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1 Introduction

A very simple extension of the Standard Model (SM) that is not disfavoured by experimen-

tal data and could be visible in future experiments is provided by a new confining gauge

theory with fermions in a real representation of the SM. These scenarios, also known as

vector-like confinement [1], could be relevant for LHC phenomenology and dark matter [2].

Moreover, while they do not address the naturalness of the electro-weak scale in the stan-

dard way, they could play a role in alternative explanations of the electro-weak scale [3, 4].

The theories under consideration are described by the renormalizable lagrangian,

L = LSM +Ψ̄i(i /D−mi)Ψi−
1

4g2
H

GAµνG
Aµν +

θH
32π2

GAµνG̃
A
µν +[HΨ̄i(y

L
ijPL+yRijPR)Ψj +h.c.]

(1.1)

where the covariant derivative contains the SM gauge fields Aµ and new SU(N) fields Bµ.1

In this paper we will be interested in models where the quantum numbers of the fermions

allow for Yukawa interactions with the elementary Higgs doublet H. The dynamics of this

theory is well known from QCD. For sufficiently small number of flavors NF the SU(N)

interactions confine and the pattern of symmetry breaking is SU(NF )× SU(NF )/SU(NF )

delivering light pseudo-Goldstone bosons. Because the fermions are vectorial under the

SM the strong dynamics does not break the SM gauge symmetry dynamically, giving very

weak bounds on these type of models from present data. In particular, this class of theories

features automatic Minimal Flavor Violation avoiding all flavor bounds.

1We focus on SU(N) gauge theories with matter in the fundamental representation but all the results

can be generalised to other representations as well as SO(N) and Sp(N) gauge groups.
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The motivation of this work is two-fold: the addition of Yukawa couplings has a pro-

found impact on the phenomenology of these models that has not been considered in the

literature. Whenever the quantum numbers allow for Yukawa couplings there exists a com-

posite pion with equal quantum number as the Higgs, a “Kaon”. This doublet can and will

mix with the Higgs. The low energy theory is effectively described by a two Higgs dou-

blet model (2HDM) where electro-weak symmetry breaking is triggered by the elementary

Higgs and a vacuum expectation value (VEV) for the composite Higgs is induced by the

mixing. This resembles “bosonic technicolor” models (see [5] for a recent discussion), with

the crucial difference that the new sector in isolation does not break the electro-weak sym-

metry.2 Since the SM fermions couple to the elementary Higgs in the fundamental action

this effectively generates s 2HDM of type I. We call this the Half-composite Two Higgs

Doublet Model. Due to the mixing, the recently discovered Higgs particle is a mixture of

the elementary and composite doublets so that some deviations from SM predictions for

precision tests and Higgs couplings are predicted. Yukawa couplings also introduce new CP

violating phases in theory that leads to Electric-Dipole-Moments (EDMs) for SM particles

that could be the most promising signature of these models.

Secondly, theories such us (1.1) have also been considered recently in the context of

a cosmological relaxation of the electro-weak scale [3]. In this paper we explore a slight

modification of the scenario discussed in that paper with all the fermion masses smaller

than the confinement scale such that these fermions participate to the chiral dynamics.

This leads to a completely different phenomenology from [3] as the lightest particles are

now scalar bound states made of fermions, in particular the composite doublet. Moreover

the parameter space that allows to realize the relaxation of the electro-weak scale is different

allowing a compositeness scale around TeV, for example. This is compatible with present

searches and accessible to future experiments.

In what follows we work out in some detail the simplest model that allows for Yukawa

couplings, the L + N model: Dirac fermions belonging to the fundamental rep of SU(N)

with quantum numbers of a lepton doublet L and a singlet N under the SM. The strong

dynamics is identical to QCD with 3 flavors so that one can use the guidance of data to draw

quantitative conclusions. We will focus on the lightest states given by the pion octet. After

describing the relevant low energy lagrangian we connect to 2HDM providing estimates for

the electro-weak precision parameters and Higgs couplings. Particularly important are the

anomalies with SM gauge fields that control the decay of pion triplets and singlets similarly

to π0 → γγ. They also generate dipole interactions for SM particles, leading in particular

to significant effects for EDMs. In section 4 we study how the relaxation of the electro-

weak scale can be realised within the low energy effective lagrangian of our 2HDM. The

mechanism is identical to [3] but now a crucial role is played by the composite doublet

mixing with the elementary Higgs.

