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1 Introduction

Yang-Mills theory and its supersymmetric extensions have been studied extensively over
the years, and are of particular relevance in four dimensions, in which case they define
renormalizable quantum field theories. It is well known that these theories are not renor-
malizable by power counting in higher dimensions, but they nonetheless provide effective
theory descriptions of some particular low energy sectors of string theory, such as D5-
brane dynamics and open string theory compactifications. In this paper, we concentrate
on 6D supersymmetric Yang-Mills (SYM) theory. Only the maximally supersymmetric
N = (1,1) theory, involving both left-handed and right-handed supercharges, is anomaly
free in six dimensions [1-4], and is therefore physically relevant. The effective action for
coincident D5-branes defines a non-abelian generalization of Born-Infeld theory represent-
ing an infinite series that involves the standard N = (1,1) supersymmetric 6D Yang-Mills
Lagrangian and higher-derivative corrections [5-9].

We wish to note right away that the individual terms in the effective action need not
and do not possess the full extended supersymmetry that string theory enjoys. Only the
whole infinite series has this property. We will discuss this issue in detail later.

The higher-derivative supersymmetric structures similar to those that appear in the
Born-Infeld action define also the candidate counterterms for the ultra-violet (UV) loga-
rithmic divergences in the 6D SYM theory. The supersymmetric Ward identities for the
on-shell amplitudes only require these counterterms (at least, the counterterms that are
responsible for first logarithmic divergences ~ In Ayy in the amplitudes) to be invariant
under extended supersymmetry transformations on mass shell, i.e. modulo the equations
of motion of the 6D SYM theory. Only when one can give a superspace formulation of the
theory and use a symmetry-preserving regularization, the counterterms should possess the
corresponding supersymmetry off shell.

There is no off-shell N' = (1, 1) superspace formulation of the maximally supersym-
metric 6D SYM theory. Thus, we cannot expect the counterterms to enjoy the full off-shell
supersymmetry of the original action. The on-shell N' = (1,1) supersymmetry should,
however, be there. On the other hand, there exists a N/ = (1,0) superspace formulation,
and the relevant counterterms should be N/ = (1,0) off-shell [and N' = (1,1) on-shell]
supersymmetric. A limited symmetry of relevant counterterms is a specific feature of the-
ories with extended supersymmetry. In more simple cases (think of the Euler-Heisenberg
effective Lagrangian for QED or of higher-dimensional counterterms in the effective chi-
ral theory describing the low-energy sector of QCD), all individual terms in the effective
Lagrangian possess the same off-shell symmetries as the leading term.



The structure of higher-dimensional counterterms was previously studied in the con-
ventional superspace approach [10] and in (on-shell) harmonic superspace in [11]. A conve-
nient way to determine the structure of these counterterms is using the (off-shell) harmonic
superspace technique developed in [12, 13] and extended to six dimensions in [14-16]. That
is what we do in the present paper.

We make use of the N' = (1, 0) off-shell harmonic superspace formalism of refs. [14-16],
to define in detail the N' = (1, 1) on-shell harmonic superspace invariants introduced in [11].
We rewrite the standard superspace N’ = (1,1) SYM constraints in A/ = (1,1) harmonic
superspace. The main new result here is to solve explicitly these constraints in terms of N =
(1,0) superfields. Since the constraints put the theory on shell, the N' = (1,0) superfields
are necessarily subjected to their equations of motion. Nevertheless, while constructing the
invariants from the constrained ' = (1, 1) superfield strength as integrals over superspaces
involving the full N = (1, 0) superspace as a subspace, these superfields can still be treated
as off-shell ones. The on-shell conditions are needed only while checking the hidden N =
(0,1) supersymmetry of these invariants. The N' = (1, 1) harmonic superspace formalism
allowed us to write down explicit analytic expressions in off-shell N/ = (1,0) harmonic
superspace for the candidate counterterms. Their analysis may help to understand the
reason why certain possible a priori logarithmically divergent structures in the scattering
amplitudes happen to be absent, as was displayed in explicit 3-loop calculations [17-19].1

The algebraic renormalization method [20] was generalized to non-renormalizable su-
persymmetric theories in [11] as a tool to determine whether some counterterms could sup-
port logarithmic divergences. This allowed to explain the absence of 2-loop divergences.
But the same arguments fail to explain the absence of non-planar divergences at the 3-loop
level [21]. Arguments using the pure spinor formalism [22-24] allow to explain this result,
but there is no direct quantum field theory understanding of this non-renormalization the-
orem. We will see that the absence of 2-loop divergences can also be understood in the
N = (1,0) harmonic superspace framework through the absence of an ' = (1,0) off-shell
supersymmetric and manifestly gauge invariant counterterm of canonical dimension d = 8.2
At the 3-loop level (d = 10), both planar (or single-trace) and non-planar (or double-trace)
supersymmetric counterterms can be constructed. We shall argue, however, that Ward
identities combining the algebraic approach for non-linear hidden supersymmetry with the
off-shell N' = (1,0) harmonic superspace methods could potentially explain the 3-loop
non-renormalization theorem.

The 6D SYM theory also represents an interest as a toy model for more complicated
extended supergravity theories. In particular, the absence of divergences for the double-
trace structure in the 3-loop amplitude in six dimensions obtained by explicit computations
is somehow similar to the absence of divergences which was observed for the four-graviton
amplitude in N' = 4 supergravity in four dimensions at the 3-loop level and in N/ = 5
supergravity at the 4-loop level [25-28].

"We are talking here only about logarithmic divergences; power UV divergences characteristic of a non-
renormalizable theory are present starting from the first loop in certain UV regularization schemes —
Slavnov’s higher-derivative scheme or lattice regularization. These power divergences cannot be cared of
by calculations in the papers just cited.

*Hereafter, we denote by d the canonical dimension (in mass units) of the relevant component 6D
Lagrangian.



Indeed, for pure N' = 4 supergravity (without matter), the first available supersym-
metric counterterm appears at the 3-loop level [29, 30]. The absence of anomaly for the
Cremmer-Julia symmetry for A-extended supergravity with A/ > 5 [31] and inspection
of the possible supersymmetry invariants exhibit that the first available counterterm only
appears at (N — 1)-loop order [32-34]. This allows to understand the good ultra-violet
behavior of N/ = 8 supergravity amplitudes which was observed in [35-37] through four
loops. However, this symmetry principle fails to explain the absence of divergences at
three loops in pure N = 4 supergravity [38], as well as at four loops in NV = 5 super-
gravity. These unexplained cancelations suggest that, by the same currently unexplained
reason, maximal supergravity may not diverge at seven loops, in spite of the presence of
a counterterm satisfying all symmetries [34]. On the other hand, the 4-loop amplitudes
in N = 4 supergravity are known to involve logarithmic divergences, and one might think
that the same is true for the 8-loop amplitudes in the maximal N' = 8 supergravity, as was
predicted long time ago in [39].

Although the non-renormalization theorems in 61 SYM theory and in supergrav-
ity were proven using different methods, one may hope that a future proof of the non-
renormalization theorem for the non-planar 3-loop logarithm divergence in Yang-Mills the-
ory could shed some light on possible generalizations to supergravity.

The structure of the paper is the following.

In section 2, we attempt to give a pedagogical explanation of the above-mentioned fact
that the individual terms in the supersymmetric effective Lagrangian do not necessarily
possess all the symmetries of the leading term. We illustrate this for the toy supersymmetric
quantum mechanical model with only one bosonic degree of freedom.

In section 3, we recall the basic notions and introduce notation for 6-dimensional N =
(1,0) harmonic superspace. In section 4, we use this formalism to construct the classical
invariant actions of canonical dimension 4 involving the N" = (1, 0) vector multiplet and the
hypermultiplet. One of such actions enjoys the extended NV = (1,1) supersymmetry, with
the N'= (0, 1) part of this symmetry being realized via the transformations of ' = (1,0)
harmonic superfields.

In section 5, still working in the A/ = (1, 0) superspace framework, we analyze higher-
dimensional /' = (1, 1) supersymmetric Lagrangians. We show that

o At the 1-loop level (d = 6), all the candidate counterterms vanish on mass shell [40,
41]. We demonstrate in section 6.1 and, in more details, in appendix B that no d = 6
off-shell N/ = (1,1) supersymmetric Lagrangian can be constructed.

o At the 2-loop level (d = 8), the candidate counterterms also vanish on mass shell, if
we require them to be N = (1,0) off-shell supersymmetric and gauge invariant.?

3These requirements should be imposed under the assumption that the perturbative calculations can be
done in a way that preserves at all steps the off-shell ' = (1, 0) supersymmetry and gauge invariance, both of
them being kept by regularization. This assumption is very natural: the existence of N'= (1,0) superspace
implies the existence of supergraph technique, and the higher-derivative ultraviolet regularization keeps
gauge invariance and N’ = (1,0) supersymmetry, but we are not aware of its formal rigorous proof.



e On the other hand, one can construct an on-shell d = 8 gauge-invariant Lagrangian
involving both the vector multiplet and hypermultiplet and possessing both N =
(1,0) and N' = (0,1) supersymmetries only on shell. Its bosonic part starts with
the structure ~ F4. It does not appear as a counterterm for the N' = (1,1), 6D
SYM theory, but is present in the derivative expansion of the Born-Infeld action for
coincident D5-branes.

The methods of section 5 where the extra N' = (0, 1) supersymmetry is “hidden” in the
superfield transformations proved not to be too efficient for constructing the 3-loop d = 10
invariants; even the construction of the d = 8 invariants by this “brute force” method is
rather complicated technically. To perform such a study in a more systematic way, we
developed in section 6 and 7 the on-shell ' = (1,1) harmonic superfield formalism. It
involves a double set of harmonics, uzi and ufl, as well as the extra SU(2) doublet of the
(0,1) chiral 6D fermionic superspace coordinates. We show that

e The known superspace constraints on the covariant spinor derivatives, which define
the A/ = (1,1) SYM theory [10, 42], admit a compact rewriting in this bi-harmonic
superspace as the conditions for the two types of covariant Grassmann harmonic
analyticities.

e These constraints are explicitly solved in section 7 in terms of the N = (1,0) SYM
gauge superfield and hypermultiplet, simultaneously providing the N' = (1,0) Grass-
mann harmonic analyticity and the on-shell conditions for these superfields.

e These N = (1,0) constituents are encompassed by the single double-analytic N' =
(1,1) superfield strength with simple transformation properties under the A’ = (0, 1)
supersymmetry.

In section 8, we write various invariant actions in terms of this N/ = (1, 1) superfield
strength as integrals over the full ' = (1, 1) superspace or its 1/2 or 3/4 analytic subspaces
and further rewrite these invariants in the N' = (1,0) superspaces.

e We rederive in this way the on-shell d = 8 invariant obtained in section 5 and also
derive nontrivial expressions for the single-trace and double-trace d = 10 invariants
in terms of N = (1,0) superfields. We note that the single-trace invariant can
be represented as a full N' = (1,1) superspace integral, whereas the double-trace
invariant cannot. We suggest that, using the algebraic method in A/ = (1, 0) harmonic
superspace, this may be enough for proving a non-renormalization theorem preventing
the appearance of the double trace as a counterterm.

e We also present an alternative view of constructing higher-order invariants on the
d = 8 example. One can keep the off-shell N' = (1,0) supersymmetry, but allow for
the gauge invariance to be deformed, or modify the definition of the Yang-Mills field
strength curvature [43]. We write the explicit expression for the d = 8 action thus
obtained. This may provide an alternative way to construct the supersymmetric
Born-Infeld Lagrangian in A/ = (1,0) harmonic superspace, although we do not
investigate this issue in this paper.



There are three technical appendices. In appendix A, we derive certain Bianchi identities
relating different N = (1,0) superfields that are used in section 5. In appendix B, we
describe a failed attempt to construct an off-shell N' = (1, 1) invariant d = 6 action. We
conclude that such an action in all probability does not exist. In appendix C, we give an
alternative derivation of the d = 8 on-shell N' = (1, 1) supersymmetric Lagrangian, directly
in the AV = (1,0) superspace.

2 Off-shell vs. on-shell

In this pedagogical section, we clarify generic features of effective supersymmetric La-
grangians by studying in detail two toy supersymmetric quantum mechanical models and
recalling the familiar situation for 4D field theories.

2.1 Witten’s model

The simplest possible example is Witten’s supersymmetric quantum mechanical system
involving one bosonic degree of freedom with the Lagrangian [44]

= V(@) i -
VL L (- ) + V' ()io. (2.1)

The corresponding equations of motion are
&4+ V'(2)V"(x) = V" (2 =0,
i = V"(2)p =0,
i+ V" (2)) = 0. (2.2)

The Lagrangian (2.1) is invariant (up to a total time derivative) under the following

Lo =

nonlinear supersymmetry transformations

0 = 6cx + bz = e) + Ve,

S = 6 = —eliz + V' ()],

5p = 6ap = eliz — V'(z)]. (2.3)
Note now that it is impossible to write a Lagrangian depending on the fields z,, ¢ and
involving their higher time derivatives which would be invariant under the transforma-
tions (2.3). This is due to the well-known fact that the Lie brackets of the transforma-
tions (2.3) do not close off mass shell, but only on mass shell. When acting on the variable

x(t), the Lie bracket (ded¢ — d¢de) boils down to a total time derivative. But it is not so for
the fermion variables. For example,

. . 9
(65:6c — Bebe) v = Eelivh + V" ()] = 2iced) + fgai . (2.4)

The presence of the second term in (2.4) does not affect the invariance of Ly under (2.3).

Indeed,
0Ly 0Ly 0Ly 0Ly

. . = 2i¢e L. 2.5
i v ) RGN
But, for L # Ly, the second term in the Lie bracket (dgd¢ — d¢de) L vanishes only on the
mass shell of L.

(55(55 — 5€5g> Ly = QifELO + &€ <



The standard way to solve this problem and to construct fully supersymmetric actions
of any dimension is to introduce a superfield

X(t,0,0) =2+ 0y + 90 + FO0 . (2.6)

The transformations of the superspace coordinates generate linear supersymmetry trans-
formations of the dynamic variables,

0z = ey + e,
oY = e(F —id),
6¢ = €(F +ix),
= i(et) — e). (2.7)

Any higher-derivative action of the form

S = /dtd9d9< DXP [S]DX—I—V( )) (2.8)

where P(0/0t) is an arbitrary polynomial and

D = %4—195 D:—ﬁ—iﬁa (2.9)
are the supersymmetric covariant derivatives, is invariant under (2.7).

