 . (7.21)

Already at this step we can identify Ṽ ++ with the familiar from the previous sections har-

monic N = (1, 0) gauge potential, since the θ±̂a - independent part of the constraint (7.2b)

is equivalent to the N = (1, 0) G-analyticity condition, (7.2b) → D+
a Ṽ

++ = 0.

Eq. (7.18) is equivalent to two separate equations, the one for v++−̂−̂ab, which implies

v++−̂−̂ab = 0 , (7.22)

and another independent condition arising in the zero order in u±̂,

∇++Âab − ∂abṼ ++ = 0 . (7.23)

Analogously, the remaining equations (7.19) and (7.20) imply

v++−̂3
d = v++−̂4 = 0 , (7.24)

as well as

∇++ϕA
d = 0 , ∇++DAB = 0 . (7.25)

Thus, we derived that

Ṽ ++ ≡ V ++, ∇̃++ ≡ ∇++ . (7.26)
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We have also obtained the harmonic constraints (7.23) and (7.25). Note that (7.23) is

equivalent to the vanishing of the commutator

[∇++, ∇̂ab] = 0 , ∇̂ab := ∂ab + Âab . (7.27)

The constraint (7.3) has thereby been fully used and solved.

Our next task is to further fix the spinor connection (7.10). It involves the superfield

φ++̂. Consider it in more details. Besides the G-analyticity conditions (7.9), it satisfies

the harmonic constraints

(a) ∇+̂+̂φ++̂ = 0; (b) ∇++φ++̂ = 0 , (7.28)

which also come out as the Bianchi identities [they are derived by commuting both sides

of (7.1c) with ∇+̂+̂ and ∇̃++ = ∇++ and taking into account the constraints (7.2)].

Eq. (7.28a) amounts to the following set of equations for the N = (1, 0) components

in the expansion (7.14):

∂+̂+̂q++̂ = 0 ⇒ q++̂ = q+Au+̂A , (7.29)

∂+̂+̂β+−̂ab + i∇̂abq++̂ = 0 ⇒ β+−̂ab = −i∇̂abq+−̂ , q+−̂ := q+Au−̂A , (7.30)

∂+̂+̂G+−̂2
d + [ϕ−̂

d , q
++̂] +

i

6
εdabc∇̂

abW+c = 0 , (7.31)

∂+̂+̂G+−̂3 +
1

24
εabcd∇̂

ab∇̂cdq+−̂ + [D−̂2, q++̂] +
1

4
{ϕ−̂

a ,W
+a} = 0 , (7.32)

where ∇̂ab = ∂ab + Âab. Eqs. (7.31) and (7.32) amount to the equations for defining the

superfields G+−̂2
d , G+−̂3 and to the additional self-consistency conditions which appear in

the zero order in harmonics u±̂A ,

εdabc∇̂
abW+c − 3i[ϕdA, q

+A] = 0 , (7.33)

εabcd∇̂
ab∇̂cdq+A + 6{ϕA

a ,W
+a} − 16[DAB, q+B ] = 0 . (7.34)

These self-consistency conditions can be shown to be satisfied on the final solution of the

constraints. The harmonic equations for G+−̂2
d and G+−̂3 uniquely fix these superfields as

G+−̂2
d = G

+(AB)
d u−̂Au

−̂
B , G

+(AB)
d = −

1

2
[ϕ

(A
d , q+B)] ,

G+−̂3 = G+(ABC)u−̂Au
−̂
Bu

−̂
C , G+(ABC) = −

1

3
[D(AB, q+C)] . (7.35)

When deducing these solutions, we made use of the reduction relations

u+̂Au
−̂
B = u+̂(Au

+̂
B) +

1

2
εAB , u−̂Au

−̂
Bu

+̂
C = u−̂(Au

−̂
Bu

+̂
C) +

1

3
(εCAu

−̂
B + εCBu

−̂
A) .

Eq. (7.28a) also implies

∂+̂+̂W+a = 0 , (7.36)

which means independence of W+a of the hatted harmonics.
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Thus, we have fully fixed the u+̂A, u
−̂
B dependence in the θ+̂ expansion (7.14) of φ++̂. At

this stage, it is instructive to write φ++̂ in the form which takes into account the explicit

solutions given above,

φ++̂ = q+Au+̂A − θ+̂a W
+a − iθ+̂a θ

+̂
b ∇̂

abq+Au−̂A −
1

2
Ψ+̂3d[ϕA

d , q
+B]u−̂Au

−̂
B

−
1

3
Ψ+̂4[DAB, q+C ]u−̂Au

−̂
Bu

−̂
C . (7.37)

Now we are ready to explore the conditions imposed by the second harmonic con-

straint (7.28b). It implies

∇++q++̂ = 0 , ∇++W+a = 0 , ∇++∇̂abq+−̂ = 0 , ∇++G
+(AB)
d = ∇++G+(ABC) = 0 .

(7.38)

The first of these equations is recognized as the equation of motion for the hypermultiplet,

so already at this step we can identify q+A with the N = (1, 0) hypermultiplet superfield

of the previous sections. Its analyticity follows from the G-analyticity condition (7.9b)

(see below). The second constraint coincides with (3.38). The third harmonic equation

in (7.38) is satisfied as a consequence of the first one and (7.27). The last two equations

are satisfied as a consequence of the first equation and the constraints (7.23) and (7.25).

Now we can come back to the problem of the ultimate fixing of the spinor connection

A+
a . This fixing is accomplished by the constraint (7.2a). Like in the case of Ṽ ++ and

the constraint (7.3), eq. (7.2a) eliminates all the negatively charged components in the

expansion (7.11) [with the condition (7.13)], except for the first term f+−̂b
a ,

f+−̂−̂bc
a = f+−̂3

d = f+−̂4
a = 0 , (7.39)

whereas f+−̂b
a is fixed as

f+−̂b
a = −δbaq

+Au−̂A. (7.40)

Simultaneously we obtain a few differential conditions relating the N = (1, 0) components

of φ++̂ to those of V +̂+̂ defined in (7.8). These are as follows:

D+
a Â

bc =
i

2

(
δbaW

+c − δcaW
+b
)
, (7.41)

D+
a ϕ

−̂
d =

i

3
εadbc∇̂

bcq+−̂ . (7.42)

D+
a D

AB −
3

8
[ϕ(A

a , q+B)] = 0 . (7.43)

Like in the previous cases, these extra equations are self-consistency conditions which are

identically satisfied for the general solution of all constraints. As we will see, eq. (7.41)

plays the especially important role, giving rise to the expression of W+a in terms of the

N = (1, 0) analytic potential V ++.

The final form for the spinor connectionA+
a that takes into account the solutions (7.39),

(7.40) is

A+
a = −θ+̂a q

+Au−̂A + θ−̂a φ
++̂ . (7.44)
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It remains to work out the conditions following from the G-analyticity constraint (7.9b).

Using the explicit expressions (7.44), (7.37), we find that (7.9b) amounts to the following

set of equations:

D+
a q

++̂ = 0 , D+
a W

+b = δba[q
+−̂, q++̂] = −

1

2
δba[q

+A, q+A ] , (7.45)

D+
a ∇̂

cdq+−̂ −
i

2

(
δca[q

+−̂,W+d]− δda[q
+−̂,W+c]

)
= 0 , (7.46)

[D+
a ϕ

−(A
d , q+B)] +

i

3
εadcf [q

+(A, ∇̂cfq+B)] = 0 , (7.47)

[D+
a D

(AB, q+C)] +
3

8
[q+(A, [ϕB

a , q
+C)]] = 0 . (7.48)

The first equation in (7.45) provides the standard analyticity condition for the hypermul-

tiplet q+A, while the second equation is going to become the equation of motion for the

N = (1, 0) analytic potential V ++. The remaining equations prove to be satisfied as a

consequence of the basic equations of motion.

At last, it is straightforward to check that the constraint (7.1a) does not result in any

new restrictions and is identically satisfied as a consequence of G-analyticity of q+−̂ and

the condition (7.9b).

Let us discuss the peculiarities of the realization of the hidden supersymmetry in the

considered frame. As usual, to preserve the Wess-Zumino gauge (7.8), one needs to make a

compensating gauge transformation. The appropriate gauge parameter is easily found to be

Λ
(comp)
(1) = 2iǫ−̂a θ

+̂
b A

ab +
3

2
εabcdǫ−̂a θ

+̂
b θ

+̂
c ϕ

−̂
d +

4

3
εabcdǫ−̂a θ

+̂
b θ

+̂
c θ

+̂
d D

−̂2 . (7.49)

Besides this, one needs to preserve the “short” form of the spinor connection (7.44). The

appropriate compensating gauge parameter is

Λ
(comp)
(2) = ǫ−Aq+A , (7.50)

such that the total compensating gauge parameter is

Λ(comp) = Λ
(comp)
(1) + Λ

(comp)
(2) . (7.51)

Correspondingly, the hidden supersymmetry transformations of V +̂+̂ and A+
a are

δV +̂+̂ = −ǫ+̂a
∂

∂θ+̂a
V +̂+̂ − 2iǫ−̂a θ

+̂
b ∂

abV +̂+̂ +∇+̂+̂Λ(comp), (7.52)

δA+
a = −ǫ+̂b

∂

∂θ+̂b

A+
a − ǫ−̂b

∂

∂θ−̂b

A+
a − 2iǫ−̂c θ

+̂
b ∂

cbA+
a +∇+

a Λ
(comp) . (7.53)

Note that Λ
(comp)
(2) does not contribute to (7.52).

Since all superfields should undergo the same compensating gauge transformation un-

der the hidden supersymmetry, one can wonder what happens in the case of V ++. Its

transformation law looks as

δV ++ = −2iǫ−̂a θ
+̂
b ∂

abV ++ +∇++Λ(comp) (7.54)

and seemingly contradicts the fact that V ++ should not depend on the hatted coordinates.