2The same theory was considered in the original work on the composite Higgs [6] where however the

elementary Higgs was used to generate the necessary vacuum of misalignment.
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2 Half-composite two Higgs doublet model

For concreteness we consider the L + N model also discussed in [2–4]. We emphasize

however that our arguments work in general whenever the quantum numbers of the vectorial

fermions allow for Yukawa couplings with the Higgs. We add to the SM a doublet L and

a singlet N in the fundamental representation of SU(N) plus their conjugates. The action

contains the mass terms,

LM = mLLL
c +mNNN

c + yHLN c + ỹH†LcN + h.c.

=
H

2

(
AΨ̄1Ψ2 −BΨ̄1γ5Ψ2 + h.c.

)
+mLΨ̄2Ψ2 +mN Ψ̄1Ψ1 (2.1)

where mL and mN are taken to be real and we assume that they are smaller than the

confinement scale of the theory. In the second line we introduced the Dirac notation

Ψ1 = (N, N̄ c)T and Ψ2 = (L, L̄c)T with A ≡ (y + ỹ∗) and B ≡ (y − ỹ∗).
The action contains one CP violating phase corresponding to the imaginary part of

mLmNy
∗ỹ∗. The renormalizable lagrangian (1.1) also contains the CP violating topological

θH -term of SU(N) gauge fields. As usual θH can be rotated to the fermion mass matrix by

means of a chiral transformation of the fermion fields. The appropriate rotation depends on

the masses, which we discuss in the appendix. For example for the hierarchy of scales mN �
mL it is convenient to eliminate θH with a chiral rotation on the singlet. This amounts to,

mN → mNe
iθH , ỹ → ỹeiθH (2.2)

In the opposite limit mL � mN instead,

mL → mLe
i
θH
2 , y → yei

θH
2 (2.3)

The dynamics of this theory is as in QCD. Below the confinement scale mρ a chiral

condensate forms that breaks the global symmetry SU(3)×SU(3)→ SU(3) producing eight

Goldstone bosons in the octet of SU(3). Under the SU(2)L × U(1)Y they decompose as

8 = 30 ⊕ 2±1/2 ⊕ 10. The pions, including the η′ associated to the anomalous U(1) axial

current of the SU(N) gauge theory, can be represented as,

Π =

 π0
3/
√

2 + η/
√

6 π+
3 K+

2

π−3 −π0
3/
√

2 + η/
√

6 K0
2

K−2 K̄0
2 −2η/

√
6

+
η′√

3
113. (2.4)

The chiral lagrangian including anomalies reads,

L =
f2
π

4
Tr[DµUD

µU †] + (gρf
3
πTr[MU ] + h.c) +

f2
π

16

a

N

[
ln(det U)− ln(det U †)

]2

− N

16π2fπ

∑
G1,G2

gG1gG2Tr[π
aT aF (G1)F̃ (G2)] +

3g2
2g

2
ρf

4
π

2(4π)2

∑
i=1...3

Tr[UT iU †T i] (2.5)

where,

M =

 mL 0 yh+

0 mL yh0

ỹh− ỹh0† mN

 and U ≡ ei
√

2Π/fπ (2.6)
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The covariant derivative takes the form DµU = ∂µU − iAµU + iUAµ where Aµ are the SM

gauge fields. The coupling scales as gρ ∼ 4π/
√
N and for N = 3 its value is around 7 from

QCD data. The cut-off of the chiral lagrangian can be taken to be the mass of the lightest

vector resonance that scales as mρ ∼ gρfπ corresponding to the mass of the lightest vector

resonance. The last term on the first line describes the effect of the U(1) axial anomaly of

SU(N) that reproduces the mass of the singlet η′, m2
η′ = 3a/N +O(M) and accounts for

the proper selection of the vacuum. This is important in the region of small fermion masses

where the vacuum is displaced from the origin. In what follows we will consider the region

with non-zero fermion masses where expansion around the origin is appropriate. On the sec-

ond line we have included the 1-loop gauge contribution (an analogous term arises from the

Yukawa couplings) and also schematically the effect of anomalies with SM gauge fields. The

full non-linear Wess-Zumino-Witten lagrangian will not be needed for the present analysis.

Expanding the potential in (2.5) to cubic order in the fields around Π = 0 we find:3

Lm = gρf
3
πTr[MU ] + h.c +

3g2
2g

2
ρf

4
π

2(4π)2

∑
i=1...3

Tr[UT iU †T i]

≈ Re[4mL + 2mN ]gρf
3
π +m2

K2
K†2K2 −

m2
π3

2
πa3π

a
3 −

m2
η

2
η2

+i
√

2gρf
2
πBK

†
2H −

gρ√
2
Afπ

(
K†2σ

aπa3 −
ηK†2√

3

)
H + h.c.

