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1 Introduction

A fascinating subject in string theory is dualities between gravitational theories and gauge

theories. The original form proposed in [1] is the AdS/CFT correspondence, stating a

duality between type IIB string theory on AdS5×S5 and N = 4 SU(N) super Yang-Mills

(SYM) theory in four dimensions. The integrable structure behind AdS/CFT plays a

significant role in this duality [2]. It enables one to exactly compute some physical quantities

such as anomalous dimensions and scattering amplitudes, even at finite coupling without

supersymmetries.

Here we are concerned with the string theory side of the correspondence. In the

Green-Schwarz formalism, the classical action for the AdS5×S5 superstring is given by a

2d σ-model on the coset superspace [3],

PSU(2, 2|4)

SO(1, 4)× SO(5)
. (1.1)

Classical integrability for the AdS5×S5 superstring is closely related to the existence of a

Z4-grading [4]. For an argument of integrability based on the Roiban-Siegel formalism [5],

see [6, 7]. A classification of possible integrable cosets is given in [8, 9].
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Recently, there has been progress in the study of integrable deformations of the

AdS5×S5 superstring. The Yang-Baxter sigma model approach [10–13] (generalized to

the coset case in [14]) plays an important role in this direction.

A q-deformed action for the AdS5×S5 superstring has been constructed in [15]. Since

a bosonic subsector of this action exhibits a q-deformed su(2), the full symmetry algebra

is expected to be a q-deformed psu(2, 2|4) [14, 16, 17].1 In the end, the deformation used

in [15] is the standard one with the classical r-matrix of Drinfeld-Jimbo type [23–25]. The

metric in the string frame and NS-NS two-form were obtained in [26], though the complete

supergravity solutions have not been found yet. Some limits of the deformed background

are considered in [27, 28]. A mirror TBA is discussed in [29]. A non-relativistic limit on

the world-sheet is considered in [30, 31]. Notably, the singularity of the metric disappears

in this limit. Giant magnons are constructed in [29, 32, 33].

One may consider non-standard q-deformations (often called Jordanian deforma-

tions) [34, 35] as well. Jordanian-deformed actions for AdS5×S5 have been constructed

in [36]. The deformations are characterized by classical r-matrices satisfying the classi-

cal Yang-Baxter equation (CYBE). So far, some r-matrices, corresponding to well-known

string backgrounds such as Lunin-Maldacena-Frolov backgrounds [37, 38], and the gravity

duals of noncommutative gauge theories [39, 40], have been found in [41] and [42], respec-

tively.2 A new gravitational solution3 was also constructed from an r-matrix in [43]. The

relation between gravitational solutions and classical r-matrices may be referred to as the

gravity/CYBE correspondence, as proposed in [41]. This correspondence surely contains

the relation between r-matrices and TsT transformations on coset spaces, but these are

not all. Indeed, some examples presented in [43] exhibit a curvature singularity in the mid-

dle of the bulk, but TsT transformations change only the asymptotic boundary behavior

and would not lead to such a singularity.4 At the present moment, to what degree the

gravity/CYBE correspondence can be extended is unknown. One of the motivations of

this paper is to give a new example of the correspondence, which goes beyond the class of

known cases and discuss possible further extensions.

In this paper we consider type IIB superstrings on AdS5 × T 1,1. This geometry is

realized by taking the near-horizon limit of a stack of N D3-branes sitting at the tip of a

conifold [47]. The internal manifold T 1,1 is a Sasaki-Einstein manifold with S2×S3 topology

and a SU(2)×SU(2)×U(1)R symmetry (for details on the conifold see [48], and for a review

on aspects of AdS/CFT on this background see [49]). At the present moment, the Green-

Schwarz string action on this background has not been constructed. Thus, we will focus

only on the bosonic sector.

1It would be nice to show an affine extension of psu(2, 2|4) by following the procedure [18–22].
2The fermionic sector has not been studied yet, simply due to some technical complications. To do so,

one would have to perform a supercoset construction in the supermatrix notation to evaluate the R-operator.

It would be an important task to complete the analysis.
3It contains 3D Schrödinger spacetime. The related integrable structure is studied in [44–46].
4Actually, the appearance of singularity may depend on the parent geometry as argued in [52]. For

example, for TsT transformations of Y p,q with three parameters, the resulting geometry may be singular.

However, note that TsT transformations of AdS5×S5 lead to no singularity. The singular geometries in [43]

cannot be explained as TsT transformations, because those are derived as deformations of AdS5×S5 .
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The usual description of T 1,1 as a coset is given by

SU(2)× SU(2)

U(1)
. (1.2)

However, in this coset description one encounters a difficulty in applying the Yang-Baxter

deformation to the usual coset decription of T 1,1, as we discuss now. Although (1.2)

describes the space topologically, the coset metric is not the Sasaki-Einstein metric that the

space admits,5 and the one which is required as a proper string background. Since the class

of deformations we are interested in are based on the coset description of the undeformed

metric, before discussing deformations of T 1,1 we must develop a coset description that

automatically leads to the Sasaki-Einstein metric.

