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1 Introduction

The problem of quantizing general relativity is one of the outstanding questions of theoret-

ical physics. In order to better understand the gravity of our four-dimensional universe, we

often consider the lower-dimension model of quantum gravity in 2+1 dimensions. Decades

of effort have given important insight into quantum gravity in 2+1 dimensions [1–5]. Stud-

ies of maximally symmetric anti-de Sitter (AdS) spaces for the case of negative cosmological

constant have been particularly successful. It has been known since the work of Brown

and Henneaux [6] that quantum gravity in (2+1)-dimensional spacetime is related to two-

dimensional conformal field theory. This connection is a specific case of the AdS/CFT

correspondence. This correspondence relates quantum gravity in an asymptotically AdS

spacetime to a conformal field theory in one lower dimension, which can regarded as liv-

ing at the spatial boundary of the AdS spacetime. Using this correspondence allows for

problems in quantum gravity to be addressed using the tools of conformal field theories.

Though this duality has numerous and diverse applications, we are interested primarily

in the correspondence between the mass of a state in the bulk theory and the conformal

dimension of the associated operator in the boundary CFT. By deriving bounds on con-

formal dimensions in the CFT, we are able to make statements about the allowed mass of

states in any corresponding theory of quantum gravity. Of course, two-dimensional con-

formal theories are interesting in their own right; they describe string worldsheets, phase

changes, and many other interesting physical phenomena. It is for all of these reasons and

others that we focus our efforts on proving universal bounds on conformal dimensions in

two-dimensional conformal field theories.
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Much work has already been done in deriving bounds on conformal dimensions. The

paper [7] (based on [8, 9]) examines the gravitational duals of 2D CFTs for which the

partition function is holomorphically factorized as a function of the complex structure τ of

the torus. In this class of CFT it can be shown that the lowest primary operator is either

purely left- or right-moving, and can have a dimension no larger than 1+min( c
24 ,

c̃
24), where

c, c̃ are the left-,right-central charge. For all positive integer values of ( c
24 ,

c̃
24), there exists

a unique partition function for which this bound is saturated (though it is unclear if this

partition function correspond to an actual conformal field theory [10]). Other work [11]

considers the case of theories with extended (2,2) supersymmetry. This property allows the

authors to exploit the holomorphic dependence on the complex structure without assuming

holomorphic factorization. Study of a certain subclass of (2,2) SUSY CFTs suggests a

bound that goes as ∆1 ≤ c
24 for large central charge.

A more recent paper [12] derives a general upper bound on the conformal dimension of

the lowest primary operator in a general two dimensional conformal field theory, assuming

only unitarity, a discrete operator spectrum, and invariance of the partition function under

the modular S-transformation.1 The proof does not assume any special properties like

holomorphic factorization or supersymmetry, nor does it refer to the bulk three-dimensional

spacetime or asymptotic expansion at large central charge. The resulting upper bound is

∆1 ≤
ctot
12

+ 0.4736 . . . (1.1)

Using the AdS/CFT dictionary, equation (1.1) translates directly into an upper bound on

the mass of the lightest massive state in a theory of gravity in three dimensions.

Building on this work, the paper [18] investigated additional constraints from S-

invariance systematically. The authors applied the next several higher order differential

constraints using the linear functional method and found that for finite ctot the bound can

be lowered somewhat. In [19], the methods of [12] are generalized to find upper bounds for

general conformal dimension ∆n. This work also provides a lower bound on the number N

of primary operators satisfying eq. (1.1) going as

logN &
πctot
12

. (1.2)

An alternate proof of this fact was found in [20]. The authors considered two-dimensional

CFTs with large central charge and a sparse light spectrum and showed S-invariance im-

plies both that the free energy is universal for all temperatures and that the microscopic

spectrum matches the Cardy entropy for all ∆ ≥ ctot/12.