−gρ(Im(mL)−Im(mN ))η√
3

(
4f2
π−

2η2

9

)
− 2gρη√

3

(
K†2K2Im(mN )− 1

2
πa3π

a
3Im(mL)

)
+

2

3
gρ(2Im(mL) + Im(mN ))K†2σ

aK2π
a
3 + . . . (2.7)

where we have defined the elementary Higgs doublet H = (h+, h0)T the composite singlet

“η”, the composite “Kaon” doublet K2 = (K+
2 ,K

0
2 )T and the composite “Pion” triplet πa3 .

The pion mass parameters are given by,4

m2
π3 ≈

6g2
2g

2
ρ

(4π)2
f2
π + 4Re[mL]gρfπ (2.8)

m2
K2
≈

9g2
2g

2
ρ

4(4π)2
f2
π + 2Re[mL +mN ]gρfπ

m2
η ≈

4

3
Re[mL + 2mN ]gρfπ .

Scalars charged under the SM acquire a positive mass from gauge loops. The singlet mass

is only controlled by the elementary fermion masses and could be very small. In the limit

3Mass terms are in general complex when θH is different from zero. This generates a tadpole for η and

CP violating processes such as η → ππ. The tadpole for η can be eliminated by rephrasing the fields so that

Im[mL−mN ] = 0 which is equivalent to the Dashen’s equations for the vacuum discussed in the appendix.

For mN � mL this gives (2.2) and in the opposite limit (2.3).
4We neglect the loop contribution from Yukawa couplings discussed in appendix of [4] as we will assume

y, ỹ � 1 in what follows. For the gauge contribution rescaling the electromagnetic splitting of pions in

QCD we estimate ∆m2
g =

3(g2mρ)
2

(4π)2
J(J + 1) where J is the isospin of the multiplet.
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of massless fermions the Yukawa interactions induces a small mass [4],

m2
η ∼ |yỹ|

g2
ρf

2
π

m2
K2

v2 (2.9)

proportional to the Higgs VEV v = 246 GeV.

The strong sector lagrangian should be supplemented with the usual SM Higgs la-

grangian

L = |DµH|2 − λ(H†H)2 +m2H†H (2.10)

where the parameters must be chosen to reproduce the correct electro-weak vacuum and

Higgs mass.

The truncated lagrangian above can be used as long as the VEVs of the fields are much

smaller than fπ which will always be the case in the region of parameters space studied in

this paper.

3 Phenomenology

For mL,N < mρ, apart from the pseudo-Goldstone bosons, the spectrum of our L+N model

contains heavy mesonic and baryonic states. For the collider phenomenology of mesonic

spin-1 resonances in the framework of vector-like confinement we refer to [1]. Baryonic DM

candidates in the framework of vector-like confinement were studied in detail in the context

of composite Dark Matter [2]. In the regime of the L+N model under consideration, while

lightest baryons can be neutral, they cannot be the dominant DM component due to tree

level coupling to the Z; they should either decay through higher dimension operators or

provide a suppressed relic density. In other models the baryons could play the role of DM.

For example, the 5-flavors V + L model where we replace the singlet N with a triplet V ,

also allows for Yukawa couplings with the elementary Higgs and contains a baryon DM

candidate V V V transforming as a weak triplet [2].

We will focus here on the phenomenology associated to pions that are the lightest

particles beyond the SM. A lower bound on their mass exists due to gauge interactions

which are strictly positive. From eq. (2.8), the doublet acquires a mass of order mρ/10

that we take as the lower limit.

Most important for the phenomenology is the term K†2H on the second line of eq. (2.7)

that induces a mixing between the elementary and the composite Higgs,

K2 ≈ εH , ε ≡ i
√

2(y − ỹ∗)gρf
2
π

m2
K2

(3.1)

Due to this mixing the SM Higgs mass eigenstate has a component of the composite doublet

leading to modification of SM couplings and exotic decays of pions. Therefore, the model

interpolates between an elementary and a composite Higgs.