For a linear polynomial P(z) = a + bz, one obtains an interesting higher-derivative
model whose Hamiltonian is Hermitian in spite of the presence of the ghosts (no ground
state in the spectrum) [45]. For higher-order polynomials, the Hermiticity is lost, but we
need not worry about it, we use this as a toy model displaying the structure of the effective
Wilsonian Lagrangian in a field theory of interest. We choose P(z) = 1 — gz2. One obtains
then the following component Lagrangian,

L= %(552 + F2) 4 iy + FV/(2) + V() + g% (952 +F? 4 2z‘zZ¢) : (2.10)

This Lagrangian is invariant under the transformations (2.7). On the other hand, the
formerly auxiliary field F' has become dynamical and cannot be algebraically eliminated as
it can in Witten’s model with g = 0. Still, one can integrate out the field F' perturbatively
through the formal power series solution

o0

danl )
S 21
One obtains in this way the Lagrangian

- . e arv’

n=0

L— ) VI @de,  (212)

l\.')\r—t



which is by construction invariant with respect to the nonlinear supersymmetry transfor-

mations
S = e + e,
N 2PV (2) & A (@)
5¢:6<—m—nz:;)g dtQ”)7 61/}:6(256_7;)9 g ), (2.13)
that close modulo the equations of motion for the full Lagrangian (2.12). For example,
>, d* (0L
((551(552 - (552(551) ¢ - —261627;).9 dt2n (W) . (214)

The Lagrangian (2.12) represents a perturbative series in g,

o0
L= g"Ly=Lo+gLi+g°La+... (2.15)

n=0

and similarly for 6 = dg + gd1 + ..., where Lg is written in (2.1) and &y in (2.3). It follows
by construction that the first-order correction,

1 =1
is invariant under the action of dy modulo the classical equations of motion (2.2) and a
total time derivative,

d
Z() (2.17)

In other words, the action [dtL; is invariant with respect to nonlinear supersymmetry

doL1 + 01Lo =

transformations (2.3) on shell, but not off shell.
On the contrary, the second-order correction

1
Ly = —5 (#V"(x) + V" (2))?, (2.18)
is not invariant with respect to g, but satisfies instead

d
0oLo + 01 L1 + 9oLy = a( .- ) . (219)

The situation when the effective Lagrangian represents an infinite series of higher-
derivative terms, like in (2.12), and this Lagrangian is invariant under modified supersym-
metry transformations also representing an infinite series, is quite general. One known
example is the Born-Infeld effective Lagrangian mentioned in the introduction.

2.2 4D supersymmetric gauge theories

Consider first the N' = 1, 4D supersymmetric SYM Lagrangian. It involves the gauge
fields and gluinos and is invariant under certain nonlinear supersymmetry transformations.
One also can write higher-derivative off-shell supersymmetric Lagrangians of canonical



dimensions d = 6,8, etc., but they necessarily include the auxiliary field D of the vector
multiplet, which now becomes dynamical. In this case, supersymmetry is realized linearly.

The same is true for the N' = 2 supersymmetric SYM theory. We have a scalar
superfield W involving a triplet of auxiliary fields D“. Higher-derivatives supersymmetric
Lagrangians, like £ ~ Tr [ d®0 W?W?2, can be written, and they involve the derivatives of
DA, For the “matter” fields belonging to the N' = 2 hypermultiplet, the full set of the
auxiliary fields is infinite. The latter can be presented as components of a certain N' = 2
harmonic superfield. Higher-derivative off-shell invariant actions can also be written in
that case.

But for the N' = 4 theory, the situation is different. Superfield formalism, with all
supersymmetries being manifest and off-shell, is not developed, the full set of auxiliary
fields is not known and probably does not exist. Thus, one cannot write in this case an
off-shell supersymmetric higher-derivative action. On the other hand, nontrivial higher-
derivative actions enjoying on-shell N' = 4 supersymmetry exist (see, e.g., [9, 46-48]).

In four dimensions, these higher-derivative invariants are not relevant for perturbative
calculations — they do not appear as counterterms for a renormalizable (even finite for
N = 4) theory.* But such invariants are relevant in six dimensions. As far as their structure
is concerned, the situation is the same as in four dimensions. Using harmonic approach,
one can develop NV = (1,0) harmonic superfield formalism and write down many off-shell
N = (1,0) invariants. On the other hand, we have no off-shell N' = (1,1) superfield
formalism and off-shell N' = (1, 1) invariants probably do not exist. However, it is possible
to write down many on-shell A/ = (1,1) invariants, and we will do it explicitly for the
canonical dimensions d = 8 and d = 10.

3 Harmonic superspace and harmonic superfields

We give here some basic facts about the 6D spinor algebra, the ordinary and harmonic
N'=(1,0) superspaces and N'=(1,0) superfields. For more details, see refs. [40, 41].

3.1 Spinor algebra

The group Spin(5,1) possesses two different spinor representations, the complex 4-
component spinors A* and the complex 4-component spinors 1,. In contrast to Spin(6) =
SU(4), where two 4-dimensional representations are related to each other by complex con-
jugation, in Spin(5, 1), they are completely independent. The situation is opposite to that
in 4D where the group Spin(3,1) involves two complex conjugate spinor representations,
while in Spin(4) = SU(2) x SU(2) these representations are independent.

For the vectors, it is convenient to introduce the notation

1

Vab = 5('}’M)abVMa (3.1)

“Though they can appear in the Wilsonian effective actions.



where M = 0,...,5 and (yM),, are antisymmetric 6D matrices (the 6D analog of 7,,)

satisfying
YMAN +INTYM = —2nMN nun = diag(1, -1,-1,-1,-1,-1), (3.2)
with 1
()™ = §5ade(7M)cd~ (3.3)

One of the possible explicit representations of these matrices is

Yo = Yo = o2 @1 M=-—Y1=102Q01; Y= =ill® oy;
V3= Y3 =102 ®03; Y4 =4 = 01 09; Y5 =5 = 03 Q 02. (3.4)

Note the properties
Tr{vmANTPIQYRYSs} = —Tr{AMYNTPYQIRYS} = 4eMNPQRs + symmetric part  (3.5)
(€012345 = 1) and

(’VA)ab(’VA)cd = 25abcda (ﬁA)ab(iA)Cd = 2€abcd. (36)

The Dirac gamma-matrices 'y satisfying the standard Clifford algebra

F'vI'n + DD = 20N

[ 0 M
Ty = (_W . ) (3.7)

T'; = Dol T3yl (3.8)

can be chosen as

One can also introduce

and observe that the spinors A%, ¢, are the chiral left-handed and right-handed projections
of a 8-component Dirac spinor, i.e. A, = (1 £T'7)¥/2.
The Spin(5, 1) generators are

1

a ~ ~ a 1 ~ ~ a
(omN)% = 5 (AmyN — ANTM) Y = 3 (YNYM — YMAN), - (3.9)

They are real.® This makes it convenient to define, instead of a complex 4-component
spinor A%, a couple of spinors A7_; , obeying the pseudoreality condition
Ya b ik
? = —Cab()\j)* - 5‘7 )\a, (310)

where C is the charge conjugation matrix with the properties C' = —C7, C? = —1. It can
be chosen as C' = 5.

Similarly, instead of a generic complex 1,, one can introduce a couple of right-handed
spinors wg‘ related by the pseudoreality condition.

5Thus, the algebra spin(5, 1) represents a real form of spin(6) = su(4) and is sometimes denoted su*(4).



3.2 Superspace

The standard N'=(1,0) superspace involves the coordinates
2= (aM,67), (3.11)

where 6 are Grassmann pseudoreal left-handed spinors.

Next we introduce the harmonics v (u; = (uj)*,ut*u; = 1), which describe the
“harmonic sphere” SU(2)r/U(1), where SU(2)pg is R-symmetry group of the N' = (1,0)
Poincaré superalgebra.5 The harmonic N'=(1,0), 6D superspace in the central basis is
parametrized by the coordinates

Z = (z,u) = («M,0% uv*"). (3.12)

The harmonic superspace in the analytic basis involves the harmonics and the coordinates
M eﬂ:a
(an)’

Zian) = (T eia uty (3.13)
:L‘é\;[n) =M+ Gk’yab Mobythy=t g+ = ufﬁ“k. (3.14)

A very important property of the analytic basis is that the set of coordinates
(= (@, 07 0™, (3.15)

involving only a half of the original Grassmann coordinates forms a subspace closed under
the action of N'=(1,0),6D supersymmetry. The set (3.15) parametrizes what is called
“harmonic analytic superspace”.

It is convenient to define the differential operators called spinor and harmonic deriva-
tives. In the analytic basis, they are expressed as

0 ;0

Df=0_4, D, =—0,4—2i0"0y, D’=u’_— G Y 5 —07"0_,, (3.16)
D =0Tt 40100, + 010 o, DT =07 +i0 0 D +07, 4, (3.17)
where 04,07 = 52 and
) 0
ot =t O =ut
Y hu Y Bt

The following commutation relations hold
{Df,D;} = 2id,, (D™, D] =D", (3.18)
[D**,Dg]1=[D"",D;]=0, [D"F,D;]=Dy, [D~",Dj]=D,. (3.19)

The constraint uu; = 1 leaves in u 3 degrees of freedom. One more degree of freedom is neutralized
due to the strict preservation of the harmonic U(1) charge in all invariant actions in the harmonic superspace.

,10,



We shall use the notation

1 1
(Dﬂ:)4 — _ﬂeabcdDi:DI:]bDél:Djz ’ (D:t)3a — _ggadeD;ZD(::I:DéE ’
1
() = — 5O (D)) =1 (3.20)
and the following conventions for the full and analytic superspace integration measures:
AZ () = A% (o) du(DT)H (DT, dCTY = O (ppydu (D7) (3.21)
The measure dZ,,) has canonical dimension —2 and d( (=4 — dimension —4. In what

follows we will frequently suppress the subscript “(an)”

of the analytic basis coordinate x
and the integration measure.
The harmonic integrals [ F du are nonzero only if the integrand F has zero harmonic

charge, D’F = 0. They can be computed using the rules

1
/duu;ruk = 56k

__ 1
/du uju+umun =5 (€jmErn + €jn€rm)

I |
/duuju;u;;un ()

= ﬂ(ejneklemp + 5 more terms), (3.22)

etc.

3.3 Superfields

A general 6D superfield depends on 8 odd coordinates 67 (or 6*), which makes their
component expansion rather complicated. There is, however, an important class of super-
fields, Grassmann-analytic superfields, which are defined on the analytic superspace (3.15)
and so depend only on the half of the original Grassmann coordinates. The structure
of Grassmann-analytic (G-analytic) superfields is much simpler than that of a general
superfield.

A G-analytic superfield ¢(¢) satisfies the constraint D} ¢ = 0.7 In the analytic basis,
D} is reduced to the partial derivative 9/90~% and this constraint simply means that ¢
lives in the superspace (3.15).

The superfields can be classified according to their harmonic charge ¢, the eigenvalue
of D°. The pure 6D SYM theory is formulated in terms of the G-analytic anti-Hermitian
superfield gauge potential which has charge +2 and is denoted V. It defines the covariant
harmonic derivative

Vit =Dt Lyttt Syt = vt (3.23)

where A = A(() is an arbitrary analytic gauge parameter in the adjoint representation of
the gauge group. It is convenient to introduce also a non-analytic gauge connection V=~
which covariantizes the harmonic derivative D™~

V=D +V ", 6V =-V A (3.24)

It is quite analogous to the habitual chirality constraint Da¢ = 0 in four dimensions.
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Requiring VT and V™~ to satisfy the same algebra as their flat counterparts,
VT, v—]=D", (3.25)
implies the harmonic zero-curvature condition

It can be used to solve for V=~ in terms of V7 as a series over products of V1 taken at

different harmonic “points”,

- (2, up
V™ (z,u) = 2(—1)”/(11“.. du z/ (= )a( 12 )V. . (Ele‘?uﬁL; ) (3.27)

Here, the factors (uTu])™!, etc are the harmonic distributions [13] and the central basis
coordinates z are defined in (3.11).

For further use, note the following tensor relation between arbitrary variations of har-
monic connections:

Vo= %(V“)%V** - %v**(v——év——). (3.28)

It follows from
VoVt =vttev——| (3.29)

which in turn follows from (3.26).
The connection V™~ can be used to build up spinor and vector superfield connections,

A, (V)= =DV, A4(V)=3DIDfV ", (3.30)
and the corresponding covariant spinor and vector derivatives,

V,=D, +A,, Vab = Oap + Aap (3.31)
0A, = -V A, 0Aay = —VapA. (3.32)
The covariant derivatives (3.23), (3.24), (3.31) and V/ (in the G-analytic basis, it

keeps its flat form D} = 0_,.) obey the same (anti)commutation relations (3.18) as the
flat ones,

V7O, Df1=V,, VTNV, ]=D;, [V, D=V ".V,]=

(D}, V,]=2iV. (3.33)
In addition,
VT, V] =0.
On the other hand, the commutators of spinor covariant derivatives with V. do not
vanish, . .
7 _ 2 _
D3 Ve = 5eabeaV ™, [VZ, V] = SapeaW ™, (3.34)
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where W2 are the covariant (1,0) spinor superfield strengths,

1
Wt = —gsabcdD;DjD;V" : (3.35)

W=V —Wwte. (3.36)
One can also define the G-analytic superfield
1

Ft+ = ZD;WM = (DN, DfFtT=0. (3.37)

From the harmonic zero-curvature condition (3.26) and G-analyticity of V', the impor-
tant properties follow

Vitwtt =v—-w =0, VvHtwe=wt, (3.38)
Dfwte = §iFtt, (3.39)
VHTFT =0. (3.40)

Note that all these objects are homogeneously transformed by the gauge group
SWEE = _[W*e A], SFTT = —[FTF Al (3.41)

More details on the algebra of gauge-covariant derivatives and the relevant Bianchi identi-
ties are collected in appendix A.
The matter hypermultiplet is described by a pair of the G-analytic superfields ¢*4(¢),
A =1,2. If they belong to the real representation of the gauge group (e.g. the adjoint one),
they can be subjected to the reality condition ¢+4 = e pq¢™?, where the ~ conjugation is
the product of the ordinary complex conjugation and an antipodal map on the harmonic
sphere S2 ~ SU(2)/U(1) (see [13] for details). Note that the gauge prepotentials V*=+
defined above, as well as the connections A, , Ay, and covariant strengths W@ are anti-
Hermitian with respect to this generalized conjugation. Since, in what follows, we will deal
with the adjoint hypermultiplets, it is worth to give how such ¢4 are transformed under
the gauge group
ot = —[¢* 4, A]. (3.42)

Finally, we note the useful Lemma:
VITF"=0 = F"=0 forn>1, (3.43)

where the ' = (1,0) superfield F~™ transforms in some representation of the gauge group
and we suppressed the “color” indices. This statement can be proved by passing to the
central basis of the harmonic superspace, where D™+ = 97" and the so called 7-frame for
the gauge fields, where V*+ = e~V 97 *e?V and V is a harmonic superfield taking values in
the algebra of the gauge group generators in the given representation and called “bridge”.
For the superfield F~" := ¢!V F~" the constraint in (3.43) implies 9T+ F~" = 0, whence
F~" = 0 (see eqs. (4.20), (4.21) in [13]) and F~" = 0. Note also that the constraint
VHHET =0, n >0, implies Ft" = e_iVFil"'i"uj1 e u;; This property will be widely
used in section 7.
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4 Invariant actions of the AN/ = (1,0) vector multiplet and a hyper-
multiplet

In this section we present the actions of canonical dimension d = 4 containing the standard
kinetic terms of the A' = (1,0) vector gauge multiplet and a hypermultiplet.