However, let us look at ∇++Λ(comp). Using the constraints (7.25) and (7.23), we find

∇++Λ(comp) = 2iǫ−̂a θ
+̂
b ∂

abV ++ +∇++(ǫ−Aq+A) .
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The first term cancels the unwanted term in (7.54), while the second term, with taking

into account the on-shell condition ∇++q+A = 0, yields the already known transformation

law of V ++ under the hidden supersymmetry,

δV ++ = ǫ+Aq+A . (7.55)

In a similar way, by considering the transformation of the superfield φ++̂ under the

hatted supersymmetry, one can derive the hidden supersymmetry transformations of its

N = (1, 0) superfield components q+A and W+a.

At this stage, we succeeded to express all the involved geometric quantities of the N =

(1, 1) gauge theory in terms of the N = (1, 0) superfields appearing in the θ+̂ expansion of

V +̂+̂ in the WZ gauge (7.8): the hypermultiplet q+A and the N = (1, 0) superfield W+a,

which is going to become the covariant N = (1, 0) superfield strength considered in the

previous sections. It remains to relate the superfields in (7.8) to the known N = (1, 0)

superfields in a pure algebraic way, without solving various differential conditions deduced

above. This can be achieved by requiring for the vector superfield connections derived in

the hatted and unhatted sectors to coincide (our superspace involves hatted and unhatted

odd coordinates, but only one set of bosonic coordinates xM ).

7.3 Identifying vector connections

Let us now proceed to the vector connections.

We consider first the unhatted sector. Since∇+
a includes θ±̂a , its counterpart∇

−
a should

also include now such a dependence,17 and the same concerns the full N = (1, 1) superfield

vector connection. We define ∇−
a in the standard way:

∇−
a := D−

a +A−
a = [∇−−,∇+

a ] , A−
a = A−(0)

a − θ+̂a q
−−̂ + θ−̂a ∇

−−φ++̂ , (7.56)

where

∇−− = D−− + V −− , (7.57)

V −− is the same as in the previous sections [it is constructed from V ++ by the harmonic

zero curvature equation (3.25)] and A
−(0)
a = −D+

a V
−−. The relevant full superfield vector

connection is defined in the standard way:

{∇+
a ,∇

−
b } = 2i(∂ab + Vab) , Vab =

1

2i
(∇+

a A
−
b +D−

b A
+
b ) , (7.58)

Vab = Aab +
1

2i

(
θ+̂b D

+
a q

−−̂ + θ+̂a ∇
−
b q

+−̂ − θ−̂b D
+
a ∇

−−φ++̂ − θ−̂a ∇
−
b φ

++̂

+ θ+̂a θ
+̂
b [q

+−̂, q−−̂]− θ+̂a θ
−̂
b [q

+−̂,∇−−φ++̂] + θ+̂b θ
−̂
a [φ

++̂, q−−̂]

+ θ−̂a θ
−̂
b [φ

++̂,∇−−φ++̂]
)
, Aab =

1

2i
D+

a A
−(0)
b . (7.59)

It has the restricted θ−̂a dependence (only the terms of the first and second order in θ−̂a ),

but includes all θ+̂a monomials.

17It is thus not the same as ∇−
a in (3.32). We have chosen, however, not to invent other notation and

hope that this will not lead to confusion.
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On the other hand, one can perform an analogous construction for the derivatives with

hatted indices. We define the relevant second harmonic connection V −̂−̂ from the hatted

flatness relation

D+̂+̂V −̂−̂ −D−̂−̂V +̂+̂ + [V +̂+̂, V −̂−̂] = 0 (7.60)

and then introduce the hatted spinor and vector connections as

[∇−̂−̂, D+̂a] := ∇−̂a = D−̂a +A−̂a , A−̂a = −
∂

∂θ−̂a
V −̂−̂ , (7.61)

{D+̂a,∇−̂b} = 2i(∂ab + V̂ab) , V̂ab =
i

2

∂

∂θ−̂a

∂

∂θ−̂b

V −̂−̂ , (7.62)

where ∇−̂−̂ = D−̂−̂ + V −̂−̂.

The calculation of V −̂−̂ is the most boring part of the whole story. We parametrize

the θ−̂a expansion of V −̂−̂ as

V −̂−̂ = iθ−̂a θ
−̂
b v

ab +Ψ−̂3dv+̂d +Ψ−̂4v+̂2 . (7.63)

All coefficients here are hat-analytic N = (1, 0) superfields, the u±̂A and θ+̂a dependence

of which will be strictly fixed by the corresponding hat-harmonic equations following

from (7.60). The possible terms of the zeroth and first orders in θ−̂a can be shown to

vanish by the same mechanism as in the previous examples: their θ+̂ expansions con-

tain only components with negative “hat” charges and these components are killed by the

equations like ∂+̂+̂ω−̂n = 0 → ω−̂n = 0, following from (7.60).

The θ−̂a expansion of the l.h.s. of the constraint (7.60) contains the Grassmann mono-

mials of the first, second, third and fourth degrees. Equating the corresponding coefficients

to zero, we obtain the following set of equations:

2iθ+̂b (Â
ba − vba)− 3εabcdθ+̂b θ

+̂
c ϕ

−̂
d − 4εabcdθ+̂b θ

+̂
c θ

+̂
d D

−̂2 = 0 , (7.64)

∇+̂+̂vab − 3iεabcdθ+̂c v
+̂
d − iθ+̂c θ

+̂
d ∂

abÂcd −Ψ+̂3d∂abϕ−̂
d −Ψ+̂4∂abD−̂2 = 0 , (7.65)

∇+̂+̂v+̂d + 4θ+̂d v
+̂2 = 0 , (7.66)

∇+̂+̂v+̂2 = 0 . (7.67)

To solve eqs. (7.64)–(7.67), one expands the corresponding unknowns over θ+̂a and then fix

the u±̂A dependence of the coefficients by these equations. For instance, we write

v+̂2 = v+̂2
(0) + θ+̂a v

+̂a + θ+̂a θ
+̂
b w

ab +Ψ+̂3dv−̂d +Ψ+̂4v−̂2 , (7.68)

and obtain from (7.67) the following equations and their solutions

∂+̂+̂v+̂2
(0) = 0 ⇒ v+̂2

(0) = v(AB)u+̂Au
+̂
B , (7.69)

∂+̂+̂v+̂a = 0 ⇒ v+̂a = vaAu+̂A , (7.70)

∂+̂+̂wab + i∇̂abv+̂2
(0) = 0 ⇒ wab = wab

0 − i∇̂abv(AB)u+̂Au
−̂
B , (7.71)

∂+̂+̂v−̂d −
i

6
εdabc∇̂

abv+̂c + [ϕ−̂
d , v

+̂2
(0)] = 0 , (7.72)

∂+̂+̂v−̂2 +
i

24
εabcd∇̂

abwcd + [D−̂2, v+̂2
(0)]−

1

4
{ϕ−̂

a , v
+̂a} = 0 . (7.73)
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Eq. (7.72) has the following solution,

v−̂d =
i

6
εdabc∇̂

abvcAu−̂A −
2

3
[ϕdA, v

(AB)]u−̂B −
1

2
[ϕ

(A
d , vBC)]u−̂Au

−̂
Bu

+̂
C . (7.74)

Eq. (7.73) yields both the solution for v−̂2,

v−̂2 =
1

2

(
[vB(A, D

D)
B ]−

1

24
εabcd∇̂

ab∇̂cdvAD +
1

8
{ϕ

(A
d , vdD)}

)
u−̂Au

−̂
D

−
1

3
[D(AB, vCD)]u−̂Au

−̂
Bu

−̂
Cu

+̂
D , (7.75)

and the additional self-consistency condition

[DAB, vAB] +
i

8
εabcd∇̂

abwcd
0 −

3

8
{ϕdB, v

dB} = 0 . (7.76)

The remaining equations can be solved analogously. Instead of writing the analogs of

the equations (7.69)–(7.73), we will present their solutions, omitting various self-consistency

constraints which are identically satisfied on the final full solution.

We start with the equation (7.66). We have

v+̂d = v+̂(0)d + θ+̂b v
b
d + θ+̂a θ

+̂
b v

−̂[ab]
d +Ψ+̂3dv−̂2

db +Ψ+̂4v−̂3
d . (7.77)

The solution is

v+̂(0)d = vAd u
+̂
A , vbd = vb0d − 4δbdv

(AB)u+̂Au
−̂
B , (7.78)

v
−̂[ab]
d = −

[
i∇̂abvAd + 2(δadv

bA − δbdv
aA)

]
u−̂A , (7.79)

v−̂2
db = v

(AB)
db u−̂Au

−̂
B , v

(AB)
db = −

1

2
{ϕ

(A
b , v

B)
d }+ i

2

3
εdbcf ∇̂

cfv(AB) , (7.80)

v−̂3
d = v

(ABC)
d u−̂Au

−̂
Bu

−̂
C , v

(ABC)
d =

1

2
[v(AB, ϕ

C)
d ] +

1

3
[v

(A
d ,DBC)] . (7.81)

One more important relation following from (7.66) is

εabcdw
cd
0 +

i

4
εfbcd∇̂

cdvf0a +
1

2
{ϕbD, v

D
a } = 0 . (7.82)

We now turn to (7.65). Once again, we expand

v[ab] = v
[ab]
(0) + θ+̂d v

−̂d[ab] + θ+̂c θ
+̂
d v

−̂2[cd][ab] +Ψ+̂3dv
−̂3[ab]
d +Ψ+̂4v−̂4[ab] . (7.83)

The solution is

v
[ab]
(0) = v

[ab]
0 , v

−̂3[ab]
d = v−̂4[ab] = 0 , (7.84)

v−̂d[ab] = 3iεdabcvAc u
−̂
A , v−̂2[cd][ab] = −6iεcdabvABu−̂Au

−̂
B , (7.85)

εab[cfv
d]
0g =

1

3

(
∇̂cdv

[ab]
0 − ∂abÂcd

)
. (7.86)
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An important consequence of (7.65) is also the relation

∂abϕA
d + [v

[ab]
0 , ϕA

d ] +
1

2
εabcfεcdug

[
∇̂ugvAf − 2i(δuf v

gA
0 − δgfv

uA
0 )

]
= 0 . (7.87)

The most crucial is eq. (7.64). It gives

v
[ab]
0 = Â[ab] , vAb = −

1

2
ϕA
b , v(AB) =

1

3
D(AB) . (7.88)

Now, substituting all this into (7.87), we can determine vbA0 ,

vbA0 =
i

4
∇̂baϕA

a . (7.89)

Using (7.86) and (7.82), we can also express w
[ab]
0 and vd0b through the basic superfields

Â[ab], ϕA
b and D(AB). Thus, we obtain the full solution for V −̂−̂.