Note that ε could be greater than one with perturbative Yukawa couplings. In this

regime the electro-weak symmetry is mostly broken by the composite Higgs. In this paper

we will only study the small mixing region where experimental bounds are weaker. A

general study will appear elsewhere.
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From the lagrangian (2.7) we obtain the VEVs for the heavy partners,

〈K0
2 〉 =

√
2
iBgρf

2
π

m2
K2

〈h0〉 ≡ ε〈h0〉 (3.2)

〈π0
3〉 =

gρfπ〈h0〉√
2m2

π3

[
A〈K0∗

2 〉+A∗〈K0
2 〉
]

= −
4Im(yỹ)g2

ρf
3
π

m2
K2
m2
π3

〈h0〉2

〈η〉 =
〈π0

3〉√
3

m2
π3

m2
η

,

where the VEV for the neutral component of the elementary Higgs doublet 〈h0〉 is given by

〈h0〉2 =
m2 + |ε|2m2

K2

2λ
. (3.3)

3.1 Standard model couplings

Since the lighter Higgs doublet is a mixture of an elementary and a composite Higgs it inher-

its some properties of the scenarios where the Higgs is a composite pseudo-Goldstone boson.

In conventional composite Higgs models the effects of compositeness can be parametrized

in terms of effective operators [8] and the same can be done here. Let us first discuss

electro-weak precision tests. To obtain the new physics contribution to the effective action

for the light Higgs we need to dress the higher order terms for the composite pions with

the mixing. One finds,

T̂ ∼ v2

f2
π

|ε|4 , Ŝ ∼
m2
W

m2
ρ

|ε|2 (3.4)

The correction to T̂ originates from the fact that the strong dynamics does not respect

custodial symmetry and could be absent in other models. The effects are doubly suppressed

by the mixing and the compositeness scale. The experimental bound on T̂ and Ŝ are around

10−3 implying,

ε < 0.2×
√
fπ
v

or ε < 0.03× gρ
g2
× fπ

v
(3.5)

Concerning Higgs couplings, we have effectively a type-I two Higgs doublet model

with:5

〈K2〉 =

(
0

v2eiρ√
2

)
〈H〉 =

(
0
v1√

2

)
〈h0〉 =

v1√
2

v2e
iρ

√
2
≡ ε〈h0〉 tanβ =

v2

v1
= |ε|

(3.6)

and v2
1 + v2

2 = v2 = (246 GeV)2.

In order to identify the physical degrees of freedom, it is convenient to introduce

transformation:

H = cosβ Φ1 − sinβ Φ2 K2 = (sin β Φ1 + cosβ Φ2)eiρ (3.7)

5The mixing with the triplet is not relevant to leading order.
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which takes the two doublets (H and K2) to the eigenstates Φ1 and Φ2 such that 〈Φ0
1〉 = v

and 〈Φ0
2〉 = 0:

Φ1 =

(
G+

v+h1+iG0
√

2

)
Φ2 =

(
H+

h2+iA0√
2

)
(3.8)

where G± and G0 are Goldstone bosons eaten by W and Z. We have eliminated the phase

ρ from the quadratic lagrangian that will appear in the trilinear term K†2π3H leading to

CP violating effects.

For the spectrum of CP-even states h1,2 and CP-odd state A0 we obtain:

m2
A0

= m2
H± = m2

K2
(1 + |ε|2) , M2

0 =

(
m2
h −|ε|m2

h

−|ε|m2
h m2

K2

)
(3.9)

where m2
h = 2m2 = 2λv2. The mixing angle between the neutral states h1,2 is:

tan 2δ ≈ −
2|ε|m2

h

m2
h −m2

K2

(3.10)

and we identify the lightest mass eigenstate h̃1 with the discovered 125 GeV Higgs boson

while the h̃2 is the heavy CP-even scalar. The coupling of the Higgs to the SM vector

bosons V is (see [9] for a review):

h̃1V V

(hV V )SM
=

cos(β − δ)〈h0〉+ sin(β − δ)〈K0
2 〉

v
= cos δ ≈ 1−

|ε|2m4
h

2(m2
h −m2

K2
)2

(3.11)

while the coupling to the SM fermions is:

yf
v1√

2

(
1 +

h0

v1

)
f̄f = yf

v cosβ√
2

(
1 +

h̃1 cos(β − δ)
v cosβ

)
f̄f

=⇒ h̃1f̄f

(hf̄f)SM
= cos(β − δ) ≈ 1−

|ε|2(m2
K2
− 2m2

h)2

2(m2
h −m2

K2
)2

. (3.12)

There are also small effects from compositeness. These scale as v2/f2
π times three powers

of the mixing and are therefore negligible in the regime where the light Higgs is mostly

elementary.

Let us note that for small fermion masses the singlet η could be lighter than the Higgs.