Our proposal is to describe T 1,1 as the bosonic part of the supercoset :6

T 1,1 =
SU(2)× SU(2)×U(1)R

U(1)1 ×U(1)2
. (1.3)

As we shall show, it is possible to choose an embedding of the U(1)’s in the denominator

that directly leads to the standard Sasaki-Einstein metric on T 1,1. In addition to leading

to the correct undeformed metric, the description (1.3) has the advantage that one can

easily describe the general (three-parameter) deformation of this space, as a consequence

of the explicit appearance of the U(1)R symmetry in the numerator. This is rather natural

given that U(1)R is part of the full global symmetry, and the grading of the matrices

is rather natural from the point of view of the N = 1 superconformal symmetry of the

dual gauge theory. It would be interesting to study whether this supercoset is relevant to

the construction of the Green-Schwarz action on this background. The first step in this

direction would be to find an appropriate supersymmetric extension by including fermions.

However, the simplest extension (discussed below) will not contain 32 fermionic degrees of

freedom and it may be difficult to construct the full Green-Schwarz action, as is usually

the case in theories with reduced supersymmetry.

Next, we consider a family of three-parameter deformations of T 1,1 as Yang-Baxter

sigma models with classical r-matrices satisfying the CYBE. This is analogous to the

three-parameter real γ-deformations of S5 as discussed in [38]. The resulting metric and

NS-NS two form exactly agree with the ones obtained via TsT transformations in [52]

and it contains the Lunin-Maldacena background [37] as a special case. This agreement

indirectly supports that the proposed supercoset description is the appropriate description

of bosonic strings on AdS5 × T 1,1 .

It is worth making a comment regarding the issue of integrability for T 1,1. Although it

is generally believed that an integrability structure is present in some sectors, it was argued

in [53] that integrability for the full theory is lost due to the appearance of chaos in a certain

5This is well known and has been discussed in [50, 51], where a general method for obtaining Ein-

stein metrics on cosets was developed. However, this method does not seem suited for the study of the

deformations we discuss here — see appendix A for a discussion on this issue.
6Although the groups appearing below are bosonic, we refer to this as a supercoset due to a particular

grading which is chosen. This will be discussed in detail in the main text.
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subsector. Assuming that this conclusion is correct, our result indicates that the Yang-

Baxter sigma model approach is applicable even for non-integrable cosets. This observation

suggests that the gravity/CYBE correspondence can be extended beyond integrable cases;

integrability is not essential for the correspondence and it is just the tip of an iceberg.

This paper is organized as follows. Section 2 considers a coset construction of T 1,1 . A

supercoset description is proposed. In section 3, we consider a family of deformations of

T 1,1 as Yang-Baxter sigma model approach. We first give a short introduction to the Yang-

Baxter sigma model approach. Then, the one-parameter deformation of T 1,1 is presented.

Finally, three-parameter deformations are considered. Section 4 is devoted to conclusion

and discussion. Appendix A reviews an alternative way to derive the T 1,1 metric. In

appendix B, we give the detailed derivation of three-parameter deformation of T 1,1 .

2 A coset construction of T 1,1

In this section, we consider a coset construction of the T 1,1 metric . Instead of the conven-

tional coset (1.2), we describe the supercoset (1.3).7

2.1 The T 1,1 metric

The internal manifold T 1,1 is a five-dimensional Sasaki-Einstein manifold with global isom-

etry SU(2)× SU(2)×U(1)R . The standard metric on T 1,1 is given by [48]

ds2T 1,1 =
1

6
(dθ21 + sin2 θ1dφ

2
1) +

1

6
(dθ22 + sin2 θ2dφ

2
2)

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 . (2.1)

This geometry may be regarded as a U(1)-fibration over S2×S2 . Here 0 ≤ θi < π and

0 ≤ φi < 2π (i = 1, 2) are the angle variables on two two-spheres. Then 0 ≤ ψ < 4π is the

coordinate along the U(1)-fiber.

2.2 A supercoset representation of T 1,1

As we have discussed, the coset representation (1.2) does not lead to the metric (2.1).

Consider instead the following coset:

T 1,1 =
SU(2)× SU(2)×U(1)R

U(1)1 ×U(1)2
. (2.2)

The generators of the two su(2)’s and the u(1)R in the numerator of (2.2) are denoted by

Ki, Li (i = 1, 2, 3) and M , respectively. Rather than 5× 5 bosonic matrices, we choose a

fundamental representation in terms of (4|1)× (4|1) supermatrices, i.e.,

Ki = −
i

2







σi 0 0

0 0 0

0 0 0






, Li = −

i

2







0 0 0

0 σi 0

0 0 0






, M = −

i

2







0 0 0

0 0 0

0 0 1






. (2.3)

7P.M.C. would like to thank Martin Roček for discussions on a related issue that inspired this

construction.
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Here σi (i = 1, 2, 3) are the standard Pauli matrices,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (2.4)

As we shall discuss below, the appearance of supermatrices — rather than bosonic matrices

— is in fact natural from the perspective of the full AdS5 × T 1,1 coset space.