Now we are ready to explicitly construct the full superfield vector connection V̂ab.

Using the definition (7.62), we obtain

V̂ab = v[ab] + 3iǫabcdθ−̂c v
+̂
d + 6iǫabcdθ−̂c θ

−̂
d v

+̂2 . (7.90)

The crucial requirement now is that this connection is related to the connection Vab in the

sector of “unhatted” spinor derivatives as

Vab =
1

2
ǫabcdV̂

cd . (7.91)

Comparing two expressions in the zeroth order in θ−̂c , we immediately find

Âab =
1

2
ǫabcdAcd , ϕ−̂

a = −
1

3
D+

a q
−−̂ , DAB =

1

8
[q+(A, q−B)] , (7.92)

which, being substituted into the basic superfields V +̂+̂ and φ++̂ (7.8), (7.37), precisely

reproduce the solution (6.27) and (6.28) that we have presented in the previous section.

Comparing the coefficients of the next terms of expansion in θ−̂c in the equation (7.91) gives

relations that are identically satisfied, when taking into account the N = (1, 0) equations

of motion and the G-analyticity conditions, and so does not produce new constraints.

Note that after the identification (7.92), the relation (7.41) becomes equivalent

to (3.34). It gives the expression (3.35) of W+a in terms of V −−.

8 On-shell N = (1, 1) supersymmetric actions

8.1 Invariant actions: d = 8

We can now use the techniques developed in section 6 and 7 to write down the actions

invariant under the extended N = (1, 1) on-shell supersymmetry. The original d = 4

action (4.14) is off-shell invariant. For d = 6, the invariants non-vanishing on shell are

absent. Dimension 8 is the first nontrivial case.
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Consider the density

L+4
(1,1) = −Tr

∫
dζ̂(−4) 1

4
(φ++̂)4 , (8.1)

where the hatted analytic superspace measure dζ̂(−4) is defined as dζ̂(−4) = dû(D̂−)4 (in

contrast to dζ(−4), it does not involves d6x). Bearing in mind the property (7.9b),

∇+
a φ

++̂ = D+
a φ

++̂ + [A+
a , φ

++̂] = 0 , (8.2)

where A+
a is given in (7.44), and the fact that the commutator term does not contribute

under the trace, we derive that the Lagrangian (8.1) is N = (1, 0) analytic:

D+
a L

+4
(1,1) = 0 . (8.3)

This analyticity holds only on shell since the constraint (7.9b) necessarily implies the second

equation of motion in (7.45).

It is easy to see that the integral (8.1) is shifted by a total derivative under the

N = (0, 1) transformations (6.30). Indeed, the integrand transforms as

δTr
[1
4
(φ++̂)4

]
= −ǫ+̂a

∂

∂θ+̂a
Tr

[1
4
(φ++̂)4

]
− 2iǫ−̂a θ

+̂
b ∂

abTr
[1
4
(φ++̂)4

]
, (8.4)

and hence

δL+4
(1,1) = −2i∂abTr

∫
dζ̂(−4)

(
ǫ−̂a θ

+̂
b

1

4
(φ++̂)4

)
. (8.5)

The action

S(1,1) =

∫
dζ(−4)L+4

(1,1) (8.6)

is clearly invariant.

To express (8.1) in terms of N = (1, 0) superfields, we need to substitute there the

explicit expression (6.28) for φ++̂ and to integrate over dζ̂(−4)dû, using (3.22) (with the

capital SU(2) indices A,B, . . . instead of i, j, . . .). Doing this, we reproduce the result (5.34)

quoted above.

Though it is not at all seen in the expression (5.34), we expect that the Lagrangian

expressed in components is invariant under the permutation λ ↔ ψ.

The Lagrangian (5.34) represents a N = (1, 1) generalization of the N = (1, 0) super-

symmetric single-trace Lagrangian (5.21) involving the vector supermultiplet. It is trivial

to generalize in a similar way the double-trace Lagrangian (5.24). It is sufficient to consider

the density

L̂+4
(1,1) = −

1

4

∫
dζ̂(−4)Tr (φ++̂)2Tr (φ++̂)2 , (8.7)
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and perform the integrals over the hatted variables. The result is expressed in terms of the

N = (1, 0) superfields as follows:

L̂+4
(1,1) =

1

4
εabcdTr (W

+aW+b) Tr
(
W+cW+d + 2iq+A∇cdq+A

)

−
1

2
Tr (q+A∇abq+A) Tr (q

+B∇abq
+
B) +

1

12
∂abTr (q+Aq+B) ∂abTr (q

+
Aq

+
B)

+ Tr (q+AW+a) Tr
{
D+

a q
−
A(q

+)2 − 2iW+b∇baq
+
A

}

+
1

3
Tr (q+Aq+B) Tr

{
(q+)2 [q+(A, q

−
B)]−∇abq+A∇abq

+
B −W+a[D+

a q
−
(A, q

+
B)]

}
. (8.8)

Thus, the nontrivial on-shell d = 8 invariants exist. Still the perturbative expansion for

the amplitudes in the theory (4.14) does not involve divergences at the two-loop level. The

matter is that these invariants do not possess the full off-shell N = (1, 0) supersymmetry,

which the physically relevant counterterms should obey. Indeed, we have in our disposal

the off-shell N = (1, 0) harmonic superfield description, which implies the existence of the

gauge-covariant N = (1, 0) supergraph techniques, such that all the relevant counterterms

enjoy this off-shell symmetry.

8.1.1 Gauge non-invariant off-shell supersymmetric realization

Our remark is that one still can write an off-shell supersymmetric d = 8 action, if renounc-

ing the requirement of gauge invariance. The corresponding density reads

L̂+4 = Tr(S)

{
1

4
εabcdW

+aW+bW+cW+d + 3iq+A∇abq
+
AW

+aW+b − q+A∇abq
+
A q+B∇abq+B

−W+a[D+
a q

−
A , q

+
B ]q

+Aq+B −
1

2
[q+C , q+C ][q

−
A , q

+
B ]q

+Aq+B

+

(
F++ +

1

2
[q+A, q+A ]

)(
2iAabW

+aW+b − 2F++AabA
ab

− 3q+B∇−
a q

+
B W+a + 3q+B∇−−q+B F++ + [q−B , q

+
C ]q

+Bq+C
)}

. (8.9)

Indeed, it is not difficult to check that the expression (8.9) is G-analytic off mass shell. One

further notices that the density (8.9) coincides with (5.34) modulo the terms proportional

to the equations of motion. In other words, (8.9) represents the same counterterm as (5.34);

one expression is obtained from another by a field redefinition.

Consider now a deformation of the action (4.14) involving not the density (5.34), but

the gauge non-invariant off-shell supersymmetric density (8.9),

S = SV q+ + f2

∫
dζ(−4)L̂+4 + f6S2 + . . . . (8.10)

To order f2, the standard gauge transformation of the complete action reads

δS =
1

f2
Tr(s)

∫
dζ(−4)

[(
F+++

1

2
[q+A, q+A ]

)(
δV +++2if4∂abΛ

(
W+aW+b−2F++Aab

))]
,

(8.11)
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which vanishes on shell, but not off shell. On the other hand, one can notice that the

action (8.10) is invariant under the modified gauge transformation

δV ++ = ∇++Λ− 2if4T
(
∂abΛ

(
W+aW+b − 2F++Aab

))
+O(f8) , (8.12)

where T (· · · ) stands for the symmetrized product projected on the Lie algebra,

T (X1X2X3) =
1

6
T pTr

[
T p

(
X1{X2, X3}+X2{X3, X1}+X3{X1, X2}

)]
, (8.13)

with the generators T p normalized by Tr (T pT q) = δpq.

This gauge transformation preserves the G-analyticity of V ++. The algebra of the

modified gauge transformations closes,

(
δ(Λ1)δ(Λ2)− δ(Λ2)δ(Λ2)

)
V ++ = δ([Λ1,Λ2])V

++ +O(f8) . (8.14)

The situation when the action representing an infinite series (8.10) is invariant under

the modified gauge transformations (8.12), which also are given by an infinite series, is

exactly the same as what happens for off-shell supersymmetry, when choosing the gauge-

invariant realization, cf. eqs. (2.12), (2.13) and their discussion in section 2.

Alternatively, one can restore the standard realization of gauge transformations by

redefining the superfield V ++ in such a way that

V ++ → V ++ + 2if4T
(
AabW

+aW+b − F++AabA
ab
))

+O(f8) . (8.15)

The modified V ++ is not analytic anymore,

D+
a V

++ = [D+
a ,∇

++] = −f4εabcdT
(
W+bW+cW+d

)
+O(f8) . (8.16)

The nonzero commutator (8.16) is related to the non-zero curvature constraints derived

in [43] in the ordinary N = (1, 0) superspace formalism.

8.2 Invariant actions: d = 10

We again start with the invariants in the pure gauge sector.