Higher order terms in eq. (2.7) include interactions of the form m2
K/f

2
πη

2|K|2 that upon

mixing of K with the elementary Higgs allow the decay H → ηη. We estimate:

Γ[h→ ηη] ∼ 1

8π
|y − ỹ∗|4

m4
ρ

m4
K2

v2

mh
(3.13)

Comparing with the bound on the invisible width of the Higgs of around 10% we find,

|y − ỹ∗| . 0.1× mK2

mρ
(3.14)
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Figure 1. a) On the left, branching fractions of the neutral (solid) and charged (dashed) pion

triplets π0,±
3 in γγ, ZZ, Zγ, W±γ and W±Z. b) On the right, partonic production cross-section

of scalar triplets at 8 TeV and 13 TeV.

3.2 Collider constraints

The triplet π3 and the doublet K2 can be pair-produced through SM gauge interactions.

In addition their production can also be mediated by composite spin-1 resonances. We

will study in detail the collider phenomenology in a separate publication. We here only

consider the first production mechanism that is model independent.

The different pions multiplets have very different fate. Four pion states (π3, η) decay

promptly to a pair of the SM gauge bosons via a chiral anomaly:

Lπ3anomaly = −
g1g2NεαβµνB

αβWµν
j

16π2fπ
πi3 Tr[TiTjY ] =

g1g2N

64π2fπ
πa3W

a
µνB̃

µν

=
g1g2N

64π2fπ

[
π±3 W̃

∓µν(cos θWF
µν − sin θWZ

µν) (3.15)

+
1

2
sin 2θW (FµνF̃µν − ZµνZ̃µν)π0

3 + cos 2θWZ
µνF̃µνπ0

3

]
where we used the fact that the hypercharge generator is Y = −1

2Diag[1,1,0] for an L+N

model. For the η we obtain:

Lηanomaly = − N

64
√

3π2fπ
η
[
g2

2W̃
iµνW i

µν + g2
1B̃

µνBµν
]

= − Nη

64
√

3π2fπ(g2
2 +g2

1)

[
(g4

1 +g4
2)Z̃µνZµν+2g2

1g
2
2F̃

µνFµν+2g1g2(g2
2−g2

1)Z̃µνFµν

+g2
2(g2

1 + g2
2)W̃+µνW−µν

]
.

Since the singlet η does not have SM interactions at tree-level, its production is suppressed

and we concentrate on the phenomenology of the triplet π3. The branching fractions are

plotted in (left) figure 1 for the decay of the neutral and charged pion triplets π0,±
3 .

From the figure 1 the dominant decay mode for the charged state is π±3 →W±γ while

for the neutral one it is π0
3 → γγ. Therefore, the most interesting signal arises from the

s-channel production of the π±3 π
0
3 via intermediate W± with the subsequent decay into

– 8 –
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3γ + W± [11, 12]:

pp→W± → π±3 π
0
3 → 3γ + W± . (3.16)

An experimental bound on such decays can be extracted from the search for fermio-

phobic Higgs bosons in the 3γ + X final state by CDF experiment [13]. The exclusion

translates into upper bound on the production cross-section of fermiophobic Higgs σ .
3 fb at the 95 % C.L. Using the production cross-sections for π±3 π

0
3 at Tevatron computed

in [12], we extract a bound on the mass of the triplet mπ & 230 GeV. The same study has

not yet been performed by the LHC that would have a higher reach. Let us briefly discuss

the doublet K2 that is produced with cross-section similar to the triplet but can only decay

through the emission of the Higgs. This is due to the fact that K2 is made of fermions in

different representations under the SM so that it carries a “species number” [1] only bro-

ken by the Yukawa interactions. The four Kaons with species number K2 = (K±2 ,K
0
2 , K̄

0
2 )

decay with emission of Higgs: K2 → hπ3, and K2 → hη whichever is allowed by phase

space and quantum numbers. For example, neglecting h and η masses, we obtain:

ΓK2→hη =
|A|2

96π

m2
ρ

mK2

. (3.17)

This leads to final state with large multiplicities of particles.

3.3 Electron dipole moment

For complex Yukawa couplings the model contains a CP violating phase given by

Arg[mLmNy
∗ỹ∗]. In general new CP violating phases exist whenever the quantum numbers

allow for Yukawa couplings. These phases generate EDMs for the SM particles, the electron

and neutron in particular. In the weakly coupled regime this is completely analogous to

split supersymmetry [10], for the L+N model the Higgsino and the bino. When the masses

are above the confinement scale a weakly coupled computation is justified and the leading

effect arises from 2-loop Barr-Zee diagrams [14]. For the L+N model the contribution is

suppressed because there are no diagrams with photons in the loop.

We here give an estimate of the electron EDM using the low energy chiral lagrangian.

