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corrections to the Higgs boson mass due to the heavy non-standard Higgs bosons. As the

tree level contribution to the Higgs boson mass is suppressed at large tan β, these one-loop

corrections are crucial to raising the Higgs boson mass to the measured LHC value. By rais-

ing the Higgsino and singlino mass parameters, typical electroweak precision constraints

can also be avoided. We illustrate these new regions of Fat Higgs/λ-SUSY parameter

space by finding regions of large tan β that are consistent with all experimental constraints

including direct dark matter detection experiments, relic density limits and the invisible

decay width of the Z boson. We find that there exist regions around λ = 1.25, tanβ = 50

and a uniform psuedo-scalar 4 TeV <∼MA
<∼ 8 TeV which are consistent will all present

phenomenological constraints. In this region the dark matter relic abundance and direct

detection limits are satisfied by a lightest neutralino that is mostly bino or singlino. As

an interesting aside we also find a region of low tan β and small singlino mass parameter

where a well-tempered neutralino avoids all cosmological and direct detection constraints.
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1 Introduction

Weak scale supersymmetry (SUSY) remains a popular and elegant solution to the hierarchy

problem of the Standard Model (SM) [1]. It provides a natural means to stabilize the

electroweak scale against large quadratic corrections from higher scales. The fact that

the Higgs boson was discovered to be light [2, 3], in accordance with SUSY’s predictions,

encourages us to continue our search for signals of SUSY at the TeV scale.

In the Minimal Supersymmetric extension of the Standard Model (MSSM), the tree-

level Higgs quartic couplings are fixed to be the gauge couplings which leads to the tree-level

Higgs boson mass that is below that of the Z boson. Therefore, raising the Higgs boson
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mass to the observed value of 125 GeV at the LHC [2, 3] requires large corrections due to a

heavy stop sector [4–14]. However, heavy stops lead to large corrections to the up-type soft

SUSY breaking Higgs squared mass parameter which in turn leads to a large correction to

the electroweak symmetry breaking (EWSB) condition. A delicate cancellation between

these corrections and the Higgsino mass parameter is needed to stabilize the electroweak

scale, which is generally considered unnatural. Therefore in the MSSM there exists a

tension between the observed Higgs mass and the requirement that the model is natural.

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) is the simplest ex-

tension of the MSSM that can address this tension. In the NMSSM, the Higgs sector is

enlarged to include an extra gauge singlet that couples to the remaining MSSM Higgs dou-

blets through a Yukawa coupling λ. λ contributes to the Higgs quartic at tree-level, and

for large enough values, can raise the Higgs mass to the observed 125 GeV. Therefore the

stops need not be too heavy, thereby improving the naturalness of the model. Moreover,

in the general NMSSM (GNMSSM), an additional tadpole term for the gauge singlet can

also facilitate EWSB [15].

For λ∼> 0.7 at the weak scale, renormalization group (RG) evolution usually leads to

this coupling developing a Landau pole below the GUT scale. Refs. [16–21] have provided

explicit UV-completions for such low scale models, which we collectively call Fat Higgs

models. Refs. [22–35] have studied the phenomenological implications of models with such

large λ couplings, which we collectively call λ-SUSY models. For these models, they have

found that the Higgs mass can easily be raised to the observed value while still keeping the

spectrum natural. These studies have focused on a region of low tan β (≡ vu/vd, where vu
and vd are the vacuum expectation values (VEVs) of the corresponding Higgs doublets)

and large λ because these regions were the most natural.

In this paper, we study the possibility of raising the Higgs mass to 125 GeV in Fat

Higgs/λ-SUSY models at large tanβ. As the λ2-proportional tree-level contribution to the

Higgs quartic is suppressed at large tan β, the one-loop induced radiative corrections are

crucial in raising the Higgs boson mass to its observed value. Similar to the stop-induced

corrections that are proportional to y4
t log(m2

t̃
/Q2) (where yt is the top Yukawa and mt̃ is

the stop mass scale), in Fat Higgs/λ-SUSY models the dominant one-loop corrections are

proportional to λ4 log(M2
A/Q

2) (where MA is the scale of the non-standard Higgs bosons).

Therefore these corrections are only relevant when λ∼> 1 and the non-standard Higgs bosons

are much heavier than the electroweak scale. The effect of radiative corrections in the

NMSSM Higgs sector have been considered before [30, 36–39]. Ref. [30] focused on the

most natural regions in the Scale-Invariant NMSSM, which correspond to small tan β. In

such regions, the Higgs mass is dominated by tree-level contributions, hence these radiative

corrections were found to make a negligible contribution. In contrast, we show that at large

tanβ, the λ-induced radiative corrections are dominant and can significantly modify the

allowed regions of parameter space. We also point out and explain a discrepancy between

our corrections and those estimated in ref. [36], due to a difference in the assumption

of model parameters. Moreover, we emphasize that electroweak precision constraints do

not put a limit on tan β, unlike refs. [22, 30, 31]. We point out that raising the Higgsino

mass parameter µeff significantly weakens the electroweak precision constraints because the
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Higgsino component in the lightest neutralino is suppressed. The price of raising µeff is a

slight increase in the tuning of the EWSB condition. To illustrate these effects in regions

of large tan β we also impose constraints from Higgs decay properties, direct dark matter

detection experiments, the observed dark matter relic density and the invisible width of

the Z boson. In particular, we find that direct dark matter detection experiments place

strong limits on many regions of parameter space due to the large λ coupling. We also

show that these allowed pockets of parameter space are within the reach of the XENON

1T experiment [40].

This paper is organized as follows. In section 2, we set up the theoretical aspects

required for the phenomenology of our model. To motivate the sizes of various terms

in the Fat Higgs/λ-SUSY model, we present a “toy” high scale model where the fields

have canonical mass dimensions in the electric theory. In addition, in this section we

also compute the corrections to the Higgs quartic using the one-loop effective potential

formalism, and discuss the Higgsino contributions to electroweak precision constraints and

naturalness in the large tan β regime of the Fat Higgs/λ-SUSY model. In section 3, we

illustrate the impact of the formalism in section 2 by finding phenomenologically viable

scenarios that can be probed at future experiments. In section 4 we conclude.

2 Theoretical setup

In this section we first motivate the form taken by our superpotential by a simple dis-

cussion of the sizes of various terms that can arise in Fat Higgs/λ-SUSY models. In this

discussion we assume that any exotic fields are much heavier than the electroweak scale.

For the superpotential thus obtained, we present the Higgs potential at the tree level and

analytically compute the one-loop corrections to the mass of the SM-like Higgs boson due

to heavy non-standard Higgs fields, with special attention to the limit of large λ and tan β.

In addition we discuss the naturalness of the large tan β regions of the Fat Higgs/λ-SUSY

models. We then discuss the reduced couplings of the SM-like Higgs to SM particles,

which are constrained by LHC measurements of signal strengths. We end the section

with a brief discussion of the neutralino sector with particular attention to electroweak

precision observables.

2.1 Realizing low scale NMSSM with large λ

The GNMSSM with a large λ at the weak scale implies that some of the Higgs fields

are composite states. For example, in the minimal Fat Higgs scenario of ref. [16], all of

the Higgs sector fields are composite, while in refs. [17, 21] the MSSM Higgs fields are

fundamental. For simplicity we will assume that at scales <∼10 TeV, the only fields present

in the Higgs sector are the SU(2)L doublets Ĥu, Ĥd and the gauge singlet Ŝ.1

1More exotic realizations typically require that additional Standard Model superfields are composite,

introducing more exotic fields in the low energy theory [18, 19, 41, 42].
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The most general superpotential with this particle content (assuming R-parity) has

the form [15, 47]

WGNMSSM =WYukawa + λŜĤuĤd +
1

3
κŜ3 + µĤuĤd +

1

2
µ′Ŝ2 + ξF Ŝ, (2.1)

where λ, κ are dimensionless coupling strengths; µ, µ′ are supersymmetric mass terms; ξF
is a supersymmetric tadpole term of mass dimension 2, and WYukawa contains the standard

MSSM Yukawa superpotential terms. The corresponding soft SUSY-breaking terms are

−Lsoft = −Lf̃soft +m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 +(
λAλHuHdS +

1

3
κAκS

3 +m2
3HuHd +

1

2
m′S

2
S2 + ξSS + h.c.

)
, (2.2)

where Lf̃soft corresponds to the standard MSSM soft SUSY-breaking terms. m2
Hu
,m2

Hd
,m2

S

are the soft SUSY breaking Higgs squared mass terms and Aλ, Aκ are the soft SUSY

breaking trilinear terms. m2
3,m

′
S

2 are the CP-violating soft SUSY breaking squared mass

terms and ξS is the dimension-3 soft SUSY breaking term corresponding to ξF .

A generic feature of most Fat Higgs/λ-SUSY models is that the Yukawa coupling

λ∼> 0.7 at the TeV scale. Due to its renormalization group (RG) evolution, λ becomes

stronger at higher scales and develops a Landau pole at the compositeness scale ΛH , where

ΛH is assumed to be lower than the grand unification scale MGUT.2 In the deep IR, much

below ΛH , the magnetic theory of mesons (i.e. the Higgs superfields) is described by the

interactions in eqs. (2.1) and (2.2). In the UV above ΛH , some or all of the Higgs superfields

are revealed to be composite states made up fundamental quarks whose interactions are

described by some electric theory.