One can write two different off-shell N = (1, 0) supersymmetric and gauge invariant

Lagrangians of canonical dimension 10. One of them is known as the single-trace invariant;

the corresponding action reads

S
(10)
1 =

∫
dZ εabcdTr

(
W+aW−bW+cW−d

)
. (8.17)

Any d = 10 invariant with a different ordering of the covariant superfield strengths is

reduced to (8.17) by integrating by parts with respect to the harmonic derivatives [using

the relations (3.38)]. One can derive in this way the following convenient representation

for (8.17),

S
(10)
1 =

1

3

∫
dZεabcdTr

(
{W+a,W−b} {W+c,W−d}

)
. (8.18)
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This form of the d = 10 invariant implies, in particular, that all possible q+A-dependent

terms completing this off-shell N = (1, 0) invariant to an on-shell N = (1, 1) invariant

should represent a trace of the product either of two anticommutators or of two commuta-

tors. Thus, they should vanish in the abelian limit together with the term (8.18).

There is also the double trace invariant,

S
(10)
2 =

∫
dZ ǫabcdTr (W

+aW−b) Tr (W+cW−d) . (8.19)

Its uniqueness can be as well proved via integrating by parts and taking advantage of the

relations (3.38). In the abelian limit, (8.19) vanishes by the same token as (8.17).

The difference of the invariants (8.17) and (8.19) from (5.21) and (5.24) is that the

harmonic charge of the integrand in the former is zero, and the integral now goes over

the whole superspace rather than its analytic subspace. This brings about two additional

powers of mass in the component Lagrangians. Another crucial difference is that (8.17)

and (8.19) are N = (1, 0) supersymmetric off shell, whereas (5.21) and (5.24) are super-

symmetric only on shell.

To construct the possible on-shell N = (1, 1) completion of (8.17) and (8.19) one can

proceed in the spirit of section 5. Namely, one can add to these expressions all possible

N = (1, 0) superfield invariants of dimension d = 10 with hypermultiplets and require the

sum to be invariant up to a total derivative under the N = (0, 1) transformations (4.28)–

(4.31) on the mass shell (4.17), (4.8). In section 5, we managed to carry out this program

for the single-trace d = 8 invariant, but, for d = 10, this turns out to be an extremely

difficult task. The calculations are much more simple, if using the on-shell N = (1, 1)

harmonic superspace formalism.

We introduce the superfield

φ−+̂ = ∇−−φ++̂ = q−+̂ − θ+̂a W
−a − iθ+̂a θ

+̂
b ∇

abq−−̂ +
1

6
εabcdθ+̂a θ

+̂
b θ

+̂
c [D

+
d q

−−̂, q−−̂]

−
1

24
εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q

−−̂, [q−−̂, q+−̂]] . (8.20)

It satisfies the constraints,

D+̂
a φ

−+̂ = ∇−
a φ

−+̂ = ∇−−φ−+̂ = ∇+̂+̂φ−+̂ = 0 , (8.21)

where

∇−
a = D−

a −D+
a V

−− − θ+̂a q
−−̂ + θ−̂φ−+̂ (8.22)

[cf. (7.56)]. The superfield (8.20) appears in the anticommutator

{D+̂b, ∇−
a } = δbaφ

−+̂ , (8.23)

which can be obtained by applying ∇−− to both sides of the constraint (7.1c).

In the full analogy with (6.30), the N = (0, 1) variation of (8.20) is a combination

of a total space-time derivative, total θ derivative and the commutator term. The latter

involves the same compensating superfield Λcomp as in (6.30).
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With the superfields φ++̂ and φ−+̂ in hand, it is rather clear how to define the two

d = 10 N = (1, 1) invariant actions generalizing (8.17) and (8.19). They are:

S
(10)
1 = Tr

∫
dZdζ̂(−4) (φ++̂)2(φ−+̂)2 (8.24)

and

S
(10)
2 = −

∫
dZdζ̂(−4)Tr

(
φ++̂φ−+̂

)
Tr

(
φ++̂φ−+̂

)
, (8.25)

where the minus sign in (8.25) was chosen for further convenience.

In contrast to (8.1), these invariants vanish in the abelian limit (in agreement with

the fact that (8.17) and (8.19) vanish in this limit). This property can be made manifest

for (8.24) by rewriting it as

S
(10)
1 = −

1

6
Tr

∫
dZdζ̂(−4) [φ++̂, φ−+̂] [φ++̂, φ−+̂] . (8.26)

The single trace invariant can also be written as a full superspace integral

S
(10)
1 ∼ Tr

∫
dZdẐ φ++̂φ−−̂ , φ−−̂ = ∇−̂−̂φ−+̂ . (8.27)

To show this, we represent

dẐ = dζ̂(−4)(D+̂)4 , (D+̂)4 := −
1

24
εabcdD

a+̂Db+̂Dc+̂Dd+̂ (8.28)

and use the hat-analyticity of φ++̂ and φ−+̂, as well as the relations

Dd+̂φ−−̂ = −∇d−̂φ−+̂ , Dc+̂Dd+̂φ−−̂ = −2i∇cdφ−+̂ (8.29)

to bring (8.27) in the form

∼
i

12

∫
dζ̂(−4)Tr

(
φ++̂εabcdD

a+̂Db+̂∇cdφ−+̂
)
. (8.30)

After that we rewrite ∇cd through the unhatted covariant derivatives as

∇cd =
1

2
εcdab∇ab , ∇ab =

1

2i
{∇+

a ,∇
−
b } (8.31)

and then pull out the remaining two hatted derivatives Da+̂Db+̂ to the right through the

anticommutator (8.31), using the constraint (7.1c) and its corollary (8.23). The result is

∫
dẐ Tr

(
φ++̂φ−−̂

)
=

∫
dζ̂(−4)Tr

(
[φ++̂, φ−+̂] [φ++̂, φ−+̂]

)
. (8.32)

On the other hand, the double trace invariant cannot be written as a full-superspace

integral and can be considered as a 1/4 BPS protected operator. This allows one to explain

the absence of the associated logarithmic divergence in the pure spinor formalism [22–24].

However, it is not yet sufficient to prove the non-renormalization theorem in the standard

quantum field theory framework. Eq. (8.25) is a full-superspace integral over N = (1, 0)
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harmonic superspace, and is á priori allowed by the harmonic superspace Feynman rules.

One may anticipate nonetheless that the Ward identities for the non-linearly realized extra

supersymmetry would permit to rule it out as an allowed counterterm. The integrand

in (8.25) is invariant with respect to the transformations (4.15) modulo a total derivative

in N = (1, 0) harmonic superspace and taking into account the equations of motion. The

variation of a total derivative with respect to (4.15) gives again a total derivative, and one

gets in this way a chain of co-forms associated to a given supersymmetry invariant (see

section 5.3 of [38]). One shows then in the framework of algebraic renormalization [20]

that the cohomology class associated to this chain of co-forms must be compatible with

the cohomology class associated to the classical (dimension 4) Lagrangian. In this way, one

would combine the constraints following from theN = (1, 0) harmonic superspace Feynman

rules and the constraints following from the full N = (1, 1) on-shell supersymmetry of the

action in the framework of algebraic renormalization. One knows that neither of these

methods, taken separately, is powerful enough to explain the absence of the non-planar

divergence at three loops [21]. But we hope that, being combined in this way, they may

allow to prove the required non-renormalization theorem. We will not, however, investigate

this issue further in this paper.

Let us come back to the explicit form of the d = 10 invariants in the N = (1, 0)

harmonic superspace. It is rather straightforward to perform the integration over dζ̂(−4)

in the invariant (8.26) and obtain its N = (1, 0) superfield form.

The result of integration can be written as a sum of the three terms

S̃
(10)
1 =

∫
dZ

(
L
(10)
(1) + L

(10)
(2) + L

(10)
(3)

)
, (8.33)

where

L
(10)
(1) =

1

6
εabcdTr

(
{W+a,W−b}{W+c,W−d} − 2i{W+a,W−b}[q−A,∇cdq+A ]

−
1

2
∇ab(q−)2∇cd(q+)2 +

1

6
∇ab[q−(A, q+B)]∇cd[q−(A, q

+
B)]

− [q+A,∇abq−A ] [q
+B,∇cdq−B ]

)
, (8.34)

L
(10)
(2) =

2

3
Tr

{(
[q+A,W−a]−[q−A,W+a]

)(
i[W+b,∇abq

−
A ]+

1

3
[q+B, [q−(B, D

+
a q

−
A)]]

)}
, (8.35)

L
(10)
(3) =

1

18
Tr

{
[q+(A, q−B)]

(
[q+C , [q−C , [q

+
(A, q

−
B)]]] + 2[q+C , [q−A , [q

+
(B, q

−
C)]]]

− 4{W+a, [D+
a q

−
A , q

−
B ]} − 4[∇abq+A ,∇abq

−
B ]
)}

. (8.36)

While deriving (8.34)–(8.36), we essentially used the integration by parts and various on-

shell conditions like ∇−−q−A = 0 etc. Perhaps, these expressions can be further simplified

by integrating by parts and using some SU(2) Fierz identities. Anyway, it would be very

difficult to guess them entirely within the N = (1, 0) superfield formalism.

A good check of the correctness of (8.34)–(8.36) is the verification of the fact that the

variation of the first term in (8.34) under the hidden supersymmetry δ̂W±a = −2iǫAb ∇
abq±A

[see (4.29)] is canceled (modulo various terms vanishing on-shell) by the (W )3 part of the
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variation of the term ∼ W 2 in (8.33). The latter term is assembled from the pieces coming

from (8.34) and (8.35) and, after some algebra, is represented as

2iTr
(
[∇abq

+
A ,W

−a][W+b, q−A]
)
.

Its variation under δ̂q±A = ǫAaW
±a [see (4.28)] exactly cancels the variation of the first

term in (8.34).