Since in the perturbative regime the EDM grows diminishing the masses of the fermions,

one expects the effect to be maximal when the fermions are lighter than the confinement

scale and this is indeed what we find. Upon diagonalization of the mixing between K2 and

H in (2.7), the relevant terms of the lagrangian read

LEDM = −
m2
π3

2
(πa3)2 −

m2
η

2
η2 +

4Im(yỹ)g2
ρf

3
π

m2
K2

(
H†σaHπa3 −

1√
3
ηH†H

)
+
g1g2N

64π2fπ
πa3W

a
µνB̃

µν − N

64
√

3π2fπ
η
[
g2

2W̃
iµνW i

µν + g2
1B̃

µνBµν
]

(3.18)

Integrating out at tree level π3 and η we obtain the following terms in the effective action

for the Higgs,

LEDM⊂ N

48π2

Im(yỹ)g2
ρf

2
π

m2
K2
m2
π3m

2
η

[
3g1g2m

2
ηH
†σaHW a

µνB̃µν+m
2
π3H

†H
(
g2

2W̃
iµνW i

µν+g2
1B̃

µνBµν
)]
.

(3.19)
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This contains the coupling to the photon,

Leff
EDM ⊂ −

e2N

48π2

Im(yỹ)(3m2
η − 2m2

π3)m2
ρ

m2
π3m

2
ηm

2
K2

FF̃h0†h0 ≡ −cH
Λ2
FF̃h0†h0 (3.20)

where we have defined Λ2 ≡
m2
ηm

2
π3
m2
K2

(3m2
η−2m2

π3
)m2

ρ
and cH ≡ N α

12π Im(yỹ). This operator renor-

malizes EDM operator of the electron generating [15, 16],

de ≈
emecH
4π2Λ2

log
Λ2

m2
h

(3.21)

This approximation is valid for masses of the triplet and singlet greater than the Higgs

mass. We neglect for simplicity contribution from the couplings to W and Z that are

typically subleading [10]. Numerically one finds,

de ≈ 10−27 e cm× Im[yỹ]× N

3
×
(

TeV

mπ3,η

)4

×
( mρ

TeV

)2
(3.22)

to be compared with the experimental limit de < 8.7 × 10−29 e cm at 90% C.L. For O(1)

phases and pions at the TeV scale this is within the ballpark of current experiments.

4 Relaxion mechanism

In this section we connect to the ideas on the dynamical relaxation of the electro-weak scale

introduced in ref. [3]. The “relaxion” mechanism relies on the existence of an axion-like

field φ that scans the Higgs mass during the early universe. Once the Higgs VEV develops,

the back reaction is such that φ stops the scanning of the electro-weak VEV producing a

technically natural electro-weak scale. We refer to the original work for all the details of

the mechanism and only focus on the model building aspects here.

To realize this scenario one needs a potential for φ that grows after electro-weak sym-

metry breaking but does not generate large perturbative contributions to the φ potential.

Following [3] this can be achieved in the L+N models if φ has an axion-like coupling [3],

1

32π2

φ

f
G̃µνG

µν . (4.1)

Contrary to the original reference we assume that both mL and mN are below the con-

finement scale mρ = gρfπ so that they participate to the chiral dynamics and cannot be

integrated out. As we have seen in this regime the strong dynamics produces a composite

Higgs doublet that mixes with the elementary Higgs. This resembles the model in the ap-

pendix B of [7] with a notable difference: in that case the second Higgs is also elementary

and the couplings are chosen to respect an approximate SU(2)R symmetry. Among the

light degrees of freedom our action also features a triplet and a singlet that however will

not play an important role in what follows.

We are interested in computing the potential of φ induced by the strong dynamics. To

do this we just have to compute the vacuum energy as a function of θH and replace,

θH →
φ

f
. (4.2)
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In the confined phase this can be done starting from the lagrangian (2.7) and integrating

out the heavy scalars. To leading order only the doublet contributes,

K2 ≈ i
√

2
gρf

2
π

m2
K2

(y − ỹ∗)H (4.3)

where we rotated θH into the mass matrix as in eqs. (2.2), (2.3) so that y, ỹ contain the

θH dependence. Plugging into the action we find,6

E(θH) ≈ −Re[4mL + 2mN ]gρf
3
π + 2

g2
ρf

4
π

m2
K2

[
|y|2 + |ỹ|2 − 2Re[yỹ]

]
|H|2 +O(H4) (4.4)

The potential depends on the fermion masses. Using eqs. (2.2), (2.3) one finds,

mN�mL : E(θH)≈−2mNgρf
3
π cos θH+2

g2
ρf

4
π

m2
K2

[
|y|2+|ỹ|2−2|yỹ| cos (θH−θ0)

]
|H|2 , (4.5)

mL�mN : E(θH)≈−4mLgρf
3
π cos

θH
2

+ 2
g2
ρf

4
π

m2
K2

[
|y|2 + |ỹ|2 − 2|yỹ| cos

(
θH
2
− θ0

)]
|H|2

where the reference value θ0 is determined by the phases of the Yukawa. The general case

valid for arbitrary masses can be found in the appendix.

