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1 Introduction

The topic of dimensional reduction between supergravity theories and their vacua has been

a very fruitful area of research for the development of string theory [4–12]. The relation

between supersymmetric black (st)rings and black holes (even if not made fully explicit at

the time) in ungauged supergravities in 6d/5d and 5d/4d was crucial for the microscopic

understanding of black hole entropy [13, 14] and has therefore given us a tool to look into

the quantum regime of black hole physics. Following this train of thought, here and in

a companion paper [15] we explore similar relations between BPS black objects in 4, 5,

and 6 dimensions, this time in gauged supergravity. In particular here we look at the

dimensional reduction for gauged theories with a nontrivial scalar potential, starting from

asymptotically AdS5,6 black hole solutions and using standard Kaluza-Klein and Scherk-

Schwarz reduction ansätze.

The question of direct dimensional reduction of full black hole spacetimes from 6

to 5 or from 5 to 4 dimensions is slightly more subtle in the presence of scalar poten-

tial than in the absense of one. It is not possible geometrically to construct a relation

AdS6 →AdS5 →AdS4 by declaring that one spatial dimension becomes compact and small,

as in the case Mink6 →Mink5 →Mink4. However, even in the presence of scalar potential

one can still relate the near-horizon geometry AdS3×S3 (or a more general 3-surface Σ3) of

the 6 dimensional black string to the lower-dimensional near-horizon geometries AdS2×S3
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and AdS3×S2 of the 5d black holes and strings and eventually to the 4d black hole at-

tractor AdS2×S2 (as already done in [16] in ungauged supergravity). The near-horizon

geometries of the lower-dimensional solutions cannot be anymore connected by an RG flow

to asymptotic AdS flows as the original ones, but rather to curved domain walls [3].

This relation between attractors is rather general and can be applied to a variety of

already known or yet to be found solutions in gauged supergravities of various dimensions.

It can be used as an additional tool to classify supergravity solutions in theories with

runaway behavior that might on first sight seem ill defined. When lifted to one extra

dimension these solutions become perfectly good and should therefore be taken seriously,

which is the main message of this paper.

The explicit example worked out in detail here relates two well-known classes of black

objects. If we take a black string in 5d, i.e. a spacetime interpolating between AdS3 × Σ2

and AdS5, the 4d result after dimensional reduction along the circle in AdS3 looks like a

solution interpolating between AdS2 × Σ2 and a non-maximally symmetric runaway vac-

uum. Such classes of solutions are already known [3] and it is interesting to observe that

such a dimensional reduction can preserve the full amount of supersymmetry. It turns out

that the BPS black strings summarized in [1, 2] upon dimensional reduction give a class

of BPS black hole solutions with curved domain wall asymptotics found in [3] for the 4d

N = 2 supergravity prepotential

F =
X1X2X3

X0
.

This suggests a more transparent string theory interpretation of the 4d solutions as asymp-

totic AdS5×S5 states in type IIB string thery with well-known field theory dual. One can

even find much about the superconformal field theory living on the horizon of these solu-

tions from RG-flow techniques developed in [1, 2]. In this way the dimensional reduction

allows us to transform a somewhat obscure 4d object into a full string theory background

with a well-understood microscopic description. We stress that via the dimensional reduc-

tion the class of Cacciatori-Klemm (CK) solutions with the above prepotential now have

the interpretation of wrapped D3 branes. These are different from the probably better

known class of CK solutions embeddable in 11d supergravity that have the interpretation

of wrapped M2 branes, found in an N = 2 supergravity theory with prepotential1

F = −2i
√
X0X1X2X3 .

The outline of the paper is as follows. In section 2 we discuss in more detail the

general features of the reduction on a circle of theories with bare cosmological constant

or scalar potential. We then go to the specific case of reduction between 5d black string

and 4d black hole attractors in section 3. This is done in full detail, discussing various

aspects such as symmetry algebras and dual field theories. The explicit reduction further

reveals a possible generalization of the known black string near-horizon geometries. We

then move to the relation between 6d and 5d attractors in section 4, which is sketched

1Here we make a distinction between two supergravity theories with prepotentials that are dual to each

other in the ungauged case. However in both theories we allow only for electric gauging of the R-symmetry,

therefore we break the duality and truly find two physically distinct models.
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more briefly with an emphasis on the new features such as the choice of compactification

directions. After this point further generalizations to higher dimensions should be clear to

the reader, examples of which can be reductions on end points of holographic RG flows a

la Maldacena-Nunez [17] that can be found in [1, 2, 18] and references therein.