The double-trace invariant (8.25) can also be straightforwardly cast into the N = (1, 0)

superfield form:

S
(10)
2 =

∫
dZ

(
L̂
(10)
(1) + L̂

(10)
(2) + L̂

(10)
(3)

)
, (8.37)

L̂
(10)
(1) = εabcd

{
Tr (W+aW−b) Tr (W+cW−d)− iTr (W+aW+b) Tr (q−A∇cdq−A)

}

+Tr (q+A∇abq+A) Tr (q
−B∇abq

−
B)−

1

6
∂abTr (q+Aq+B) ∂abTr (q

+
Aq

+
B) ,

L̂
(10)
(2) =

4

3
Tr (q+AW+a) Tr

{
q−B [D+

a q
−
(A, q

−
B)]− 3i∇abq

−
AW−b

}
,

L̂
(10)
(3) =

2

3
Tr (q+Aq−B) Tr

{
[q+C , q−C ] [q

+
(A, q

−
B)]− 2∇abq+(A∇abq

−
B)

+ 2[D+
a q

−
(A, q

−
B)]W

+a
}
. (8.38)

As a good self-consistency check, one can verify that, in the abelian limit, the N = (1, 0)

superfield Lagrangian in (8.37) is indeed reduced to a total derivative. This check is

not trivial because not all terms in (8.38) contain (anti)commutators under the trace [in

contrast to (8.34)–(8.36)].

Finally, we want to point out once more that the actions (8.33) and (8.37) respect

the off-shell N = (1, 0) supersymmetry, being written in terms of the off-shell N = (1, 0)

superfields. They also respect the on-shell N = (0, 1) invariance because they admit

an equivalent representation as integrals over the N = (1, 1) harmonic superspace and

its non-trivial subspaces supporting a linear realization of both N = (1, 0) and N = (0, 1)

supersymmetries. The second supersymmetry becomes nonlinear, when is realized in terms

of the N = (1, 0) superfields. To avoid a possible confusion, we note that the N =

(1, 1) form (8.24) and (8.25) of the d = 10 terms already enjoys the off-shell N = (1, 0)

supersymmetry. The equations of motion come into play, only when checking theN = (0, 1)

invariance of these expressions.

9 Summary and outlook

In this paper, we applied the off-shell N = (1, 0) and on-shell N = (1, 1) harmonic su-

perspace approaches for constructing higher-dimensional invariants in the six-dimensional

N = (1, 0) SYM and N = (1, 1) SYM theories. The N = (1, 1) SYM theory constraints

were solved in terms of N = (1, 0) harmonic superfields. This allowed us to explicitly

construct the full set of the on-shell N = (1, 1) supersymmetry invariants of canonical

dimensions 8 and 10 in N = (1, 0) superspace. All possible d = 6, N = (1, 1) invariants
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were shown to vanish on shell, confirming the UV finiteness of N = (1, 1) SYM at one loop.

We have also shown that there are no d = 8 on-shell N = (1, 1) supersymmetric invariants

which possess the full off-shell N = (1, 0) supersymmetry together with off-shell gauge

invariance. Assuming the use of a gauge-invariant regularization scheme for N = (1, 0)

supergraphs, this implies the absence of two-loop counterterms. On the other hand, the

on-shell N = (1, 0) and N = (1, 1) supersymmetric d = 8 invariants exist. They are repre-

sented as the analytic harmonic N = (1, 0) superspace integrals of densities which are both

analytic and gauge-invariant only on mass shell, i.e. assuming the equations of motion to

be satisfied. We show that one can enforce either off-shell analyticity or off-shell gauge

invariance of the relevant density, but not both of them simultaneously. Structures of this

kind appear in the derivative expansion of the supersymmetric Born-Infeld action.

Two d = 10 invariants were explicitly constructed as integrals over the whole N =

(1, 0) harmonic superspace. The single-trace invariant can be rewritten as an integral over

the full N = (1, 1) superspace, while the double-trace invariant cannot. This property,

being combined with an additional reasoning based on the algebraic renormalization ideas

adapted to the N = (1, 0) harmonic superspace formalism, could potentially explain why

the double-trace invariant is UV protected. However, to prove this, we would need first

to compute the chain of N = (1, 0) harmonic superspace co-forms associated to these two

invariants and possibly establish that the chain associated to the double-trace invariant is,

indeed, incompatible with the one of the classical action.

The N = (1, 1) harmonic superspace is also useful to conveniently combine on-shell

particle states into a G-analytic superfield in momentum space. This provides an efficient

tool to apply the generalized unitary method to compute on-shell scattering amplitudes in

N = (1, 1), 6D SYM theory [52] (see also [53] and references therein). It would be interest-

ing to clarify the relations between the Feynman rules in N = (1, 0) harmonic superspace

and this generalized unitary method in momentum on-shell harmonic superspace.

We conclude by mentioning some other problems where our on-shell harmonic approach

could be applied.

It could be used, e.g., to construct the invariants of higher dimension d ≥ 12 in the

N = (1, 1), 6D SYM theory and to inspect whether some kind of the non-renormalization

theorems could be formulated there. The same methods could be applied for constructing

the Born-Infeld effective action for coincident D5-branes in type IIB string theory, with the

manifest N = (1, 0) off-shell and hidden N = (0, 1) on-shell supersymmetries. It would be

also interesting to develop an analogous on-shell N = 4, 4D harmonic superspace approach

for the N = 4, 4D SYM theory in the off-shell N = 2 superfield formulation and apply it to

the problem of constructing the relevant quantum effective action and proving its identity

with the appropriate D3-brane Born-Infeld action. An intriguing feature of such effective

actions is the presence of Chern-Simons (or Wess-Zumino) type terms of non-tensorial

character [54–56]. It would be interesting to see how such terms (and their possible 6D

counterparts) could be identified in the on-shell harmonic superspace approach.

The last (but not least) domain where the on-shell harmonic superspace methods could

help in selecting relevant counterterms and other higher-dimensional invariants is extended

supergravities in diverse dimensions.
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A Bianchi identities

Many important identities between the harmonic superfields in the pure gauge N = (1, 0)

theory were derived and discussed in section 3. The Bianchi relations allow one to obtain

further interesting and useful identities.

When one includes the hypermultiplet superfields and imposes the on-shell con-

straints (4.8), (4.9), many other relations relevant to N = (1, 1) SYM theory can also

be derived.

A.1 Off-shell relations

We first discuss the pure gauge theory off-shell relations. Taking the anticommutator of

D+
b with the second of relation in (3.34), we find

[∇ab,∇cd] =
1

4

(
εacdf∇

−
b W

+f + εbcdfD
+
a W

−f
)
. (A.1)

An important Bianchi identity is obtained from (A.1) by contracting its both sides

with εabcd and using the fact that [∇ab,∇cd]ε
abcd ≡ 0. One obtains

∇−
b W

+b = D+
b W

−b . (A.2)

Rewriting the identity (3.39) as

D+
a W

+b =
1

4
δbaD

+
c W

+c , (A.3)

acting on its both sides by ∇−− and using (A.2), one also finds

D+
a W

−b +∇−
a W

+b =
1

2
δba∇

−
c W

+c =
1

2
δbaD

+
c W

−c . (A.4)

One of the corollaries of (A.1) is that its right-hand side is antisymmetric under the per-

mutations a ↔ b and ab ↔ cd, as its left-hand side is (the antisymmetry under c ↔ d is

manifest on both sides).

One more important Bianchi identity following from the basic (anti)commutation re-

lations can be derived by anticommuting both sides of (A.1) with D+
a or ∇−

b ,

∇abW
+b = −

i

4
D+

a ∇
−
b W

+b = −
i

4
D+

a D
+
b W

−b ⇔ D+
a ∇−

b W
+b+

1

2
∇−

a D+
b W

+b = 0 . (A.5)

All other relations obtained in this way are identically satisfied as a consequence of (A.5)

and the identities derived above. By commuting (A.5) with ∇−−, one obtains an analogous

identity for W−a,

∇abW
−b =

i

4
∇−

a ∇
−
b W

+b =
i

4
∇−

a D
+
b W

−b ⇔ ∇−
a D+

b W
−b +

1

2
D+

a ∇−
b W

−b = 0 . (A.6)
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A.2 On-shell N = (1, 1) relations

The presence of the hypermultiplet does not affect the off-shell identities derived above.

But the on-shell identities are modified. For example, instead of D+
b W

+a = 0, we obtain,

using (3.39),

D+
b W

+a = −
1

2
δab [q

+A, q+A ] . (A.7)

Bearing in mind (A.7), one obtains

D+
a W

−a = ∇−
a W

+a = −2[q−A, q+A ] , ∇−
a W

−a = −2[q−A, q−A ] , (A.8)

∇abW
+b = −

i

2
[∇−

a q
+C , q+C ] =

i

2
[D+

a q
−C , q+C ] ,

∇abW
−b =

i

2
[D+

a q
−C , q−C ] = −

i

2
[∇−

a q
+C , q−C ] . (A.9)

Starting from the evident identity

∇abD
+
c q

−A =
1

2i
{D+

a , ∇
−
b }D

+
c q

−A ,

and repeatedly using (3.34) together with the on-shell relations (4.10), it is straightforward

to obtain the following cyclic on-shell identity,

(
∇abD

+
c +∇caD

+
b +∇bcD

+
a

)
q−A =

i

2
εabcd

(
[W−d, q+A]− [W+d, q−A]

)
, (A.10)

which, in virtue of the analyticity condition D+
a q

+A = 0, also implies

(
∇ab∇

−
c +∇ca∇

−
b +∇bc∇

−
a

)
q+A = −

i

2
εabcd

(
[W−d, q+A]− [W+d, q−A]

)
. (A.11)

Some useful consequences of these identities are

∇abD+
b q

−
A =

i

2

(
[W+a, q−A ]− [W−a, q+A ]

)
, (A.12)

D+
b ∇

abq−A = −
i

2

(
[W−a, q+A ] + 2[W+a, q−A ]

)
, (A.13)

∇ad∇deq
+
A = −

1

4
[D+

e W
−a, q+A ]−

1

4
δae

(
{W+f , D+

f q
−
A} −

1

2

[
q−A , [q

+C , q+C ]
])

, (A.14)