In this paper, we consider 2D CFTs that are invariant under the S− and ST− trans-

formations. We derive a smaller upper bound on the weight of the lowest primary operator

by considering a general two dimensional conformal field theory consisting of only even-spin

operators. As in [12], we will assume that the Hilbert space has a positive definite norm

(ncessary for a consistent interpretation of quantum mechanics), and that the spectrum

of operator dimensions is discrete (necessary for well-behaved thermodynamic properties).

1The conclusions also apply to CFTs with continuous spectra that can be realized as limits of CFTs

with discrete spectra. For example, the moduli space of the D1-D5 CFT [13–17].
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By restricting to theories having primary operators with only even spins (JA = 0,±2 . . .),

we find that ∆1 ≤ ctot
24 + O(1). We briefly address how to extend this proof to larger con-

formal dimensions (as in [19]), before discussing upper and lower bounds on the number of

primary operators in a given energy range (as in [20]). We conclude by investigating the

gravitational interpretation of our results. The upper bound on ∆1 translates directly into

an upper bound on the mass of the lightest massive state in a theory of gravity and matter

in three dimensions subject to the same even-spin condition. We will see that in the flat

space approximation, this limiting mass is precisely that of the lightest BTZ black hole.

2 Constraints from ST -invariance

In this section, we review how unitarity and modular invariance lead to constraints on the

conformal dimensions of a 2D CFT. The techniques described in this section were developed

in [21, 22], where they were used to estimate dimensions of operators in special cases, as

well as [12, 18, 19] in deriving upper bounds. Related techniques have been used to bound

certain operator dimensions in conformal field theories in various other dimensions [23–32].

2.1 Modular invariance

We consider a general CFT in two dimensions with positive norm and discrete spectrum.

When the spatial direction σ1 is compactified on a circle of length 2π, the partition function

of the theory at temperature β−1 is given by

Z(β) = Tr ( exp{−βH} ) , (2.1)

where H is the Hamiltonian on a circle of length 2π. The partition function can be refined

by adding a potential K1 for momentum P1 in the compact spatial direction:

Z(β,K1) ≡ Tr(exp{iK1 − βH}) (2.2)

Defining the modular parameter τ ≡ (K1 + iβ)/2π, as well as the usual modular variable

q ≡ e2πiτ , the partition function can then be expressed in the form

Z(τ, τ̄) ≡ Tr
(

qL0− c

24 q̄L̃0− c̃

24

)

. (2.3)

Here c and c̃ are the right- and left-moving central charges, and L0 = 1
2(H + P1) +

c
24 ,

L̃0 =
1
2(H−P1)+

c̃
24 are the right- and left-moving conformal weight operators which fit into

the usual Virasoro algebra. The Virasoro generators obey the usual Hermiticity condition

L†
m = L−m, and it follows from unitarity that every primary operator has nonnegative

weight, with weight zero if and only if the operator is the identity.

The partition function can be realized as the path integral of the conformal field

theory on a torus of complex structure τ without operator insertions. Large coordinate

transformations of the torus have the structure of the modular group PSL(2,Z), with the

generator

(

a b

c d

)

acting as τ → aτ+b
cτ+d . The group is generated by the transformations

– 3 –
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T =

(

1 1

0 1

)

and S =

(

0 −1

1 0

)

, which act as τ → τ + 1 and τ → − 1
τ , respectively

(such that S2 = −1 and (ST )3 = 1). Invariance of the partition function under the T

transformation is equivalent to the condition that every state have h−h̃ ∈ Z, where h, h̃ are

the state’s eigenvalues under L0, L̃0. Consequences of invariance of the partition function

Z(τ, τ̄) under the modular S-transformation have been studied in depth (e.g., [18–20, 27]).

We turn our attention to consequences of invariance of the partition function under the

ST -transformation.

2.2 Intermediate temperature expansion

The following discussion closely follows the derivation given in [12], though it has been

adapted here to the case of invariance under the ST -transformation. We refer the reader

there for additional details.