It is easy to see that the generators satisfy the following relations:

[Ka,Kb] = ǫab
cKc , [La, Lb] = ǫab

cLc ,

STr(KaKb) = STr(LaLb) = −
1

2
δab , STr(MM) =

1

4
.

Here the structure constant is normalized as ǫ123 = +1 and the su(2) indices are raised and

lowered by the Killing form δab . As usual, the supertrace of a supermatrix is defined as

STr

(

A B

C D

)

≡ Tr(A)− Tr(D) , (2.5)

where A,D are bosonic block matrices and B,C are fermionic blocks. We denote the

generators of the two u(1)’s in the denominator of (2.2) by T1,2 and we choose to embed

them into the numerator by

T1 = K3 + L3 , T2 = K3 − L3 + 4M . (2.6)

Note that T1 denotes the U(1) in the usual description (1.2). The final coset metric depends

on the embedding of T2 in the numerator, and we have chosen it such to obtain the Sasaki-

Einstein metric (2.1).

2.3 The T 1,1 metric from a supercoset

Let us first show that the supercoset (2.2) indeed leads to the metric (2.1).

It is convenient to introduce the orthogonal basis of the quotient vector space as follows:

su(2)⊕ su(2)⊕ u(1)R
u(1)1 ⊕ u(1)2

= spanR{K1,K2, L1, L2, H} . (2.7)

Here the diagonal element H is defined as

H ≡ K3 − L3 +M . (2.8)

With this basis, one may introduce a group element parametrized by

g = exp
(

φ1K3 + φ2L3 + 2ψM
)

exp
(

θ1K2 + (θ2 + π)L2

)

. (2.9)

Then the left-invariant one-form

A ≡ g−1dg (2.10)

can be written in terms of the coordinates ψ, θi and φi (i = 1, 2) .

– 5 –
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The coset metric is given by the simple expression,

ds2T 1,1 = −
1

3
STr [AP (A)] , (2.11)

where P is a projector to the coset space (2.7) and the associated projected current reads

P (A) = A+ T1STr[T1A]−
1

3
T2STr[T2A]

= − sin θ1dφ1K1 + dθ1K2 + sin θ2dφ2 L1 + dθ2 L2

+
2

3

(

dψ + cos θ1dφ1 + cos θ2dφ2
)

H . (2.12)

From this expression, it is direct to see that (2.11) leads to the metric (2.1).

2.4 What is the origin of the supercoset?

Before discussing deformations of this space, it is worth discussing the origin of the su-

permatrix representations in (2.3). A possible explanation is the following. It is believed

that string theory on AdS5 × T 1,1 is dual to an N = 1 superconformal field theory in four

dimensions [47]. The N = 1 superconformal group is composed of the conformal group

SU(2, 2) , two sets of four real fermionic generators FA , FA, and the U(1)R symmetry.

These generators can be organized into the supermatrix,
(

SU(2, 2) FA

FA U(1)R

)

. (2.13)

Note that this supermatrix describes only the superconformal group PSU(2, 2|1), and does

not contain the SU(2)×SU(2) flavor symmetry, unlike the case of PSU(2, 2|4) which includes

the full flavor symmetry.

Thus, to include flavor symmetry it is necessary to consider an embedding of

SU(2) × SU(2) × U(1)R into a bigger supermatrix. A natural candidate is the following

(8|1)× (8|1) supermatrix:







SU(2) 0 0

0 SU(2) 0

0 0 U(1)R






→֒











SU(2, 2) 0 0 FA

0 SU(2) 0 0

0 0 SU(2) 0

FA 0 0 U(1)R











. (2.14)

Here PSU(2, 2|1) is located at the four corners of (2.14). Thus, the bosonic sector of the

supercoset
PSU(2, 2|1)× SU(2)× SU(2)

SO(1, 4)×U(1)×U(1)
(2.15)

describes the bosonic sector of type IIB strings on AdS5 × T 1,1. This is indeed a rather

natural description of the full PSU(2, 2|1) × SU(2) × SU(2) symmetry group and it

may explain the origin of the supermatrix representation (2.3).8 As we shall discuss in

8It would be interesting to study whether turning on the fermions in this supercoset sigma model is

relevant for the construction of the Green-Schwarz action in this background, but we do not discuss this here.
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section 3, the Yang-Baxter deformation of this supercoset leads to a family of deformations

of the metric and NS-NS two-form that exactly agree with the ones obtained in [52]. The

Lunin-Maldacena deformation [37] is contained as a special case. We consider this fact

as further support for the supermatrix description. It would be quite interesting to find

further support for this interpretation from other points of view.