∇ad∇deq
−
A =

1

4
[∇−

e W
+a, q−A ]−

1

4
δae

(
{W−f , D+

f q
−
A}+

1

2

[
q+A , [q

−C , q−C ]
])

, (A.15)

∇cd∇cdq
−
A = {W−e, D+

e q
−
A}+

1

2

[
q+A , [q

−C , q−C ]
]
−

1

2

[
q−A , [q

−C , q+C ]
]
, (A.16)

∇cd∇cdq
+
A = {W+e, D+

e q
−
A}+

1

2

[
q+A , [q

−C , q+C ]
]
−

1

2

[
q−A , [q

+C , q+C ]
]
, (A.17)

D+
a D

+
b ∇

abq−A = i
(
{W+e, D+

e q
−
A} −

[
q+A , [q

−C , q+C ]
]
− 2

[
q−A , [q

+C , q+C ]
] )

, (A.18)

D+
a ∇

adD+
d q

−
A = −

i

2

(
{W+e, D+

e q
−
A}+ 2

[
q+A , [q

−C , q+C ]
]
− 2

[
q−A , [q

+C , q+C ]
] )

, (A.19)

where we took advantage of the on-shell relations (A.8). Note that (A.12), (A.16)

and (A.17) are none other than the covariant superfield form of the 6D Dirac and Klein-

Fock-Gordon equations for the physical fermionic and bosonic components of q+A .
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One more useful on-shell consequence of the Bianchi identities is the following cyclic

identity:

∇abW+c +∇caW+b +∇bcW+a =
i

2
εabcd∇−

d [q
+A, q+A ] , (A.20)

from which one can derive

∇bc∇bcW
+a = [∇−

d W
+a,W+d] + 2i∇ab∇−

b (q
+)2 +

1

2
[[q−A, q+A ],W

+a] . (A.21)

B In quest of an off-shell N = (1, 1) d = 6 invariant

We continue here the discussion of subsection 5.1 and study the symmetries of the higher

derivative actions of canonical dimension 6. A generic N = (1, 0) supersymmetric action

of this kind is a linear combination of the supergauge action (5.1) and the hypermultiplet

actions (4.11), (5.3) and (5.5). The question is whether one can define a specific linear

combination S(6) which would be invariant off shell under the variations (4.15) of the

hidden N = (0, 1) supersymmetry.

Requiring the cancellation of the terms generated by the variations (4.15) in the first

order in q+A and using the formula

δS
(6)
SYM =

1

2g2
Tr

∫
dZ δV ++(∇−−)2F++ =

1

2g2
Tr

∫
dζ(−4) δV ++(D+)4(∇−−)2(D+)4V −− ,

(B.1)

we deduce the following form for the candidate action

S(6) =
1

2g2
Tr

[∫
dζ(−4) (F++)2 −

∫
dZ q+A∇−−q+A −

1

2

∫
dZ q+A(∇−−)2∇++q+A

]

+
∑

n≥3

αnSn + βSquart , (B.2)

where αn and β are arbitrary coefficients; Sn and Squart were defined in (5.3), (5.5). The

variation of the second line in (B.2) does not involve the linear in q terms (this is obvious

for Squart and one can also show this to be true for all Sn with n ≥ 3). These terms are

also canceled in the variation of the first line.

The variation of the first line in (B.2) can be represented as

δS
(6)
first line =

1

4g2
Tr

∫
dζ(−4) [(D+)4C−3A]∇++q+A

−
1

2g2
Tr

∫
dζ(−4) [(D+)4(ǫ−AV −−, q+A ][q

+
B , q

+B] , (B.3)

where

C−3A = ǫ−B[q+B , (∇
−−)2q+A] + ǫ−A[∇−−q+B ,∇

−−q+B]

+ [∇−−δ0V
−−, q+A]− 2[δ0V

−−,∇−−q+A] , (B.4)

or, in the equivalent form,

C−3A = ǫ−B[q+B , (∇
−−)2q+A]− ǫ+B[(∇−−)2q+B ,∇

−−q+A]

+ [∇−−δ0V
−−, q+A] + [∇++(∇−−δ0V

−−),∇−−q+A] . (B.5)

While calculating this variation, we took advantage of the general formula (3.28) for the

variation of V −−.
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The second term in the variation (B.3) cancels the variation of the quartic term Squart

in S(6) under a particular choice β = 1
8g2

that we adopt. Next, we note that the second

term in (B.2) can be rewritten as an integral over the analytic subspace,

Tr

∫
dZ q+A∇−−q+A = −Tr

∫
dζ(−4)F++[q+A, q+A ] .

Then the first two terms in (B.2) together with the quartic term can be written as

1

2g2
Tr

∫
dζ(−4)

(
F++ +

1

2
[q+A, q+A ]

)2

. (B.6)

Note that the expression in the parentheses is nothing but the equation of motion for V ++

for the standard d = 4 action SV q+ of eq. (4.14). Then the action S(6) can be written as

S(6) =
1

2g2
Tr

[∫
dζ(−4)

(
F++ +

1

2
[q+A, q+A ]

)2

−
1

2

∫
dZ (∇−−)2q+A∇++q+A

]
. (B.7)

Similar to the first term in (B.7), the second term is also the product of two equivalent

forms of the equation of motion for q+A, eqs. (4.8) and (4.9).

The total variation of (B.7) is given by the first term in the variation (B.3). It does not

seem to represent a total derivative. If adding the sum over Sn with nonzero coefficients,

the cubic in q terms in the variation are modified, and they would include the terms with

higher powers of harmonic derivatives. This does not seem to help.

Let us focus on the case of vanishing αn. To check that the integrand in the variation of

such an action is not a total derivative and hence that (B.3) does not vanish, we can use the

following trick. If the integrand were a total derivative, the related “equation of motion”

obtained by varying (B.3) with respect to q+A, treated as an unconstrained superfield

on the analytic harmonic superspace, should identically vanish. After some algebra, with

making use of the analyticity of q+A, we find that the variational derivative of (B.3) with

respect to q+A is reduced to the expression

δ(δ0S
′
2)

δq+A
∼ (D+)4Y −A ,

where

Y −A = ǫ+A[q+D, (∇−−)2q+D] + 2[(∇−−δ0V
−−),∇++q+A]

+ 2[δ0V
−−, (1 + {∇++,∇−−})q+A]

−
δ(δ0V

−−)

δq+A

(
[q+B,∇−−∇++q+B ] + 3[∇−−q+B,∇++q+B ]

)
. (B.8)

It is easy to show that for the particular class of q+A subjected to the dynamical equa-

tions (4.8) and (4.9), the variation δ0V
−− is reduced to

δ0V
−−| = ǫ−A∇−−q+A , (B.9)

and

Y A| = 4ǫ−B[∇−−q+B , q
+A] . (B.10)

Then it immediately follows that (D+)4(Y A|) = 0 because of the analyticity of q+A.
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However, we do not see any reason for (B.8) to vanish in the general case, when q+A

is not subject to any dynamical constraint. One of the arguments against the existence

of an off-shell N = (1, 1) supersymmetric d = 6 action is the following. In the d =

4 action (4.14), the extended supersymmetry implies among other things the symmetry

between the physical fermion of the gauge multiplet and the fermion of the hypermultiplet.

This symmetry is manifest when the action is expressed in components. On the other

hand, there is no such symmetry for the d = 6 action. It was shown in [41] that an

action Sn in (5.3) involves an infinite number of physical propagating bosons and fermions

associated with the harmonic expansion of q+A. This cannot match with the gluino sector

that involves a finite number (=12) of the fermionic degrees of freedom for each value of

the color index.

C N = (1, 0) on-shell d = 8 invariants

We give here the full list of the planar (single-trace) G-analytic d = 8 invariants18 involving

the gauge supermultiplet and the hypermultiplet and study their properties.

C.1 Most general analytic L+4

A generic on-shell analytic d = 8 single-trace Lagrangian L+4 can be represented as a linear

combination of the following six terms,

L+4
gen = L+4

0 +
5∑

i=1

αiL
+4
i , (C.1)

where L+4
0 is given by (5.25) and

L+4
1 = Tr

{
i[q+A,∇abq

+
A ]W

+aW+b+
1

2
{W+a, (q+)2}[D+

a q
−A, q+A ]+(q+)4[q−A, q+A ]

}
, (C.2)

L+4
2 = Tr

{
q+A∇abq

+
A q+B∇abq+B + q+AD+

a q
−
A

[
q+BW+aq+B − (q+)2W+a

]

+ (q+)2 q+Bq+Aq−Aq
+
B + (q+)4 q+Aq−A

}
, (C.3)

L+4
3 = Tr

{
q+A∇abq

+
A ∇abq+Bq+B −

1

2
q+AD+

a q
−
A

[
q+BW+aq+B −W+a (q+)2

]

+
1

2
D+

a q
−Aq+A

[
q+BW+aq+B − (q+)2W+a

]
+

1

2
(q+)4

(
q−Aq+A − q+Aq−A

)

+
1

2
(q+)2 q+A

(
q−Bq+B − q+Bq−B

)
q+A

}
, (C.4)

L+4
4 = Tr

{
∇abq

+Bq+B ∇abq+Aq+A +D+
a q

−Aq+A
[
W+a (q+)2 − q+BW+aq+B

]

− (q+)2
[
q+A q−Bq+Bq

+
A + (q+)2q−Bq+B

]}
, (C.5)

L+4
5 = Tr

{
∇abq

+B ∇abq+B(q
+)2 +

1

2
[q+A, W+a][D+

a q
−
A , (q

+)2]

+
1

2
[q+A, (q+)2][q−A , (q

+)2]

}
. (C.6)

18The pure N = (1, 0) SYM invariant (5.21) is G-analytic, and its N = (1, 1) extension we are interested

in is also G-analytic.
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Here (q+)2 := q+Aq+A = 1
2 [q

+A, q+A ]. It is straightforward to check that each term in the

sum (C.1) is separately annihilated by D+
f .