In order to study ST -invariance, we focus on the complex modular parameter at the

value τ = ω ≡ −1/2 + i
√
3/2 such that the point ω is fixed under the modular transfor-

mation ST : τ → − 1
τ+1 . We have chosen this value of the complex structure in order to

be definite — considering the complex conjugate ω̄ (invariant under the modular transfor-

mation (ST )2) gives no additional information. We choose a neighborhood of τ = ω to

parametrize this neighborhood conveniently

τ = ωes ≈ ω(1 + s). (2.4)

This parameterization is not optimal, as it will not manifestly exhibit ST -invariance to all

orders. A good parameterization would involve the modular j-invariant

j(τ) = 32
(θ2(0; q)

8 + θ3(0; q)
8 + θ4(0; q)

8)3

(θ2(0; q)θ3(0; q)θ4(0; q))8
, (2.5)

where the θ are auxiliary theta functions. This complicated analysis is unnecessary, how-

ever — we will only require a constraint at linear order, and the simpler exponential

parameterization is therefore sufficient.

Under the ST -transformation, s → ω2s near the fixed point ω. Invariance of the

partition function under this transformation then tells us that

Z(ωes, ω̄es̄) = Z(ωeω
2s, ω̄eω̄

2s̄) (2.6)

Scaling s → 0 and examining the behavior of the partition function is what we shall refer to

as the intermediate temperature expansion. This terminology is inspired by the “medium

temperature expansion” discussed in [12]. Taking successive derivatives evaluated at s = 0,

we see that
(

∂

∂s

)NL
(

∂

∂s̄

)NR

Z

∣

∣

∣

∣

s,s̄=0

= 0, NL mod 3 6= NR mod 3 (2.7)

In terms of the parameter τ , this is

(

τ
∂

∂τ

)NL
(

τ̄
∂

∂τ̄

)NR

Z(τ, τ̃)

∣

∣

∣

∣

τ=ω

= 0, NL mod 3 6= NR mod 3 (2.8)
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The condition on NL and NR reflect the fact that the ST -transformation satisfies (ST )3 :

τ → τ .

As will be demonstrated below, terms in the partition function have dependence going

as Z ∼ e−β∆eiK
1J , where β = −iπ(τ − τ̄), K1 = π(τ + τ̄), ∆ is the conformal dimension of

a state, and J is its conformal spin. The differential constraints given in terms of τ and τ̄

acting on terms of this form generically lead to complex polynomials and alternating sums.

These alternating sums do not lead to positivity conditions and are useless for our methods

of proof. In order to end up with useful polynomial constraints, we thus need to express

the above differential constraints in terms of β. In general, the constraints (2.8) can not

be written solely in terms of β derivatives; we are able, however, to obtain the lowest order

differential constraint
(

β
∂

∂β

)

Z(K1, β)

∣

∣

∣

∣

τ=ω

= 0. (2.9)

This constraint from ST -invariance corresponds to the lowest-order constraint from S-

invariance given in [12],
(

β
∂

∂β

)

Z(K1, β)

∣

∣

∣

∣

τ=i

= 0. (2.10)

We will use both of these results in the work that follows.

2.3 Polynomial constraint

We will consider the same class of theories as [12]. In particular, we will consider only

theories with c, c̃ > 1; compact, unitary CFTs with c ≤ 1 are completely classified and we

can inspect the operator spectra directly (see [33]). We assume the theory has no chiral

algebra beyond the Virasoro algebra in order to simplify our analysis (this assumption can

be removed to obtain more general results at the expense of weaker bounds — the extension

is straightfoward, but nontrivial [34]). Using cluster decomposition, we can therefore split

our partition function Z(τ) into a sum over conformal families:

Z(τ) = Zid(τ) +
∑

A

ZA(τ) (2.11)

where A refers to the Ath primary having conformal weights hA and h̃A. Using a well-known

Virasoro representation structure theorem [35–37], we can express the partition function as

Z(τ) = q(−c/24)q̃−c̃/24

[ ∞
∏

m=1

(1− qm)−1

][ ∞
∏

n=1

(1− q̃)−1

]