The last term in parenthesis in (4.5) gives a periodic potential that grows with the

Higgs VEV and acts as a barrier for the motion of φ. The height of the barrier is,

BH ∼ |yỹ|
g2
ρf

4
π

m2
K2

v2 . (4.6)

In order for the relaxation mechanism to work the Higgs dependent contribution to

the φ potential should be dominant. An important contribution to the φ potential arises

at 1-loop. This can be estimated from closing the Higgs loop in (4.5). This quadratically

divergent contribution is cut off at mK2 where the effective theory breaks down giving,7

B0 ∼
|yỹ|
16π2

g2
ρf

4
π . (4.7)

In order for the Higgs dependent term (4.6) to dominate one finds,

mK2 < 4πv . (4.8)

Curiously this relation demands the existence of new physics below 4πv just as the SM

without the Higgs boson, but the physical origin is completely different. Compared to [3]

the important difference is that the dynamical scale can be up to a factor 10 larger because

the loop is cutoff at mK2 that can be parametrically smaller than gρfπ. For example, we

6When mK2 is dominated by the fermion masses the computation of the Higgs potential can be done

in a simpler fashion. In the limit mL � mN the mass matrix (2.6) can be diagonalized with eigenvalues

m− ∼ mN − yỹv2

mL
and m+ ∼ mL + |y|2v2+|ỹ|2v2

2mL
that directly reproduces the vacuum energy.

7Without integrating out the K2 in (2.7) this contribution arises from the logarithmic divergent diagram

with K2 and H running in the loop. The cutoff of the log can be taken mρ.
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may choose mK2 ∼ fπ ∼ 500 GeV and mρ ∼ 5 TeV which is phenomenologically safe and

can be tested at LHC run II.

We also need to require that the Higgs independent term in (4.5) is subdominant,

Min[mL,mN ] <
gρfπ
m2
K2

v2 (4.9)

Various limits exist. Let us first consider the case where the gauge contribution to the

mass of K2 can be neglected because either mL or mN are large. For mN � mL < mρ

(corresponding to m2
K2
≈ 1

2m
2
π3 ≈

3
2m

2
η ≈ 2mLgρfπ) we get the same estimate for the

barrier as in [3],

BH ∼ |yỹ|
gρf

3
π

mL
v2 (4.10)

and from (4.9) we derive

mN < |yỹ| v
2

mL
. (4.11)

Above the confinement scale, mN receives radiative corrections from loops with H and L,

δmN ∼ yỹ/(4π)2mL log Λ/mρ. This implies the mild bound,

mL <
4πv√

log Λ/mρ

. (4.12)

Analogous formulae apply for mL � mN < mρ. There is no phenomenological problem

in having the mass of the fermion doublet small because the composite states acquire a

mass from gauge interactions. In particular from (2.8) it follows that the triplet mass is

dominated by the gauge contribution. We then expect it to be the lightest state. As we

have seen the bounds on these electro-weak charged scalars is around 200-300 GeV that

translate into a dynamical scale mρ of a few TeV.

Finally we may consider the hierarchy mL,N � mρ where the pion masses are domi-

nated by gauge loops. Here we find,

BH ∼ |yỹ|
f2
π

g2
2

v2 . (4.13)

The bound (4.12) is automatically satisfied in this case.

It is interesting to consider the limit mL,N → 0, see appendix A.4 in [4]. In this limit

the determinant of the mass matrix (2.6) vanishes signalling a zero eigenvalue. Therefore

θH is not physical for zero masses, no barrier is generated and therefore the relaxation

cannot be realised. The dynamics is such that the singlet η settles to a minimum that

cancels the θH dependence.