If the quarks in the electric theory have the canonical mass dimension and all Higgs

superfields are composite, then the κ, µ, µ′ terms in eq. (2.1) and their corresponding soft

SUSY-breaking terms in eq. (2.2) are generated by marginal terms in the fundamental

theory. This assumption is equivalent to saying that the confining dynamics only generates

the λ term while all other couplings arise from non-renormalizable interactions in the

electric theory. For example, in the simplest Fat Higgs model [16], the Higgs superfields

in eq. (2.1) are composite states of the quarks Ti in the electric theory. These quarks are

charged under a confining SU(2)H gauge group, thereby leading to the identification

Ŝ ∼ T̂5T̂6;

(
Ĥ+
u

Ĥ0
u

)
∼

(
T̂1T̂3

T̂2T̂3

)
;

(
Ĥ0
d

Ĥ−d

)
∼

(
T̂1T̂4

T̂2T̂4

)
. (2.3)

The λ term in eq. (2.1) is dynamically generated by the Pfaffian of the mesons in the

magnetic theory. Naive dimensional analysis (NDA) [43–45] and canonical normalization

of the fields (〈TiTj〉 → (ΛH/4π)φij) lead to the relations

λ(ΛH) ∼ 4π; κ(ΛH) ∼
(

ΛH
4πΛ0

)3

µ ∼
Λ2
H

(4π)2Λ0
∼ µ′; ξF ∼

mΛH
4π

, (2.4)

2For Fat Higgs models that provide an existence proof of gauge coupling unification, see [16, 17].
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Figure 1. (a): κ as a function of λ at the scale Q = MZ , obtained by fixing κ at the scale ΛH and

then evolving it down with RGEs. The red (green) curve corresponds to κ(ΛH) = 1(0.5). (b): µ′

as a function of λ at the scale Q = MZ , obtained in a manner analogous to (a). The red (green)

curve corresponds to µ′(ΛH) = 1(0.5) TeV. In both plots we set tan β = 50. See text for details of

their behavior.

where m and Λ0 are parameters in the electric superpotential given by

Welectric ' mT̂5T̂6 +
y

Λ0

(
T̂5T̂6

)2
+
y′

Λ0

[(
T̂1T̂3

)(
T̂2T̂4

)
−
(
T̂1T̂4

)(
T̂2T̂3

)]
+
y′′

Λ3
0

(T5T6)3.

(2.5)

The couplings y, y′, y′′, in the above equation, need not be O(1) numbers because Λ0 is

just a generic scale used to parameterize the mass dimension of each of these operators.

Eq. (2.4) gives us a definition of ΛH : it is the scale at which the size of λ is 4π. Using

this definition, we can then estimate the size of the other parameters at the weak scale

from their RG evolution. In determining ΛH , we also account for the effects of the SM

Yukawa couplings using the renormalization group equations (RGEs) in ref. [47]. Having

estimated the NMSSM parameters at the scale ΛH using eq. (2.4), we run them down to

the TeV scale by solving the RGEs and find that they decrease with decreasing scale. This

running behavior has two important implications for our model:

1. Eq. (2.4) implies κ(ΛH)� O(1). Run down to a renormalization scale Q = O(TeV),

we expect κ to be quickly suppressed due to the contribution of λ to its running. This

suppression is illustrated in figure 1(a), where we plot κ at Q = MZ as a function of λ at

Q = MZ , setting tan β = 50. These curves were obtained by first running λ(Q = MZ) up

to determine ΛH , then setting κ(Q = ΛH) to different values ≤ 1, and finally running κ

down to Q = MZ . We checked that the running of λ is insensitive to κ for these sizes of κ.

The red curve corresponds to κ(ΛH) = 1 and the green curve to κ(ΛH) = 0.5. As expected

from the RG running, smaller values of κ(ΛH) result in smaller values of κ(Q = MZ).

A larger λ implies a Landau pole at a lower scale. Therefore, ΛH is closer to the

electroweak scale for larger values of λ, which in turn weakens the suppression of κ as it

runs down from ΛH to MZ . This is why κ is an increasing function of λ in figure 1(a).

From the plot, we infer that for κ(ΛH) ≤ 1, the size of κ at the weak scale is suppressed

– 5 –
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by at least an order of magnitude. The implication of this suppression is that we can

consistently neglect the effects of κ in our TeV-scale phenomenology. Therefore, for the

rest of this paper we will take κ = 0.

2. As compared to κ, µ′ is only suppressed by an O(1) number when it is run down

from Q = ΛH and Q = MZ . This difference between values of µ′ and κ can be understood

from their β-function dependences. Using their one-loop β-functions in ref. [47] we find

κ(Q)

κ(ΛH)
=

(
µ′(Q)

µ′(ΛH)

)3

. (2.6)

We check this by determining µ′(Q = MZ) as a function of λ(Q = MZ) in a manner

analogous to the determination of κ(Q = MZ) above. Our results are shown in figure 1(b),

where the red (green) curve corresponds to µ′(ΛH) = 1(0.5) TeV, with tan β = 50. We see

that µ′(ΛH) is suppressed at the electroweak scale by at most a factor of 5. Hence µ′(MZ)

can be of the size of the electoweak scale. Such a size results from reasonable values of

the scale Λ0. For instance, to obtain µ′(Q = MZ) <∼ 1 TeV at tanβ = 50, we computed

from eq. (2.4) that Λ0 ≤ 1016 GeV for λ(Q = MZ) ≥ 0.7. Similarly, the Higgsino mass

parameter µ and the tadpole term ξ
1/2
F can also be the size of the electroweak scale.

We can now write down our low energy superpotential below the scale ΛH :

Weff
NMSSM =WYukawa + λŜĤuĤd +

1

2
µ′Ŝ2 + ξF Ŝ (2.7)

The associated soft-SUSY breaking potential is

−Leff
soft = −Lf̃soft +m2

Hu |Hu|2 +m2
Hd
|Hd|2 +m2

S |S|2

+

(
λAλSHuHd +m2

3HuHd +
1

2
m′2S + ξSS + h.c.

)
. (2.8)

We have redefined the singlet chiral superfield, Ŝ → Ŝ − µ, to remove the µ term in

the superpotential. In general, the associated soft term m2
3 cannot be absorbed into Aλ

simultaneously. Eqs. (2.7) and eq. (2.8) constitute all the parameters treated in the rest of

this article.

2.2 Higgs sector

2.2.1 Tree level

At the tree level, the Higgs potential is given by

V tree
Higgs = VF + VD + VS (2.9)

where

VF =
∣∣λ (H+

u H
−
d −H

0
uH

0
d

)
+ µ′S + ξF

∣∣2 + |λS|2 (|Hu|2 + |Hd|2),

VD =
g2

8

(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−d ∣∣2)+
g2

2
cos2 θW

∣∣H+
u H

0∗
d +H0

uH
−∗
d

∣∣2 ,(2.10)

VS = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 +

(λAλ(H+
u H

−
d −H

0
uH

0
d)S +m2

3(H+
u H

−
d −H

0
uH

0
d) +

1

2
m
′2
S S

2 + ξSS + h.c.),
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Hu = (H+
u , H

0
u), Hd = (H0

d , H
−
d ), g2 ≡ g2

1 +g2
2 and θW is the weak mixing angle. After elec-

troweak symmetry breaking we can expand the Higgs fields in terms of the CP-even fields

(h0
u, h

0
d, h

0
s), the CP-odd fields (A0

D, A
0
S), the charged Higgs bosons H± and the Goldstone

bosons (G±, G0):

Hu =

(
G+sβ +H+cβ

vsβ + 1√
2
[(h0

u + i(G0sβ −A0
Dcβ)]

)
,

Hd =

(
vcβ + 1√

2
[(h0

d + i(−G0cβ +A0
Dsβ)]

−G−cβ +H−sβ

)
,

S =
1√
2

(s+ h0
s + iA0

S), (2.11)

where v ' 174 GeV is the VEV of EWSB, sβ ≡ sinβ, cβ ≡ cosβ and s ≡ 〈S〉. Expanding

the potential about the minimum at vi ≡ (vu, vd, s), we can find the tree-level tadpole terms

T tree
j ≡

∂V tree
Higgs

∂φj

∣∣∣∣∣
{vi}

(2.12)

where φj = (H0
u, H

0
d , S). We can then solve for the soft squared masses m2

Hu
,m2

Hd
,m2

S

by setting each T tree
j = 0. Substituting these masses into the second order derivatives of

the Higgs potential and neglecting CP-violating effects, we obtain the following tree-level

CP-even Higgs mass matrix in the basis (h0
u, h

0
d, h

0
s).(

M2
H

)
11

= M2
Zs

2
β + r t−1

β ;
(
M2
H

)
12

= (2λ2v2 −M2
Z)sβcβ − r;(

M2
H

)
22

= M2
Zc

2
β + r tβ ;

(
M2
H

)
13

= λv(2µeffsβ − (Aλ + µ′)cβ); (2.13)(
M2
H

)
23

= λv(2µeffcβ − (Aλ + µ′)sβ);
(
M2
H

)
33

=
(
λv2(Aλ + µ′)− (ξS + ξFµ

′)
)
/s,

where µeff ≡ λs, tβ ≡ tanβ and r ≡ µeff(Aλ + µ′) + m2
3 + λξF . The CP-odd Higgs mass

matrix in the basis (A0
D, A

0
S) is given by(

M2
A

)
11

= 2r/s2β ;
(
M2
A

)
12

= λv(Aλ − µ′);(
M2
A

)
22

=
1

s

(
λv2(Aλ + µ′)sβcβ − (ξFµ

′ + ξS)
)
− 2m′

2
S , (2.14)

and the charged Higgs mass is

M2
± = 2r/s2β − (λ2 − g2

2/2)v2. (2.15)

We point out two features of the tree level masses that will be important in our

discussion of the one-loop corrected Higgs mass. The first feature is the correlation among

the scalar masses in the limit where Aλ and µ′ are small compared to the heavy Higgs

masses. This is best seen by setting
(
M2
A

)
12

= 0 in eq. (2.14) (which can be obtained by

choosing Aλ = µ′). Then the CP-odd eigenmasses are identified as M2
AD

=
(
M2
A

)
11

and

M2
AS

=
(
M2
A

)
22

. In this limit, by inspecting the matrix elements in eqs. (2.13)–(2.15),

we find that the CP-even, CP-odd and charged Higgs eigenstates arising from the SU(2)

– 7 –
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doublet sector are nearly degenerate in mass, a feature well-known in the MSSM. Their

mass splittings ∼ v2. These three fields then have a mass ∼ MAD in the limit M2
AD
�

v2, A2
λ, µ
′2, where MAD denotes the corresponding CP-odd eigenmass. Likewise, the CP-

even and CP-odd Higgs eigenstates arising from the SU(2) singlet are nearly degenerate,

with mass splitting ∼ s2. Therefore, these two fields have a mass ∼ MAS in the limit

M2
AS
� s2, A2

λ, µ
′2.

The second feature is the decoupling of heavy states. Raising M2
AD

and M2
AS

decreases

their impact on the mass of the lightest CP-even state, effectively making it more SM-like.