3 Deformations of T 1,1 as Yang-Baxter sigma models

Thus far, we have presented a supercoset construction of the Sasaki-Einstein metric on

T 1,1. In this section we use this description to study Yang-Baxter deformations.

By specifying classical r-matrices, we first discuss a one-parameter deformation in

subsection 3.2 and then a three-parameter deformation in subsection 3.3.

3.1 The action of Yang-Baxter sigma models on T 1,1

An interesting class of deformations of nonlinear sigma models is given by Yang-Baxter

sigma models [10–14]. The original procedure depends on the classical r-matrix of Drinfeld-

Jimbo type, which satisfies the modified CYBE (mCYBE). However, in this approach, it

seems difficult to perform partial deformations (for instance, deformations of the internal

manifold only and not of the AdS factor).9 Since here we are interested in deformations

of the internal manifold T 1,1 only, we apply the formalism of Yang-Baxter sigma models

based on the CYBE [36] instead.

Our original motivation is to study type IIB superstrings on AdS5 × T 1,1, and its

deformations. However, since the Green-Schwarz action for these backgrounds have not

been constructed, we restrict ourselves to the bosonic sector. For simplicity, we consider

deformations of the internal manifold T 1,1 only (the AdS5 part is untouched) and therefore

we focus on this part of the action.

The action is given by

S =
1

3
(γαβ − ǫαβ)

∫

∞

−∞

dτ

∫ 2π

0
dσ STr

(

AαP ◦
1

1− 2ηRg ◦ P
Aβ

)

, (3.1)

where the flat metric γαβ and the anti-symmetric tensor ǫαβ on the string world-sheet are

normalized as γαβ = diag(−1, 1) and ǫτσ = 1 . The projector P to the coset space is given

in (2.12) . Here η is a parameter that measures deformations from T 1,1 . In the η → 0

limit, the action (3.1) reduces to the undeformed T 1,1, as shown in section 2.

9This point is explained as follows. The mCYBE for a Lie algebra g takes the form,

[R(x), R(y)]−R([R(x), y] + [x,R(y)]) = c
2[x, y] for ∀

x, y ∈ g

with a parameter c . To consider a partial deformation of a certain subalgebra h ⊂ g , the R-operator needs

to satisfy R(h) ⊂ h and R(m) = 0, where m is defined as g = h⊕m . From the mCYBE, this demands that

the following two conditions are satisfied; (i) either c = 0 or m is abelian, and (ii) R([R(x), y]) = −c2[x, y]

for any x ∈ h and y ∈ m . Note that, when x ∈ m and y ∈ h , the mCYBE requires the same condition

(ii) since it is invariant by exchanging x and y . Obviously, the R-operator of Drinfeld-Jimbo type does not

satisfy these conditions. For c 6= 0 , these conditions appear hard to satisfy.
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The left-invariant one-form is defined as usual by

Aα ≡ g−1∂αg , g ∈ SU(2)× SU(2)×U(1)R . (3.2)

The group element g is parameterized as (2.9). Note that the supertrace appears in the

action (3.1), even though all the fermions are set to zero in the present case.

The most important ingredient in (3.1) is a linear R-operator. The symbol Rg denotes

a dressed R-operator, given by the adjoint operation of the group, as:

Rg(X) ≡ g−1R(gXg−1)g . (3.3)

It is easy to see that if R satisfies the CYBE, so does Rg . This R-operator is related to

the tensorial notation of a classical r-matrix through

R(X) = STr2[r(1⊗X)] =
∑

i

(

aiSTr(biX)− biSTr(aiX)
)

(3.4)

with r =
∑

i

ai ∧ bi ≡
∑

i

(ai ⊗ bi − bi ⊗ ai) .

In our case, ai and bi are generators in su(2)⊕ su(2)⊕ u(1)R .

3.2 One-parameter deformation

We now consider examples of r-matrices describing deformations of T 1,1 .

Let us begin with the simplest example. This is provided by the abelian r-matrix,

r
(µ)
Abe = µK3 ∧ L3 , (3.5)

with deformation parameter µ . Here K3 and L3 are the Cartan generators of two su(2)’s,

respectively. The fundamental representation is given in (2.3) .