[(1− q)(1− q̃) + Y (τ)] (2.12)

where

Y (τ) =
∞
∑

A=1

q−hA q̃−h̃A (2.13)

By introducing conformal dimension ∆A ≡ hA+ h̃A and conformal spin JA ≡ hA− h̃A,

we can express the partition function over primaries as

Y (τ, τ̄) =
∞
∑

A=1

e−β∆AeiK
1JA =

∞
∑

A=1

eiπ(τ−τ̄)∆Aeiπ(τ+τ̄)JA . (2.14)
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At this point it is apparent that terms in the partition function have the dependence claimed

earlier. Finally, we can simplify the prefactor. Defining Ê0 ≡ E0+
1
12 = − c+c̃

24 + 1
12 ≡ 2−ctot

24

and ∆c ≡ − c−c̃
24 , we find

q
−(c−1)

24 q̃
−(c̃−1)

24 = e−βÊ0eiK
1∆c = eiπ(τ−τ̄)(E0+

1
12

)eiπ(τ+τ̄)∆c (2.15)

This gives for the full partition function

Z(K1, β) = e−βÊ0eiK
1∆c|η(τ)|−2[(1− q)(1− q̃) + Y (τ, τ̄)]

= M(τ, τ̄)Y (τ, τ̄) +B(τ, τ̄), (2.16)

where M and B are defined for convenience.

In what follows it will also be convenient to define some polynomials. We define g(z)

by the equation

(β∂β)M(β)Y (β)

∣

∣

∣

∣

β=π
√
3

= −|η(ω)|−2
∞
∑

A=1

e−π
√
3(∆A+Ê0)e−iπJA−iπ∆cg(∆A + Ê0). (2.17)

We also define a polynomial c(Ê0) (not to be confused with the central charge) by the

formula

(β∂β)B(β)

∣

∣

∣

∣

β=π
√
3

= −|η(ω)|−2exp{−π
√
3Ê0 − iπ∆c}c(Ê0) (2.18)

Using these, we see our differential constraint on the partition function can be expressed as

∞
∑

A=1

exp{−π
√
3∆A}exp{−iπJA}g(∆A + Ê0) = −c(Ê0). (2.19)

The explicit forms for the defined polynomials are

g(z) = π
√
3z − 1

2

c(z) = π
√
3z − 1

2
+

2π
√
3z

eπ
√
3

− 1

eπ
√
3
+

2π
√
3

eπ
√
3
+

π
√
3z

e2π
√
3
− 1

2e2π
√
3
+

2π
√
3

e2π
√
3
. (2.20)

In calculating these polynomials, we used the expression

η′(ω) =
i
√
3

6
η(ω). (2.21)

This fact follows from taking a derivative of the modular transformation rule for the

Dedekind η function

η

( −1

τ + 1

)

= η(τ)eiπ/12
√
τ + 1 (2.22)

and evaluating at τ = ω.

The polynomials g(z) and c(z) are analogous to the polynomials f1(z) and b1(z)

from [12]. Specifically, invariance under the S-transformation (using the same assump-

tions used here) results in the expression

∞
∑

A=1

exp{−2π∆A}f1(∆A + Ê0) = −b1(Ê0). (2.23)
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The polynomials f1(z) and b1(z) have the explicit forms

f1(z) = 2πz − 1

2

b1(z) = 2πz − 1

2
− 2(2π(z + 1)− 1

2)

e2π
+

(2π(z + 2)− 1
2)

e4π
. (2.24)

In the proof that follows, we will use all four of these polynomial expressions.