4.1 The dimension 4 Lagrangian of the gauge multiplet

The superfield action providing the supersymmetric extension of the standard d = 4 Yang-
Mills Lagrangian for the 6D gauge fields ~ Tr(FMN Fy;y) is given by the following expres-
sion which is non-local in harmonics [15],

1 & (—1) Vit (z,ur) ... V(2 uy)
SEYM = T/d6 d%0 duy ... duy, ’ Sl 4.1

where f is a coupling constant carrying the dimension of inverse mass. This action is
invariant under the supergauge transformations (recall (3.23), (3.24))

SVt =_V*HrA. (4.2)

The gauge freedom (4.2) allows one to bring the superfield V™" in the Wess-Zumino
gauge,
VI =019t A, 4+ 200730 = 3(0T) D, (4.3)

where Ay, is the gauge field, \™% = )\“iui_ is the gaugino and D™~ = Diku; uy , where

D% = DF are the auxiliary fields. The component fields entering (4.3) depend only on the
coordinates ™, but not on the harmonic variables.

The component Lagrangian derived from (4.1) has a simple form,

1

L=3h

Tr (—Fﬁ N INAMT A — D““D,-k) : (4.4)
with Fyyny = OvAN — ONAy — i[AM,AN] and Vs = Oy — iAps. It gives rise to the

standard equations of motion of the second order for the gauge fields and of the first order
for the fermions.

These equations can be derived from the superfield equation of motion following
from (4.1) by using the general formula for variation of S5YM,

555YM — fl2Tr / dZovHitv— = leTr / d¢gy T (4.5)

This gives the extremely simple equation of motion

Ftt=0. (4.6)
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4.2 The dimension 4 hypermultiplet Lagrangian

The invariant action for the hypermultiplet in the adjoint representation (being interested in
N = (1,1) extension, we will deal only with this assignment of the hypermultiplet), giving
rise to the Lagrangian of the canonical dimension 4, is given by the following integral over
the analytic superspace

1 _
= gph / dCVHAVTr L Vi = D g VI gR) (@)

The coupling constant can be chosen the same as in SS¥M | keeping in mind a freedom of
rescaling of gt4. The corresponding equation of motion is

ET? =Viigl =0. (4.8)
An equivalent form of the same equation is
(V__)2q+A =V ¢ 4=0, ¢=v . (4.9)

This can be proved by acting on the Lh.s. of (4.9) by V7, observing that the result is zero
as a consequence of (4.8), and then applying the Lemma of the previous section. Note
also the useful relations

Dig " =-Vy¢*, Vi¢t=o0, (4.10)
which follow from the analyticity of ¢*4 and the equations of motion (4.9).

As an instructive example, we consider the superfield action of the free hypermultiplet

free

Y / d¢ ¢tADH gt (4.11)
The corresponding equation of motion is
DY t¢tA =o0. (4.12)

The on-shell constraint (4.12) together with the G-analyticity condition D ¢t4 = 0 can
be resolved to find
gt =t — ot — 0T 0O (4.13)

where ¢4 = gojAqu are physical harmonic-independent on-shell scalar fields. They satisfy
the free equation of motion Dy = 0. And 1/1f are right-handed on-shell fermionic fields
satisfying the free Dirac equation.

4.3 The N = (1,1) SYM action and its hidden N/ = (0, 1) supersymmetry

We now consider the actions (4.1) and (4.7) together and write

Vet = §SYM 4 ga — le ( / dzL5YM — %Tr / dg(—4>q+Av++q§> . (4.14)
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The sum (4.14) exhibits invariance under the extra hidden A" = (0, 1) supersymmetry,
SVt = 6+qu , (5Oq+A = —(D+)4(62V77) , ei = eaAHia, (4.15)

which completes the manifest N' = (1,0) supersymmetry to N' = (1,1). This means
that (4.14) is in fact the N' = (1,0) form of the N = (1,1) SYM theory action. Note a
useful representation for the variation g+ through the superfield strengths F++ and W

S0gh = —€qa(0FTT — W), (4.16)

It is consistent with the analyticity of ¢t4 because of the analyticity of F+t* and the
relation (3.39).

The invariance (4.15) is quite analogous to the hidden N = 2, 4D supersymmetry
which completes the manifest NV = 2, 4D supersymmetry of the sum of the harmonic
superspace actions for the N'= 2, 4D SYM field and the adjoint hypermultiplet to N' = 4
supersymmetry [13]. This sum is thus nothing but a representation of the N' = 4, 4D
SYM action in terms of N' = 2 superfields.

Like in the N' =4, 4D case, the transformations (4.15) have the correct closure with
themselves and with the manifest N' = (1,0) supersymmetry only on mass shell, when the
equations of motion corresponding to the action (4.14),

1
Ett = Ftt 4 §[q+A,q;ﬂ =0, EP.=vViigi=0, (4.17)

are satisfied.
A direct calculation shows that (281 — 6102)V ™" amounts to

(5251 - 5152)V++ =-VTrA + igadef2l[ab]ach++ ) f21[ab] = 6124[(16113]14 ) (418)

where

A= (DM (E;AG;A)V——} (4.19)

is a gauge transformation superfield parameter. Thus, the hidden supersymmetry has the
correct off-shell closure on V. This is not the case for qX. The same bracket yields

(0201 — 6102)q} = [N, ] + 1€ o1t Ocaqy — (D) eg 1V — [e;402V ], (4.20)
where 8V =~ is defined from the relation
SV T =eAVTTg v oV, (4.21)

and involves the terms vanishing on the hypermultiplet equations of motion (4.8), (4.9).
Thus, in the full analogy with (2.4), (8281 —6162)g+ involves a nontrivial extra term which
vanishes only on mass shell.

Let us now consider the commutators of the hidden supersymmetry with the manifest
one, i.e. with

A @ — 8 a ia
gk V) =0 Qu (@, V') Qi =gg+-n n =0yl (4.22)
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We find
(000 — 800)VTT = (neBul)qf = fPiuf qf . (4.23)

This variation can be identically rewritten as
PP qfy = V(P qf) — Py Vg (4.24)

i.e., once again, it is reduced to some analytic gauge transformation of V™" only on the
hypermultiplet mass shell, i.e., with Vt+¢t4 = 0.
Analogously,

A ) . o 1
(880 — 000} = —[fPu; afy, qf] — fiu; <F++ + 2[q+c,q$]) : (4.25)

i.e., it is reduced to the pure gauge transformation on the mass shell for V.

We conclude that the correct N' = (1,1) closure of the transformations (4.15) with
themselves and with the manifest ' = (1,0) transformations is achieved only on the mass
shell for both superfields V*++ and ¢+t4. To avoid a possible confusion, we point out that
the action (4.14) is invariant under the transformations (4.15) off shell, with V+ and ¢t4
being unconstrained analytic superfields. The mass-shell conditions are required to ensure
the correct N = (1,1) closure for these transformations.

It is instructive to see how the superfield equations of motion (4.17) are transformed
into each other under the transformations (4.15). Using the properties (3.40), we find

SE =€ BTT. (4.26)

It is a little more complicated to see that the variation of ET is actually expressed through
E13 and the alternative form (4.9) of the hypermultiplet equation of motion (4.8). It is
easy to show that

oV T = e_AV__qA + terms containing (V__)2q+B and V++Q+B- (4.27)

Then it can be shown that the contribution of the first “dangerous” term in (4.27) to o't
is exactly canceled by the variation of the second term in ETT, so doE+T is expressed
through the terms containing the equivalent forms (4.9) of the hypermultiplet equation of
motion.

In what follows we will meet the situation when the superfields involved in the N'=(0, 1)
transformations above satisfy themselves the mass-shell equations (4.17), (4.8) or (4.9). The
various superfields defined earlier are transformed on shell as

SqtA = §qtA — e Bat, ¢4, St = eAwte, (4.28)

oW = W — [ By, wre, dWE = —ie® eV g (4.29)

Note that the transformation (4.28) immediately follows from (4.16) upon using the equa-
tion of motion ET* = 0 from the set (4.17).
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We will need also the on-shell transformation rules for the spinor and vector derivatives

of in:

7 _ _ _
§(Vpeah) = €aaVpWE + 5(61,3 Voah, il — B 1Vyah. ai)) — [ Pah. Vieas) . (4.30)

8(Dfay) = —6(Voah) = —ea DW ™" + 8 [qf, ax] — e Paf. Day]- (4.31)

Note that the last terms in the variations (4.28)-(4.31) are some field-dependent gauge
transformations and they do not contribute to the variation of the gauge-invariant La-
grangian involving the traces over the “color” indices.

5 Higher-dimensional N' = (1,0) and N = (1,1) invariants

Now we turn to the discussion of higher-dimensional invariants. As was mentioned in
the very beginning, the pure 6D gauge theories are chiral theories, they involve only the
left-handed gaugino field and hence are plagued by the chiral anomaly [1-4]. In other
words, gauge symmetry is broken there by quantum effects, which restricts their physical
interest. Anomaly can be canceled and the gauge symmetry kept intact in the theories
involving, besides the left-handed gauginos, also right-handed fermions belonging to the
matter hypermultiplet. This condition is obviously satisfied in the A" = (1, 1) gauge theory.
We will be mainly interested in this section in the on-shell N = (1, 1) invariant gauge theory,
which is written in terms of N = (1,0) superfields and may or may not possess the full
off-shell N' = (1,0) supersymmetry.

For a higher-dimensional operator to be a counterterm giving a logarithmically diver-
gent contribution to the scattering amplitudes ~ In Ay, it must not vanish on mass shell,
but its supersymmetric variation under the on-shell A/ = (1,1) transformations should be
reduced to a total derivative. We first discuss the operators of canonical dimension 6.

51 d=6

It is very easy to write down the superfield gauge-invariant action of canonical physical
dimension 6 in the gauge field sector. It has the following unique form [40]:

1 .
S = 292Tr/d(( Ddu (F++)?. (5.1)

Here the coupling constant g is dimensionless.® The component expression for (5.1) involves
extra derivatives,

1 1 ;
S = _22T1~/ [(VMFML)2 + §(VMDjk)2 + leDk]Djl + fermion terms}. (5.2)
g

We see that the auxiliary fields of the Lagrangian (4.4) enter the d = 6 Lagrangian with
derivatives — the same phenomenon that we observed in section 2 in a toy SQM model;

8Indeed, the superfields V™+, V™~ are dimensionless, and it follows that F™* defined in (3.37) has
canonical dimension 2.
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the higher-dimensional Lagrangian (5.2) is related to the Lagrangian (4.4) in the same way
as the higher-dimensional Lagrangian (2.10) to the Witten Lagrangian (2.1).

We observe that the integrand in (5.1) is just the square of the equation of motion (4.6)
and therefore this d = 6 action vanishes on mass shell modulo possible hypermultiplet
terms. Now we are going to show that the same remains true for the d = 6 actions taking
into account the hypermultiplet terms.

One can write a series of new hypermultiplet d = 6 actions .S, representing full super-
space integrals [41],

S, ~ Tr / dudZg ™ (V)N (V) gk (5.3)

All the terms with n > 1 vanish on mass shell. Using (3.37), it is convenient to represent
the non-vanishing action S7 as an integral over the analytic superspace,

Tr / dZq AV g = Tr / d¢=Y FHgh ¢ (5.4)

There is one more d = 6 interaction involving the hypermultiplet field. It does not
contain harmonic derivatives and is given by the analytic superspace integral,

Sauart ~ Tt / dud( Vg, g1 (5.5)

Thus, if disregarding the terms vanishing on the mass shell, a generic NV = (1,0)
invariant Lagrangian reads
1
d= - A A
2170 = o5 [ aud¢ 0 [P 0P B P 60)
The requirement that its N' = (0, 1) variation vanishes on mass shell imposes the restriction
a = 23+ 1/2 such that the Lagrangian acquires the form

_ 1 _ 1
SR / dud¢ (F++ + 2[q+A,qZ]> (F+28[0" % qf)), (57

which vanishes on shell due to (4.17).

We have thus shown that the non-vanishing on-mass-shell counterterms of canonical
dimension 6 are absent, and this proves the one-loop finiteness of the theory (4.14).

The fact that the algebra of extended supertransformations does not close off shell
suggests that an action corresponding to (5.7) with some fixed (8, to which a series of
the actions S, in (5.3) with arbitrary coefficients is added, cannot be invariant off shell.
Indeed, when one tries to construct such an invariant (the corresponding calculations are
presented in appendix B), one meets obstacles that seem to be unsurmountable. It is easy
to see that, in order to ensure the cancelation of the terms oc (¢7)3 in the variation, the
coefficient § in (5.7) should be fixed to 8 = 1/4. But the linear in ¢** terms do not want
to be canceled among themselves, no matter what you try.

We thus conjecture that a d = 6 off-shell N' = (1, 1) supersymmetric invariant does
not exist.”

9We did not rigourously prove it, however — it is always difficult to prove the absence of something.
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52 d=28

Once again, we begin with the gauge field sector and write appropriate off-shell N = (1,0)
supersymmetric gauge invariants of canonical dimension d = 8, having in mind to extend
them to the AN/ = (1,1) invariants by adding some hypermultiplet terms. It turns out
that all such purely gauge field terms vanish on the mass shell of (4.4), in agreement
with [10]. Then we write the full list of different possible d = 8, N' = (1,0) superfield
terms involving the hypermultiplet contributions and demonstrate that, on the equations
of motion corresponding to the total N' = (1,1) action (4.14), they are all reduced to a
single expression, which is not invariant under the hidden supersymmetry (4.15), (4.28)—
(4.31) (and there is no way to make it invariant).

We consider first the d = 8 terms in the pure gauge field sector. The SYM equations
of motion are F** = 0. The vanishing of some structures (like Tr [dZ V, W *F*1), is
obvious. We consider now a couple of less trivial examples.

o Let
S® = Tr/dZ(v;W+a)(D;W—a), (5.8)

where W% = V-~ W% We use the identity
VvV, Wte = Drw-2, (5.9)
which is derived in appendix A as a corollary of certain Bianchi identities. We obtain
S® =Ty / dZ (V; W2 = Ty / dC (DT (VW2 (5.10)

The terms involving (DT)3(V,; W*¢) and (D*)4(V, W*?) contain F™+ and vanish
on mass shell. We are left with the structure

o eI DY DI (VW) DI DF (VW)
On mass shell, it is equivalent to
o ecdefecdam{w+m, W+a}eeﬂm{w+n7 W“’} ~ emanb{w+m7 W*“}{W*”, W+b}7
which vanishes as the anticommutator {W*™ W%} is symmetric under m < a.

o Let
S = Tr/dZ (Vo W) (D w9y, (5.11)

Integrating by parts with respect to V , using the commutation relation
{D),V,} =2iVy, = —2iVy, = —{DS,V; }, (5.12)

disregarding the terms involving F*', and integrating by parts once again, we re-
duce (5.11) to (5.8).
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Now we turn to the general proof that there exist no NV = (1,0) supersymmetric off-
shell invariants of the dimension 8 which could respect the on-shell N' = (1,1) invariance.
To this end, we construct the full set of the superfield Lagrangians of dimension 4 in
the full A/ = (1,0) harmonic superspace (they correspond to the dimension 8 component

Lagrangians):*°

L\ =v,wepfwtt L) —vowrepiwt, L) = v wttpiw e,
LY = vy wttv;wte L) — prwtpfwe, (5.13)

LYY = iStVpeSaac™, L = [, ¢ Pigk, ag). LY = a7, qqlld™®. qf] . (5.14)

Note that a conceivable term ~ W1oV W ~? is reduced to the other structures in the
list (5.13), (5.14) by integrating by parts with respect to the spinor derivatives under the
(undisplayed) trace.