Then the Lagrangian (3.1) is given by

L =
1

3
(γαβ − ǫαβ)STr [AαP (Jβ)] (3.6)

with Jβ ≡
1

1− 2
[

R
(µ)
Abe

]

g
◦ P

Aβ , (3.7)

where we have set the scaling factor η = 1 in the deformed action.10 The operator R
(µ)
Abe

associated with (3.5) is determined by the relation (3.4) . It is convenient to separate the

Lagrangian into the two parts L = LG + LB , where LG is the metric part and LB is the

coupling to the NS-NS two-form:

LG ≡ −
1

3
[STr(AτP (Jτ ))− STr(AσP (Jσ))] ,

LB ≡ −
1

3
[STr(AτP (Jσ))− STr(AσP (Jτ ))] . (3.8)

10In fact, η can be absorbed into the normalization of the r-matrices satisfying the CYBE.
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To evaluate the Lagrangian explicitly, it is sufficient to compute the projected current

P (Jα) rather than Jα itself. Hence the computation is reduced to solving the following set

of equations,
(

1− 2P ◦
[

R
(µ)
Abe

]

g

)

P (Jα) = P (Aα) . (3.9)

Plugging the expression for P (Aα) given in (2.12) into (3.9), one can solve for the deformed

projected current, finding

P (Jα) = j1αK1 + j2αK2 + j3α L1 + j4α L2 + j5αH , (3.10)

with the coefficients

j1α =
G(6µ)

6
sin θ1

[

(−6 + 4µ cos θ1 cos θ2)∂αφ1 + µ(5− cos 2θ2)∂αφ2

+ 4µ(cos θ2 + µ cos θ1 sin
2 θ2)∂αψ

]

,

j2α = ∂αθ1 ,

j3α =
G(6µ)

6
sin θ2

[

(6 + 4µ cos θ1 cos θ2)∂αφ2 + µ(5− cos 2θ1)∂αφ1

+ 4µ(cos θ1 − µ cos θ2 sin
2 θ1)∂αψ

]

,

j4α = ∂αθ2 ,

j5α =
2G(6µ)

3

[

(cos θ1 + µ sin2 θ1 cos θ2)∂αφ1 + (cos θ2 − µ sin2 θ2 cos θ1)∂αφ2

+ (1 + µ2 sin2 θ1 sin
2 θ2)∂αψ

]

, (3.11)

where the scalar function G(x) is defined as

G(x)−1 ≡ 1 + x2
(

sin2 θ1 sin
2 θ2

36
+

cos2 θ1 sin
2 θ2 + cos2 θ2 sin

2 θ1
54

)

. (3.12)

The resulting LG and LB are given by

LG=−γαβG(γ̂)

[

1

6

∑

i=1,2

(

G(γ̂)−1∂αθi∂βθi+sin2 θi∂αφi∂βφi
)

+γ̂2
sin2 θ1 sin

2 θ2
324

∂αψ∂βψ

+
1

9
(∂αψ+cos θ1∂αφ1+cos θ2∂αφ2)(∂βψ+cos θ1∂βφ1+cos θ2∂βφ2)

]

, (3.13)

LB=2ǫαβ γ̂G(γ̂)

[

cos θ2 sin
2 θ1

54
∂αφ1∂βψ −

cos θ1 sin
2 θ2

54
∂αφ2∂βψ

+

(

sin2 θ1 sin
2 θ2

36
+

cos2 θ1 sin
2 θ2 + cos2 θ2 sin

2 θ1
54

)

∂αφ1∂βφ2

]

, (3.14)

where the new quantity γ̂ is defined as

γ̂ ≡ −6µ . (3.15)

Thus, the deformed metric and NS-NS two-form are given by

ds2 = G(γ̂)

[

1

6

∑

i=1,2

(

G(γ̂)−1dθ2i + sin2 θidφ
2
i

)

+ γ̂2
sin2 θ1 sin

2 θ2
324

dψ2

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2

]

, (3.16)
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B2 = γ̂G(γ̂)

[

cos θ2 sin
2 θ1

54
dφ1 ∧ dψ −

cos θ1 sin
2 θ2

54
dφ2 ∧ dψ

+

(

sin2 θ1 sin
2 θ2

36
+

cos2 θ1 sin
2 θ2 + cos2 θ2 sin

2 θ1
54

)

dφ1 ∧ dφ2

]

. (3.17)

These expressions agree exactly with the one-parameter γ-deformed backgrounds presented

by Lunin and Maldacena [37] . Thus, the abelian r-matrix (3.5) is the algebraic origin of

the γ-deformation of AdS5 × T 1,1 .

3.3 Three-parameter deformation

It is straightforward to generalize the one-parameter case to the three-parameter case.

Since there are three Cartan generators L3,K3 and M , the most generic form for the

abelian r-matrix is given by

r
(µ1,µ2,µ3)
Abe = µ1L3 ∧M + µ2M ∧K3 + µ3K3 ∧ L3 , (3.18)

with three deformation parameters µ1, µ2 and µ3 . Note that the explicit appearance of the

U(1)R symmetry — generated by M — in the supercoset (2.2) allows us to consider this

three-parameter deformation.

The computation is completely parallel to the one-parameter case. Thus, we do not

repeat it here but simply give the final result. For details, see appendix B .

