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Abstract: An interpolating function F̃ between the a-anomaly coefficient in even dimen-

sions and the free energy on an odd-dimensional sphere has been proposed recently and is

conjectured to monotonically decrease along any renormalization group flow in continuous

dimension d. We examine F̃ in the large-N CFT’s in d dimensions holographically de-

scribed by the Einstein-Hilbert gravity in the AdSd+1 space. We show that F̃ is a smooth

function of d and correctly interpolates the a coefficients and the free energies. The mono-

tonicity of F̃ along an RG flow follows from the analytic continuation of the holographic

c-theorem to continuous d, which completes the proof of the conjecture.
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1 Introduction

A measure of degrees of freedom in a quantum field theory (QFT) remains to be elucidated

in arbitrary d dimensions. Physically, it decreases monotonically as the energy scale is

lowered because of the decoupling of massive particles. Implementation of such a measure

in any QFT in diverse dimensions is intriguing and desirable to characterize the behavior

under a renormalization group (RG) flow.

For even d, the conformal anomaly in the stress-energy tensor1

〈T µ
µ 〉 =

(−1)
d
2
+1

2
aEd +

∑
i

bi Ii , (1.1)

defines the unique a coefficient for the Euler density Ed and several bi coefficients for the

Weyl invariants Ii labeled by an integer i. The a coefficients are believed to be monoton-

ically decreasing along any RG flow, namely the value aUV at the ultra-violet (UV) fixed

point is equal or greater than that aIR at the infra-red (IR) fixed point, aUV ≥ aIR. This

statement was established in two dimensions by the Zamolodchikov’s c-theorem [1] and in

four dimensions by the a-theorem [2–4]. On the other hand, the F -theorem asserts that

the free energy, F ≡ (−1)
d−1
2 logZSd , defined by the conformal invariant partition function

ZSd on Sd of radius R, decreases under any RG flow in odd dimensions [5, 6]. A proof

for d = 3 was presented by [7] through the relation of the free energy to the entanglement

entropy S across an entangling surface Sd−2 of radius R in R1,d−1 [8]

F = (−1)
d−1
2 S , (1.2)

that holds for odd d up to UV divergences.

These two proposals look quite different at first sight, but share the fact that both the a

coefficient and the free energy can be read off on Sd; the former arises from the integration

of the trace of the stress-energy tensor (1.1) and the latter from the partition function. To

interpolate between the a coefficient and the free energy, Giombi and Klebanov define a

new function [9]

F̃ ≡ sin

(
πd

2

)
logZSd , (1.3)

1We define the stress-energy tensor by Tµν ≡ 2√
g

δI
δgµν

for an action I. The Euler density is normalized

to be
∫
Sd
ddx
√
g Ed = 2.
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which correctly reduces to the free energies for odd d. They show as d approaches to even

integers2 (see also [10] as a related work)

F̃ =
π

2
a . (1.4)

Note that the partition function ZSd used in (1.3) is conformal invariant and UV divergent

for even d. The relation (1.4) follows from the fact that the conformal invariant partition

function in d = 2n + ε dimensions behaves as logZSd = (−1)
d
2
a
2ε + O(1) for small ε. This

is because one has to add a local counter term

Ic.t. = (−1)
d
2
+1 a

2ε

∫
Sd
ddx
√
g E2n , (1.5)

to the partition function to obtain the renormalized partition function logZ
(ren)

Sd
= logZSd+

Ic.t, reproducing the conformal anomaly logZ
(ren)
S2n = (−1)n+1a logR on S2n of radius R in

ε→ 0 limit.

The function F̃ is also defined for non-integer d and therefore smoothly interpolates

between the a coefficients in even dimensions and the free energies in odd dimensions. They

conjecture that F̃ is positive and decreases along any RG flow in arbitrary d dimensions,

based on several examples including a double-trace deformation of the large-N conformal

field theory (CFT). We will call their proposal the F̃ -theorem.

In this letter, we provide a further evidence to the F̃ -theorem from the holographic

viewpoint. To this end, we take advantage of the relation (1.2) and calculate the holographic

entanglement entropy [11, 12] across a sphere Sd−2 in the Einstein-Hilbert gravity on the

AdSd+1 space. We perform the dimensional regularization in the bulk and obtain the

analytic result of F̃ that is a positive and smooth function of dimension d. We show

that the equality (1.4) holds for even d and furthermore prove the F̃ -theorem that follows

from the holographic c-theorem [13–16] assuming the dimensional continuation of the null

energy condition.

2 Holographic proof of the F̃ -theorem

We will evaluate F̃ with the relation (1.2) between the free energy on Sd and the entan-

glement entropy across Sd−2. The latter can be holographically calculated by the Ryu-

Takayanagi formula in the Einstein-Hilbert gravity [11, 12]

S =
Area(γ)

4G
(d+1)
N

, (2.1)

where G
(d+1)
N is the Newton constant, and γ stands for the (d − 1)-dimensional minimal

surface in the AdSd+1 space, whose boundary is the entangling surface Sd−2. Since the

boundary of the AdSd+1 space is the flat space R1,d−1, we will use the Poincaré coordinates

ds2 = L2dz
2 − dt2 + dr2 + r2dΩ2

d−2

z2
, (2.2)

2There is no sign factor (−1)d/2 in the right hand side because our convention of the a-anomaly (1.1)

differs from theirs in [9].
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where L is the AdS radius. The entangling surface is located at t = 0 and r = R at

the boundary z = 0. In these coordinates, the minimal surface γ in the bulk is a hemi-

hypersphere satisfying r2 + z2 = R2 [11, 12]. This solution leads the entanglement entropy

across Sd−2

S =
1

4G
(d+1)
N

Ld−1Vol(Sd−2)

∫ 1

ε/R
dy

(1− y2)
d−3
2

yd−1
, (2.3)

where we introduced a small cutoff at z = ε to regularize the UV divergence and Vol(Sd−2)

is the volume of a unit (d − 2)-dimensional round sphere. Expanding the integrand with

respect to y and performing the integration, one obtains the UV divergent parts of the

entanglement entropy. We, however, want to employ the dimensional regularization instead

of putting the UV cutoff at z = ε for our purpose. So we take ε = 0 and carry out the

integral in the range 1 < d < 2, that yields

S =
Ld−1

4G
(d+1)
N

π
d
2
−1Γ

(
1− d

2

)
. (2.4)

Then we analytically continue d to any real value. It is clear that there are poles at even

d in the entanglement entropy (2.4) corresponding to the conformal anomalies. Finally,

using the relations (1.2) and (1.3), and the formula Γ(z)Γ(1 − z) = π/ sin(πz), we obtain

F̃ in the holographic theories

F̃ =
Ld−1

4G
(d+1)
N

π
d
2

Γ
(
d
2

) . (2.5)

This is manifestly a positive and smooth function of dimension d without poles at even d.

Now let us extrapolate the holographic values of F̃ to even dimensions and see if the

relation (1.4) holds. The a coefficients holographically computed in the Einstein-Hilbert

gravity are known to be [15–18]

a =
Ld−1

2πG
(d+1)
N

π
d
2

Γ
(
d
2

) . (2.6)

Combining it with (2.5), we confirm the relation (1.4) between F̃ and a. Moreover, im-

posing the null energy condition in the bulk, the holographic c-theorem states that the a

coefficient given by (2.6) satisfies the monotonicity, aUV ≥ aIR, for positive integer d [13–

16]. Assuming the analytic continuation of dimension d in the gravity, the holographic

c-theorem holds for d ≥ 1,3 which assures the F̃ -theorem due to the relation (1.4).
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