2 Dimensional reduction of gauged theories

It is instructive to see in a simple example why the dimensional reduction on a circle of

a theory of gauged supergravity leads to a lower dimensional supergravity theory with no

maximally symmetric vacua.2 In particular, the lower dimensional theory cannot have an

AdSd vacuum if the original one had an AdSd+1 vacuum (for d > 2). This is clear from

geometric point of view since AdSd+1 is not an S1 fibre over AdSd, except when d = 2.

The special case of reduction from AdS3 to AdS2 (and the analogous one from S3 to S2)

is exactly the reason why the dimensional reduction between near-horizon geometries of

black objects of various dimensions works in first place.

Let us consider the simplest gravitational theory in (d+ 1) dimensions with a cosmo-

logical constant, such that it has an AdSd+1 vacuum solution:

Sd+1 =

∫

dxd+1 √
gd+1 (Rd+1 + Λ) . (2.1)

We can reduce to d−dimensions with the most-general Kaluza-Klein (KK) ansatz,

ds2d+1 = e−2αφds2d + e2βφ(dxd+1 +Amdxm)2 , (2.2)

where φ and Am are the KK scalar and vector, respectively. Under the above decomposition

we have that
√
gd+1 = e(β−dα)φ√gd. Since we would like to remain for simplicity in the

Einstein frame in the lower dimensional theory3 we require that β = (d−2)α. We therefore

find that the lower dimensional action contains the following terms:

Sd =

∫

dxd
√
gd

(

Rd + Λe−2αφ + . . .
)

, (2.3)

where the extra terms ‘. . . ’ are the kinetic terms for the KK scalar and vector, depending

on the particular value of the parameter α. One can see that the lower dimensional theory

has a scalar potential that originates from the cosmological constant in (2.1),

V = Λe−2αφ , (2.4)

which has no critical points. In fact the potential has a runaway behavior with a global

extremum at φ→ ∞, which is the decompactification limit. The gravitational ground state

of the lower dimensional theory is in a sense trying to come back to its higher dimensional

AdSd+1 origin. If one is only given the lower dimensional lagrangian (2.3) the conclusion

would be that there is no ground state, and all solutions of the theory asymptote to a sort

2Note that there exist some very special examples of the opposite, see [19] for a 6d theory admitting an

AdS5×S1 vacuum.
3There is no loss of generality in this choice, but the main argument here is easier to see this way.
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of curved domain wall (see more comments in section 3.3 of [3]). This feature is completely

general and one can easily substitute the plain cosmological constant Λ in (2.1) with a

more complicated scalar potential that generically appears in supergravity theories. The

appearance of the extra KK scalar from the metric reduction always means that the lower-

dimensional scalar potential has no local extrema in the extra scalar direction, as we see

in the folowing sections.

3 5d to 4d: black string → black hole

In order to show our main point and connect two classes of known solutions in 4 and

5 dimensional supergravities,4 we start from the Benini-Bobev (BB) black string solu-

tions [1, 2]. They are quarter-BPS numerical solutions interpolating between AdS3 × Σ2

and asymptotically locally AdS5 foliated in R×S1×Σ2 coordinates (Σ2 can be any compact

Riemann surface). We already discussed above that one cannot expect a proper reduction

to 4 dimensions of the full flow, therefore we concentrate in particular on the near-horizon

reduction from AdS3 × Σ2 down to AdS2 × Σ2. Once this is done we can show that the

resulting 4 dimensional geometry is still supersymmetric5 and has an asymptotic flow to

a runaway vacuum, exactly as expected. This suggests that from a full 10-dimensional

perspective one should rather think of the two solutions as being the same, the difference

arising only when the extra dimensions are forgotten.