3 Proof of a bound for even spin

In this section, we will use the polynomial constraints (2.19) and (2.23) to derive a bound

on the smallest nonidentity conformal dimension. We wish to proceed using proof by con-

tradiction as in [12]. The arguments there depend upon having a sum of positive numbers

equaling zero. The presence of the complex exponential in equation (2.19), however, means

that terms in our sum could be positive or negative depending on operator spin. To pro-

ceed, we will make the assumption that in our theory all primary operator spins are even.2

This is a special property, and so it comes as no surprise that we find tigher bounds than

in the case of more general 2D CFTs. There are still many interesting theories that satisfy

this assumption, including truncations of pure gravity with scalars, consistent truncations

of higher spin gravity theories on AdS3 to massless gauge fields with even spin (and their

proposed dual WDN minimal model CFTs), and others [38–41].

3.1 Proof by contradiction

We now consider a theory with only even-spin primary operators. This restriction elimi-

nates the imaginary part of the exponential in (2.19), so that the sign of any term in the

sum is determined by g(∆A + Ê0). Having made this assumption, we form the ratio of the

lowest order S-invariance constraint (2.23) and the ST -invariance constraint (2.19):

∑∞
A=1 exp{−2π∆A}f1(∆A + Ê0)

∑∞
B=1 exp{−π

√
3∆B}g(∆B + Ê0)

=
b1(Ê0)

c(Ê0)
≡ G0(Ê0). (3.1)

Before proceeding, we must address the possibility that eq. (3.1) becomes undefined. In

appendix A we demonstrate that G(Ê0) is defined over the relevant range of central charge

and that is strictly positive.

Subtracting G(Ê0) over to the r.h.s., we then combine the terms to get

∑∞
A=1

[

e−(2−
√
3)π∆Af1(∆A + Ê0)− g(∆A + Ê0)G0(Ê0)

]

exp{−π
√
3∆A}

∑∞
B=1 exp{−π

√
3∆B}g(∆B + Ê0)

= 0. (3.2)

We now make several definitions in order to simplify our expressions. We define α ≡ 2−
√
3

and multiply both sides of equation (3.2) by exp(−απÊ0) to arrive at

∑∞
A=1

[

e−(2−
√
3)π(∆A+Ê0)f1(∆A + Ê0)− g(∆A + Ê0)Ĝ0(Ê0)

]

e−π
√
3∆A

∑∞
B=1 exp{−π

√
3∆B}g(∆B + Ê0)

= 0, (3.3)

2Obviously descendant states will include operators with odd spin.
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where Ĝ0 ≡ G exp(−απÊ0) (and will be positive by the result of appendix A). We further

define the zero of g with respect to ∆A as g+. We also define the bracketed expression in

the numerator of eq. (3.2) as P (∆A), with the largest root of P labeled as ∆+.

We proceed using proof by contradiction; assume ∆1 > max(g+,∆+). For positive Ĝ,

this implies P < 0 (as can be checked from the explicit expression) and g > 0. Because

∆n ≥ ∆1 for all n > 1, we also have that P (∆n) < 0 and g(∆n + Ê0) > 0. Finally, the

reality of ∆n implies exp{−π
√
3∆i} > 0 for i ≥ 1. Thus the denominator is always positive

and every term in the numerator is negative for ∆1 > max(g+,∆+). It is impossible to

add together negative numbers to equal zero: we therefore have a contradiction. We have

thus derived our first bound:

∆1 ≤ max(g+,∆+). (3.4)

Using the explicit form of g(z), we can find an exact expression for g+:

g+ =
ctot
24

+

√
3

6π
− 1

12
≈ ctot

24
+ 0.00855482 . . . (3.5)

In order to simplify our bound, we now turn our attention to the root ∆+.

3.2 Analytic and numerical bounds on ∆1

In this section, we find analytic and numerical upper bounds on ∆+. We do so without

reference to asymptotically large central charge, which results in truly universal bounds in

this class of theories. We begin by considering the explicit expression for P = 0,

[

2π(∆+ + Ê0)−
1

2

]

e−απ(∆++Ê) −
[

π
√
3(∆+ + Ê0)−

1

2

]

Ĝ0(Ê0) = 0. (3.6)

To simplify analysis, we define z+ ≡ π(∆+ + Ê0). Then eq. (3.6) becomes

(√
3z+ − 1

2

)

Ĝ0 =

(

2z+ − 1

2

)

e−αz+ . (3.7)

We will use this expression to bound ∆+.