A simple way to see this decoupling behavior is to rotate the CP-even mass matrix into

the basis

h0 = h0
usβ + h0

dcβ , H
0 = h0

ucβ − h0
dsβ , h

0
s = h0

s (2.16)

which leads to the CP-even mass matrix(
M2
H

)
hh

= M2
Zc

2
2β + λ2v2s2

2β ;
(
M2
H

)
hH

= (λ2v2 −M2
Z)s4β/2;(

M2
H

)
HH

= M2
AD
− (λ2v2 −M2

Z)s2
2β ;

(
M2
H

)
hS

= 2λv(µeff −Aλs2β); (2.17)(
M2
H

)
HS

= −2λvAλc2β ;
(
M2
H

)
SS

= M2
AS

+ 2m′S
2

+
λ2v2

µeff
Aλ(2− s2βcβ),

Notice that ξF , ξS and m2
3 are absorbed into our definition of M2

AD
and M2

AS
. For large

tanβ, M2
AD

and M2
AS

, h0 is identified with the SM Higgs, and H0 and h0
s with non-

standard Higgs bosons. This decoupling feature should be preserved after the inclusion of

radiative corrections to the lightest CP-even Higgs mass, which is a non-trivial check of

this computation.

2.2.2 Radiative corrections

The mass of the lightest Higgs boson can be significantly modified by one-loop corrections.

The largest contributions to the Higgs potential at one-loop level are from the Higgs bosons,

third generation squarks, charginos and neutralinos. Thus we have

∆V =
1

32π2

(
3∆V t̃ − 6∆V t −∆V χ± − 2∆V χ0

+
1

2
∆V H +

1

2
∆V A + ∆V H±

)
, (2.18)

where for the ath sector in the MS scheme,

∆V a =
∑
i

(
M2
ia(φk)

)2(
log

M2
ia(φk)

Q2
− 3

2

)
≈

∑
i=heavy

(
M2
ia(φk)

)2(
log

M2
ia

Q2
− 3

2

)
. (2.19)

M2
ia(φk) is the field-dependent mass eigenvalue for ith contribution, M2

ia is the corre-

sponding field-independent tree-level eigenvalue and the renormalization scale Q ∼ mh =

125 GeV. The approximation in eq. (2.19) holds because we are interested in large correc-

tions to the lightest Higgs mass due to states much heavier than the electroweak scale.

Also, the field dependences inside log terms are neglected since they only induce higher

order field-dependent terms.
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The dominant contributions to ∆V in our scenario are due to heavy Higgs scalars

coupling to the light Higgs boson with strengths proportional to powers of λ. The effects

of the top quarks and the scalar tops on the Higgs potential have been studied in great detail

in refs. [4–14]. To highlight the effect of large λ corrections, we suppress the contribution of

scalar tops to ∆V by choosing their masses close to the electroweak scale while still being

compatible with ATLAS and CMS bounds [51–53]. The contributions of charginos and

neutralinos to ∆V are typically small. The Higgs couples to the bino and the wino triplet

with electroweak strength, whereas the λ-dependent coupling to the Higgsinos and singlino

is typically suppressed due to neutralino mixing. In addition, the masses of the Higgsinos

and singlino <∼ 1 TeV in our phenomenology while MA ∈ [4, 8] TeV. We therefore neglect

corrections from the chargino-neutralino sector in the remainder of this article.

In order to compute the one-loop corrections to the Higgs potential in eq. (2.19) due

to the heavy CP-even, CP-odd and charged Higgs bosons, we must determine the field-

dependent eigenvalues of each of the respective matrices. When expressed in terms of the

matrix elements these field-dependent eigenvalues can in general be quite complicated. The

calculation can nevertheless be simplified if we expand the eigenvalues as a Taylor series in

the tree-level masses:

M2
i (φk) = M2

i,tree + b̂i(φk) +
ĉi(φk)

M2
i,tree

+O

(
1

M4
i,tree

)
, (2.20)

where the coefficients b̂i(φk) and ĉi(φk) are at most quadratic and quartic in the fields

respectively. Furthermore, when evaluated at the tree-level VEVs, the coefficients satisfy

the condition b̂({vk}) = 0 = ĉ({vk}).
In practice, we expand the eigenvalues as a Taylor series in the pseudoscalar masses

M2
AD

and M2
AS

. Using these approximations the one-loop effective potential due to the

heavy Higgs scalars now evaluates to

∆V ∝
∑
i

[
aiM

4
A,i + 2biM

2
A,i + (b2i + 2ci)

](
log

M2
A,i

Q2
− 3

2

)
(2.21)

where ai are constants and the field-dependent coefficients bi and ci are obtained from

the hatted coefficients in eq. (2.20). Reducing ∆V to this form considerably simplifies the

calculation of Higgs mass corrections. ∆V as presented here must also ensure that the

decoupling behavior discussed in the previous subsection is preserved at one-loop order.

This result is demonstrated in appendix A.

The full details of our computation and the corresponding results are presented in

appendix B, where two cases satisfying the condition
(
M2
A

)
12

= 0 in eq. (2.14) were con-

sidered. In the first case, which we call Case (A), we assume that the one-loop corrections

arise from a single heavy scale MA = MAD = MAS . The results from this case will be

used in our discussion of phenomenology in section 3. In the second case, which we call

Case (B), we show the effect of splitting the CP-odd Higgs masses, thereby obtaining cor-

rections from two heavy scales. In this case we set the terms Aλ, µ
′, Aκ,m3,m

′
S to zero

for simplicity. Further, we ignored corrections that depend on electroweak couplings since
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we are interested in the limit λ � g. It is important to note that Cases (A) and (B)

pertain not only to different limits of the mass spectra of the CP-odd scalars, but also to

somewhat different regions of the Lagrangian parameters. In Case (A), the parameters

Aλ, µ
′, Aκ,m3,m

′
S can be non-zero in general, with the condition

(
M2
A

)
12

= 0 imposing

Aλ = µ′. On the other hand, Case (B) explicitly sets them all to zero.

For Case B, the one-loop self-energy corrections obtained in the basis (h0
u, h

0
d, h

0
s) are

Π11 =
λ4v2

16π2
s2
β

[
−(4c2β + c4β + 1) log

(
M2
AD

M2
Z

)
+ 2 log

(
M2
AS

M2
Z

)]
,

Π12 =
2λ4v2

16π2
sβcβ(2 + c4β) log

(
M2
AD

M2
Z

)
,

Π22 =
λ4v2

16π2
c2
β

[
−(−4c2β + c4β + 1) log

(
M2
AD

M2
Z

)
+ 2 log

(
M2
AS

M2
Z

)]
,

Π13 =
λ3vµeff

16π2
sβ

[
−(1 + 3c2β) log

(
M2
AD

M2
Z

)
+ 4 log

(
M2
AS

M2
Z

)]
,

Π23 =
λ3vµeff

16π2
cβ

[
−(1− 3c2β) log

(
M2
AD

M2
Z

)
+ 4 log

(
M2
AS

M2
Z

)]
,

Π33 =
4λ2µ2

eff

16π2
log

(
M2
AD

M2
Z

)
.

When these contributions are rotated into the basis of eq. (2.16), we get the (1, 1) element

of the self-energy corrections as

Πhh =
λ4v2sβ
16π2

[(
c2
β(2 + c4β)− s2

β(1 + c4β + 4c2β)
)

log

(
M2
AD

M2
Z

)
+ 2s2

β log

(
M2
AS

M2
Z

)]
.

(2.22)

This is a good approximation for the Higgs mass correction when the mixing between

the SU(2) Higgs doublets and the singlet is negligible. At large tan β, eq. (2.22) further

simplifies to

Πhh
large tan β−−−−−−→ λ4v2

16π2

[
2 log

(
M2
AD

M2
Z

)
+ 2 log

(
M2
AS

M2
Z

)]
. (2.23)

We could gain an intuitive understanding of our results by qualitatively estimating the

size of the one-loop radiative corrections without recourse to the effective potential. Such

an estimate would serve as a useful cross-check of the results obtained from ∆V . We do

this by the following argument in our limit of interest, tan β � 1 and λ� g. In this limit,

we identify the real scalars h0
u → h, h0

d → H, h0
s → h0

s, where h is the SM Higgs boson, and

H and h0
s are non-standard Higgses. The Standard Model Higgs and the Goldstone bosons

reside mostly in Hu and the non-standard CP-even and CP-odd Higgses in Hd and S.

For λ� g, the most important quartic terms at tree-level are those proportional to λ2.

Before EWSB, we can read them off from eq. (2.10) as the terms |H0
u|2|H0

d |2, H0
uH

0
dH

+
u H

−
d ,
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Figure 2. (a): Tree level quartic vertices involving at least two h fields with vertex factors ∝ λ2,

in the limit tan β � 1. In this limit, h0
u → h, h0

d → H,h0
s → h0

s. No h4 quartic terms at formed

at tree level. φi correspond to the heavy fields H,h0
s, A

0
D, A

0
S . (b): One-loop quartic vertices with

four h legs, formed from the tree level vertices in (a). These are ∝ λ4 and account for most of the

radiative corrections to the Higgs mass in our model.

|H0
u|2|S|2 and |H0

d |2|S|2. After EWSB, we can expand Hu, Hd, S using eq. (2.11) to obtain

various quartic vertices in terms of the real and charged scalars.

Figure 2(a) shows all the tree-level quartic vertices that involve at least two h fields.

Recall that the SM Higgs mass is set by the coupling strength of the quartic term h4 in the

scalar potential. The tree-level λ-dependent quartic h4 terms are suppressed at large tan β.

However, using the vertices in figure 2(a), we can construct four one-loop level quartic

vertices proportional to h4, as shown in figure 2(b). Each of these diagrams is proportional

to λ4 log(M2
Ai
/M2

Z), where M2
Ai

is the mass scale of the heavy field running in the loop. Two

diagrams each correspond to M2
AD

and M2
AS

respectively. Since the internal propagators

are identical, each diagram comes with a factor of 2. Canonical normalization of the mass

term of a real scalar implies an additional factor of 1/2. Finally, including the loop factor

1/16π2, we find the approximate correction to the lightest CP-even eigenstate to be

Πhh ≈
1

2
· 2 · 2 · λ4

16π2

[
log

(
M2
AD

M2
Z

)
+ log

(
M2
AS

M2
Z

)]
, (2.24)

which agrees with eq. (2.23). This is also in agreement with ref. [26], in which the above

expression was obtained in the limit of large tan β and degenerate pseudoscalars.