Taking into account that the analytic superspace integration measure is∼ d6xdu(D−
a )

4,

one can integrate the above Lagrangians by parts not only with respect to ∇ab but also

with respect to ∇−
a and ∇−−. Using this opportunity and making use of the on-shell

relation (A.17), one can show that L+4
1 is a total derivative on shell and establish the

following on-shell relations,

L+4
2 = L+4

4 , L+4
5 = −L+4

2 − L+4
3 . (C.7)

We are left with only two independent Lagrangians, L+4
2 and L+4

3 . The representation (C.1)

is thus rewritten, modulo a total derivative, as

L+4
gen = L+4

0 + α2L
+4
2 + α3L

+4
3 . (C.8)

C.2 Hidden N = (0, 1) supersymmetry

Now we can vary L+4
gen with respect to the on-shell N = (0, 1) transformations (4.28)–(4.31)

in order to learn at which values of the free parameters αi it is invariant (up to a total

derivative). A general variation contains the terms not involving the superfield strengths

W±a as well as the terms of the first, second and third degrees in W±a. It is easy to check

that the cubic term ∼ (W )3 in the variation comes only from L+4
0 and represents a total

derivative. To explore the cancellation of the other terms [i.e. terms ∼ (W )2, (W )1 and

(W )0] in the variation of the generic Lagrangian (C.8) is not an easy problem.

Consider a symmetrized trace invariant (5.34), which, as we showed, is the on-shell

N = (1, 1) invariant. It can be expressed via the structures (5.25), (C.2)–(C.6) as

L+4
(1,1) = L+4

0 + L+4
1 −

1

6

(
L+4
2 + L+4

4 − 4L+4
3 + 2L+4

5

)
. (C.9)

This corresponds to the following particular choice of the coefficients in the general for-

mula (C.1),

α1 = 1 , α2 = α4 = −
1

6
, α3 =

2

3
, α5 = −

1

3
. (C.10)

Taking into account the on-shell equivalence relations (C.7), the invariant (C.9) can be

cast, up to a total derivative and modulo equations of motion, in the simple form (C.8)

with α2 = 0, α3 = 1:

L+4
(1,1) = L+4

0 + L+4
3 . (C.11)

We have explicitly checked the cancellation, up to a total derivative, of the quadratic terms

∼ (W )2 in the variation of this expression under (4.28)–(4.31).
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[2] L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269

[INSPIRE].

[3] B. Zumino, Y.-S. Wu and A. Zee, Chiral Anomalies, Higher Dimensions and Differential

Geometry, Nucl. Phys. B 239 (1984) 477 [INSPIRE].

[4] A.V. Smilga, Chiral anomalies in higher-derivative supersymmetric 6D theories,

Phys. Lett. B 647 (2007) 298 [hep-th/0606139] [INSPIRE].

[5] A.A. Tseytlin, On nonAbelian generalization of Born-Infeld action in string theory,

Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].

[6] P. Koerber and A. Sevrin, The NonAbelian Born-Infeld action through order α′3,

JHEP 10 (2001) 003 [hep-th/0108169] [INSPIRE].

[7] L. De Fosse, P. Koerber and A. Sevrin, The Uniqueness of the Abelian Born-Infeld action,

Nucl. Phys. B 603 (2001) 413 [hep-th/0103015] [INSPIRE].

[8] P. Koerber and A. Sevrin, The NonAbelian D-brane effective action through order α′4,

JHEP 10 (2002) 046 [hep-th/0208044] [INSPIRE].

[9] J.M. Drummond, P.J. Heslop, P.S. Howe and S.F. Kerstan, Integral invariants in N = 4

SYM and the effective action for coincident D-branes, JHEP 08 (2003) 016

[hep-th/0305202] [INSPIRE].

[10] P.S. Howe and K.S. Stelle, Ultraviolet Divergences in Higher Dimensional Supersymmetric

Yang-Mills Theories, Phys. Lett. B 137 (1984) 175 [INSPIRE].

[11] G. Bossard, P.S. Howe and K.S. Stelle, The Ultra-violet question in maximally

supersymmetric field theories, Gen. Rel. Grav. 41 (2009) 919 [arXiv:0901.4661] [INSPIRE].

[12] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2

Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace,

Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].

[13] A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic Superspace,

Cambridge University Press, (2001), pg. 306.

[14] P.S. Howe, K.S. Stelle and P.C. West, N = 1 D = 6 harmonic superspace,

Class. Quant. Grav. 2 (1985) 815 [INSPIRE].

[15] B.M. Zupnik, Six-dimensional Supergauge Theories in the Harmonic Superspace, Sov. J.

Nucl. Phys. 44 (1986) 512 [INSPIRE].

[16] B.M. Zupnik, The Action of the Supersymmetric N = 2 Gauge Theory in Harmonic

Superspace, Phys. Lett. B 183 (1987) 175 [INSPIRE].

[17] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001

[hep-th/0505205] [INSPIRE].

[18] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The Complete Four-Loop

Four-Point Amplitude in N = 4 super-Yang-Mills Theory, Phys. Rev. D 82 (2010) 125040

[arXiv:1008.3327] [INSPIRE].

– 54 –

http://dx.doi.org/10.1103/PhysRevLett.50.1343
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,50,1343"
http://dx.doi.org/10.1016/0550-3213(84)90066-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B234,269"
http://dx.doi.org/10.1016/0550-3213(84)90259-1
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B239,477"
http://dx.doi.org/10.1016/j.physletb.2007.02.002
http://arxiv.org/abs/hep-th/0606139
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606139
http://dx.doi.org/10.1016/S0550-3213(97)00354-4
http://arxiv.org/abs/hep-th/9701125
http://inspirehep.net/search?p=find+EPRINT+hep-th/9701125
http://dx.doi.org/10.1088/1126-6708/2001/10/003
http://arxiv.org/abs/hep-th/0108169
http://inspirehep.net/search?p=find+EPRINT+hep-th/0108169
http://dx.doi.org/10.1016/S0550-3213(01)00166-3
http://arxiv.org/abs/hep-th/0103015
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103015
http://dx.doi.org/10.1088/1126-6708/2002/10/046
http://arxiv.org/abs/hep-th/0208044
http://inspirehep.net/search?p=find+EPRINT+hep-th/0208044
http://dx.doi.org/10.1088/1126-6708/2003/08/016
http://arxiv.org/abs/hep-th/0305202
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305202
http://dx.doi.org/10.1016/0370-2693(84)90225-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B137,175"
http://dx.doi.org/10.1007/s10714-009-0775-0
http://arxiv.org/abs/0901.4661
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4661
http://dx.doi.org/10.1088/0264-9381/1/5/004
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,1,469"
http://dx.doi.org/10.1088/0264-9381/2/6/008
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,2,815"
http://inspirehep.net/search?p=find+J+"Sov.J.Nucl.Phys.,44,512"
http://dx.doi.org/10.1016/0370-2693(87)90433-3
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B183,175"
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://arxiv.org/abs/hep-th/0505205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505205
http://dx.doi.org/10.1103/PhysRevD.82.125040
http://arxiv.org/abs/1008.3327
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3327


J
H
E
P
1
2
(
2
0
1
5
)
0
8
5

[19] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying Multiloop

Integrands and Ultraviolet Divergences of Gauge Theory and Gravity Amplitudes,

Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].

[20] O. Piguet and S.P. Sorella, Algebraic renormalization: Perturbative renormalization,

symmetries and anomalies, Lect. Notes Phys. M 28 (1995) 1 [INSPIRE].

[21] G. Bossard, P.S. Howe, U. Lindström, K.S. Stelle and L. Wulff, Integral invariants in

maximally supersymmetric Yang-Mills theories, JHEP 05 (2011) 021 [arXiv:1012.3142]

[INSPIRE].

[22] N. Berkovits, M.B. Green, J.G. Russo and P. Vanhove, Non-renormalization conditions for

four-gluon scattering in supersymmetric string and field theory, JHEP 11 (2009) 063

[arXiv:0908.1923] [INSPIRE].

[23] J. Bjornsson and M.B. Green, 5 loops in 24/5 dimensions, JHEP 08 (2010) 132

[arXiv:1004.2692] [INSPIRE].

[24] J. Bjornsson, Multi-loop amplitudes in maximally supersymmetric pure spinor field theory,

JHEP 01 (2011) 002 [arXiv:1009.5906] [INSPIRE].

[25] Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of Three-Loop Four-Point

Divergences in N = 4 Supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423]

[INSPIRE].

[26] P. Tourkine and P. Vanhove, An R4 non-renormalisation theorem in N = 4 supergravity,

Class. Quant. Grav. 29 (2012) 115006 [arXiv:1202.3692] [INSPIRE].

[27] Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Ultraviolet Cancellations in Half-Maximal

Supergravity as a Consequence of the Double-Copy Structure, Phys. Rev. D 86 (2012) 105014

[arXiv:1209.2472] [INSPIRE].

[28] Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in N = 5 supergravity

at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].

[29] S. Deser, J.H. Kay and K.S. Stelle, Renormalizability Properties of Supergravity,

Phys. Rev. Lett. 38 (1977) 527 [arXiv:1506.03757] [INSPIRE].

[30] S. Deser and J.H. Kay, Three Loop Counterterms for Extended Supergravity,

Phys. Lett. B 76 (1978) 400 [INSPIRE].

[31] G. Bossard, C. Hillmann and H. Nicolai, E7(7) symmetry in perturbatively quantised N = 8

supergravity, JHEP 12 (2010) 052 [arXiv:1007.5472] [INSPIRE].

[32] G. Bossard, P.S. Howe and K.S. Stelle, On duality symmetries of supergravity invariants,

JHEP 01 (2011) 020 [arXiv:1009.0743] [INSPIRE].

[33] N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales and S. Stieberger, E7(7)

constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2011) 265

[arXiv:1009.1643] [INSPIRE].