3.1 Benini-Bobev black strings

We consider N = 2 D = 5 Fayet-Iliopoulos (FI) gauged supergravity with two vector multi-

plets (the so-called STU model), which is a truncation of the maximal N = 8 supergravity

arising from the compactification of type IIB supergravity on S5. The bosonic fields are the

metric gµν , 2 real scalars φ1,2, and three abelian gauge fields A1,2,3
µ . The bosonic lagrangian

in standard conventions [23] is given by

e−1L =
1

2
R+ g2V − 1

4
GIJFµν

IFµνJ − 1

2
Gij∂µφ

i∂µφj

+
e−1

48
ǫµνρσλCIJKF

I
µνF

J
ρσA

K
λ , (3.1)

with a gauge coupling constant g and a scalar potential given by

V (X) = VIVJ

(

6XIXJ − 9

2
Gij∂iX

I∂jX
J

)

, (3.2)

where XI represent the real scalar fields and satisfy the condition V = 1
6CIJKX

IXJXK =

1. In the gauged STU model we further have V1 = V2 = V3 = 1
3 and C123 = 1 and its

4The relation between 4d and 5d flow equations for extremal black branes in gauged supergravity was

already noted in [20]. Here we take a different approach and relate already known BPS solutions, rather

than the underlying equations.
5Note that there is another possible supersymmetric reduction from AdS3×Σ2 down to AdS3 in 3d gauged

supergravity [21, 22]. It provides further understanding of the gravitational counterpart of c-extremization.
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permutations as only nonvanishing components. The physical quantities in (3.1) can be

expressed in terms of the homogeneous cubic polynomial V . We also have the relations

GIJ = −1

2
∂I∂J logV

∣

∣

∣

V=1
,

Gij = ∂iX
I∂jX

JGIJ

∣

∣

∣

V=1
, (3.3)

where ∂i and ∂I refer, respectively, to a partial derivative with respect to the scalar field

φi and XI = XI(φi).

Note that the only difference between gauged and ungauged supergravity at the level

of the presented bosonic lagrangian is the appearance of the scalar potential (3.2).

The near-horizon solutions in [1, 2], that summarize the earlier work of [24–28], are

given by

ds2 = R2
AdS3

ds2AdS3
+R2

Σ dσ2Σ , (3.4)

F I = −aI V olΣ , (3.5)

X1 = e
− φ1

√

6
− φ2

√

2 , X2 = e
− φ1

√

6
+ φ2

√

2 , X3 = e
2φ1
√

6 . (3.6)

The solution is fully determined by the magnetic charges aI that satisfy the constraint

a1 + a2 + a3 = −κ, (3.7)

with κ = +1,−1, or 0 depending on the curvature of the Riemann surface Σ being positive,

negative or zero. We have

e
√
6φ1

=
a23(a1 + a2 − a3)

2

a1a2(−a1 + a2 + a3)(a1 − a2 + a3)
, e

√
2φ2

=
a2(a1 − a2 + a3)

a1(−a1 + a2 + a3)
, (3.8)

R3
AdS3

=
8a1a2a3Π

Θ3
, R6

Σ =
a21a

2
2a

2
3

Π
(3.9)

with

Π = (a1+a2−a3)(a1−a2+a3)(−a1+a2+a3), Θ = 2(a1a2+a1a3+a2a3)−(a21+a
2
2+a

2
3) .

We therefore find

X1 =
a1(−a1 + a2 + a3)

(a1a2a3Π)1/3
, X2 =

a2(a1 − a2 + a3)

(a1a2a3Π)1/3
, X3 =

a3(a1 + a2 − a3)

(a1a2a3Π)1/3
. (3.10)

We can choose to write the metric of AdS3 locally in the extremal BTZ form

ds2AdS3
=

1

4

(

−r2 dt2 +
dr2

r2

)

+ ρ+

(

dy +

(

−1

4
+

r

2ρ+

)

dt

)2

, (3.11)

with an arbitrary constant ρ+ that corresponds to the horizon radius of the extremal BTZ

black hole such that upon reduction we have a more general solution with an arbitrary

Kaluza-Klein electric charge, as done standardly in literature. Strictly speaking, the global

properties of this metric are different than those of pure AdS3. However locally the metrics

are the same, therefore the equations of motion and BPS variations are not sensitive under

this change in the metric.
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3.2 Caciatori-Klemm black holes