It would be interesting to compare the Higgs mass corrections obtained from the heavy

Higgs fields and those obtained from top squarks. For simplicity, let us set the pseudoscalar

masses equal, MA = MAD = MAS , and obtain

Πhiggs
hh =

λ4

4π2
v2 log

(
M2
A

M2
Z

)
. (2.25)

Again for simplicity, we can assume the top squarks are degenerate (mt̃ = mt̃1
= mt̃2

).
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Figure 3. Discrepancies between the Higss mass radiative corrections obtained from our one-loop

effective potential in eq. (2.22) and those obtained by other means, as a function of the mass MA of

degenerate pseudoscalars. The blue, dashed red and magenta curves represent corrections obtained

from eq. (2.22), eq. (2.24) and ref. [36] respectively. (a) corresponds to tan β = 2, (b) corresponds

to tanβ = 50. See text for details of the behavior of the curves.

Then we obtain [47]

Πstops
hh =

3y4
t

4π2
v2 log

(
m2
t̃

M2
Z

)
. (2.26)

The factor of 3 arises from the three QCD colors. If the pseudoscalars and the top squark

are degenerate (MA = mt̃), we find from eqs. (2.25) and (2.26) that Πhiggs
hh ∼>Πstops

hh for

λ∼> 31/4yt. Since yt = mt/v ' 1, we have Πhiggs
hh ∼>Πstops

hh for λ∼> 1.3.

In the discussion of our model’s phenomenology, we set mt̃ = 800 GeV while MA

ranges between 4 TeV and 8 TeV; therefore, the one-loop corrections from the Higgs sector

dominate those from the stops. Hence, throughout our analysis, the effect of the top squark

correction to the SM Higgs mass is neglected.

We can now quantify the discrepancies between the results obtained by a full one-

loop effective potential calculation and those obtained by other means. To do so, first we

compute the correction to the Higgs squared mass obtained from eq. (2.22), and denote

it by ∆m2
h. For the same set of parameters, we compute (∆m2

h)i for each alternative

approximation labelled by i. We then take the difference and normalize it to ∆m2
h and

define the discrepancy as

δ(∆m2
h) =

(∆m2
h)i −∆m2

h

∆m2
h

, (2.27)

which is then expressed as a percentage. This approach eliminates the λ-dependence of the

discrepancies and allows us to focus on their behavior with respect to tan β and the heavy

(pseudo)scalar masses.

Assuming for simplicity that the CP-odd scalars are degenerate, we depict in figure 3

the discrepancies as a function of MA. Figures 3(a) and 3(b) correspond to tan β = 2 and

tanβ = 50 respectively. The blue curve denotes (∆m2
h)i obtained from the approximation
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in eq. (2.22). Since this approximation neglects doublet-singlet mixing, it tends to overes-

timate the correction, i.e., δ(∆m2
h) > 0 as observed in the plot. The discrepancy is also

seen to asymptote to zero at large MA, where the CP-even singlet Higgs decouples from

the SM Higgs. The dashed red curve is (∆m2
h)i obtained from our qualitative diagram-

matic estimate (eq. (2.23)). Since the estimate is designed for large tan β it disagrees with

the blue curve at tan β = 2, but coincides with it very well at tan β = 50. The magenta

curve depicts (∆m2
h)i obtained from NMSSMTools 4.5.1 [36, 47], which also computes the

one-loop radiative corrections from the effective potential, albeit under a different set of

approximations. We find an interesting discrepancy here, to which we now turn.

The eigenvalues of the CP-odd mass matrix in eq. (2.14) are given by

E2
± =

1

2

(
T ±

√
T 2 − 4D

)
, (2.28)

where T =
(
M2
A

)
11

+
(
M2
A

)
22

is the trace and D =
(
M2
A

)
11

(
M2
A

)
22
−
(
M2
A

)2
12

is the

determinant of the mass matrix. In ref. [36], it is assumed that D � T 2, so that the

eigenmasses are obtained as E2
+ ' T, E2

− ' D/T . This always leads to a hierarchy between

the pseudoscalar masses. In contrast, our approach sets the off-diagonal element
(
M2
A

)
12

to

zero so that the eigenmasses are E2
+ = M2

AD
=
(
M2
A

)
11
, E2
− = M2

AS
=
(
M2
A

)
22

. Therefore,

our approach allows for a variety of mass splittings. Hence the discrepancy between us

and ref. [36] is expected to be maximum when the CP-odd Higgses are degenerate, and

minimum when these masses are well split. We illustrate this effect in figure 4. Since(
M2
A

)
12

= 0 in our approach, we set
(
M2
A

)
12

to zero in the expression of ref. [36] as well,

in order to make an “apples-to-apples” comparison. We then plot δ(∆m2
h) as a function of

MAD/MAS , where we have taken λ = 1.25, tanβ = 50 and µeff = 110 GeV. The red and

blue curves depict MAS = 1 TeV and MAS = 2 TeV respectively. As expected, we find the

discrepancy at its greatest at MAD/MAS = 1, which can reach upto ∼ 15%. Observe also

that δ(∆m2
h) < 0, implying that ref. [36] underestimates the one-loop contribution to the

Higgs mass in the region around MAD/MAS = 1. As we raise MAD/MAS , the discrepancy

drops quickly and our results concur.

The results of ref. [36] were originally used in the code of NMSSMTools 4.5.1 [47].

Since our phenomenology in section 3 assumes MAD = MAS , we replaced the code in

NMSSMTools 4.5.1 with the expressions that we derived in appendix B.

2.2.3 Stability of the electroweak scale

The minimization conditions of the tree level Higgs potential in eq. (2.9) lead to the same

relation between the electroweak scale and the SUSY parameters seen in the MSSM. In

particular, the EWSB condition is [48]

M2
Z =

t2β + 1

t2β − 1

(
m2
Hd
−m2

Hu

)
−
(
m2
Hu +m2

Hd

)
− 2 |µeff|2 , (2.29)

which at large tan β reduces to

1

2
M2
Z ≈ −m2

Hu − |µeff|2 , (2.30)
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Figure 4. The discrepancy between Higgs mass corrections obtained by ref. [36] (which were used

in the original code of NMSSMTools 4.5.1) and by us, as a function of the ratio of the heavy CP-odd

Higgs masses. The red (blue) curve corresponds to MAS
= (2)1 TeV. The discrepancy arises due to

an approximation assumed by ref. [36], namely, that a hierarchy exists in the pseudoscalar spectrum.

It is seen that our results agree when there is indeed a hierarchy. See text for more details.

where the m2
Hd

terms are suppressed by t−1
β . With this result we can now quantify the

relative importance of different contributions (denoted by a) to the EWSB scale (M2
Z/2) as

∆(a2) =

∣∣∣∣ a2

M2
Z/2

∣∣∣∣ . (2.31)

The tree-level and one-loop corrections are the same as in the MSSM and are well-known [49].

For instance, the tree-level contribution due to µeff
<∼ 350 GeV is equivalent to the one-loop

contribution of stops at mt̃
<∼ 800 GeV [50]. Hence the regions we are considering in this

article are typically as tuned as regions of the MSSM with a light stop.

2.2.4 Higgs couplings to SM particles

LHC measurements of signal strengths (production rate × branching ratio) can potentially

constrain the properties of the Higgs sector. Mixing among the Higgs fields can in principle

alter the lightest Higgs boson’s SM-like behavior. We follow the analysis of ref. [31] to apply

the relevant limits.

After including the one-loop self-energy corrections, we rotate the Higgs fields (h0
u, h

0
d, h

0
s)

into the mass eigenbasis (h1, h2, h3) and identify the lightest scalar as

h1 = (−h0
u sinα+ h0

d cosα) cos γ + h0
s sin γ, (2.32)

where the angles α is the usual MSSM CP-even mixing angle that characterizes doublet-

doublet mixing and γ characterizes the doublet-singlet mixing. We can then write down

the reduced couplings of h1 to pairs of fermions and vector bosons as

gtth1

gtthSM

= cos γ

(
cos δ +

sin δ

tanβ

)
,

gbbh1

gbbhSM

= cos γ(cos δ − sin δ tanβ),

gV V h1

gV V hSM

= cos γ cos δ, (2.33)
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where δ = α− β + π/2.

If we inspect the off-diagonal entries of eq. (2.17), we see that for Aλ �MA and large

tanβ,
(
M2
H

)
hH

<
(
M2
H

)
hS

. Thus as we raise MA, the heavy doublet Higgs (identified

as h3) generally decouples faster than the heavy singlet (identified as h2), as noted by

refs. [25, 32] In dealing with the phenomenological consequences of our model, we focus

exactly on the region of Aλ � MA and large tan β. Therefore for the rest of this analysis

we assume h3 is decoupled from the spectrum and h2 is not. In this limit, the mixing angle

γ is given by

sin2 γ =
m2
hh −m2

h1

m2
h2
−m2

h1

, (2.34)

where m2
hh = λ2v2 sin2 2β + M2

Z cos2 2β, and the Higgs couplings to fermions and vector

bosons become

gtth1

gtthSM

=
gbbh1

gbbhSM

=
gV V h1

gV V hSM

= cos γ. (2.35)

Using these relations ref. [31] performed a universal fit on the LHC signal strength

measurements and found that sin2 γ ≤ 0.23 at 95% C.L. This result was obtained using

tree level relations for the reduced couplings. When we include our one-loop corrections, we

find that the reduced couplings are modified by less than 1%. Therefore, in the discussion

of our model’s phenomenology in section 3 we will simply use the results of ref. [31] to

constrain the Higgs couplings with LHC measurements.