[34] G. Bossard, P.S. Howe, K.S. Stelle and P. Vanhove, The vanishing volume of D = 4

superspace, Class. Quant. Grav. 28 (2011) 215005 [arXiv:1105.6087] [INSPIRE].

[35] Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, D.A. Kosower and R. Roiban, Three-Loop

Superfiniteness of N = 8 Supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112]

[INSPIRE].

– 55 –

http://dx.doi.org/10.1103/PhysRevD.85.105014
http://arxiv.org/abs/1201.5366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5366
http://inspirehep.net/search?p=find+J+"Lect.Notes Phys.,M28,1"
http://dx.doi.org/10.1007/JHEP05(2011)021
http://arxiv.org/abs/1012.3142
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3142
http://dx.doi.org/10.1088/1126-6708/2009/11/063
http://arxiv.org/abs/0908.1923
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1923
http://dx.doi.org/10.1007/JHEP08(2010)132
http://arxiv.org/abs/1004.2692
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2692
http://dx.doi.org/10.1007/JHEP01(2011)002
http://arxiv.org/abs/1009.5906
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5906
http://dx.doi.org/10.1103/PhysRevLett.108.201301
http://arxiv.org/abs/1202.3423
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3423
http://dx.doi.org/10.1088/0264-9381/29/11/115006
http://arxiv.org/abs/1202.3692
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3692
http://dx.doi.org/10.1103/PhysRevD.86.105014
http://arxiv.org/abs/1209.2472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2472
http://dx.doi.org/10.1103/PhysRevD.90.105011
http://arxiv.org/abs/1409.3089
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3089
http://dx.doi.org/10.1103/PhysRevLett.38.527
http://arxiv.org/abs/1506.03757
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,38,527"
http://dx.doi.org/10.1016/0370-2693(78)90892-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B76,400"
http://dx.doi.org/10.1007/JHEP12(2010)052
http://arxiv.org/abs/1007.5472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5472
http://dx.doi.org/10.1007/JHEP01(2011)020
http://arxiv.org/abs/1009.0743
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.0743
http://dx.doi.org/10.1016/j.physletb.2010.09.069
http://arxiv.org/abs/1009.1643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1643
http://dx.doi.org/10.1088/0264-9381/28/21/215005
http://arxiv.org/abs/1105.6087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.6087
http://dx.doi.org/10.1103/PhysRevLett.98.161303
http://arxiv.org/abs/hep-th/0702112
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702112


J
H
E
P
1
2
(
2
0
1
5
)
0
8
5

[36] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest Ultraviolet

Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity,

Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].

[37] Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The Ultraviolet Behavior of

N = 8 Supergravity at Four Loops, Phys. Rev. Lett. 103 (2009) 081301 [arXiv:0905.2326]

[INSPIRE].

[38] G. Bossard, P.S. Howe and K.S. Stelle, Invariants and divergences in half-maximal

supergravity theories, JHEP 07 (2013) 117 [arXiv:1304.7753] [INSPIRE].

[39] R.E. Kallosh, Counterterms in extended supergravities, Phys. Lett. B 99 (1981) 122

[INSPIRE].

[40] E.A. Ivanov, A.V. Smilga and B.M. Zupnik, Renormalizable supersymmetric gauge theory in

six dimensions, Nucl. Phys. B 726 (2005) 131 [hep-th/0505082] [INSPIRE].

[41] E.A. Ivanov and A.V. Smilga, Conformal properties of hypermultiplet actions in six

dimensions, Phys. Lett. B 637 (2006) 374 [hep-th/0510273] [INSPIRE].

[42] P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions,

Nucl. Phys. B 221 (1983) 331 [INSPIRE].

[43] E. Bergshoeff, M. Rakowski and E. Sezgin, Higher derivative super Yang-Mills theories,

Phys. Lett. B 185 (1987) 371 [INSPIRE].

[44] E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

[45] D. Robert and A.V. Smilga, Supersymmetry vs ghosts, J. Math. Phys. 49 (2008) 042104

[math-ph/0611023] [INSPIRE].

[46] I.L. Buchbinder, A. Yu. Petrov and A.A. Tseytlin, Two loop N = 4 super Yang-Mills

effective action and interaction between D3-branes, Nucl. Phys. B 621 (2002) 179

[hep-th/0110173] [INSPIRE].

[47] I.L. Buchbinder and E.A. Ivanov, Complete N = 4 structure of low-energy effective action in

N = 4 super Yang-Mills theories, Phys. Lett. B 524 (2002) 208 [hep-th/0111062] [INSPIRE].

[48] I.L. Buchbinder, E.A. Ivanov and A. Yu. Petrov, Complete low-energy effective action in

N = 4 SYM: A direct N = 2 supergraph calculation, Nucl. Phys. B 653 (2003) 64

[hep-th/0210241] [INSPIRE].

[49] I.L. Buchbinder and N.G. Pletnev, Leading low-energy effective action in the 6D

hypermultiplet theory on a vector/tensor background, Phys. Lett. B 744 (2015) 125

[arXiv:1502.03257] [INSPIRE].

[50] D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations,

Nucl. Phys. B 277 (1986) 1 [INSPIRE].

[51] I.L. Buchbinder and N.G. Pletnev, Construction of 6D supersymmetric field models in

N = (1, 0) harmonic superspace, Nucl. Phys. B 892 (2015) 21 [arXiv:1411.1848] [INSPIRE].

[52] T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills,

JHEP 04 (2010) 127 [arXiv:0910.2688] [INSPIRE].

[53] L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev and D.E. Vlasenko, Divergences

in maximal supersymmetric Yang-Mills theories in diverse dimensions, JHEP 11 (2015) 059

[arXiv:1508.05570] [INSPIRE].

– 56 –

http://dx.doi.org/10.1103/PhysRevD.78.105019
http://arxiv.org/abs/0808.4112
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.4112
http://dx.doi.org/10.1103/PhysRevLett.103.081301
http://arxiv.org/abs/0905.2326
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2326
http://dx.doi.org/10.1007/JHEP07(2013)117
http://arxiv.org/abs/1304.7753
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7753
http://dx.doi.org/10.1016/0370-2693(81)90964-3
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B99,122"
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.014
http://arxiv.org/abs/hep-th/0505082
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505082
http://dx.doi.org/10.1016/j.physletb.2006.05.003
http://arxiv.org/abs/hep-th/0510273
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510273
http://dx.doi.org/10.1016/0550-3213(83)90582-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B221,331"
http://dx.doi.org/10.1016/0370-2693(87)91017-3
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B185,371"
http://dx.doi.org/10.1016/0550-3213(81)90006-7
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B188,513"
http://dx.doi.org/10.1063/1.2904474
http://arxiv.org/abs/math-ph/0611023
http://inspirehep.net/search?p=find+EPRINT+math-ph/0611023
http://dx.doi.org/10.1016/S0550-3213(01)00575-2
http://arxiv.org/abs/hep-th/0110173
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110173
http://dx.doi.org/10.1016/S0370-2693(01)01388-0
http://arxiv.org/abs/hep-th/0111062
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111062
http://dx.doi.org/10.1016/S0550-3213(03)00036-1
http://arxiv.org/abs/hep-th/0210241
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210241
http://dx.doi.org/10.1016/j.physletb.2015.03.042
http://arxiv.org/abs/1502.03257
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03257
http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B277,1"
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.002
http://arxiv.org/abs/1411.1848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1848
http://dx.doi.org/10.1007/JHEP04(2010)127
http://arxiv.org/abs/0910.2688
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.2688
http://dx.doi.org/10.1007/JHEP11(2015)059
http://arxiv.org/abs/1508.05570
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.05570


J
H
E
P
1
2
(
2
0
1
5
)
0
8
5

[54] A.A. Tseytlin and K. Zarembo, Magnetic interactions of D-branes and Wess-Zumino terms

in super Yang-Mills effective actions, Phys. Lett. B 474 (2000) 95 [hep-th/9911246]

[INSPIRE].

[55] K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field

theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].

[56] P.C. Argyres, A.M. Awad, G.A. Braun and F.P. Esposito, Higher derivative terms in N = 2

supersymmetric effective actions, JHEP 07 (2003) 060 [hep-th/0306118] [INSPIRE].

– 57 –

http://dx.doi.org/10.1016/S0370-2693(99)01499-9
http://arxiv.org/abs/hep-th/9911246
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911246
http://dx.doi.org/10.1016/S0550-3213(00)00148-6
http://arxiv.org/abs/hep-th/0001205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0001205
http://dx.doi.org/10.1088/1126-6708/2003/07/060
http://arxiv.org/abs/hep-th/0306118
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306118

	Introduction
	Off-shell vs. on-shell
	Witten's model
	4D supersymmetric gauge theories

	Harmonic superspace and harmonic superfields
	Spinor algebra
	Superspace
	Superfields

	Invariant actions of the N=(1,0) vector multiplet and a hypermultiplet
	The dimension 4 Lagrangian of the gauge multiplet
	The dimension 4 hypermultiplet Lagrangian
	The N = (1,1) SYM action and its hidden N = (0,1) supersymmetry

	Higher-dimensional N=(1,0) and N=(1,1) invariants
	d= 6
	d=8
	On-shell N=(1,0) and N = (1,1) invariants

	On-shell N=(1,1) harmonic superfields
	The standard and harmonic N=(1,1) superspaces
	From the central basis to the analytic basis

	Solving the N=(1,1) SYM constraints in terms of N=(1,0) superfields
	Input and gauge-fixing
	Harmonic equations
	Identifying vector connections

	On-shell N=(1,1) supersymmetric actions
	Invariant actions: d=8
	Gauge non-invariant off-shell supersymmetric realization

	Invariant actions: d=10

	Summary and outlook
	Bianchi identities
	Off-shell relations
	On-shell N = (1,1) relations

	In quest of an off-shell N=(1,1) d=6 invariant
	cal N = (1,0) on-shell d=8 invariants
	Most general analytic L**(+4)
	Hidden N =(0,1) supersymmetry