Using the off-shell relations (A.3), (A.4) and (5.9) and also bearing in mind that
{Df, Df} ={V,, V,} =0, it is easy to show that all Lagrangians in the set (5.13) are
reduced to Lg,?,) or to L%,), which in turn are related to each other by integrating by parts
with respect to V~~. This proof is valid off shell and does not require passing to the
analytic subspace at any intermediate step.

Next, using the on-shell relations (A.8), it is straightforward to show that

L%,) (on-shell) = 4L<(13)- (5.15)
Also, using simple algebraic manipulations and integrating by parts with respect to har-

monic derivatives, one can show that

3
L((IQ) (on-shell) = ZLSIS)‘ (5.16)

It remains to work out Lél). Integrating by parts, it can be reduced to

LY = i ADrVy.Dq; . (5.17)

Using the on-shell relation (A.19) and, once again, integrating the term ¢~4{W+e, Voait
by parts with respect to V, one reduces Lgl), up to a total harmonic derivative, to 2L((13).
Thus, all possible superfield Lagrangians of the dimension 4 are reduced on mass shell
to the single non-vanishing structure
—A 11 +B
LY =17, q3)la™?, af). (5.18)
Bearing in mind the overall trace, the variation of Lg?’) under the hidden N' = (0,1)
supersymmetry (4.28) is given by

LY ~ eanla™®, apllg™, W, (5.19)

OFor brevity, we omit here the Tr symbol with respect to “color” indices, but we will always have

it in mind.
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It is non-vanishing, and no terms can be invented to cancel (5.19). Thus, no N' = (1,1)
invariant terms of the dimension 8 can be constructed out of the AN/ = (1,0) superfields.

It is worth noting that in the hypermultiplet sector one can contemplate N' = (1,0) in-

variants which are not reduced to the product of “color” anticommutators as in (5.18), e.g.,

A — - A — -

~ ¢ qat ey, or~q™q Palag. (5.20)

Nevertheless, it is impossible to ensure the mutual cancelations of the N' = (0, 1) variations

of such terms, while keeping the requirement for the Lagrangian not to vanish on mass

shell. To check this, we wrote down all the independent terms of this kind, calculated their

A = V=70¢™ to 6¢T through integrating by parts) and found

the unique combination of such terms, ~ Tr (q“‘Aq;q‘FB qp + g ¢ 8 ngg), the variation

variations (reducing 6q~

of which is zero up to a total harmonic derivative. However, it is easy to show that, on the
mass shell of gt4, this combination is a total harmonic derivative on its own.

Surprisingly, the d = 8 superfield expression which is non-vanishing on shell and re-
spects the on-shell N/ = (1, 1) supersymmetry can be constructed if we give up the require-
ment of off-shell N'= (1,0) supersymmetry.

5.3 On-shell N = (1,0) and N = (1,1) invariants

As the complete off-shell N/ = (1,1) superfield formalism is absent, it is not possible to
write down operators of a fixed canonical dimension d > 4 which would be invariant off
shell under the N/ = (1,1) transformations. This concerns the operators of dimension
d =8 and d = 10. However, in contrast to the case d = 6, the on-shell d = 8 and d = 10
invariants exist, and it is possible to find them. The basic idea is to seek for the invariants,
in which not only the hidden N = (0, 1) supersymmetry is realized on shell, but which are
N = (1,0) supersymmetric also only on shell.

Once again, we start our consideration from the simple example in the gauge field sec-
tor. If we lift the requirement of off-shell N' = (1, 0) supersymmetry, we can define the non-
vanishing d = 8 operators that are supersymmetric only on mass shell. One of them reads

S® = iTr / dCY egpegWHeW TP eyt (5.21)
where the factor i was introduced for further convenience. Indeed, eq. (3.39) tells us that
DFW+b = § P+ which vanishes on mass shell. Thus, when disregarding the terms pro-
portional to the equations of motion, W' is a G-analytic superfield and so the action (5.21)
respects V' = (1,0) supersymmetry on shell.!! Being expressed through components, the
bosonic part of (5.21) gives the known F* structure [50],

!
- 2-81
— AFNM Py p FRS Foy — SFNM By o Fnp FEQ. (5.22)

[[’z(zgn)]bos Trg 2FMNFMNFPQFPQ + FMNFPQFMNFPQ

1Note that a similar on-shell invariant appears as a one-loop contribution to the quantum effective action
of the /' = (1,0) gauge theory in the 6D harmonic superspace in a special background [49].
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This expression can be derived using the component representation for W+ [40, 51],

wte = %FMN(UMN)ab0+b+fermion terms -+ terms vanishing on shell +O[(#7)?], (5.23)

as well as the identities (3.5), (3.6). Note the presence of the symmetrized color traces
Tryy ~TrX(YZU +UYZ + ZUY) in (5.22).

This tensor structure reproduces indeed the so-called tg tensor obtained in the tree-
level four-gluon scattering amplitude [50]. The complete component form of the associated
supersymmetry invariant in six dimensions was first obtained in [43].

It is also possible to write down an on-shell N/ = (1,0) supersymmetric invariant
involving the product of two color traces,

- 1
5= / dC e apea Te (W W) Te(W W) (5.24)

The next step is to seek for the on-shell N' = (1, 1) completion of the d = 8 terms (5.21)
and (5.24). Clearly, it should be a collection of terms containing the hypermultiplet su-
perfield ¢*4. First one should construct the full list of the dimension d = 8 operators
which are G-analytic on the shell of the full set of equations of motion following from the
action (4.14), i.e. egs. (4.17) and (4.8) [or (4.9)]. Next one needs to select the N = (0, 1)
invariant combination of such operators (if it exists).

The minimal on-shell G-analytic extension of (5.21) [i.e. the expression analytic as a
consequence of the full set of equations (4.17), (4.8)] is given by the following expression:

1
L8—4 _ TI'{ Zgabch+aW+bW+CW+d o ivabq+A (W+aqjl_W+b + 2QXW+GW+b)

B 1 - 1
— Wt Dfq [qii((ﬁ)Q + 2((1*)2(12{] +(¢")’Dfq (qXW+“ + 2W”q2{>

—2(¢%)? [q‘AQX(cﬁ)? + ;Q‘A(qﬂ?ﬁ] } (5.25)
where (¢7)? := q+AqX = %[q"”A,qj]. The full list of other possible d = 8 superfield G-
analytic terms involving the single trace is given in appendix C. It is shown there that, by
integrating by parts, they all can be reduced to the two independent structures, Lé" 4 and
L3* Jegs. (C.3) and (C.4)]. Then the A" = (1,1) supersymmetric combination is uniquely
determined to be

4
L

It is instructive to see how the proof goes on in the abelian case. Passing to the abelian
limit in (5.25) and (C.4), we write

=Lyt + L3t (5.26)

1 .
Ezrl‘}l) = Zgabch+“W+bW+cW+d + 3zq+A6abqZW+“W+b — q+A8abqZ q+B6aqu

— 4 4 4

Our task is to prove that it is invariant on mass shell under the transformations

6gtA = eg‘W'H‘, SWte = —Ziefﬁabqj. (5.28)
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It is easy to see that the linear in ¢ terms in the sum of 55&% and 65&% vanish. We

are left with

A= 5£(+;§ + 5£(+;§) = 650t q T Daea s W, (5.29)
The variation of E?ﬁ D is
0Ly = —2¢¢ a0} Deaay W (5.30)

To see the cancelation of (5.29) and (5.30), one should use the cyclic identities

Eabcdéjec + Ebcd65? + é_cdea(s? + Edeabé; + Eeabca;d( _ 0’
eAB6G 4+ eBC58 + 9468 =0 (5.31)

and the equations of motion 9, W1 = 0, Og™4 = 0.
Namely, we represent

A = _660Bq+z48abq;&1— 8dqu W+f gcdebd? + Edeba5; + Eebac(;)-? + EbaCd(S?] =A+B+C+D

(5.32)
and then observe that A = —A, B = —3552}%1) and
C =D =68 ¢ 9,471 daeqy WH. (5.33)

Next, using the second identity in (5.31) and integrating by parts, we derive that (on shell
/) C = —A —C and hence C = —A/2. This gives

1

1
— _ A _ +4 A =
A= -A-3LY ) - SA - A,

and, finally, A = —3L{7 .

The proof in the non-abelian case is much more complicated since there is a lot of
various terms coming from different sources. Nevertheless, we checked that (5.26) is still
invariant up to a total derivative. However, this direct method is very cumbersome and it
is natural to seek for another more universal and easier approach. It will be developed in
the next sections. As the important preparatory step, we note here that (5.26) admits the

following equivalent representation through the symmetrized trace:

1 4
E?‘lill) — Tr(S){4€abch+aW+bW+CW+d + 32q+AVaquW+aWer o q+Avaqu q-‘erabq—lB-
_ 1 _
~WrDfqy, abla g™ — §[q+c, atllax, ahla™qa™” } (5.34)

The subscript S stands for the symmetrization, meaning that the expression is symmetrized
with respect to the permutation of the four arguments,

Tr(s) (41424341 )

1
= ETY (A1A2A3A4 + Ay A3 A1 Ay + A3 A1 A2 Ay + Az As A1 Ay + Ag A1 Az Ay + A1A3A2A4),

— 24 —



any commutator being understood as one argument. One can now directly verify, in par-
ticular, that
DfLE = Tris { BT (area VW W 4 6ig PV e W~ [DF a7, afla™ ™) |,
where BT+ = F*F 4+ 1[gt4, ¢f] = 0. This vanishes on mass shell.

Our final comment in this section is that the double-trace invariant (5.24) also ad-

mits an A/ = (1,1) completion. Here we present only the minimal G-analytic extension
[analogous to the extension (5.25)]. It reads

- 1
Lt = 4 Cabed Tt (WHaW ) T (WHW ) —iTr (Vg™ g}) Tr (WTOWT?)

+Tr (D g Aq)) Te(WH(q7)?] — Tr (¢~ 4q}) Tr[(g7)*(¢F)?] . (5.35)

It is straightforward to check that this expression is indeed annihilated by D on the mass
shell. There exists a freedom of adding other on-shell analytic Lagrangians, like in the
single-trace case. They all vanish in the limit of vanishing ¢™4.

The double-trace analog of the on-shell N' = (1,1) invariant (5.26), (5.34) will be
derived in the next sections, based on the universal method we are going to expose now.

6 Omn-shell N' = (1,1) harmonic superfields

The most convenient way to construct on-shell N = (1,1) invariants of the type we dis-
cussed in the subsection 5.3 is to define the on-shell superfields living in extended harmonic
N = (1,1) superspace. This and the next two sections are devoted to this subject. Ex-
tended on-shell superfields of the similar kind were first discussed in [10, 42], but not in
the framework of harmonic superspace. We will see that “harmonization”, introduced first
n [11], helps a lot. In particular, it allowed us to resolve explicitly a set of constraints
which the on-shell N = (1,1) SYM superfields must obey.

6.1 The standard and harmonic A/ = (1, 1) superspaces

We introduce the extended superspace involving, in addition to the odd pseudoreal left-
handed variables 6%, also the odd pseudoreal right-handed variables 2 (A = 1,2), which
belong to another spinor representation,

2= (x%,0%) = 2= (z2,0%0%). (6.1)

Yy Ya

We then consider the covariant spinor derivatives,

i _pbi i
Va— 39;1 70 8ab+Aa7
god_ 9 0 9% + A% (6.2)

OAa
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where A’ and A4 are the spinor connections and the convention V¥ = %sabcdvcd is
assumed. The superfields A?, A%4 are not arbitrary, but satisfy the constraints

(V9V} = (v v =0, (6.3)
{Vo, VP = d0™.
Bearing in mind the Bianchi identities, the constraints (6.3) and (6.4) imply
Vi = valdghi = o (6.5)

The constraints (6.3), (6.4), written in [10, 42], define the N' = (1,1), 6D supersymmetric
Yang-Mills theory. They are known to imply the equations of motion for the superfields
involved. Below we will show how this property comes about in the harmonic superfield
formalism.

We introduce now the harmonics ufj which parametrize the second SU(2) automor-
phism group acting on the indices A and have the same properties as u . Note, in partic-
ular, the identities

uj’AuA% =1, uj&ul—; - uzug = €AB . (6.6)

Respectively, we extend the N' = (1,0) harmonic superspace (3.12) to the N' = (1,1)
harmonic superspace

Z = (@08, uf) = Z = (208,00, ui uF). (6.7)

YV YV a)

The analytic basis of this extended harmonic superspace is defined as the set of coordinates

Zian) = (@ (an),eia,eg,u,f,uj:) (6.8)
where Hgt = égluﬁ and
2y =™+ 5 Liptagb _ gtogoy 4 %ﬂbcdeje; . (6.9)

Next we define the harmonic projection ¢++ = qﬁ’A fg. It is clear from (6.5) and
from the fact that ¢*F does not depend on u; and u, that ¢+ satisfies the constraints

v+ ¢++ va+¢++ 8++ ¢++ 8++¢++ =0 (6. 10)
where

Vi =Viu

CLZ’

: A : .0 i 4 O

ta _ ©aA, F i F+_F4A
V™ =V*"uy, 07" =u =t 0" =u GA (6.11)
The spinor covariant derivatives obviously commute with 9+ and 8++. The full set of
defining (anti)commutators of the gauge N'= (1,1),6D theory in the central basis of the
considered bi-harmonic superspace are

(Vi Vit ={vi, v} =o, (6.12)
{(VE, v} = oot (6.13)
[a++ vﬂ [a++ v+] [8++ VaJr] [a++ vaJr] 0. (6.14)

— 26 —



Note that, having defined this set, we do not longer need to assume in advance that the
+ and + components of the spinor derivatives are as in (6.11). It is the relations (6.14)
which force them to be linear in harmonics. Thus, the extended set of constraints (6.12)—
(6.14) is fully equivalent to the original constraints (6.3), (6.4) without any additional
assumptions. The constraints (6.10) naturally arise as a consequence of Bianchi identities
for (6.12)—(6.14).

6.2 From the central basis to the analytic basis

As usual in the harmonic superspace approach, at the next steps we should pass to the
analytic basis in order to solve the above constraints in terms of the appropriate analytic
superfield prepotentials and, in particular, to find the explicit form of the basic superfield
strength ¢+j“. Due to the relation (6.13), the analyticities associated with the harmonic
sets uli and uf‘ cannot be made manifest simultaneously. In what follows, we will choose
the basis in which the spinor derivative V1 is short, V™ = 0/ 89; , so that the “hat”
analyticity is manifest.