Now we consider the analogous STU model, but in N = 2 D = 4 FI gauged supergravity

with three vector multiplets. The bosonic fields are the metric gµν , 3 complex scalars

z1,2,3, and four abelian gauge fields A0,1,2,3
µ . In standard N = 2 conventions (see [29]),

the lagrangian and susy variations are given in terms of symplectically covariant vectors

such as to make the duality group manifest. The lagrangian is further uniquely defined by

specifying the FI parameters ξ1 = ξ2 = ξ3 = 1 and arbitrary ξ0, and prepotential

F =
X1X2X3

X0
, (3.12)

where the XΛ(zi) are the holomorphic sections of special geometry. With this choice of

prepotential and FI parameters, the scalar potential is independent of ξ0. For vanishing

real part of the complex scalars, one finds the potential

V (z) ∼ 1

Imz1
+

1

Imz2
+

1

Imz3
, (3.13)

which has no extrema and a typical runaway behavior exactly as explained in the previous

section.

The Cacciatori-Klemm solutions and their generalizations [3, 30–35] in this theory can

be found from the following equations6

β1(−β1 + β2 + β3) = p1 ,

β2(β1 − β2 + β3) = p2 ,

β3(β1 + β2 − β3) = p3 , (3.14)

β0(β
1 + β2 + β3) = q0 ,

where the full solution for the metric and scalars is given by constants β0, β
1,2,3 as in [34]

and q0 and p1,2,3 are non-vanishing electric and magnetic charges carried by the gauge

fields. We can already jump ahead of the dimensional reduction and adopt the notation

where p1 ≡ a1, p
2 ≡ a2, p

3 ≡ a3. Supersymmetry again imposes (3.7). The solution of the

above equations is then

β0 = q0

√
Π

Θ
, β1 =

a1(−a1 + a2 + a3)√
Π

, . . . (3.15)

with cyclic permutations of the indices for β2,3. Two other useful identities are

β1 + β2 + β3 =
Θ√
Π
, β1β2β3 =

a1a2a3√
Π

. (3.16)

We can now in principle write down the full solution that flows between a near-horizon

geometry and a runaway vacuum at infinity, called a curved domain wall in [3]. For the

purposes of the explicit dimensional reduction we only concentrate on the horizon, since the

6Here we only look for axion-free solutions and use the conventions in [34]. Their generalizations with

axions relate also to more general 5d solutions of black strings with additional electric charges, see section 3.7.
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asymptotic geometry is already of the expected type that suggests its higher dimensional

origin as explained in section 2. One finds the standard AdS2 × Σ2 metric with different

radii and scalars given by

R̃2
AdS2

= 2

√
a1a2a3q0 Π

Θ5/2
, R̃2

Σ = 2

√
a1a2a3q0√

Θ
, (3.17)

Imz1 =

√
q0√

a1a2a3Θ
a1(−a1 + a2 + a3), . . . (3.18)

with cyclic permutation for z2,3.

Furthermore, observe that non-vanishing q0 means that there is a nonvanishing electric

component of the gauge field A0 = q̃0r dt with

q̃0 = −R̃AdS2

2R̃2
Σ

I−1,00q0 =

√

a1a2a3
4q0Θ

, (3.19)

where I−1 is the inverse of the imaginary part of the period matrix of special geometry

(see again [29] for more details),

I−1,00 = − 1

Im(z1z2z3)
.

3.3 Dimensional reduction

We now follow the standard rules of dimensional reduction from 5d to 4d supergravity,

derived in [8–10, 12]. Note that we already used the prepotential (3.12) in 4d that one

finds from reducing the 5d theory via the formula

F =
1

6

CIJKX
IXJXK

X0
,

together with the FI terms ξ1 = ξ2 = ξ3. We did not specify ξ0 as it can be left arbitrary also

during the reduction - it is zero for a Kaluza-Klein reduction, or arbitrary non-zero constant

for a more general Scherk-Schwarz reduction (see more in [15] or [6, 7, 11]). It is a further

consistency check to see that the reduction goes through independent of the value of ξ0.