2.3 Neutralino sector

The composition of the lightest neutralino and its couplings to the Higgs sector is central

to the dark matter phenomenology of our model. The neutralino mass matrix in the basis

(B̃, W̃ , ψ̃0
d, ψ̃

0
u, ψ̃

0
s) is given by

Mneut =


M1 0 −g1v cosβ/

√
2 g1v sinβ/

√
2 0

0 M2 g2v cosβ/
√

2 −g2v sinβ/
√

2 0

−g1v cosβ/
√

2 g2v cosβ/
√

2 0 −µeff −λv sinβ

g1v sinβ/
√

2 −g2v sinβ/
√

2 −µeff 0 −λv cosβ

0 0 −λv sinβ −λv cosβ µ′


(2.36)

Notice that when µ′ � M1,M2, µeff, large λ couplings imply a large Higgsino component

in the lightest neutralino. This feature has many unique consequences for the dark matter

phenomenology discussed in section 3. As we shall see, the Higgs-χ̃0
1-χ̃0

1 coupling strengh

plays an important role in constraining our model with dark matter experiments. This

coupling, denoted hereafter by ghχχ, is obtained as

ghχχ =
λ√
2

(
ζHuNψ̃0

d
N
ψ̃0
s

+ ζHdNψ̃0
u
N
ψ̃0
s

+ ζSNψ̃0
u
N
ψ̃0
d

)
− g1

2
N
B̃

(
ζHuNψ̃0

d
− ζHdNψ̃0

u

)
,

(2.37)
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Figure 5. Limits from electroweak precision parameter T on the neutralino sector of our model.

The shaded regions are where Tχ > 0.15 and therefore excluded at 95% C.L. Regions shaded gray

correspond to the wino decoupled from the spectrum (MW̃ = 10 TeV) and regions shaded red to

MW̃ = 200 GeV. In (a), λ = 1.25 and tan β = 5 and in (b), µeff = µ′ = 300 GeV. See text for

details of the behavior of these curves.

where the Ni and ζj are the appropriate components of the lightest neutralino and the

SM-like Higgs respectively. In terms of the rotation angles in eq. (2.32), we can read off

ζHu = − sinα cos γ, ζHd = cosα cos γ, ζS = sin γ.

The dominant channel for χ̃0
1-nucleon scattering is through a t-channel Higgs. There-

fore, dark matter direct detection experiments, as well as limits on the invisible decay width

of the Higgs, apply strong contraints on the coupling ghχχ. A suppressed ghχχ can occur

in our model either when the Higgsino content is suppressed, making χ̃0
1 mostly singlino or

bino, or when there is a delicate cancellation between the various terms in eq. (2.37). We

illustrate this point in more detail in section 3.

2.3.1 Electroweak precision limits

Due to mixing between the Higgsinos and the singlino induced by large λ in certain regions,

constraints from electroweak precision experiments can be strong in Fat Higgs/λ-SUSY

models [22, 24]. In particular, the T parameter can get large contributions from the

neutralino sector, denoted hereafter by Tχ. This phenomenon is understood easily in the

limit where the electroweak gauginos B̃ and W̃ decouple from the spectrum, i.e., M1,M2

are very large. This leaves us with three mass scales µeff, µ
′ and λv, which set the mass of

the lightest neutralino, Mχ̃0
1
. The lightest chargino is mostly Higgsino with a mass µeff. In

this limit, Tχ is large when Mχ̃±1
−Mχ̃0

1
is large and when there is as a significant Higgsino

component in χ̃0
1. For simplicity, let us work in the limit where tan β is large. Then the

neutralino mass matrix in eq. (2.36) is simply

Mneut ∼

 0 −µeff −λv
−µeff 0 0

−λv 0 µ′

 . (2.38)
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Tχ is suppressed either when µ′ ∼ µeff ∼ λv, where Mχ̃±1
−Mχ̃0

1
is small, or when µeff �

µ′ ∼ λv, where the Higgsino component in χ̃0
1 is suppressed. For µ′ � µeff ∼ λv, where

both Mχ̃±1
−Mχ̃0

1
and the Higgsino component in χ̃0

1 are large, constraints from Tχ can

be strong.

Lowering the mass of the wino triplet M2 to ∼ µeff ∼ λv can have a significant impact

on Tχ. This is because the wino would mix with the light neutralinos and charginos.

Lowering the bino mass M1, on the other hand, gives only a negligible contribution to Tχ.

This is because the bino mixing with the rest of the neutralinos is only proportional to g1.3

In figure 5 we present the T -parameter contributions from the charginos and neu-

tralinos, which were computed using the general expressions provided in ref. [54]. In fig-

ure 5(a), we take λ = 1.25 and tan β = 5 and show our results in the µeff − µ′ plane.

The shaded regions denote where Tχ is not within the 95% C.L range [−.01, 0.15] set

by the Particle Data Group [55]. The gray region corresponds to large gaugino masses

(M1,M2) = (10 TeV, 10 TeV) while the red region corresponds to a light wino with

(M1,M2) = (10 TeV, 0.2 TeV). As discussed above, lowering the wino mass can lead to a

larger Tχ. For small µ′, Tχ decreases as µeff increases due to a reduction in the Higgsino

component of the lightest neutralino. Similarly, raising µ′ has the effect of reducing the

splittings between the neutralinos and charginos which also leads to a smaller Tχ.

The effects of varying λ and tanβ on Tχ are presented in figure 5(b). Here we fix

µeff = µ′ = 300 GeV. The colored regions have the same definition as those in figure 5(a).

Since the elements ofMneut quickly asymptote to fixed values as a function of tan β, it can

be seen that Tχ is insensitive to large tan β. This insensitivity to large tan β is clear in the

relation derived in ref. [22]

Tχ ≈

(
t2β − 1

t2β + 1

)2

F (µeff , µ
′, λ), (2.39)

where F (µeff , µ
′, λ) is some function of these variables. This relation also shows that

Tχ is suppressed as tβ approaches 1, thereby allowing for larger values of λ. As stated

before, lowering M2 typically increases the neutralino and chargino contributions to the

T -parameter. However, it is important to emphasize that increasing either µeff or µ′ can

significantly lower the electroweak precision constraints even for large tan β. A large µeff

comes at the cost of a slight increase in electroweak fine-tuning, but can greatly weaken

T -parameter constraints.

Finally, we make two remarks. First, the S-parameter was not discussed here. This

is because the contributions of our model to S are very small in our regions of interest

and hence the constraints are much weaker than those on the T -parameter. Second, the

T -parameter receives a stop-sbottom contribution, as discussed in ref. [22]. In the limit of

3It must be remembered that relative minus signs between µeff, µ
′ and MW̃ would introduce quantitative

changes in the picture owing to new phases in the neutralino mixing angles. We will not include these relative

signs in our discussion.
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zero left-right mixing, this is given by

Tst−sb ≈ 0.05

(
500 GeV

mt̃L

)2

(2.40)

In our phenomenological discussions, we will choose mt̃L
= 800 GeV to suppress this

contribution.

3 Phenomenology

In this section we study the phenomenological constraints on the large tan β regions of the

Fat Higgs/λ-SUSY models. In addition to the constraints arising from Higgs corrections

discussed in the previous section, we also include limits from dark matter experiments, most

importantly those set by the LUX experiment [56]. In particular, the mass and couplings

of the lightest neutralino χ̃0
1 can put strong constraints on our parameter space.

In order find phenomenologically viable regions, we modified NMSSMTools 4.5.1 [47]

to include the Higgs mass corrections we computed in section 2.2.2. We then made the

following simplifying assumptions:

• In the Higgs sector, we take the pseudoscalars to be degenerate, with MAD = MAS =

MA. Furthermore we assume that m′S = m3 = 0, so that the heavy CP-even Higgs

bosons are also (nearly) degenerate. The condition that the CP-odd masses are

degenerate requires that
(
M2
A

)
12

= 0 in eq. (2.14), which implies Aλ = µ′. Therefore,

both µ′ and µeff control the amount of doublet-singlet mixing in eq. (2.13). The only

independent parameters in the Higgs sector are then: λ, µeff, µ
′, tanβ and MA.

• In order to be safe from electroweak precision bounds, we decouple the winos at

M2 = 10 TeV, leading to an effective theory for the neutralino system with five free

parameters: M1, µeff, µ′, λ and tan β.

• We require µeff > 104 GeV to evade the LEP II bound on charged Higgsinos [57].

• The sleptons and the first two generations of squarks are decoupled from the low

energy phenomenology and their masses set at 5 TeV, unless stated otherwise. The

top squark parameters are set at mQ̃3
= mŨ3

= 800 GeV and At = 0, thereby making

the stop contributions to the Higgs mass and the electroweak symmetry breaking

condition in eq. (2.30) small. This choice of stop masses also avoids constraints

from collider searches [51–53] and, as mentioned in section 2.3.1, from electroweak

precision tests.

• We choose to require the conventional upper limit tan β ≤ 60, so that yb ≤ 1 at the

weak scale. Larger values of yb may be allowed as long they do not develop a Landau

pole at a scale below that of λ.

• We assume that the relic density of dark matter is the value determined by Planck [58].

Hence, in scenarios where Ωχh
2 < 0.12, we assume some nonthermal mechanism for

generating the observed relic abundance.
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These assumptions reduce the number of independent SUSY parameters to

λ, tanβ, MA, µeff, µ
′, M1 .

As discussed in section 2.3.1, precision electroweak constraints are weak either when µ′ or

µeff are large for any tan β, or when µ′ � λv ∼ µeff at low tan β. In these regions, ghχχ (as

defined in eq. (2.37)) can also be found to satisfy dark matter direct detection and relic

density constraints. In particular we find the following viable parametric regions.

3.1 Singlino DM: large tanβ and µ′ < λv ∼ µeff �M1

Large λ and large tan β are a new region of parameter space that have not been emphasized

in the literature before. We showed in section 2.2 that this region can be compatible with

the mass of the SM Higgs boson because one-loop radiative corrections to the Higgs mass

are insensitive to tan β at large values, and are set solely by λ and MA. We also showed

that precision electroweak constraints can be weak in this region. We now show that this

region is also compatible with constraints from dark matter.

As mentioned in section 2.3, it can be seen from eq. (2.37) that ghχχ is suppressed when

χ̃0
1 is mostly singlino such that N2

ψ̃0
s

' 1. This requirement is possible when µ′ is relatively

small compared to the other mass scales in the neutralino mass matrix. The annihilation

of χ̃0
1 into SM fields in the early universe is generally inefficient, due to both the Z- and h-

mediated channels being suppressed by the small Higgsino component of χ̃0
1. Therefore, for

the cosmological relic abundance to be below the observed value Ωχh
2 ' 0.12, we consider

the mechanism of resonant annihilation and co-annihilation [62].