Consider first the abelian case, which is much simpler. Our task is to find a field
¢+% that satisfies the constraints (6.10). In the abelian case, the field ¢jr+ does not
carry a charge with respect to the gauge U(1) group, and, as a result, the constraints
Vigtt = VHagtt = 0 amount to D¢+ = DT = 0 with flat spinor derivatives.
The anticommutator {Df{,Djrb} vanishes, so these derivatives can be made “short” by
passing to the double analytic basis, where D} = 8/90~* and D} = /06, . On the
contrary, the harmonic derivatives in this basis are lengthened:

0

a9’
D = gt 4 ighgFaen 4ot O (6.15)

a

DTt = ot+ + i9+a9+bac(;n) + pta

It is not difficult now to resolve the abelian constraints (6.10). The solution reads

¢++ — 90+—P _ 0+a,¢j- _ Qi_A—HI + 164—6+bFab _ Z~6+a9+baab(p—-¥-

6(1
— 0765 0%t 4 00T DN + 600 0 0Py
— 070,000 ,0 . (6.16)

Here, the fermionic fields satisfy the Dirac equations OgpA\* = 0%, = 0, the scalar field
satisfies Oy = 0 and F% = (eMV)4 Fy;y. We see that the superfield ot satisfying
our constraints automatically satisfies also the equations of motion, i.e. it is an on-shell
superfield.

For sure, this should not come as a surprise. The same is true for the free hypermul-
tiplet superfield ¢* in the usual N' = (1,0) superspace. In the abelian case, this superfield
satisfies the constraints DT¢"™ = DTT¢" = 0. Its component expansion in the analytic
basis is given by (4.13), with scalar and fermionic fields satisfying the free equations of
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motion. The component expansion (6.16) of the free superfield gi)"H‘ represents an obvious
generalization of (4.13).12

Now we come back to the general non-abelian case. Consider the constraint
{Vte vty = 0. Its generic solution is

vte — eiVD-T-ae—iV7 (6.17)

where V' is a general bi-harmonic superfield (often called bridge). It is convenient now to
perform the similarity transformation

v-f-a N D—T—a7 ¢+—¥- BN e—dib—i-—;-eiV’ v;— N e—in[-l-eiV (618)

and define
VH = e VgttelV — gt L v vt = eiVatteV — gt 1 Vﬁr% (6.19)
V= eV (e v iV (aﬁr%eiv> ' (6.20)

The transformed spinor derivatives still satisfy the algebra (6.12)-(6.14) and commute with
the transformed harmonic derivatives (which involve now nontrivial harmonic connections
V++ and V;Ljr). As was anticipated, to resolve the constraints, we go to the “hat-analytic”
basis,'3 where DT = 9/86~% and 8 goes over to D™+ defined in (6.15).

In the next section we will solve the system of constraints

v;—gb-‘r-i— — Da-?—qb-i--?— — v++¢+4— _ V-F-?-qb-i--?— =0, (6.21)

with the spinor and harmonic covariant derivatives given in the analytic basis and frame
and satisfying the algebra

6.22
6.23
6.24
6.25

VI,V = {7 D¥) =0,

{v+ D+b} _ 6b¢++

[V++ V+] [V—H- v+] [V—H- Da-i—] [V-H- Da—i-] 0,
[V++, V++] =0,

~—~~ o~
~— ~— ~— ~—

which directly follows from the constraints (6.12)—(6.14) written in the central basis.
One can now verify that an explicit solution of the system of equations (6.22)—(6.25) is

Vi =D —0i¢t +0, ¢, (6.26)

A A PO 1 1 A A A A ~ ~
Vvt = 195{9;_ Aab 3 abcd9+9+9+ D+ —— 86ab0d9(j02_0j0; [q+*7q**] (627)

121¢ is also possible to define the off-shell harmonic N = (1,0) superfield ¢" whose expansion into har-
monics gives an infinite number of degrees of freedom. For the superfield ¢+jr, this seems to be impossible.

3By performing the similarity transformation and going to this basis, we can get rid only of one of the
spinor connections, which we have chosen to be Ate, Alternatively, one could suppress A;" .
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and
A A ~ PN ~ 1 A A A ~ ~
O =t O 00V g+ e 0,0 (Dt

R T} (6.28)
Here the objects ¢*+ = q*Aufj and ¢t4, A% Wte as well as VT entering the covariant
derivative V1, are the N' = (1,0) superfields discussed in the previous sections. For
self-consistency, they should satisfy their equations of motion, e.g., Vtt¢™ = 0. In
the next section, we will present an accurate derivation of this solution from the set of
constraints (6.22)—(6.25) and show thereby that the solution (6.26)-(6.28) is unique. We
will also derive the variations of the on-shell superfields ¢+ and V" under the N = (0,1)
supersymmetry transformations and demonstrate that the particular representation (6.27)
for the gauge superfield Vv in (6.27) is none other than the appropriate Wess-Zumino
gauge choice for it.

In the abelian case, the commutators vanish, the covariant derivative V is replaced
by the ordinary one, and the superfield (6.28) is reduced to the abelian superfield (6.16)
(A being the lowest component of W*%). Note that the non-abelian expression for gb*jr
does not enjoy anymore the symmetry under interchange 6 < 6. That is due to our choice
to work in the frame, where the hatted spin connection vanishes.

To close this section, we write the variations of the superfields (6.27), (6.28) under the
N = (0, 1) supertransformations, just anticipating their derivation in the next section:

SV = _eja(;vﬂ — 2ie, 60" ¢t + VAL, (6.29)
5¢+_{_ _ _Ej—(‘;?o_P¢+—T_ . Qieiel—}—aab¢+4— _ [A(Comp)7 ¢+4—] , (630)

a

where the field-dependent compensating gauge parameter A(€°™P) is given by the expression
~ A 1 A~ A A ~
Aleomp) — (e=Bgby 4 24, 0, A% — Qeabcdegeljejqu"
1 B N
+ geab“lea 0,007 ,q ). (6.31)

The first two terms in (6.30) and (6.29) are induced by the supersymmetric variations
of Gj and . The third term is an extra gauge transformation needed to preserve the
Wess-Zumino form of the superfield vV after the supersymmetry transformation. It
is worth pointing out that the simple form (6.30) and (6.29) of the hidden N' = (0, 1)
transformations is obtained, provided that the involved N' = (1, 0) superfields are subject to
their equations of motion. At the same time, under the manifest N' = (1,0) supersymmetry
the expressions (6.28) and (6.27) behave as the standard off-shell A/ = (1,0) harmonic
superfields.

In fact, the transformations (6.30) and (6.29) can be derived directly from the on-shell
transformation laws (4.28)—(4.31) of the involved N = (1, 0) superfields, using the identities
listed in appendix A.
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7 Solving the N' = (1,1) SYM constraints in terms of N = (1,0) super-
fields

In this section, we solve the constraints in the analytic basis and frame and show that their
general solution is given by egs. (6.26), (6.27), (6.28).

7.1 Input and gauge-fixing

We start with the whole set of constraints (6.12)—(6.14) written in a more detailed form,

() {VS, Vi } =0, (b) {DT*, D} =0, (¢) {V, D™} = ahot™, (7.1)
(a) [v++ vﬂ =0, (b) [V, Vi]=0,(c) VI, D=0, (d) [V, D] =0, (7.2)
v v =o. (7.3)

Here
Vi=Df+ A (2), (7.4)

and the “hatted” spinor derivatives were chosen to be short, vte = pte = 0/ 605 14 Thus,
in the chosen basis, the “hatted” G-analyticity is manifest!® and the constraints (7.2c)
and (7. 2d) imply that both harmonic gauge connections in the harmonic derivatives \Vans
and V*++ are independent of the coordinates 0,

vt = DTt 4+ V—H—(é)’ vt = ptt 4 V'H'(é), (7.5)

where ¢ = (2% | n),Hia o, uf, ui‘:) In what follows, we omit the index “(an)” for the
analytic coordinate . We use the notation V™' in order to distinguish this harmonic
derivative acting in the full N' = (1,1) superspace from its N' = (1,0) counterpart.

At this step, both harmonic connections are arbitrary functions of the hatted ana-
Iytic coordinates 6 and the harmonics ui as well as of the full set of the N' = (1,0)
harmonic superspace coordinates. They are transformed with the hat-analytic superfield
parameter A(():

sVt = vHA(0). (7.7)

The constraints (7.2c) and (7.2d) imply no other consequences.

As the next steps, we wish to show that the dependence of the harmonic connections
vV and V1 on the coordinates 67 ,uﬁ can be drastically simplified (i) by choosing the
Wess-Zumino- type gauge for V7 and (ii) by exploiting the constraint (7.3) for V" (see
the next subsection).

40One can always get rid of the spinor connection A in the covariant derivatives V‘L“, capitalizing on
their anticommutativity in any basis and frame.

'5In the general non-abelian case, one cannot make simultaneously manifest both the hatted and unhatted
G-analyticities because of the non-vanishing anticommutator (7.1c).
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It is straightforward to see that the gauge freedom associated with the superfield
transformation parameter A(¢) can be partially fixed by putting V™ in the “short” form,'6

VI =il 0 A% w3 es 1 uTAD 2 or = piluy, D2 =DWBy ug,  (7.8)

where fl“b, 4,0&4 and DAE) are some N = (1,0) harmonic superfields, still arbitrary at this
step. While passing to (7.8), the (Gj,ui) dependence of A({) was fully used up, so the
residual gauge freedom is associated with the gauge function Aint(x,uf[, 67, A — Agne.
Note that this gauge parameter still depends on #~%. Now we are going to show that this
dependence can be fixed by a further gauge choice.

To this end, we need to inspect the structure of the spinor derivative V" = D} + AT.
First of all, the Bianchi identities, following from the full set (7.1), imply the G-analyticity
conditions for ¢+,

(a) DTt =0,  (b) Viett =0. (7.9)

Postponing the discussion of the condition (7.9b) to the next subsection, we focus here on
the constraint (7.9a). Due to the “shortness” of Djr“, it implies that gb‘*"Tr does not depend
on 9; . In addition, this constraint together with (7.1c¢) uniquely fixes the spinor connection
At to be

Af = A+ 0,07, (7.10)

where
Ab = £+ 0] frt ool it pwtdd s gt (7.11)

The component superfields in this expansion depend on both the N' = (1,0) coordinates

+ +

(including the harmonics u;~) and the extra harmonics u7y.

One of the consequences of the constraint (7.1a) is
Dy fyf +Df fa + {15 1) =0, (7.12)

whence fbJr = eﬁ’(D;r e~™), where ¥ is an additional “bridge” which does not depend on
Gj (because f; does not). Using this bridge, we can pass to the frame where fbJr =0 and
the residual gauge group is represented by the standard analytic superfield parameter A(()
of the N = (1,0) gauge theory. Indeed, the residual gauge transformations preserving the
condition f; = 0 commute with D, whence Df A = 0.

Hereafter, we will use the spinor connection A} in the form (7.10), (7.11) with the
condition

=0, (7.13)

and the following 9[} expansions for the hat-analytic superfields ¢+ and V*+,

¢++ — q+-¥- _ ij—i-a + ej-egrﬁ-l-;ab + 1114'3‘1(}3;; + \I,-P4G+L3 7 (714)

Vvt —ytt 4 9j’U++;a + 0j0§v++;;ab + \I,$3dv;+13 4 gyt (7.15)

6For further convenience, we use the abbreviations U3¢ := sadeG,i'@jé)j', = E“deHJ'G;r@j'H;. The
identities 0 0, 07 = Leacal™®?, 05070507 = Leaea?™, 65T = —1500H hold.
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In (7.14), (7.15) we introduced the notation g™, W*% and V**, having in mind that
these quantities will be finally identified with the A = (1,0) superfields considered before.
However, at the present stage, all the coefficients in the expansions (7.14), (7.15) are still

generic NV = (1,0) superfields involving an extra dependence on the harmonics uj.

Now we are ready to explore all the consequences of the constraints (7.1)—(7.3).

7.2 Harmonic equations

We start by showing that V++ does not actually depend on the coordinates Hj and ui:, if
fixing the gauge as in (7.8). This follows from the constraint (7.3), which amounts to the
mixed “harmonic flatness” condition

DTy ptipt Lttt it =0, (7.16)

Substituting the WZ expression (7.8) for V++ and equating to zero the coefficients in the
-

a

expansion of the Lh.s. of (7.16), we find the set of equations

oVt =0, ottuttTa=o, (7.17)

gty tt——ab _ Zv(erJrAab —9ytty =0, (7.18)
8J;jrvj+;3 - V++gajj4uj =0, (7.19)
oyttt V++DABuju; =0. (7.20)

Egs. (7.17) imply the independence of V™ of the harmonics ui: and, bearing in mind the
Lemma (3.43), also the condition )
vt =0. (7.21)

Already at this step we can identify V1 with the familiar from the previous sections har-
monic N = (1,0) gauge potential, since the Gai - independent part of the constraint (7.2b)
is equivalent to the N = (1,0) G-analyticity condition, (7.2b) — DFV*+ = 0.

Eq. (7.18) is equivalent to two separate equations, the one for v**iiab, which implies

ptt=ab =g (7.22)
and another independent condition arising in the zero order in ui,
VHHA® _ gaby+t — . (7.23)
Analogously, the remaining equations (7.19) and (7.20) imply
vt =ttt 2, (7.24)
as well as
Vtted =0, vHDAB =9, (7.25)
Thus, we derived that
vttt =yt vt =vtt, (7.26)
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We have also obtained the harmonic constraints (7.23) and (7.25). Note that (7.23) is
equivalent to the vanishing of the commutator

[V, v =0, Vv .=9% 4 4%, (7.27)

The constraint (7.3) has thereby been fully used and solved.