Due to sign considerations, z+ can only exist on the intervals z+ < 1
4 and z+ >

√
3
6 .

We consider first the latter interval. The positivity of z+ on this interval means

(√
3z+ − 1

2

)

Ĝ0 =

(

2z+ − 1

2

)

e−bz+ <

(

2z+ − 1

2

)

⇒ z+ <
Ĝ− 1

2
√
3Ĝ− 4

(3.8)

In performing this simplification, I have assumed that Ĝ > 2
√
3/3. This is equivalent to

the condition that ctot > 2.33544 . . ., which is a stronger assumption than ctot > 2. We will

address this further restriction momentarily. As Ĝ approaches 2
√
3

3 , the r.h.s. approaches

+∞ and we can prove no bound. As we increase Ĝ, the r.h.s. monotonically decreases and

asymptotes to
√
3
6 .
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Thus the possibilities are that z+ < 1
4 — in which case equation (3.8) trivially holds

— or z+ >
√
3
6 in which case equation (3.8) also holds. In either case, we have proven

z+ = π(∆+ + Ê0) <
Ĝ− 1

2
√
3Ĝ− 4

⇒ ∆+ <
ctot
24

+
Ĝ− 1

2
√
3Ĝ− 4

− 1

12
. (3.9)

or upon simplifying

∆+ <
ctot
24

+

√
3

6π
− 1

12
+

α/π

6Ĝ− 4
√
3
. (3.10)

In this form, it is clear that max(∆+, g+) = ∆+, and we therefore have the bound

∆1 ≤ ∆+ =
ctot
24

+

√
3

6π
− 1

12
+

α/π

6Ĝ− 4
√
3
. (3.11)

This bound holds for all two-dimensional conformal field theories with only even spin

primary operators, subject to the constraints that there are no chiral algebras beyond the

Virasoro algebra and that c > 1, c̃ > 1, and ctot > 2.33544 . . ..

It is apparent that tighter bounds can be calculated by restricting the allowed values of

the total central charge. For example, if we restrict ourselves to the case where ctot ≥ 2.5,

an explicit calculation gives that

ctot ≥ 2.5 ⇒ ∆1 ≤ ∆+ =
ctot
24

+ 2.1510 . . .

Additional calculations give

ctot ≥ 3 ⇒ ∆1 ≤ ∆+ =
ctot
24

+ 0.5338 . . . ,

ctot ≥ 4 ⇒ ∆1 ≤ ∆+ =
ctot
24

+ 0.2142 . . . ,

ctot ≥ 48 ⇒ ∆1 ≤ ∆+ =
ctot
24

+ 0.0116 . . . (3.12)

In the limit of asymptotically large total central charge, the numerical constant converges

to
√
3

6π − 1
12 ≈ 0.008554 . . ..

Although the bound (3.11) is analytic, it is not without its deficiencies. First, there

is no reason to expect that it is optimal in the sense that it is saturated by some physical

conformal field theory. Indeed, the argument (3.9) was formulated due to its convenience;

a more careful analysis should give a significantly tighter bound. Second, our particular

derivation further restricted the allowed range of total central charge. Though this is not

cataclysmic, a more general bound valid for the full range of central charge c, c̃ > 1 is

preferred. To find such an improved bound, therefore, we proceed numerically.

The largest root ∆+ (or analogously, z+) of the polynomial P satisfies equation (3.7).

We seek the least upper bound on z+ for ctot > 2 The function z+ attains a global maximum

(for ctot ≈ 2), so that

z+ < 0.5530 . . . (3.13)

Substituting the definition of z thus gives the numerical bound

∆1 <
ctot
24

+ 0.09270 . . . (3.14)
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This is a notable improvement over the bounds determined analytically. As in that case,

restricting the central charge to larger values gives a tighter bound. For example,

ctot ≥ 48 ⇒ ∆1 <
ctot
24

+ 0.00903 . . .