With parameter identifications11

3µ1 = γ̂1 , 3µ2 = γ̂2 , −6µ3 = γ̂3 , (3.19)

we obtain the following deformed metric and NS-NS two-form:

ds2 = G(γ̂1, γ̂2, γ̂3)

[

1

6

∑

i=1,2

(G(γ̂1, γ̂2, γ̂3)
−1dθ2i + sin2 θidφ

2
i )

+
1

9
(dψ+cos θ1dφ1+cos θ2dφ2)

2+
sin2 θ1 sin

2 θ2
324

(γ̂3dψ+γ̂1dφ1+γ̂2dφ2)
2

]

, (3.20)

B2 = G(γ̂1, γ̂2, γ̂3)

[{

γ̂3

(

sin2 θ1 sin
2 θ2

36
+

cos2 θ1 sin
2 θ2 + cos2 θ2 sin

2 θ1
54

)

− γ̂2
cos θ2 sin

2 θ1
54

− γ̂1
cos θ1 sin

2 θ2
54

}

dφ1 ∧ dφ2

+
(γ̂3 cos θ2 − γ̂2) sin

2 θ1
54

dφ1 ∧ dψ −
(γ̂3 cos θ1 − γ̂1) sin

2 θ2
54

dφ2 ∧ dψ

]

, (3.21)

where the scalar function is defined as

G(γ̂1, γ̂2, γ̂3)
−1 ≡ 1 + γ̂23

(

sin2 θ1 sin
2 θ2

36
+

cos2 θ1 sin
2 θ2 + cos2 θ2 sin

2 θ1
54

)

+ γ̂22
sin2 θ1
54

+ γ̂21
sin2 θ2
54

− γ̂2γ̂3
sin2 θ1 cos θ2

27
− γ̂3γ̂1

sin2 θ2 cos θ1
27

. (3.22)

11Here we also normalize the scaling factor in (3.1) as η = 1.
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These expressions are rather complicated but agree perfectly with the ones obtained in [52] .

Thus, the abelian r-matrix (3.18) corresponds to the three-parameter γ-deformation. The

previous one-parameter deformation is reproduced by simply setting γ̂1 = γ̂2 = 0 and

γ̂3 = γ̂ .

Finally, let us comment on the amount of supersymmetry remaining in the three-

parameter deformation. Recall that in the undeformed T 1,1 case there is an N=1 super-

conformal symmetry. Without studying the Killing spinor equations, we can understand

the remaining supersymmetry by considering the U(1)R symmetry. In the classical r-

matrix (3.18), the generator M is associated with the U(1) R-symmetry, while K3 and L3

are associated to the non-R symmetry SU(2) × SU(2) . In the Lunin-Maldacena case of

T 1,1 [37] with µ3 6= 0 and µ1 = µ2 = 0 , the N=1 superconformal symmetry is preserved

because the U(1) R-symmetry is not affected by the TsT transformation. However, if either

µ1 or µ2 is non-zero, the U(1)R symmetry is broken due to the shift of the period and hence

the solution is non-supersymmetric.12

4 Conclusion and discussion

In this paper we have considered a family of deformations of T 1,1 as Yang-Baxter sigma

models.

We first provided a new coset description of T 1,1 which directly leads to the standard

Sasaki-Einstein metric. This is necessary to study deformations of this space as Yang-

Baxter sigma models. The coset description we presented is a rather natural description

from the point of view of the N = 1 superconformal symmetry of the dual gauge theory.

However, to the best of our knowledge this description has not appeared in the literature.

Next, we considered three-parameter deformations of T 1,1 by using classical r-matrices

satisfying the CYBE. The resulting metric and NS-NS two-form perfectly agree with the

ones obtained via TsT transformations [37, 52].

It was shown in [41] that three-parameter real γ-deformations AdS5×S5 [37, 38] are

realized by the Yang-Baxter sigma model approach with abelian classical r-matrices.

Thus, the results obtained here may be regarded as a generalization of the work [41], giving

further support for the gravity/CYBE correspondence. However, it should be stressed

that there is a significant difference between S5 and T 1,1 . The former is represented by

a symmetric coset and therefore corresponds to an integrable nonlinear sigma model. In

the case of T 1,1, however, this is not the case and the claim that it is not integrable was

made in [53], by showing the appearance of chaos in a subsector of the theory. Assuming

that this result is correct, the class of deformations considered here are not regarded

as integrable deformations. However, this would lead to the stronger statement that

the gravity/CYBE correspondence would hold independently of integrability and that it

captures a much wider class of gravitational solutions.

12Note that the background still seems to preserve the U(1) R-symmetry. However, one should be careful

with the periodicity of the angle variables and note that the Killing spinors cannot survive for generic values

of µ1 and µ2 . This is a global property and cannot be seen from a local quantity like the metric.
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Let us make a few comments on possible further generalizations. An interesting class

of metrics on S2×S3 is given by the well-known Y p,q metrics [54]. However, since these

have not been explicitly constructed as coset metrics, it would be difficult to consider

deformations in this approach. It would also be interesting to study additional coset spaces

which may or may not be integrable, a possible candidate being the Lifshitz spacetime.