Our next task is to further fix the spinor connection (7.10). It involves the superfield
¢+ﬁr. Consider it in more details. Besides the G-analyticity conditions (7.9), it satisfies
the harmonic constraints

(a) VItett =0, (b)) VHett =o, (7.28)

which also come out as the Bianchi identities [they are derived by commuting both sides
of (7.1c) with V*+ and VTt = V*+ and taking into account the constraints (7.2)].
Eq. (7.28a) amounts to the following set of equations for the N' = (1,0) components
in the expansion (7.14):

a-;—-?—q'i"i' =0 = q""'i' = q+Aufg7 (729)
OTF BT L ivetgtt =0 = g = =iVt gt = gty (7.30)
G oy a ) + %%bc@“bW*C =0, (7.31)

S 1 SN - - RN S
ottGt3 4 ﬂgabch“bVquJr_ +[D7% ¢t + 1{80(:» Wty =0, (7.32)

where V% = 8f‘b + A%, Eqgs. (7.31) and (7.32) amount to the equations for defining the
superfields GJ*Q, G773 and to the additional self-consistency conditions which appear in

the zero order in harmonics ui

EdabeV W T — 3ilpga, 4] = 0, (7.33)
abed VOV G 1 6{pd, W} —16[DAB ¢f] = 0. (7.34)

These self-consistency conditions can be shown to be satisfied on the final solution of the
constraints. The harmonic equations for G:lr_Q and G173 uniquely fix these superfields as

- AB) - - A 1.«
Gzlr 2= G;_( B)UAUB7 G;_( B) = _5[902 aq+B)] )
- - 1
G+—3 _ G+(ABC)UIZU§U6, G+(ABC) — f,[’D(AB’ q+c)] . (7‘35)

3

When deducing these solutions, we made use of the reduction relations

P | 2o oo 1 - -
ujguB = u&ug) + §5AB , U uBuJ(S = u(AuBuJCC) + g(scAuB +ecpuy) .
Eq. (7.28a) also implies -
ortwte =0, (7.36)

which means independence of W% of the hatted harmonics.
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Thus, we have fully fixed the ufg, u; dependence in the o+ expansion (7.14) of d)*jr. At
this stage, it is instructive to write ¢™ in the form which takes into account the explicit
solutions given above,

P P 7 e S N s
ot = q*Auj —gFwte — zﬁjﬁljvaqurAuA — E\Iﬁ‘gd[goj?, q*B]uAuB
1

3\1144 DB, ¢+l uguy . (7.37)

Now we are ready to explore the conditions imposed by the second harmonic con-
straint (7.28b). It implies

v++q+% —0, VHtwte =, v++@abq+i —0, V**G:(AB) _ yttGt(ABO) _
(7.38)
The first of these equations is recognized as the equation of motion for the hypermultiplet,
so already at this step we can identify ¢™4 with the A" = (1,0) hypermultiplet superfield
of the previous sections. Its analyticity follows from the G-analyticity condition (7.9b)
(see below). The second constraint coincides with (3.38). The third harmonic equation
in (7.38) is satisfied as a consequence of the first one and (7.27). The last two equations
are satisfied as a consequence of the first equation and the constraints (7.23) and (7.25).
Now we can come back to the problem of the ultimate fixing of the spinor connection
Af. This fixing is accomplished by the constraint (7.2a). Like in the case of V** and
the constraint (7.3), eq. (7.2a) eliminates all the negatively charged components in the
expansion (7.11) [with the condition (7.13)], except for the first term f;F?,

fEe o g =gt — o, (7.39)

whereas fF 70 is fixed as
[T = oyt (7.40)

Simultaneously we obtain a few differential conditions relating the A" = (1,0) components
of 1T to those of V™ defined in (7.8). These are as follows:

D Abe = %(521/1/“ - 5;W+b) , (7.41)
1 S be 42
Diog = geameV"q" - (7.42)
3
DyDA% - S[pld g ] = 0. (7.43)

Like in the previous cases, these extra equations are self-consistency conditions which are
identically satisfied for the general solution of all constraints. As we will see, eq. (7.41)
plays the especially important role, giving rise to the expression of W12 in terms of the
N = (1,0) analytic potential V.

The final form for the spinor connection A; that takes into account the solutions (7.39),
(7.40) is
A = =g uy + 0,07 (7.44)

a
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It remains to work out the conditions following from the G-analyticity constraint (7.9b).
Using the explicit expressions (7.44), (7.37), we find that (7.9b) amounts to the following
set of equations:

Dfg™ =0, DIW'=dlg",q"] = 5b[ Akl (T45)
Dvelt - 3 (gt W 6l W) <o, (7.46)
(DF o, a )] + %5adc flat A vt =0, (7.47)
[DFDUE, ¢+ 4 2[4, [, 7O = 0. (7.45)

The first equation in (7.45) provides the standard analyticity condition for the hypermul-
tiplet ¢t4, while the second equation is going to become the equation of motion for the
N = (1,0) analytic potential V™T. The remaining equations prove to be satisfied as a
consequence of the basic equations of motion.

At last, it is straightforward to check that the constraint (7.1a) does not result in any
new restrictions and is identically satisfied as a consequence of G-analyticity of q*i and
the condition (7.9b).

Let us discuss the peculiarities of the realization of the hidden supersymmetry in the
considered frame. As usual, to preserve the Wess-Zumino gauge (7.8), one needs to make a
compensating gauge transformation. The appropriate gauge parameter is easily found to be

Ag(lf())mp) 9+Aab 3 abcd 79+6

Besides this, one needs to preserve the “short” form of the spinor connection (7.44). The

4
) Qod 3 abcd 79+0+9+D 2 (749)

appropriate compensating gauge parameter is

A = A (7.50)
such that the total compensating gauge parameter is
comp) __ A (comp) (comp)

Aleomp) — AIR) 4 TP (7.51)

Correspondingly, the hidden supersymmetry transformations of v+t and AT are
SV = —ejaiv** — e, 6, 0V 4 v pcomp) (7.52)

Oa
+ _ O 4 20 4 St ach g1+ + A (comp)
0AT = —eb i €, —=As — 2ie, 0,07 A; + VAP (7.53)
80+ a0,

Note that AE;‘;mp) does not contribute to (7.52).

Since all superfields should undergo the same compensating gauge transformation un-
der the hidden supersymmetry, one can wonder what happens in the case of V1. Its
transformation law looks as

6V++ _ _27:6;0;—8(15‘/-%-&- + v-‘r'i‘A(ComP) (754)

and seemingly contradicts the fact that V™ should not depend on the hatted coordinates.
However, let us look at V*++A(™P) Using the constraints (7.25) and (7.23), we find

VIFALmD) = 2ie, 70"V 4 V(e Agh).
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The first term cancels the unwanted term in (7.54), while the second term, with taking
into account the on-shell condition V*t+¢t4 = 0, yields the already known transformation
law of VT under the hidden supersymmetry,

SV =gt (7.55)

In a similar way, by considering the transformation of the superfield qb+j“ under the
hatted supersymmetry, one can derive the hidden supersymmetry transformations of its
N = (1,0) superfield components g*4 and W*e,

At this stage, we succeeded to express all the involved geometric quantities of the N =
(1,1) gauge theory in terms of the N' = (1,0) superfields appearing in the o+ expansion of
VT in the WZ gauge (7.8): the hypermultiplet ¢*# and the A" = (1,0) superfield W+,
which is going to become the covariant N = (1,0) superfield strength considered in the
previous sections. It remains to relate the superfields in (7.8) to the known N = (1,0)
superfields in a pure algebraic way, without solving various differential conditions deduced
above. This can be achieved by requiring for the vector superfield connections derived in
the hatted and unhatted sectors to coincide (our superspace involves hatted and unhatted

odd coordinates, but only one set of bosonic coordinates z).

7.3 Identifying vector connections

Let us now proceed to the vector connections.

We consider first the unhatted sector. Since VI includes 96%, its counterpart V, should
also include now such a dependence,!” and the same concerns the full V" = (1, 1) superfield
vector connection. We define V in the standard way:

Ve =Dy +A; =V Vi, A=A O —0fq +0,v ot (7.56)

where
V7~ =D " +V (7.57)

V™=~ is the same as in the previous sections [it is constructed from V*+ by the harmonic
zero curvature equation (3.25)] and A, © _ —D}V 7. The relevant full superfield vector
connection is defined in the standard way:

(ViV} =260+ V). Vo= o (VEAy + Dy AD). (7.58)
Vap = Aap + %(HjD‘jq_L F OV T =0, DIVt — 0,V gt
050 g )~ 050, [ VT + 00, [0 g
+0,0, 1671V 6 ), Aw= 5 DEAY. (7.59)

It has the restricted 0,1; dependence (only the terms of the first and second order in 9; ),
but includes all 8 monomials.

1t is thus not the same as Vj in (3.32). We have chosen, however, not to invent other notation and
hope that this will not lead to confusion.

— 36 —



On the other hand, one can perform an analogous construction for the derivatives with
hatted indices. We define the relevant second harmonic connection V'~ from the hatted
flatness relation

Dty DV L vt v =0 (7.60)
and then introduce the hatted spinor and vector connections as
[V**,DJF‘I] =V *=D"“*4+A4°% A =—-——V ", (7.61)
00,
. . R ) : o -
{DTe, v = 2i(8% + V), pob -1 0 0 s , (7.62)
200, 00,

where V.= =D~ + V™.
The calculation of V™7 is the most boring part of the whole story. We parametrize
the 6, expansion of V™~ as

VT = 0,60, v 4+ Wt w2 (7.63)

All coefficients here are hat-analytic N' = (1,0) superfields, the uﬁ and 67 dependence
of which will be strictly fixed by the corresponding hat-harmonic equations following
from (7.60). The possible terms of the zeroth and first orders in 9; can be shown to
vanish by the same mechanism as in the previous examples: their o+ expansions con-
tain only components with negatlve “hat” charges and these components are killed by the
equations like 97w ™ =0 — w™" = 0, following from (7.60).

The Ha expansion of the 1.h.s. of the constraint (7.60) contains the Grassmann mono-
mials of the first, second, third and fourth degrees. Equating the corresponding coefficients
to zero, we obtain the following set of equations:

21-9;}(}1&;@ _ ,Uba) _ abcd0+00 @d _ 4£abcd9;r9;}9:l}piz -0,

Ve — gjeabedgtyt w;rgjaab/lcd _ \I,+3d8ab<p; _gHghp 2 — g

Vit +40F0t2 =0,

Vitet2 =0.

To solve egs. (7.64)—(7.67), one expands the corresponding unknowns over Hj and then fix
the ui dependence of the coefficients by these equations. For instance, we write

Dt LN AT AL A (7.68)

and obtain from (7.67) the following equations and their solutions

6%%1){%? =0 = U?{S = v(AB)ujujg, (7.69)
ortete=0 = o=k, (7.70)
Ot 4 iVPru =0 = w = wft — iV Bufu, (7.71)
TR i ~ab, Fc
O g = sedabeV bote + g, vl =0, (7.72)
T, o ab, o Aoy L 2 da
AR TR ﬂeabcdv "w + D72, )~ ({ea, 0T} =0. (7.73)

— 37 —



Eq. (7.72) has the following solution,

- Z ~ab cA = 2
Uy = —Edabe VIV U, — g[@dAa

AP 1 @A Bo
6

5 =leg v }uzugug . (7.74)

Eq. (7.73) yields both the solution for v~2,

- 1 D
o2 = ({UB(AjDB)] o

1 A -o-
5abcdvabv(:d AD + = {(,0( dD)})uAuD

1 A A A A
- g[D(AB, UCD)]uZuguauE , (7.75)

and the additional self-consistency condition
i - 3
[DAB v ap] + geabcdvabwgd — 3 lean, v} =0. (7.76)

The remaining equations can be solved analogously. Instead of writing the analogs of
the equations (7.69)—(7.73), we will present their solutions, omitting various self-consistency
constraints which are identically satisfied on the final full solution.

We start with the equation (7.66). We have

v; = v( 0+ 0+vd + 6?%031);[&6] + 111%3%(;72 + \11441);3 . (7.77)

The solution is
U(j(r))d = vé‘Ui ; vy =vb, — 45ZU(AB)uju; , (7.78)
vy = [ 4 2(58004 — 85004 [ (7.79)
vdb2 = vé’;B)uju; , C%‘B) = —1{ (4 UB)} + igsdbcfﬁcfv(AB) , (7.80)
vd = U;ABC)ujugué , UEIABC) 2[ V4B, gpdc)] + ;[vc(l , DB (7.81)

One more important relation following from (7.66) is

) A 1
*EfbchCdv(J;a + E{QObD, Uf} =0. (7.82)

d
6oLbcalwg + 4

We now turn to (7.65). Once again, we expand
R N L s IR ALl L (7.83)

The solution is

[ab] [ab] ~3ab] * 4[ab]

Yoy =% v, =0T =0, (7.84)
’U;d[ab] — 3 dabchuA : Ui2[cd] [ab] _ —6ie cdab ABUAUB 7 (785)
sab[cfv(c)l]g = (@cdvgzbl _ g Acd)_ (7.86)
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An important consequence of (7.65) is also the relation

1 .
%o + [v([)ab}, 4] + §6abcfecdug [V“gv? — 2i(5?fug’4 — (5?1}6“4) =0. (7.87)

The most crucial is eq. (7.64). It gives

oot et g = _Loa U<AB>:§D<AB>. (7.88)

1
5 ¥
Now, substituting all this into (7.87), we can determine 1)8A,

WA = %@%g‘. (7.89)
Using (7.86) and (7.82), we can also express w([)ab} and vg, through the basic superfields
Alab] gof and DAB) | Thus, we obtain the full solution for V.
Now we are ready to explicitly construct the full superfield vector connection yab,
Using the definition (7.62), we obtain

Vb = ylatl 4 3ierbedg— ot 4 Giettlg 0 v T2 (7.90)

The crucial requirement now is that this connection is related to the connection V® in the
sector of “unhatted” spinor derivatives as

1 N
Vap = §6adeVCd. (7.91)

Comparing two expressions in the zeroth order in GC;, we immediately find

Aab _ %eabchcd’ 90: _ 7éDz—z‘_q_; , DAB é[q-‘r(A’ q—B)] , (792)
which, being substituted into the basic superfields V+ and ¢*+ (7.8), (7.37), precisely
reproduce the solution (6.27) and (6.28) that we have presented in the previous section.
Comparing the coefficients of the next terms of expansion in 9; in the equation (7.91) gives
relations that are identically satisfied, when taking into account the N = (1,0) equations
of motion and the G-analyticity conditions, and so does not produce new constraints.

Note that after the identification (7.92), the relation (7.41) becomes equivalent
to (3.34). It gives the expression (3.35) of W in terms of V.

8 On-shell N'= (1,1) supersymmetric actions

8.1 Invariant actions: d = 8

We can now use the techniques developed in section 6 and 7 to write down the actions
invariant under the extended N' = (1,1) on-shell supersymmetry. The original d = 4
action (4.14) is off-shell invariant. For d = 6, the invariants non-vanishing on shell are
absent. Dimension 8 is the first nontrivial case.
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Consider the density

,a+4 = —ﬂ/dc Z(gth)4, (8.1)
where the hatted analytic superspace measure d¢(-% is defined as d((-% = da(D™)* (in
contrast to d¢(=%, it does not involves d°z). Bearing in mind the property (7.9b),

Viott =Diett + AL 6" =0, (8:2)

where A} is given in (7.44), and the fact that the commutator term does not contribute
under the trace, we derive that the Lagrangian (8.1) is A/ = (1,0) analytic:

Dfctt

o= (8.3)

This analyticity holds only on shell since the constraint (7.9b) necessarily implies the second
equation of motion in (7.45).

It is easy to see that the integral (8.1) is shifted by a total derivative under the
N = (0,1) transformations (6.30). Indeed, the integrand transforms as

o [0 =~ Conlfe) ] -sigfo ey e

and hence
ety = —2i0 T [ alY (0167, 55)

The action
San /dC L (8.6)

is clearly invariant.

To express (8.1) in terms of NV = (1,0) superfields, we need to substitute there the
explicit expression (6.28) for df”L and to integrate over d¢(-¥da, using (3.22) (with the
capital SU(2) indices A, B, ... instead of 7, j, . ..). Doing this, we reproduce the result (5.34)
quoted above.

Though it is not at all seen in the expression (5.34), we expect that the Lagrangian
expressed in components is invariant under the permutation A <> .