For small (but non-zero) fermion masses, the formula for the barrier (4.5) will be

valid as long as the fermion mass contribution to mη in (2.8) is larger than the Yukawa

contribution in (2.9). This corresponds to,

mL,N > |yỹ| v
2

m2
K2

gρfπ (4.14)

which is equivalent to the request 〈η〉 < fπ.
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5 Conclusions

New dynamics at the TeV scale motivated by naturalness of the Higgs mass appears increas-

ingly unlikely. For this reason it is timely to think about new scenarios that provide plausi-

ble new physics that is not already strongly constrained by current experiments but could

be tested at LHC run II and beyond. Among these “unnatural” scenarios, the framework

of vector-like confinement stands out. New fermions in a real representation of the SM and

charged under a new confining gauge theory, automatically provide electro-weak preserving

new physics for which very weak bounds exist. In particular these models explain without

any contrivance why the new physics does not produce new flavour effects and give control-

lable effects in precision tests. Their discovery would be analogous to the one of the muon af-

ter the electron: nobody ordered them but they are completely consistent with all we know.

These models also provide automatic dark matter candidates that are stable due to the

accidental symmetries of the theory in completely analogous way as the proton in the SM.

In this note we began the study of models where the quantum numbers of the new

fermions allow for Yukawa couplings to the Higgs. For simplicity we focused on the most

economical choice with a lepton doublet L and a singlet N but our findings are generic. The

presence of Yukawa couplings makes the phenomenology very rich. Among the composite

pions there is always a state with the same quantum numbers as the elementary Higgs so

that these extensions of the SM realise a Two Higgs doublet Model where one Higgs is

elementary and the other is composite. We studied here the case where the lighter Higgs

is mostly elementary. One could also take a different point of view where the light Higgs is

composite and the elementary Higgs serves to generate the appropriate potential. We will

explore this scenario further in upcoming work.

The Yukawa couplings introduce new CP violating phases in the theory. This is similar

to split supersymmetry with the difference that now the new fermions are confined and

the relevant degrees of freedom are the pions. We have shown how the computation of

EDMs can be carried out within the chiral lagrangian. Important effects are obtained for

EDMs that could provide the strongest constraint on this class of models. Some effects in

electro-weak precision tests and Higgs couplings are also predicted but the size is controlled

by the degree of compositeness of the light Higgs that can be chosen arbitrarily small.

Interestingly the same type of dynamics is relevant for a non-conventional solution

of the hierarchy problem introduced in [3]. In that ref. a dynamical relaxation of the

electro-weak scale was proposed where the Higgs mass is scanned by an axion field and

gets trapped to a value much smaller than the cut-off. The dynamics used is precisely the

one of the L+N model studied here. We have shown that the “relaxion” mechanism also

works in the region of parameters where all the fermions are confined which is different

from the original work. This allows more freedom in the choice of the parameters and has

very different phenomenology that can be tested in future experiments.
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A Vacuum energy

In this appendix we review the dependence of the vacuum energy on θH for the general

fermion masses, see [17, 18].

The VEV 〈U〉 is determined dynamically by minimising the potential:

L = (gρf
3
πTr[MU ] + h.c) +

f2
π

16

a

N

[
ln(det U)− ln(det U †)

]2

(A.1)

where m2
η′ ≈ 3a/N and θH has been rotated to the fermion mass matrix so that M =

ei
θH
3 M0 with M0 a diagonal matrix with positive entries.

Treating the Yukawa as a perturbation one can conveniently look for a solution of the

form

〈U〉 = e−i
θH
3 Diag (eiφL , eiφL , eiφN ) . (A.2)

the potential becomes,

V ≈ f2
π

4

(
(−16µ2

L cosφL − 8µ2
N cosφN ) +

a

N
(2φL + φN − θH)2

)
(A.3)

where µ2
L,N ≈ mL,Ngρfπ. The vacuum is determined by the Dashen’s equations,

4µ2
L sinφL =

a

N
(θH − 2φL − φN ) , 4µ2

N sinφN =
a

N
(θH − 2φL − φN ) (A.4)

The vacuum energy is,

V (θH) =
f2
π

4

(
(−16µ2

L cosφL − 8µ2
N cosφN ) + 16

N

a
µ4
N sin2 φN

)
(A.5)

evaluated on the solution above.

We can find approximate solutions for µ2
L,N � a/N :

• mN � mL:

φL � 1 , φN ≈ θH =⇒ V (θH) ≈ −2gρf
3
πmN cos θH (A.6)

• mL � mN :

φN � 1 , φL ≈
θH
2

=⇒ V (θH) ≈ −4gρf
3
πmL cos

θH
2

(A.7)

• mL = mN :

φN = φL ≈
θH
3

=⇒ V (θH) ≈ −6gρf
3
πm cos

θH
3

(A.8)

In the last case the vacuum energy has a non-analytical behaviour around θH = π

where the derivative of the vacuum energy is discontinuous.
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