The coset description was given in [55], and it has been argued to be non-integrable in [56].

Other important supercosets appear in descriptions of type IIA compactifications on AdS4,

such as ABJM theory [57]. The supercoset description has been given in [58, 59].

What is the general class of gravitational solutions included in the gravity/CYBE

correspondence? As we have discussed above, it has already been shown that the corre-

spondence includes deformations which cannot be obtained by TsT transformations. The

result obtained in this paper indicates that the integrability of the parent theory is not an

essential feature. Thus, we see that the class of gravitational solutions captured by the

correspondence is much wider than the examples that were first discovered. What the full

moduli space of gravity solutions captured by the gravity/CYBE correspondence is remains

an open problem at the present moment.

As we have seen, at this point there are various examples of coset supergravity back-

grounds, integrable and non-integrable, such that its Yang-Baxter deformations remain as

supergravity solutions. The non-trivial question is whether this is the case for a generic

coset supergravity background and a generic r-matrix. Although a counter-example has

not been found so far, there is no proof that this is true in general. One possible approach

to studying this would be to exploit kappa-symmetry. Answering this question could lead

to new insights into the structure of the moduli space of possible gravity solutions, and

the action of classical r-matrices on this space. This issue deserves to be studied as a

fundamental problem.
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A T 1,1 metric from the rescaling of vielbeins

As we have discussed, the (SU(2)× SU(2))/U(1) coset description of T 1,1 does not lead to

the Sasaki-Einstein metric (2.1) that the space admits. This comes as no surprise, since it

is well known that coset spaces are not typically Einstein spaces. However, it was shown

in [50] that given a coset space G/H it may be possible to rescale the vielbeins to obtain
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an Einstein space, without loosing the original symmetry of the coset space. This is in

fact the case for T 1,1, as discussed in [51]. Take the left-invariant current A = g−1dg with

g ∈ SU(2)× SU(2) and rescale the coset space directions by three parameters α, β, γ, as

Aresc. = α
∑

i=1,2

AiKi + β
∑

i=1,2

AiLi + γ A−(L3 −K3) +A+(L3 +K3) . (A.1)

The term proportional to A+ is the one projected out by the coset and is not rescaled.

For α = β = γ = 1, this current describes a natural metric on the coset space (SU(2) ×

SU(2))/U(1) but not the Sasaki-Einstein metric. However, for arbitrary values of the

parameters one finds13

ds2=α2(dθ21+sin2 θ1 dφ
2
1)+β

2(dθ22+sin2 θ2 dφ
2
2)+

γ2

2
(dψ+cos θ1 dφ1+cos θ2 dφ2)

2 . (A.2)

Imposing the Einstein condition on this metric one finds

α2 = β2 =
1

6
, γ2 =

2

9
, (A.3)

corresponding to (2.1). Thus, a possible starting point to study deformations of the T 1,1

sigma model would be to study deformations of the sigma model defined by the rescaled

current (A.1). However, since this approach is based on a rescaling of the current, rather

than the group elements g, is not clear how to implement the Yang-Baxter deformation

(defined by the action of the group elements in (3.3)) in this formulation. Thus, one of

the advantages of the supercoset description (2.2) is that the Yang-Baxter deformation can

be applied directly, as we have shown. Another advantage is that by making manifest the

U(1)R symmetry, it is clear how to implement the three-parameter deformation discussed

in section 3.3.

As a final comment, we would like to point out that a related issue arises in the

description of the conifold as a classical Kähler quotient. It is well known that this can

be realized as an N = (2, 2) gauged linear sigma model (GLSM) for four chiral fields with

charges (1, 1,−1,−1) under a U(1) [47]. It is easy to see that the classical quotient metric

is not the Calabi-Yau metric, i.e., the metric of the base is not the Sasaki-Einstein metric

(in fact, it coincides with the coset metric). Again, this comes as no surprise since the

classical quotient metric describes the UV behavior of the GLSM, while the Calabi-Yau

metric describes the IR behavior, at the endpoint of the RG flow. It would be interesting

to study whether it is possible to formulate the supercoset description of the conifold that

we have given here in terms of a GLSM.14

B Derivation of three-parameter deformations

It would be useful to present here the detailed derivation of the three-parameter deformed

metric (3.20) and NS-NS two-form (3.21) .