Again, in the limit of asymptotically large total central charge the numerical constant

converges to
√
3

6π − 1
12 ≈ 0.008554 . . .

4 Gravitational interpretation of bounds

In this section, we briefly explore the gravitational interpretation of our CFT results using

the AdS/CFT correspondence. Our restriction to CFTs with only even spin operators

means that the corresponding gravitational theory must also have only even spin primary

operators. We therefore restrict our discussions to the relevant gravitational duals —

even spin truncations of gravitational or higher-spin gravitational theories. In the case of

AdS3/CFT2, the matching between the central charge of the CFT and the cosmological

constant identified in [6] is

c+ c̃ =
3

GN

√

|Λ|
, (4.1)

where Λ = −L−2 and L is the AdS radius. From this expression, it’s clear that the flat

space limit corresponds to taking the limit ctot → ∞. We also match primary operators3

with some conformal dimension living in the boundary CFT with massive objects in the

bulk with some center-of-mass energy according to the identification

Ecom =
∆

L
. (4.2)

It is clear that in the flat space limit, only terms proportional to or larger than the total

central charge will contribute to the mass of the bulk state.

With these identifications, equation (3.11) says that every suitable theory of quantum

gravity having only even spin fields must have a massive state in the bulk of rest energy

M1 such that

M1 ≤ M+ ≡ 1

L
∆+|ctotal= 3L

GN

. (4.3)

Using our analytic expression for ∆+, this inequality becomes

M1 ≤
1

8GN
+

d0
L

(4.4)

where d0 ≡ +
√
3

6π − 1
12 + α/π

6Ĝ−4
√
3
. For our allowed values of the central charge (ctot >

2.3354 . . .), the r.h.s. of this bound is finite. Similar results apply for the case where we

use our numerical expressions for ∆+. This restriction to c, c̃ > 1 (or ctot > 2.3354 . . .) is

not overly restrictive, as the range 0 < ctot . 2 represents AdS3 spaces with Planck-scale

3A primary state corresponds to a state at rest, and descendant states correspond to the original massive

state in the bulk with boundary metric excitations [7].
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curvatures. Theories of gravitation with such extreme curvatures are exotic, at best. In

the flat-space limit Λ → 0, this bound becomes

M1 ≤
1

8GN
. (4.5)

This mass is precisely the rest energy of the lightest BTZ black hole. Because any theory

of 3D gravity admitting an AdS vacuum will also admit BTZ black holes, we interpret this

bound as saying that there should always be a massive state in such even-spin theories at

around the energy scale corresponding to the lightest spinless BTZ black hole. [43, 44]

A Properties of G0(Ê0)

In this section, we demonstrate that Ĝ0(Ê0) > 0 for the interval Ê0 ∈ (−∞, 0) (corre-

sponding to values of the total central charge ctot ∈ (2,∞) ). The exponential factor is

obviously positive for real arguments, so we need only prove G0(Ê0) > 0. This function

has one simple pole at

Ê0 =
1

6

√
3eπ

√
3 − 12π +

√
3

π(eπ
√
3 + 1)

≈ 0.083257 . . . (A.1)

This point is outside of our interval for the central charge, and so the function G0 will be

continuous for ctot > 2.

Furthermore, G0 has only one zero, at

Ê0 = −1

4

1 + 8πe−2π − 2e−2π − 8πe−4π + e−4π

π(−1 + 2e−2π − e−4π)
≈ 0.083319 . . . (A.2)

This point is also outside of our interval of interest. Thus for relevant values of the central

charge, the function G0(Ê0) will be either everywhere positive or everywhere negative.

To determine whether G0(Ê0) is strictly negative or positive, we need only calculate its

value for a specific value of Ê0. Evaluating at c = 42 gives G0 ≈ 1.14050 . . ., and therefore

Ĝ0(Ê0) > 0.
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