3.1.1 Resonant annihilation

If Mχ̃0
1

happens to be close to mh/2, it can undergo resonant annihilation through an s-

channel Higgs. Therefore, we set µ′ = 62.5 GeV in this scenario. We also set µeff = 800 GeV,

M1 = 1 TeV, tan β = 50 and MA = 4 TeV. The orange curves in figure 6(a) depict contours

of the LSP-nucleon scattering rates, σSI (in units of σ0 = 10−45 cm2), on the µeff−λ plane.

The red shaded regions are excluded by LUX at 90% C.L., and the green band corresponds

to 120 GeV ≤ mh ≤ 130 GeV.4 Contours of Tχ are denoted by dashed curves.

In figure 6(a), the dark matter-nucleon scattering rates are smaller for larger µeff

because the Higgsino fraction in χ̃0
1 decreases. Tχ is observed to rise with increasing λ due

to an increase in the Higgsino fraction of χ̃0
1. The region around mh ∼ 125 GeV corresponds

to Tχ ∼ 0.05, which is safe from electroweak precision constraints. This regions is also safe

from invisible Higgs decay bounds since the process h→ χ̃0
1χ̃

0
1 is phase space suppressed.

4This is done to account for theoretical uncertainties arising from our choice of Q and from the effects

of our fixed-order calculation. See for instance ref. [63], where it was pointed out that for Higgs mass

corrections from heavy stops, the discrepancy between a fixed-order calculation and re-summation of large

logs could be as high as 7 GeV for stop masses at 10 TeV. To our knowledge, an analogous computation for

corrections from non-standard Higgs scalars has not been performed, and is beyond the scope of our work.
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Figure 6. Large tan β parametric scenarios for Fat Higgs/λ SUSY models. (a) Singlino resonant

annihilation (µ′ = 62.5 GeV, M1 = 1 TeV): orange curves correspond to σSI in units of σ0 =

10−45 cm2. The red shaded region is excluded by LUX at 90% C.L. and the green shaded region

corresponds to 120 GeV < mh < 130 GeV. The dashed lines are contours of Tχ. (b) Singlino

co-annihilation: orange curves and red region the same as (a). The green and gray shaded regions

correspond to 120 GeV < mh < 130 GeV for λ = 1.1 and λ = 1.25 respectively. (c) Bino resonant

annihilation (µ′ = 1 TeV, M1 = 62.5 GeV): blue curves correspond to σSI, with the remaining colors

the same as in (a). (d) Bino co-annihilation: blue curves correspond to σSI, with the remaining

colors remaining the same as in (b). In all these plots we have set tan β = 50. The critical features

are explained in the text.

3.1.2 Co-annihilation region

If the mass spectrum is such that one or more sfermions are nearly degenerate with χ̃0
1,

dark matter annihilation could be assisted by the sfermions through co-annihilation effects,

leading to a small relic abundance. Bounds from LEP on charged sfermions [59] would then

imply that Mχ̃0
1 ∼
> 104 GeV.

We investigate this scenario in figure 6(b). In this figure we assume that the correct
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thermal dark matter relic abundance is generated by a process like co-annihilation. We do

not explicitly state the mass spectrum or compute the resultant relic abundance. Again

the orange curves in figure 6(b) are contours of σSI (in units of σ0 = 10−45 cm2) on the

µeff − µ′ plane. We have chosen λ = 1.25, tanβ = 50, M1 = 1 TeV and MA = 8 TeV. The

larger values of µeff compared to those in figure 6(a) imply a greater amount doublet-singlet

mixing. Therefore a slightly larger value of MA is chosen in this scenario as compared to

that of figure 6(a). The region shaded red is excluded by LUX at 90% C.L. The green

(gray) vertical bands correspond to mh ∈ [120, 130] GeV for λ = 1.1 (1.25). The effect

of varying λ on σSI is not shown since the scattering cross-section is insensitive to it due

to the large values of µeff. The decrease in σSI with µeff is due to the decoupling of the

Higgsinos leading to the suppression of ghχχ. The increase in σSI with µ′ is due to the

larger Higgsino fraction in χ̃0
1, which leads to an enhanced ghχχ. The relatively large size of

µeff and µ′ here suppress the Higgsino sector contributions to the T parameter. For regions

where mh ∼ 125 GeV, we find that Tχ < 0.03.

3.2 Bino dark matter

This parametric scenario is the bino analogue of the previous singlino dark matter scenario

we have discussed. It is also a typical scenario that arises in the MSSM at large tan β. ghχχ,

in eq. (2.37), will again be suppressed when χ̃0
1 is mostly bino.5 The bino fraction of χ̃0

1 is

increased by lowering M1 relative to other mass scales in the neutralino mass matrix. Again

the observed cosmological relic abundance is either through the mechanisms of resonant

annihilation and co-annihilation [62].

3.2.1 Resonant annihilation region

Again in the resonant annihilation region, we set M1 = 62.5 GeV, µeff = 800 GeV, µ′ =

1 TeV, tan β = 50 and MA = 4 TeV. The blue curves in figure 6(c) depict contours of the

LSP-nucleon scattering rates, σSI (in units of σ0 = 10−45 cm2). The remaining colored con-

tours correspond to the same regions as those in figure 6(a). The scattering cross-sections

are stronger here than in figure 6(a) because in the singlino-like scenario there is a partial

cancellation among the terms in eq. (2.37), which suppresses ghχχ. This cancellation arises

from an extra minus sign picked up by N
ψ̃0
u

for the range of mass parameters considered.

Similar to figure 6(a), the dark matter-nucleon scattering rates are seen to decrease as

we decouple the Higgsinos by increasing µeff. In contrast to singlino dark matter, Tχ ∼ 0 for

bino dark matter throughout the plot in figure 6(c) because both the charged and neutral

Higgsinos are quite degenerate.

3.2.2 Co-annihilation region

Similar to the singlino scenario, we assume that the sfermion mass spectrum is such the relic

density of χ̃0
1 is consistent with cosmological observations. The blue curves in figure 6(d)

depict contours of σSI in units of σ0 = 10−45 cm2. We vary M1 while fixing µ′ = 1 TeV, and

5As an aside, any admixture of bino and singlino such that N2
B̃

+N2
ψ̃0
s
' 1 will also lead to a suppressed

ghχχ.
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Figure 7. The well-tempered scenario at low tan β, with χ̃0
1 an admixture of bino, Higgsino and

singlino. In (a), λ = 0.75, tanβ = 1.5 and in (b), λ = 0.9, tanβ = 2.5. The heavy Higgs states

are decoupled at MA = 5 TeV. This choice of parameters fixes mh ∼ 125 GeV. Regions shaded red

are excluded by LUX at 90% C.L., blue by h → χ̃0
1 χ̃

0
1 bounds and gray by Z → χ̃0

1 χ̃
0
1 bounds.

These constraints leave a small patch of parameter space that are still viable, the “blind spots”.

The dashed lines are contours of Mχ̃0
1

in GeV. More details are presented in the text.

the remaining parameters are the same as in figure 6(b). The dependence of σSI on µeff

and M1 is similar to that of singlino scenario with µ′ →M1. Since the Higgsino fraction is

larger in the mostly singlino χ̃0
1 that the mostly bino χ̃0

1, σSI is large in figure 6(b) compared

to figure 6(d). For regions where mh ∼ 125GeV, we find Tχ ∼ 0.

3.3 The well-tempered bino/singlino/Higgsino

In the limit where µ′ � µeff, M1, precision electroweak contraints can be evaded by raising

µeff, thereby decoupling the Higgsinos. However, raising µeff or tanβ suppresses the mass

χ̃0
1 as

Mχ̃0
1
≈ µ′ + λ2v2µeffs2β/(µ

2
eff + λ2v2) (3.1)

for large M1 and M2. As Mχ̃0
1
≤ MZ/2 for a large region of parameters in this scenario,

the invisible width of the Z boson is an important constraint. Consequently, to find a

viable region of parameter space, we require µeff ∼ λv and small tan β. In this region, ghχχ
is supppressed when χ̃0

1 is an admixture of B̃, ψ̃0
u, and ψ̃0

s such that they lead to “blind

spots” in parameter space [46] — regions that are compatible with current experiment.

For illustration, we have consistently set µ′ = 0 in this section.

We illustrate these blind spots in figure 7, which shows constraints on the LSP in the

M1 − µeff plane. Figure 7(a) corresponds to tan β = 1.5 and figure 7(b) to tan β = 2.5.

To fix mh ∼ 125 GeV, we take λ = 0.75 and λ = 0.9 respectively and decouple the heavy

Higgses with MA = 5 TeV. At these values of λ, tanβ and MA the Higgs mass is mainly

set by the tree-level values as the loop level corrections are small. The regions shaded red

are excluded by LUX at 90% C.L. Regions shaded blue are excluded by the latest limit
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on the invisible decay of the Higgs, B.R.(h → χ̃0
1χ̃

0
1) < 0.44 [60, 61]. The gray region is

excluded by limits from the invisible decay of the Z. The dashed curves represent contours

of Mχ̃0
1

in GeV. This range of parameters is cosmologically viable with Ωχh
2 < 0.12, where

the dominant primordial annihilation of χ̃0
1 is through an s-channel Z.

A comparison across the plots informs us that an increase in tan β strengthens the

constraints from Z, h → χ̃0
1χ̃

0
1, which is due to the decrease in Mχ̃0

1
, as discussed earlier.

We also notice that the LUX constraints are consistently stronger than h→ χ̃0
1χ̃

0
1 bounds.

Therefore, the blind spots (unshaded regions) are determined in this case by limits from

LUX and invisible Z decays alone. As mentioned in section 2.3, larger values of λ contribute

more to Tχ. For figure 7(a) and figure 7(b), Tχ < 0.02 (completely safe) and Tχ < 0.11

(marginally safe) in the blind spots. Also, using NMSSMTools 4.5.1 we find that Ωχh
2 ∼

0.01 in the blind spots. Therefore, the well-tempered neutralino here can only make up a

small fraction of the observed relic density.