13A more general metric is obtained by taking the general invariant two-form into account [60].
14We would like to thank Martin Roček for discussions on this.
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The classical r-matrix is composed of three Cartan generators L3,K3 andM as follows:

r
(µ1,µ2,µ3)
Abe = µ1L3 ∧M + µ2M ∧K3 + µ3K3 ∧ L3 . (B.1)

Here µ1, µ2 and µ3 are deformation parameters. Then the associated linear R-operator is

written in terms of L3,K3 and M like

R
(µ1,µ2,µ3)
Abe (K3) =

1

2
(µ3L3 − µ2M) , R

(µ1,µ2,µ3)
Abe (L3) =

1

2
(µ1M − µ3K3) ,

R
(µ1,µ2,µ3)
Abe (M) =

1

4
(µ1L3 − µ2K3) , R

(µ1,µ2,µ3)
Abe (others) = 0 . (B.2)

These transformation laws are utilized to rewrite the Lagrangian (3.8) .

First of all, let us evaluate the projected deformed current P (Jα) . It can be done by

solving the relation,

(

1− 2P ◦
[

R
(µ1,µ2,µ3)
Abe

]

g

)

P (Jα) = P (Aα) . (B.3)

Plugging the expression of P (Aα) in (2.12) with the above equation, the deformed projected

current is obtained as

P (Jα) = j1αK1 + j2αK2 + j3α L1 + j4α L2 + j5αH , (B.4)

with the coefficients

j1α =
1

6
G(3µ1, 3µ2,−6µ3) sin θ1

×
[

−
(

6 + µ1 sin
2 θ2(µ1 + 2µ3 cos θ1)− 2 cos θ1(µ2 + 2µ3 cos θ2)

)

∂αφ1

+
(

2 cos θ2(µ2 + 2µ3 cos θ2)− sin2 θ2(µ1µ2 − 6µ3 + 2µ2µ3 cos θ1)
)

∂αφ2

+ 2
(

µ3 sin
2 θ2(µ1 + 2µ3 cos θ1) + µ2 + 2µ3 cos θ2

)

∂αψ
]

,

j2α = ∂αθ1 ,

j3α =
1

6
G(3µ1, 3µ2,−6µ3) sin θ2

×
[(

6 + µ2 sin
2 θ1(2µ3 cos θ2 + µ2) + 2η cos θ2(2µ3 cos θ1 + µ1)

)

∂αφ2

+
(

2 cos θ1(µ1 + 2µ3 cos θ1) + sin2 θ1(µ1µ2 + 6µ3 + 2µ1µ3 cos θ2)
)

∂αφ1

+ 2
(

−µ3 sin
2 θ1(2µ3 cos θ2 + µ2) + µ1 + 2µ3 cos θ1

)

∂αψ
]

,

j4α = ∂αθ2 ,

j5α =
1

3
G(3µ1, 3µ2,−6µ3)

×
[(

2 cos θ1 + sin2 θ1
(

µ2 − µ1µ3 sin
2 θ2 + 2µ3 cos θ2

))

∂αφ1

+
(

2 cos θ2 − η sin2 θ2
(

µ1 + µ2µ3 sin
2 θ1 + 2µ3 cos θ1

))

∂αφ2

+ 2
(

1 + µ23 sin
2 θ1 sin

2 θ2
)

∂αψ
]

. (B.5)

Here the scalar function G(γ̂1, γ̂2, γ̂3) is defined in (3.22) .
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As a result, LG and LB are given by, respectively,

LG = −γαβG(γ̂1, γ̂2, γ̂3)

[

1

6

∑

i=1,2

(G(γ̂1, γ̂2, γ̂3)
−1∂αθi∂βθi + sin2 θi∂αφi∂βφi)

+
1

9
(∂αψ + cos θ1∂αφ1 + cos θ2∂αφ2)(∂βψ + cos θ1∂βφ1 + cos θ2∂βφ2)

+
sin2 θ1 sin

2 θ2
324

(γ̂3∂αψ + γ̂1∂αφ1 + γ̂2∂αφ2)(γ̂3∂βψ + γ̂1∂βφ1 + γ̂2∂βφ2)

]

, (B.6)

LB = 2ǫαβG(γ̂1, γ̂2, γ̂3)

[{

γ̂3

(

sin2 θ1 sin
2 θ2

36
+

cos2 θ1 sin
2 θ2 + cos2 θ2 sin

2 θ1
54

)

− γ̂2
cos θ2 sin

2 θ1
54

− γ̂1
cos θ1 sin

2 θ2
54

}

∂αφ1∂βφ2

+
(γ̂3 cos θ2 − γ̂2) sin

2 θ1
54

∂αφ1∂βψ −
(γ̂3 cos θ1 − γ̂1) sin

2 θ2
54

∂αφ2∂βψ

]

, (B.7)

with the following parameter identifications:

3µ1 = γ̂1 , 3µ2 = γ̂2 , −6µ3 = γ̂3 . (B.8)

Thus, the resulting metric and NS-NS two-form turn out to be (3.20) and (3.21), respec-

tively.

Open Access. This article is distributed under the terms of the Creative Commons
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