The Lagrangian (5.34) represents a N' = (1, 1) generalization of the N' = (1,0) super-
symmetric single-trace Lagrangian (5.21) involving the vector supermultiplet. It is trivial
to generalize in a similar way the double-trace Lagrangian (5.24). It is sufficient to consider
the density

£ty = [T T (6, (8.7
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and perform the integrals over the hatted variables. The result is expressed in terms of the
N = (1,0) superfields as follows:

A 1
Ly = JEabed Tr (WHW) Tr (wew 4 2igHAveigy)

1 1
-5Tr (@™ V) Tr (¢ PVaaly) + 50" (¢ ¢ ) 0 Tr (¢1q5)
+ Tr (q+AW+a) Tr {D;’q;‘(q"')2 - 2iW+bean}

1 - a a
+§Tr(q+Aq+B)Tr{(q+)2 (600 a3y — V0 Vg - WD g, a5 (88)

Thus, the nontrivial on-shell d = 8 invariants exist. Still the perturbative expansion for
the amplitudes in the theory (4.14) does not involve divergences at the two-loop level. The
matter is that these invariants do not possess the full off-shell N'= (1,0) supersymmetry,
which the physically relevant counterterms should obey. Indeed, we have in our disposal
the off-shell N' = (1,0) harmonic superfield description, which implies the existence of the
gauge-covariant N' = (1,0) supergraph techniques, such that all the relevant counterterms
enjoy this off-shell symmetry.

8.1.1 Gauge non-invariant off-shell supersymmetric realization

Our remark is that one still can write an off-shell supersymmetric d = 8 action, if renounc-
ing the requirement of gauge invariance. The corresponding density reads

e Tr(s){ 1€abch+aw+bw+cw+d i 3lq+AVabq W+t — +Avabqj§ q—I—Bvaqu
~ W Dfqy, qfla™ et - ; [ abllan, aplaatP
+ (F** ;[QJFA’QZ]) (QZ-AabWJFaWer —OFtt A, A%
3¢tPV L a W+ 3¢ PV T T + (g, adla q+c> } : (8.9)

Indeed, it is not difficult to check that the expression (8.9) is G-analytic off mass shell. One
further notices that the density (8.9) coincides with (5.34) modulo the terms proportional
to the equations of motion. In other words, (8.9) represents the same counterterm as (5.34);
one expression is obtained from another by a field redefinition.

Consider now a deformation of the action (4.14) involving not the density (5.34), but
the gauge non-invariant off-shell supersymmetric density (8.9),

S =gV 4 f2 / dCCYLH 4 68, + ... (8.10)
To order f?, the standard gauge transformation of the complete action reads

88 = f12Tr(S) / ¢t [(F+++ %[ *A +]> (W*+ +2if O A(WHOW T — 2F++A“b))],
(8.11)
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which vanishes on shell, but not off shell. On the other hand, one can notice that the
action (8.10) is invariant under the modified gauge transformation

SV = VI = 20 [T (DA (WHW ™ = 2F A7) ) + O(f%), (8.12)
where T'(---) stands for the symmetrized product projected on the Lie algebra,
1
T(X1X2X3) = G TP Tr [TP(X1{X2, X3} + Xof X3, X1} + X3{X1, X2})] . (8.13)

with the generators T? normalized by Tr (TPT7) = 6P4.
This gauge transformation preserves the G-analyticity of V**. The algebra of the
modified gauge transformations closes,

(6(A1)8(As2) — 5(A2)5(A2)) VT = 6([A1, A))V T+ O(f5). (8.14)

The situation when the action representing an infinite series (8.10) is invariant under
the modified gauge transformations (8.12), which also are given by an infinite series, is
exactly the same as what happens for off-shell supersymmetry, when choosing the gauge-
invariant realization, cf. egs. (2.12), (2.13) and their discussion in section 2.

Alternatively, one can restore the standard realization of gauge transformations by
redefining the superfield V™" in such a way that

VI o VI 2ifAT (AW - P A AT ) 4 O(f). (8.15)
The modified V7 is not analytic anymore,
DIVt = [DF VI = — feppedT (WTHPW W) 4 O(f9). (8.16)

The nonzero commutator (8.16) is related to the non-zero curvature constraints derived

in [43] in the ordinary N' = (1,0) superspace formalism.

8.2 Invariant actions: d = 10

We again start with the invariants in the pure gauge sector.

One can write two different off-shell N = (1,0) supersymmetric and gauge invariant
Lagrangians of canonical dimension 10. One of them is known as the single-trace invariant;
the corresponding action reads

S0 — / AZ £apea Tr (WHOW bW ey =4y, (8.17)

Any d = 10 invariant with a different ordering of the covariant superfield strengths is
reduced to (8.17) by integrating by parts with respect to the harmonic derivatives [using
the relations (3.38)]. One can derive in this way the following convenient representation
for (8.17),

1
S 3 / dZeapeaTr ({WHe, WP {W e, w—i}). (8.18)
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This form of the d = 10 invariant implies, in particular, that all possible ¢™4-dependent
terms completing this off-shell A/ = (1,0) invariant to an on-shell N' = (1,1) invariant
should represent a trace of the product either of two anticommutators or of two commuta-
tors. Thus, they should vanish in the abelian limit together with the term (8.18).

There is also the double trace invariant,

S = / A7 €qpeq Tr (WHW ) Tr (WHew —4) . (8.19)

Its uniqueness can be as well proved via integrating by parts and taking advantage of the
relations (3.38). In the abelian limit, (8.19) vanishes by the same token as (8.17).

The difference of the invariants (8.17) and (8.19) from (5.21) and (5.24) is that the
harmonic charge of the integrand in the former is zero, and the integral now goes over
the whole superspace rather than its analytic subspace. This brings about two additional
powers of mass in the component Lagrangians. Another crucial difference is that (8.17)
and (8.19) are N' = (1,0) supersymmetric off shell, whereas (5.21) and (5.24) are super-
symmetric only on shell.

To construct the possible on-shell N' = (1, 1) completion of (8.17) and (8.19) one can
proceed in the spirit of section 5. Namely, one can add to these expressions all possible
N = (1,0) superfield invariants of dimension d = 10 with hypermultiplets and require the
sum to be invariant up to a total derivative under the N’ = (0, 1) transformations (4.28)—
(4.31) on the mass shell (4.17), (4.8). In section 5, we managed to carry out this program
for the single-trace d = 8 invariant, but, for d = 10, this turns out to be an extremely
difficult task. The calculations are much more simple, if using the on-shell N' = (1,1)
harmonic superspace formalism.

We introduce the superfield

A ~ ~ ~ A A A 1 A A A A ~
ot =V ett =gt —gtwe —igte vl + ggabcdeje,j 07 [Dja a7

OO0 T ) (8.20)
It satisfies the constraints,
Dir¢t=vipgt=v gt =vitpT =0, (8.21)
where o o
V,=D, -DIV—" —0f¢q +0 ¢ " (8.22)

[cf. (7.56)]. The superfield (8.20) appears in the anticommutator
{DF, v} =807, (8.23)

which can be obtained by applying V™~ to both sides of the constraint (7.1c).

In the full analogy with (6.30), the N’ = (0,1) variation of (8.20) is a combination
of a total space-time derivative, total 6 derivative and the commutator term. The latter
involves the same compensating superfield A“°™P as in (6.30).
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With the superfields ¢+—F and gi)_‘w‘ in hand, it is rather clear how to define the two
d =10 N = (1,1) invariant actions generalizing (8.17) and (8.19). They are:

S00 — 7y / 4ZdED ()26~ (8.24)

and
S0 = / AZdéEY Tr<¢++¢ )ﬂ(w%—*), (8.25)

where the minus sign in (8.25) was chosen for further convenience.

In contrast to (8.1), these invariants vanish in the abelian limit (in agreement with
the fact that (8.17) and (8.19) vanish in this limit). This property can be made manifest
for (8.24) by rewriting it as

R ol Ll et (Dt (8.26)

The single trace invariant can also be written as a full superspace integral

S0 T&r/dZdZ oTTe, o=V o T, (8.27)
To show this, we represent
L : : 1
dZ = dl=Y(DHE, (D)= —ﬂsadeD“Db*DC*Dd* (8.28)

and use the hat-analyticity of gb*jf and (b*jr, as well as the relations
Ddfr¢—i _ _vdi(b—ﬁr ’ Dcﬁdefrqj—i _ _%vcdd)—fr (8.29)
to bring (8.27) in the form
aé= Tr<¢++5ab Dot pHyedg- ) (8.30)
After that we rewrite V¢ through the unhatted covariant derivatives as

1 1 _
vl — igcdabvab, Va = Z{V:’ Vb } (8.31)
and then pull out the remaining two hatted derivatives Do+ Db to the right through the
anticommutator (8.31), using the constraint (7.1c¢) and its corollary (8.23). The result is

Jazm(o77o) = [alm (ot o e e ). )

On the other hand, the double trace invariant cannot be written as a full-superspace
integral and can be considered as a 1/4 BPS protected operator. This allows one to explain
the absence of the associated logarithmic divergence in the pure spinor formalism [22-24].
However, it is not yet sufficient to prove the non-renormalization theorem in the standard
quantum field theory framework. Eq. (8.25) is a full-superspace integral over NV = (1,0)
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harmonic superspace, and is ¢ priori allowed by the harmonic superspace Feynman rules.
One may anticipate nonetheless that the Ward identities for the non-linearly realized extra
supersymmetry would permit to rule it out as an allowed counterterm. The integrand
in (8.25) is invariant with respect to the transformations (4.15) modulo a total derivative
in N’ = (1,0) harmonic superspace and taking into account the equations of motion. The
variation of a total derivative with respect to (4.15) gives again a total derivative, and one
gets in this way a chain of co-forms associated to a given supersymmetry invariant (see
section 5.3 of [38]). One shows then in the framework of algebraic renormalization [20]
that the cohomology class associated to this chain of co-forms must be compatible with
the cohomology class associated to the classical (dimension 4) Lagrangian. In this way, one
would combine the constraints following from the A/ = (1, 0) harmonic superspace Feynman
rules and the constraints following from the full "= (1,1) on-shell supersymmetry of the
action in the framework of algebraic renormalization. One knows that neither of these
methods, taken separately, is powerful enough to explain the absence of the non-planar
divergence at three loops [21]. But we hope that, being combined in this way, they may
allow to prove the required non-renormalization theorem. We will not, however, investigate
this issue further in this paper.

Let us come back to the explicit form of the d = 10 invariants in the NV = (1,0)
harmonic superspace. It is rather straightforward to perform the integration over dé (=4)
in the invariant (8.26) and obtain its N' = (1, 0) superfield form.

The result of integration can be written as a sum of the three terms

&(10) (10) (10) (10)
S —/dZ<£(1) + L) + L0 ) (8.33)
where

10) 1 @ ti— P e Tr—b[—A oo

) = Eabed Tt ({W+ WP Wy — 2 (Wt Wb g A, Vel ]
1 a - Ci 1 a - Ci -
=5V PV + Ve )V gy, o)
— g™ VP ld7, Vqug]) : (8.34)

2 AN 1 I
£ = 2o (W=l (0 Va5l e D] ) o (539

1 _ _ _ _ _
£ = = {la™ ) (107 Lo Lo a3)) + 2007 a7 a0 0 )
— W, (D a5, a5l — AVPGE, V) ) |- (8.36)

While deriving (8.34)-(8.36), we essentially used the integration by parts and various on-
shell conditions like V=—¢~4 = 0 etc. Perhaps, these expressions can be further simplified
by integrating by parts and using some SU(2) Fierz identities. Anyway, it would be very
difficult to guess them entirely within the ' = (1,0) superfield formalism.

A good check of the correctness of (8.34)—(8.36) is the verification of the fact that the
variation of the first term in (8.34) under the hidden supersymmetry SWEe = —2iefvabqi
[see (4.29)] is canceled (modulo various terms vanishing on-shell) by the (W)3 part of the
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variation of the term ~ W2 in (8.33). The latter term is assembled from the pieces coming
from (8.34) and (8.35) and, after some algebra, is represented as

2iTr ([vabqj;, W W, q’A]) :

Its variation under dg=4 = eAW=% [see (4.28)] exactly cancels the variation of the first
term in (8.34).

The double-trace invariant (8.25) can also be straightforwardly cast into the N' = (1,0)
superfield form:

(10) 5(10) 5(10) 5(10)
S —/dZ<£(1) +LG) + L)), (8.37)

L6 = apea{ T (WHW ) Tr (WHW ) — T (WHW ) T (74077, |
+ Tr (™YY Tr (¢ PVaap) — éaabTr (a*q™P) 0 Tr (qlha)
L) = gTr (W) Te{q™? [DF ag, 03] — 3V W'Y,
ﬁ&?) = % Tr(¢™qP) Tr{ ™ acllals am)) = 2Va(y Vavap
+2[Dg 4y dp)] W+“}- (8.38)

As a good self-consistency check, one can verify that, in the abelian limit, the N' = (1,0)
superfield Lagrangian in (8.37) is indeed reduced to a total derivative. This check is
not trivial because not all terms in (8.38) contain (anti)commutators under the trace [in
contrast to (8.34)—(8.36)].

Finally, we want to point out once more that the actions (8.33) and (8.37) respect
the off-shell N' = (1,0) supersymmetry, being written in terms of the off-shell N' = (1,0)
superfields. They also respect the on-shell N' = (0,1) invariance because they admit
an equivalent representation as integrals over the A/ = (1,1) harmonic superspace and
its non-trivial subspaces supporting a linear realization of both N'= (1,0) and V' = (0, 1)
supersymmetries. The second supersymmetry becomes nonlinear, when is realized in terms
of the N' = (1,0) superfields. To avoid a possible confusion, we note that the N =
(1,1) form (8.24) and (8.25) of the d = 10 terms already enjoys the off-shell N' = (1,0)
supersymmetry. The equations of motion come into play, only when checking the N' = (0, 1)
invariance of these expressions.

9 Summary and outlook

In this paper, we applied the off-shell N = (1,0) and on-shell N' = (1,1) harmonic su-
perspace approaches for constructing higher-dimensional invariants in the six-dimensional
N = (1,0) SYM and N = (1,1) SYM theories. The ' = (1,1) SYM theory constraints
were solved in terms of N/ = (1,0) harmonic superfields. This allowed us to explicitly
construct the full set of the on-shell A/ = (1,1) supersymmetry invariants of canonical
dimensions 8 and 10 in A/ = (1,0) superspace. All possible d = 6, N' = (1,1) invariants
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were shown to vanish on shell, confirming the UV finiteness of N' = (1,1) SYM at one loop.
We have also shown that there are no d = 8 on-shell N' = (1, 1) supersymmetric invariants
which possess the full off-shell N' = (1,0) supersymmetry together with off-shell gauge
invariance. Assuming the use of a gauge-invariant regularization scheme for N' = (1,0)
supergraphs, this implies the absence of two-loop counterterms. On the other hand, the
on-shell N = (1,0) and N = (1, 1) supersymmetric d = 8 invariants exist. They are repre-
sented as the analytic harmonic ' = (1, 0) superspace integrals of densities which are both
analytic and gauge-invariant only on mass shell, i.e. assuming the equations of motion to
be satisfied. We show that one can enforce either off-shell analyticity or off-shell gauge
invariance of the relevant density, but not both of them simultaneously. Structures of this
kind appear in the derivative expansion of the supersymmetric Born-Infeld action.