3.4 Future prospects

In this region (large tan β with µ′ ∼ λv ∼ µeff), the non-standard Higgs scalars are heavy

with MA between 4 − 8 TeV. Therefore the doublet-singlet mixing in the Higgs sector

is very small leading to a 1% deviation in the Higgs signal strengths from the SM. Such

deviations are much below the sensitivity of the LHC at present and future runs, and can

only be tested at a future “Higgs factory”. However, the large tan β scenarios can be probed

by future dark matter direct detection experiments. In particular, the projected reach of

the XENON1T experiment [40] corresponds to σSI ≈ 10−47 − 10−46 cm2 for dark matter

masses between 50 GeV and 500 GeV. Since the DM-nucleon scattering cross-sections for

the large tan β scenarios in figure 6 vary from ∼ 10−46 − 10−45 cm2, these regions can be

probed at the XENON1T experiment. Unlike the large µ′, tanβ scenarios, XENON1T will

only be able to probe some of the allowed regions of the well-tempered scenario because

ghχχ in can be suppressed.

4 Conclusions

In this article we have investigated the viability of regions of large tan β in the framework of

Fat Higgs/λ-SUSY models. In the “toy” model we constructed we showed that the singlet

cubic term is suppressed while the the tadpole and singlino mass parameter terms were

allowed. Within this framework we showed that there are regions of large tan β that are

phenomenologically viable.

In particular, we computed the one-loop effective potential and showed that the tan β-

independent contributions to the Higgs quartic are crucial in raising the Higgs mass to the

observed value of 125 GeV. We have also shown that non-standard Higgs bosons of the same

mass as the stops will give comparable contributions to the Higgs quartic when λ '
√

3yt.

In the region of degenerate non-standard Higgs boson masses the corrections are larger

than those estimated in ref. [36, 47]. This discrepancy is purely due to the assumptions

made in ref. [36, 47] that lead to a split spectrum of heavy CP-even and CP-odd scalars.
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Furthermore, we pointed out that contributions of the neutralinos and charginos to

electroweak precison observables are small even for large tan β when µeff ' 500 GeV and

µ′∼> 100 GeV. Such large values of µeff make this region of Fat Higgs/λ-SUSY parameter

space slightly more unnatural than the low tan β region considered in ref. [22–25, 27–35].

Additionally, this scenario corresponds to the decoupling limit where the mixing between

the heavy Higgs states and the SM-like Higgs is suppressed. Consequently, SM-like Higgs

decay properties are with 1% of their corresponding Standard Model values. Detecting this

scenario at the LHC, therefore, will be challenging.

We also found regions of large tan β in Fat Higgs/λ-SUSY models that satisfy all the

above constraints and provide a viable dark matter candidate. For large µ′ and tanβ

we showed that four possible viable parametric scenarios exist. The dark matter in these

scenarios could be either most singlino or bino and, depending on their mass, could generate

the observed relic abundance through resonant annihilation or co-annihilation. In each of

these scenarios, direct detection cross-section can be probed at the XENON1T experiment.

Another possibility is that of a well-tempered neutralino. This scenario typically occurs at

low values of tan β and λ <∼ 1, where the lightest neutralino’s Higgsino, bino and singlino

fractions are such that its coupling to the Higgs boson is suppressed. The XENON1T

experiment may not be able to completely probe this scenario.
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A Decoupling behavior at one-loop level

We need to use the tadpoles at the one-loop level to solved for the one-loop corrected soft

squared mass parameters. Extending eq. (2.12) to one-loop order leads to the system of

three equations,

Ti =
∂VHiggs

∂φi
=

∂V tree
Higgs

∂φi

∣∣∣∣∣
{vk}

+
∂∆V

∂φi

∣∣∣∣
{vk}

= T tree
i + ∆Ti = 0, i = 1, 2, 3. (A.1)

We again can try to solve for the soft masses m2
Hu
,m2

Hd
and m2

S in terms of the Higgs VEVs.

Note that while each T tree
i , as given in eq. (2.12), contains only its corresponding soft mass

m2
Hi

, ∆Ti in general contain all three soft mass terms. Although obtaining the solutions to

such a system of equations maybe straightforward, the computation could become compli-

cated when we expand the full potential around the true electroweak symmetry breaking

minimum. We can avoid this difficulty by solving eq. (A.1) iteratively. We first solve for
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the tree level soft mass squared parameters
(
m2
H0
u

)0
,
(
m2
H0
d

)0
,
(
m2
S

)0
using eq. (2.12) and

then substitute them into ∆Ti. This approximation linearizes eq. (A.1) which leads to the

one-loop corrected soft mass squared parameters solution

m2
i =

(
m2
i

)0 − 1

16π2

∑
j=D,S

M2
A,j

vi

∂b0j
∂φi

∣∣∣∣∣
vi

+ ... (A.2)

where
(
m2
i

)0
is the tree-level solutions of eq. (2.12), b0j = bj

(
(m2

i )
0
)
, vi = (vu, vd, s),

i = (H0
u, H

0
d , S) and φi = (H0

u, H
0
d , S). Substituting these solutions into the total potential

and expanding it about the electroweak symmetry breaking minimum we observe that

corrections to the CP-even Higgs mass matrix takes the form

(
∆M2

H0

)ab
=

1

16π2

∑
i=D,S

 ∂b0i
2

∂φa∂φb

∣∣∣∣∣
{va}

− 1

2va

∂b0i
∂φa

∣∣∣∣
{va}

δab

M2
A,i + ..., (A.3)

By the symmetries of the model, the only field dependences at quadratic order in b0i are

h2
u, h

2
d, huhd and h2

s. Thus eq. (A.3) suggests that the coefficient of M2
AS

in the self-energy

corrections vanishes and that of M2
AD

will be proportional to

− v2

sβcβ

 c2
β −sβcβ 0

−sβcβ s2
β 0

0 0 0

 . (A.4)

When these correction are rotated into the basis defined in eq. (2.16) we see that the (2, 2)

element is the only non-zero element. Therefore the decoupling is manifest even at the

one-loop level.

B Effective potential derivation

In this section we apply the procedure outlined in section 2.2 to the computation of one-loop

radiative corrections from the Higgs sector. First, we deal with degenerate pseudoscalars,

so that all the one-loop corrections come from a single heavy scale. We will call this Case

(A). Next, in Case (B), we inspect the effect of splitting the pseudoscalar masses on the

one-loop corrections, where they now come from two heavy scales. For simplicity, the soft

terms Aλ, Aκ, µ
′,m3,m

′
S are taken to vanish in this case.

(A) Degenerate pseudoscalars. From the CP-odd mass matrix in eq. (2.14), we im-

pose the necessary and sufficient condition for mass degeneracy in the pseudoscalars given

by
(
M2
A

)
12

= 0,
(
M2
A

)
11

=
(
M2
A

)
22

= M2
A, to obtain

µ′ = Aλ,

ξF =
(
M2
Asβcβ −m2

3

)
/λ− 2Aλs,

ξS = −M2
As−Aλ

(
M2
Asβcβ −m2

3 − λv2s2β

)
/λ (B.1)
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Respecting this condition, the field-dependent mass matrix for the charged sector is

M±11
2

= m2
Hu + λ2h2

s +
g2

4
(h2
u − h2

d) +
g2

2

2
h2
d,

M±12
2

=

(
g2

2

2
− λ2

)
huhd + 2λAλ(hs − s) +M2

Asβcβ ,

M±22
2

= m2
Hd

+ λ2h2
s −

g2

4
(h2
u − h2

d) +
g2

2

2
h2
u, (B.2)

for the CP-odd sector it is

MP
11

2
= m2

Hu + λ2(h2
d + h2

s) +
g2

4
(h2
u − h2

d),

MP
12

2
= 2λAλ(hs − s) +M2

Asβcβ ,

MP
22

2
= m2

Hd
+ λ2(h2

u + h2
s)−

g2

4
(h2
u − h2

d),

MP
13

2
= 0,

MP
23

2
= 0,

MP
33

2
= m2

S + λ2(h2
u + h2

d) +A2
λ −m′s

2
,

(B.3)

and for the CP-even sector it is

MS
11

2
= m2

Hu + λ2(h2
d + h2

s) +
g2

4
(3h2

u − h2
d),

MS
12

2
=

(
2λ2 − g2

2

)
huhd − 2λAλ(hs − s) +M2

Asβcβ ,

MS
22

2
= m2

Hd
+ λ2(h2

u + h2
s)−

g2

4
(h2
u − 3h2

d),

MS
13

2
= 2λ2(huhs −Aλhd),

MS
23

2
= 2λ2(hdhs −Aλhu),

MS
33

2
= m2

S + λ2(h2
u + h2

d) +A2
λ +m′s

2

(B.4)

The eigenvalues of the charged matrix are given by M±1,2
2

= 1
2(Trc ∓

√
Tr2

c − 4Detc),

where Trc = M±11
2

+ M±22
2

and Detc = M±11
2
M±22

2 − M±12
2
M±21

2
. We only include the

contribution from the heavier eigenstate corresponding to M±2
2
. Note that when we take

the supertrace in the charged higgs sector, we obtain a multiplicative factor of 2 since each

charged higgs state comprises of two real physical states. In other words, the supertrace is

here taken over the full 4×4 squared-mass matrix and not the 2×2 version that is usually

written down for brevity.

The eigenvalues of the CP-odd matrix are obtained in a straightforward manner, since

the upper left 2× 2 block is decoupled from MP
33

2
. The squared eigenmasses are obtained

as M2
1,p = 1

2(Trp−
√

Tr2
p − 4Detp),M

2
2,p = 1

2(Trp +
√

Tr2
p − 4Detp) and M2

3,p = M2
33, where

Trp = MP
11

2
+MP

22
2

and Detp = MP
11

2
MP

22
2 −MP

12
2
MP

21
2
.
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Obtaining the CP-even eigenvalues is non-trivial since we need to deal with a rank

3 matrix. However, we can take advantage of the degeneracy of the CP-odd scalars by

employing the following simplifying trick.