The rules for reducing the bosonic fields from 5 to 4 dimensions are the following:

ds25 = e2φds24 + e−4φ(dγ −A0
4)

2 , (3.20)

AI
5 = AI

4 +RezI(dγ −A0
4) , (3.21)

XI
5 = 2e2φ ImzI , (3.22)

where the 4d fields are already in the standard 4d N = 2 conventions. Reducing the 5d

solution along γ and identifying e−2φ = ρ+RAdS3
, we end up with a 4d solution of the form

ds2 =
ρ+R

3
AdS3

4
ds2AdS2

+R2
Σ ρ+RAdS3

dσ2Σ , (3.23)

F 0 =
1

2ρ+
V olAdS2

, F I = −aI V olΣ , (3.24)
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ImzI =
ρ+RAdS3

2
XI . (3.25)

Therefore we expect an exact match between the following quantities upon the 5d-4d

reduction:

R̃2
AdS2

=
ρ+R

3
AdS3

4
, R̃2

Σ = R2
Σ ρ+RAdS3

, (3.26)

together with the match of the scalars zI and field strengths. We have one arbitrary con-

stant ρ+ that needs to reproduce correctly all these quantities and it turns out everything

agrees exactly upon the identification

ρ+ =

√

q0Θ

a1a2a3
. (3.27)

This concludes the proof that the near-horizon geometries of the BB solutions reduce to the

near-horizon geometries of the CK solutions for the prepotential (3.12). More generally,

this suggests that the full 4d flow of the CK solutions between horizon and a curved domain

wall is to be seen from a higher dimensional perspective as a black string in AdS5. In other

words, the CK solutions of the 4d gauged supergravity defined by the prepotential (3.12) are

to be identified with the BB solutions and thus embedded in an asymptotically AdS5×S5

background of type IIB string theory.

3.4 Matching asymptotics

To provide further evidence for the statement that the full CK solutions lift to the BB

solutions in 5d, we can show how the asymptotic geometries match exactly. It would of

course be desirable to show the full lift from the rules (3.20)–(3.22), but this is practically

not possible since the BB solutions are known only numerically. One can instead hope

in this way to discover the analytic form of the BB black strings in 5d, but this is not

immediately obvious as it involves the construction of the additional function e2φ and we

leave it for future investigations.

Concentrating only at the asymptotics, we find that the CK solutions we are looking

at have the following runaway behavior for the metric and scalars at infinity (cf. section

3.3 of [3]):

ds24,y→∞ = y3/2
(

−dt2 + dσ2Σ
)

+ y−3/2dy2, Imziy→∞ ∼ y1/2 . (3.28)

Upon the coordinate change r = y1/2, we find

ds24,r→∞ = r3
(

−dt2 + dσ2Σ
)

+ r−1dr2, Imzir→∞ ∼ r , (3.29)

which can easily be uplifted to AdS5 with constant scalars via (3.20)–(3.22) upon identifying

e2φr→∞ = r−1,

ds25,r→∞ = r2
(

−dt2 + dσ2Σ
)

+ r−2dr2 + r2dγ2, XI
r→∞ ∼ const . (3.30)

As already announced, this is exactly the asymptotic form of the numerical BB black

strings [1, 2].
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3.5 Superalgebras and Killing spinors

There is another simple reason why the reduction and BPS properties had to work out

correctly. Both the BB and CK solutions are 1/4 BPS, preserving 2 supercharges, with a

susy enhancement near the horizon to 4 supercharges. Furthermore, in both cases Killing

spinors obey

ǫ = γxyǫ , (3.31)

where the x, y-directions denote the internal space Σ, on which the Killing spinor is con-

stant. The full symmetry algebra on the 5d horizon is [36]

5d : SU(1, 1|1)× SU(1, 1)×GΣ , (3.32)

where the symmetry group of Σ can be SU(2),U(1)2 for a sphere and torus or only a

discrete group for a higher genus Riemann surface. The 4d horizon has the symmetry

algebra [37]

4d : SU(1, 1|1)×GΣ , (3.33)

i.e. we have the exact same fermionic symmetries, but the extra bosonic SU(1, 1) has

disappeared, since AdS3 has an SU(1, 1)2 isometries versus a single SU(1, 1) for AdS2.

Here lies the main reason why the reduction preserves the same amount of supersymmetry

- we reduced along an isometry not only of the bosonic solution, but also of the Killing

spinor. This is not guaranteed to be the always the case, see e.g. [38, 39], and it ensured

the succes of the dimensional reduction. It is crucial to find the correct reduction ansatz,

but the fact that we reduced over a full bosonic and fermionic isometry meant that there

existed such an ansatz preserving all the supercharges of the original solution.