Two d = 10 invariants were explicitly constructed as integrals over the whole N =
(1,0) harmonic superspace. The single-trace invariant can be rewritten as an integral over
the full A/ = (1,1) superspace, while the double-trace invariant cannot. This property,
being combined with an additional reasoning based on the algebraic renormalization ideas
adapted to the N’ = (1,0) harmonic superspace formalism, could potentially explain why
the double-trace invariant is UV protected. However, to prove this, we would need first
to compute the chain of A/ = (1,0) harmonic superspace co-forms associated to these two
invariants and possibly establish that the chain associated to the double-trace invariant is,
indeed, incompatible with the one of the classical action.

The N = (1,1) harmonic superspace is also useful to conveniently combine on-shell
particle states into a G-analytic superfield in momentum space. This provides an efficient
tool to apply the generalized unitary method to compute on-shell scattering amplitudes in
N =(1,1), 6D SYM theory [52] (see also [53] and references therein). It would be interest-
ing to clarify the relations between the Feynman rules in A/ = (1,0) harmonic superspace
and this generalized unitary method in momentum on-shell harmonic superspace.

We conclude by mentioning some other problems where our on-shell harmonic approach
could be applied.

It could be used, e.g., to construct the invariants of higher dimension d > 12 in the
N =(1,1), 6D SYM theory and to inspect whether some kind of the non-renormalization
theorems could be formulated there. The same methods could be applied for constructing
the Born-Infeld effective action for coincident D5-branes in type IIB string theory, with the
manifest N' = (1,0) off-shell and hidden A" = (0, 1) on-shell supersymmetries. It would be
also interesting to develop an analogous on-shell NV = 4, 4D harmonic superspace approach
for the N'= 4, 4D SYM theory in the off-shell N' = 2 superfield formulation and apply it to
the problem of constructing the relevant quantum effective action and proving its identity
with the appropriate D3-brane Born-Infeld action. An intriguing feature of such effective
actions is the presence of Chern-Simons (or Wess-Zumino) type terms of non-tensorial
character [54-56]. It would be interesting to see how such terms (and their possible 6D
counterparts) could be identified in the on-shell harmonic superspace approach.

The last (but not least) domain where the on-shell harmonic superspace methods could
help in selecting relevant counterterms and other higher-dimensional invariants is extended
supergravities in diverse dimensions.
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A Bianchi identities

Many important identities between the harmonic superfields in the pure gauge N = (1,0)
theory were derived and discussed in section 3. The Bianchi relations allow one to obtain
further interesting and useful identities.

When one includes the hypermultiplet superfields and imposes the on-shell con-
straints (4.8), (4.9), many other relations relevant to N/ = (1,1) SYM theory can also
be derived.

A.1 Off-shell relations

We first discuss the pure gauge theory off-shell relations. Taking the anticommutator of
D;" with the second of relation in (3.34), we find

1 _ _
[Vaba vcd] = Z (gacdfvb W+f + Ebcde;_W f) . (Al)

An important Bianchi identity is obtained from (A.1) by contracting its both sides
with €2 and using the fact that [V, Vq]e?“ = 0. One obtains

V, W =DFrw". (A.2)
Rewriting the identity (3.39) as
Dfwt = %53 Dfwe, (A.3)
acting on its both sides by V™~ and using (A.2), one also finds
DW=y v Wt = %53 VoWt = %53 Dfw~e. (A.4)

One of the corollaries of (A.1) is that its right-hand side is antisymmetric under the per-
mutations a <> b and ab <> cd, as its left-hand side is (the antisymmetry under ¢ < d is
manifest on both sides).

One more important Bianchi identity following from the basic (anti)commutation re-
lations can be derived by anticommuting both sides of (A.1) with D or V,,

. . .
VoW = —%DIV;W“’ - —%DJD;W*” & DIV W4 oV DIW = 0. (A5)

All other relations obtained in this way are identically satisfied as a consequence of (A.5)
and the identities derived above. By commuting (A.5) with V™7, one obtains an analogous
identity for W =4,

. . .
VW™ = IV, Vy W = 2V DIW™ & Vo DIW ™ 4 2DE VW =0, (A6)
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A.2 On-shell N = (1, 1) relations

The presence of the hypermultiplet does not affect the off-shell identities derived above.
But the on-shell identities are modified. For example, instead of D; W+ = 0, we obtain,
using (3.39),

Dywte = —%55 ™ a4 (A7)
Bearing in mind (A.7), one obtains
DIW™ = VoWt = =24, qf], VoWt =207, ¢4, (A-8)
VW = *%[V;q+c, ] = %[Diq‘c, a,
VW= 1D5aC a5 =~ Ve, ag). (A.9)

Starting from the evident identity
_ 1 - _
vabDj—q A:Z{D:’ Vb }qu A’

and repeatedly using (3.34) together with the on-shell relations (4.10), it is straightforward
to obtain the following cyclic on-shell identity,

. i - -
(vabDj + vcaD;r + vbcD(—;) q A= §5abcd <[W d7 q+A} - [W+da q A]) ) (AlO)

which, in virtue of the analyticity condition D} g™ = 0, also implies

_ _ _ l _ _
(Vabvc + Vcavb + Vbcva ) q+A = _§5abcd ([W da q+A] - [W+d7 q A]) . (All)

Some useful consequences of these identities are

VD gy = % (W2 ay] = W, gh]) (A.12)
D}V, = —% (W, ¢t] + 200+, 7)), (A.13)
VT =~ l0EW ] - 0t (WD) - Gl €] ) (A
VN ey = i[V;W“,qZ] - 352 <{W_f,D,qu} + % 44 [q_o,qEH> ., (Ad5)
VN eagy = {W ™, D gy} +% [k, e qc]) - % laa, [ ] (A.16)
Vg = (W D+ 3 o [ Cadl) — 5 [an, 04€ a8 (A7)
DIDfVYqy =i({W*, DF gy} — [af, e qd]] — 2 [aa, a7, 401 ), (A.18)
DV“Diq; = —%({W”’Diqz} +2[qn, [0 6kl - 2[aq, (679 00)]),  (A9)

where we took advantage of the on-shell relations (A.8). Note that (A.12), (A.16)
and (A.17) are none other than the covariant superfield form of the 6D Dirac and Klein-
Fock-Gordon equations for the physical fermionic and bosonic components of qjg.
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One more useful on-shell consequence of the Bianchi identities is the following cyclic
identity: .
VabW+c + vcaWer + vch+a — %Eabcdv;[ +A’ qj] (AQO)
from which one can derive

— a AwAL - 1 — a
VY W = [V W W) 4 2iveevy - (¢7)% + 5lla A g, wre). (A.21)

B In quest of an off-shell N' = (1,1) d = 6 invariant

We continue here the discussion of subsection 5.1 and study the symmetries of the higher
derivative actions of canonical dimension 6. A generic N' = (1,0) supersymmetric action
of this kind is a linear combination of the supergauge action (5.1) and the hypermultiplet
actions (4.11), (5.3) and (5.5). The question is whether one can define a specific linear
combination S which would be invariant off shell under the variations (4.15) of the
hidden A = (0, 1) supersymmetry.

Requiring the cancellation of the terms generated by the variations (4.15) in the first
order in ¢™ and using the formula

1 1
558 = 27 / dZ SV IH(VT)2FT = 27 / d¢ V(DY VT )RDN YT,

(B.1)
we deduce the following form for the candidate action
1 1
S(6) — 53T [ / d¢Y (FH)2 - / dZ ¢V g} — 3 / dZ ¢" A (V)2 g
g
+ Z anSn + /BSquart 9 (B2)

n>3
where o, and /3 are arbitrary coefficients; S,, and Squart Were defined in (5.3), (5.5). The
variation of the second line in (B.2) does not involve the linear in ¢ terms (this is obvious
for Squart and one can also show this to be true for all S,, with n > 3). These terms are
also canceled in the variation of the first line.
The variation of the first line in (B.2) can be represented as

5‘5’1&1?; line — TI‘/dC 3A]V++ )

- 292Tr/dc VDAV afllah 6P (B.3)
where
O = Plah, (VT + VT, Vg
+ [V 700V, g = 2[00V, Vg, (B.4)
or, in the equivalent form,
O = P, (V)2 = PV ) g5, Vg
H VT8V T g VIRV T8V T), VY. (B.5)

While calculating this variation, we took advantage of the general formula (3.28) for the
variation of V™.
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The second term in the variation (B.3) cancels the variation of the quartic term Squart
in S under a particular choice § = % that we adopt. Next, we note that the second
term in (B.2) can be rewritten as an integral over the analytic subspace,

Tr /ng*Aqu; = —Tr /dc(“)F**[q*A,qA]-

Then the first two terms in (B.2) together with the quartic term can be written as

1 iy (et Loga )
292Tr/dc( ><F +5la"ail) (B.6)
Note that the expression in the parentheses is nothing but the equation of motion for V*+
for the standard d = 4 action SV4" of eq. (4.14). Then the action S can be written as

2
: /dC(4) (F++ + 1[(1”‘7(1}}) - 1/dZ (V)QQMV**qI] . (BT

A —

2¢2 2 2

Similar to the first term in (B.7), the second term is also the product of two equivalent
forms of the equation of motion for ¢*4, egs. (4.8) and (4.9).

The total variation of (B.7) is given by the first term in the variation (B.3). It does not
seem to represent a total derivative. If adding the sum over S,, with nonzero coefficients,
the cubic in g terms in the variation are modified, and they would include the terms with
higher powers of harmonic derivatives. This does not seem to help.

Let us focus on the case of vanishing «v,. To check that the integrand in the variation of
such an action is not a total derivative and hence that (B.3) does not vanish, we can use the
following trick. If the integrand were a total derivative, the related “equation of motion”
obtained by varying (B.3) with respect to g+, treated as an unconstrained superfield
on the analytic harmonic superspace, should identically vanish. After some algebra, with
making use of the analyticity of ¢t4, we find that the variational derivative of (B.3) with
respect to ¢t is reduced to the expression

5(605%)

~ (D+)4Y_A ,
5qj

where
YA = AP (V)2 + 2(VT V), Vg
+2[6V 7, (L+{VTT, Vg™

- 5(5ZV+ ) ([q*B, VOV R 3V g, v**qE]). (B.8)
qa

It is easy to show that for the particular class of ¢t subjected to the dynamical equa-
tions (4.8) and (4.9), the variation 6oV~ is reduced to

S0V "| = AV, (B.9)

and
VA =4 BV gk, ¢ (B.10)

Then it immediately follows that (D1)*(Y4|) = 0 because of the analyticity of ¢4.
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However, we do not see any reason for (B.8) to vanish in the general case, when ¢*4
is not subject to any dynamical constraint. One of the arguments against the existence
of an off-shell N' = (1,1) supersymmetric d = 6 action is the following. In the d =
4 action (4.14), the extended supersymmetry implies among other things the symmetry
between the physical fermion of the gauge multiplet and the fermion of the hypermultiplet.
This symmetry is manifest when the action is expressed in components. On the other
hand, there is no such symmetry for the d = 6 action. It was shown in [41] that an
action S, in (5.3) involves an infinite number of physical propagating bosons and fermions
associated with the harmonic expansion of gt4. This cannot match with the gluino sector
that involves a finite number (=12) of the fermionic degrees of freedom for each value of
the color index.

C N = (1,0) on-shell d = 8 invariants

We give here the full list of the planar (single-trace) G-analytic d = 8 invariants'® involving
the gauge supermultiplet and the hypermultiplet and study their properties.

C.1 Most general analytic £74

A generic on-shell analytic d = 8 single-trace Lagrangian £ can be represented as a linear
combination of the following six terms,

5
LI =L+ L, (C.1)
i=1
where Lj* is given by (5.25) and
L = { VoIV 4 SV (g )2}[DZQ‘A,qﬁ]+(q+)4[Q‘A,qZ]}, (C2)

L;4 Ty q+AVaqu q—l—Bvab + q+AD+ [ +Bw+aq§ _ (q+)2w+a:|
+ (@M q e g af + (ah)! q“‘q;}7 (C.3)

1 _
L§'4 = Tr{q+AVabq+ vab *qu 2q+AquA [Q+BW+GQE - W (qu)Q]

+ %DI ¢ i [atPW gl — (¢t )P W]+ %(q+>4(q‘AqX —qqy)

+ é(q+)2 7 q P - q+BqB)qX}, (C.4)
LI4 _ Tl"{vabq vab +A + Diq ~44 [W—i-a (g+)? - q+BW+aq§]

— (g [a™ ¢ Bafal + (q+)2q*3q§]} (C.5)
L;_4 — Tr{vubq+B vabqg(q+)2 4 ;[ +A W+a] [D+QA7 ( +)2]

+ 5l Gl (7] (©6)

¥ The pure N = (1,0) SYM invariant (5.21) is G-analytic, and its N' = (1, 1) extension we are interested
in is also G-analytic.
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Here (¢*)? := q‘*‘qu = %[q+A, q}]. Tt is straightforward to check that each term in the
sum (C.1) is separately annihilated by D;{.

Taking into account that the analytic superspace integration measure is ~ dSxdu(D; )4,
one can integrate the above Lagrangians by parts not only with respect to V,, but also
with respect to V, and V~7. Using this opportunity and making use of the on-shell
relation (A.17), one can show that Lf4 is a total derivative on shell and establish the

following on-shell relations,
L*=rft, Lit= L3 - Lt (C.7)

We are left with only two independent Lagrangians, L5L4 and L;‘l. The representation (C.1)
is thus rewritten, modulo a total derivative, as

Lrh = Li* + asli* + azL3*. (C.8)

gen

C.2 Hidden N = (0, 1) supersymmetry

Now we can vary Ege‘fl with respect to the on-shell N = (0, 1) transformations (4.28)—(4.31)
in order to learn at which values of the free parameters «; it is invariant (up to a total
derivative). A general variation contains the terms not involving the superfield strengths
W+ as well as the terms of the first, second and third degrees in W*®. It is easy to check
that the cubic term ~ (W) in the variation comes only from L6r4 and represents a total
derivative. To explore the cancellation of the other terms [i.e. terms ~ (W)2, (W)! and
(W)9] in the variation of the generic Lagrangian (C.8) is not an easy problem.

Consider a symmetrized trace invariant (5.34), which, as we showed, is the on-shell

N = (1,1) invariant. It can be expressed via the structures (5.25), (C.2)—(C.6) as

£+4

1
Gy = L+ L - G (L3*+ Lf* — 403" +2L37). (C.9)

This corresponds to the following particular choice of the coefficients in the general for-

mula (C.1),
1 2 1

i i =, 1
67 a3 37 (0739 3 (C O)

Taking into account the on-shell equivalence relations (C.7), the invariant (C.9) can be

Ozl:l, Qg = 0y = —

cast, up to a total derivative and modulo equations of motion, in the simple form (C.8)
with ag =0, ag3 = 1:

4
Ly

We have explicitly checked the cancellation, up to a total derivative, of the quadratic terms
~ (W)? in the variation of this expression under (4.28)—(4.31).

=L§*+ LTt (C.11)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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