First, consider the characteristic equation of the CP-even matrix, written as

α3x
3 + α2x

2 + α1x+ α0 = 0,

whose solutions are the field-dependent eigenmasses M2
i,s. The coefficients αi, in terms of

the matrix elements in eq. (B.4), are

α3 = 1,

α2 = −
(
MS

11
2

+MS
22

2
+MS

33
2
)
,

α1 = MS
11

2
MS

22
2

+MS
22

2
MS

33
2

+MS
33

2
MS

11
2 −MS

12
2
MS

21
2 −MS

23
2
MS

32
2 −MS

31
2
MS

13
2
,

α0 = −
[
MS

11
2
(
MS

22
2
MS

33
2 −MS

23
2
MS

32
2
)
−MS

12
2
(
MS

21
2
MS

33
2 −MS

23
2
MS

31
2
)

+MS
13

2
(
MS

21
2
MS

32
2 −MS

22
2
MS

31
2
)]

(B.5)

We also know, in terms of the eigenmasses, that

α2 = −(M2
1,s +M2

2,s +M2
3,s),

α1 = M2
1,sM

2
2,s +M2

2,sM
2
3,s +M2

3,sM
2
1,s (B.6)

Now the CP-even sector contribution to the effective potential, from eq. (2.18), is

∆V ⊃ 1

64π2

[
(M2

2,s)
2 + (M2

3,s)
2
]

log

(
M2
A

M2
Z

)
. (B.7)

The quantity in brackets can be re-written using eq. (B.6) as simply

(M2
2,s)

2 + (M2
3,s)

2 = α2
2 − 2α1 − (M2

1,s)
2 (B.8)

The coefficients α1 and α2 may be read off eq. (B.5), while we may still have to determine

M2
1,s analytically. This is, however, a simple task if we write M2

1,s as a power series in M2
A :

M2
1,s = b1 +O

(
1

M2
A

)
=⇒ (M2

1,s)
2 = b21 +O

(
1

M2
A

)
, (B.9)

where b1 is at most quadratic in the background fields. Putting eqs. B.8 and B.9 into

eq. (B.7), we obtain the one-loop effective potential contribution simply as

∆V ⊃ 1

64π2

[
α2

2 − 2α1 − b21
]

log

(
M2
A

M2
Z

)
, (B.10)

where we have discarded O(1/M2
A) terms that are irrelevant in obtaining the required

self-energy corrections.
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After including all the one-loop corrections, the final expressions we obtain for the

CP-even mass matrix are now as follows.(
M

2
H

)
11

= M2
Zs

2
β +M

2
Ac

2
β + Π11;

(
M

2
H

)
12

= (2λ2v2 −M2
Z −M

2
A)sβcβ + Π12;(

M
2
H

)
22

= M2
Zc

2
β +M

2
A + Π22;

(
M

2
H

)
13

= 2λvµeffsβ + Π13;(
M

2
H

)
23

= 2λvµeffcβ + Π23;
(
M

2
H

)
33

= M
2
A + Π33,

where

M
2
A = M2

A

(
1 +

λ2

8π2
log

(
M2
A

M2
Z

))
, (B.11)

and

Π11 =
v2

256π2

[
− 32λ4s2

β(2c2β − s2
2β) + 2λ2g2(3c2β − 1)(3s2

2β + 2)

+ g4(4c4
W + 4c2

W − 7s2
2β − 1− c2β(4c4

W − 4c2
W + 5s2

2β + 3))

+ 64λ2Aλµeff

v2
cotβ

]
log

(
M2
A

M2
Z

)
,

Π12 =
v2

256π2

[
− 32λ4(s2

2β − 2)− 2λ2g2s2β(8c2
W − 15s2

2β + 14)

+ g4s2β(4c4
W + 4c2

W − 7s2
2β + 3)

− 64λ2Aλµeff

v2

]
log

(
M2
A

M2
Z

)
,

Π22 =
v2

256π2

[
32λ4c2

β(2c2β + s2
2β)− 2λ2g2(3c2β + 1)(3s2

2β + 2)

+ g4(4c4
W − 4c2

W + 7s2
2β + 1 + c2β(4c4

W − 4c2
W + 5s2

2β + 3))

+ 64λ2Aλµeff

v2
tanβ

]
log

(
M2
A

M2
Z

)
,

Π13 =
vµeff

µeff

[
12λ3s3

β + λg2sβ(3c2β + 2c2
W + 1)

+
λvAλ cosβ

32π2

(
−λ2(13 + 3c4β) +

g2

2
(5 + 4c2

W − 6c2β + 3c4β)

)]
log

(
M2
A

M2
Z

)
,

Π23 =
vµeff

µeff

[
12λ3c3

β + λg2cβ(−3c2β + 2c2
W + 1))

+
λvAλ sinβ

32π2

(
−λ2(13 + 3c4β) +

g2

2
(5 + 4c2

W + 6c2β + 3c4β)

)]
log

(
M2
A

M2
Z

)
,

Π33 =

{
4λ2µ2

eff

16π2
+

λAλ
128π2

[λ(16Aλ(4 + c4β)

+λ(64s2 + 29v2)s2β + λv2s6β) + g2v2s2β(3 + 4c2
W + c4β)

]}
log

(
M2
A

M2
Z

)
(B.12)
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If we set all NMSSM-specific parameters to zero in the above, we recover the MSSM

limit presented in [65–68]. The soft term Aλ decouples at one-loop order and does not

contribute to the SM Higgs quartic coupling, a property best seen in the basis of eq. (2.16).

The SM Higgs boson mass is then identified as

M
2
hh = λ2v2s2

2β +M2
Zc

2
2β + Πhh,

Πhh =
v2

512π2
[4λ4(31 + 4c4β − 3c8β) + 4λ2g2(−9− 4c2

W + (4c2
W − 2)c4β + 3c8β)

− g4(−11 + 8c2
W − 16c4

W + 8c2
W c4β + 3c8β)] log

(
M2
A

M2
Z

)
(B.13)

Aλ is absent in the expression above, confirming its decoupling behavior at the one-

loop level. Moreover, if we neglect the electroweak strength corrections, in the limit of

large tan β we get

lim
tanβ�1

Πhh =
λ4v2

4π2
log

(
M2
A

M2
Z

)
, (B.14)

in agreement with our heuristic estimate in eq. (2.25).

(B) Non-degenerate pseudoscalars: a simple case. We now show the effect of a

split pseudoscalar spectrum on the radiative corrections. For simplicity, we assume the

parameters Aλ, µ
′,m3,m

′
S vanish. We also neglect g-dependent terms in the one-loop

piece, since the largest contributions to the SM Higgs quartic in our model arise from the

λ-dependent terms. With these simplifications, the field-dependent squared mass matrices

for the charged, CP-odd and CP-even sectors are respectively given by

M±11
2

= m2
Hu + λ2h2

s, M±12
2

= λ2huhd +M2
AD
sβcβ , M±22

2
= m2

Hd
+ λ2h2

s;

(B.15)

MP
11

2
= m2

Hu + λ2(h2
d + h2

s), MP
12

2
= M2

AD
sβcβ ,

MP
22

2
= m2

Hd
+ λ2(h2

u + h2
s), MP

13
2

= 0,

MP
23

2
= 0, MP

33
2

= m2
S + λ2(h2

u + h2
d); (B.16)

MS
11

2
= m2

Hu + λ2(h2
d + h2

s), MS
12

2
= 2λ2huhd −M2

AD
sβcβ ,

MS
22

2
= m2

Hd
+ λ2(h2

u + h2
s), MS

13
2

= 2λ2huhs,

MS
23

2
= 2λ2hdhs, MS

33
2

= m2
S + λ2(h2

u + h2
d); (B.17)

Obtaining the eigenvalues of the charged and CP-odd systems is straightforward again,

as we found in Case (A). To obtain the eigenvalues of the CP-even matrix, we solve for the

roots of its characteristic equation (a cubic polynomial) as a power series in M2
AD

and M2
AS

.
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After collecting the one-loop contributions from all three sectors and summing over

them, we obtain the CP-even mass matrix as(
M

2
H

)
11

= M2
Zs

2
β +M

2
AD
c2
β + Π11;

(
M

2
H

)
12

= (2λ2v2 −M2
Z −M

2
AD

)sβcβ + Π12;(
M

2
H

)
22

= M2
Zc

2
β +M

2
AD

+ Π22;
(
M

2
H

)
13

= 2λvµeffsβ + Π13;(
M

2
H

)
23

= 2λvµeffcβ + Π23;
(
M

2
H

)
33

= M
2
AS

+ Π33

where

M
2
AD

= M2
AD

(
1 +

λ2

8π2
log

(
M2
AD

M2
Z

)
+

λ2

8π2

µ2
eff

M2
A2
−M2

A1

log

(
M2
AS

M2
AD

))
,

M
2
AS

= M2
AS

(B.18)

and

Π11 =
λ4v2

16π2
s2
β

[
−(4c2β + c4β + 1) log

(
M2
AD

M2
Z

)
+ 2 log

(
M2
AS

M2
Z

)]
,

Π12 =
2λ4v2

16π2
sβcβ(2 + c4β) log

(
M2
AD

M2
Z

)
,

Π22 =
λ4v2

16π2
c2
β

[
−(−4c2β + c4β + 1) log

(
M2
AD

M2
Z

)
+ 2 log

(
M2
AS

M2
Z

)]
,

Π13 =
λ3vµeff

16π2
sβ

[
−(1 + 3c2β) log

(
M2
AD

M2
Z

)
+ 4 log

(
M2
AS

M2
Z

)]
,

Π23 =
λ3vµeff

16π2
cβ

[
−(1− 3c2β) log

(
M2
AD

M2
Z

)
+ 4 log

(
M2
AS

M2
Z

)]
,

Π33 =
4λ2µ2

eff

16π2
log

(
M2
AD

M2
Z

)
. (B.19)

We make the following observations concerning the above expressions. First, notice

that in the limit MAD = MAS , they are consistent with the results in Case (A) with

g,Aλ → 0. Second, we observe that corrections from the heavy doublet Higgses are β-

dependent and those from the heavy singlet Higgses are not, as reflected in the co-efficients

of log(M2
AD
/M2

Z) and log(M2
AS
/M2

Z) respectively. Third, there is a marked difference in

contributions from the scales MAD and MAS to the SM Higgs quartic, which can be un-

derstood in the basis of eq. (2.16). Rotating Πij into this basis, the correction to the SM

Higgs boson mass is identified as

Πhh =
λ4v2sβ
16π2

[(
c2
β(2 + c4β)− s2

β(1 + c4β + 4c2β)
)

log

(
M2
AD

M2
Z

)
+ 2s2

β log

(
M2
AS

M2
Z

)]
.

The difference in the co-efficients of the logarithms are greatest at tan β ∼ 1, and smallest

at tanβ � 1. In the latter limit, we obtain

lim
tanβ�1

Πhh =
λ4v2

16π2

[
2 log

(
M2
AD

M2
Z

)
+ 2 log

(
M2
AS

M2
Z

)]
,

which is consistent with our qualitative estimate in eq. (2.24).
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