3.6 Dual field theory and Cardy formula

Following the above reduction on the boundary, one can find the corresponding CFT dual

on the 4d horizon. The theory dual to the horizon AdS3 of the BB solutions is a (2, 0)

superconformal field theory in 2d that can be derived from the compactification of twisted

N = 4 SYM on the corresponding Riemann surface Σ. The (2, 0) theory naturally lives

on R×S1 and upon its reduction on the spatial circle becomes a superconformal quan-

tum mechanics. We already know the central charge of the (2, 0) theory, which is the

Brown-Henneaux central charge

c =
3RAdS3

2G3
. (3.34)

This result was derived independently on the dual side via c-extremization. Upon putting

this CFT on a circle with momentum, cf. [40],

L0 −
c

24
= ρ2+

RAdS3

4G3
= ρ+

ηΣR̃
2
Σ

2πG4
, (3.35)

we see that the Cardy formula

SCardy = 2π

√

c

6

(

L0 −
c

24

)

=
ηΣ
G4

√

ρ+RAdS3
R2

ΣR̃
2
Σ =

ηΣR̃
2
Σ

G4
, (3.36)
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reproduces exactly7 the macroscopic Bekenstein-Hawking entropy of the CK solution that

is also the entropy of the BTZ black hole,

SBH =
AΣ

4G4
=
ηΣR̃

2
Σ

G4
=

2πηΣρ+RAdS3
R2

Σ

G5
=
πρ+RAdS3

2G3
=
ABTZ

4G3
= SBTZ . (3.37)

This is a seemingly trivial AdS/CFT check, but it is important to stress that in this case we

explicitly know the dual field theory and therefore have a true microscopic description of

the black hole degrees of freedom. The nontrivial part of this derivation actually consists in

finding the correct value of the central charge (3.34) directly from the field theory as done

in [1, 2] via c-extremization. We stress again that we have essentially embedded a class of

CK solutions inside type IIB supergravity via their relation with the BB solutions, such that

now they have the interpretation of wrapped D3 branes. Thus it is not a surprise to see that

the entropy scales with N2 instead of N3/2 (hidden in the scaling of the Newton constant

G3 ∼ G4 ∼ G5 ∼ N−2). It also follows that the euclideanized version of the near-horizon

geometry in section 3.2 is the gravity dual to be compared to field theory localization

calculations of twisted N = 4 SYM on T2 ×Σ2 (see [41] for some results in this direction).

3.7 Extensions with extra charges

It is interesting to observe that one could write more general CK solutions within the

prepotential and FI terms considered in section 3.2, namely solutions with nonvanishing

axions and more electric charges [33–35]. These have no known higher dimensional origin,

but following the reduction rules in section 3.3 one can retrace what nonvanishing Re zI

terms correspond to in the higher dimensional solution. One can add extra gauge fields

AI
γ = wI ,

which are essentially Wilson lines around the circle in AdS3. Upon reduction they produce

non-vanishing axions and corresponding electric charges. It is interesting to observe that

such Wilson lines already give nonvanishing electric charges in 5d due to the Chern-Simons

term in the supergravity lagrangian (3.1) and the fact that we have already switched on

magnetic charges. This corresponds to a generalization of the BB solutions with electric

charges and will be described more carefully in [42].

4 6d to 5d: black string → black hole/string

The detailed example in the previous section illustrated the general principles of dimen-

sional reduction in gauged supergravity. Other analogous examples can be explored across

different dimensions, as long as there exists a suitable spatial isometry for dimensional

reduction. In gauged supergravities such suitable spacetimes with AdS3, S
3 or other cir-

cle fibrations often arise as near-horizon geometries of various black branes. As discussed

above, depending on the explicit Killing spinors of the original solution we can see if the

dimensionally reduced solution also preserves supersymmetry or not.

7In the above derivation we used that the area of a unit Riemann surface Σ is 4ηΣ and depends on its

genus as in (3.6) of [1, 2].
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Here we sketch more briefly another example in 6d supergravity. The near-horizon

geometry of BPS black strings found in [43] is AdS3×S3. This is a solution of N =

(1, 0) SU(2) gauged supergravity in 6d with a nonvanishing SU(2) field strength F I . The

supergravity theory includes the gravity and tensor multiplets that include the metric, a

scalar φ and tensor field strength G, and the above mentioned SU(2) gauge multiplet. The

supersymmetric AdS3×S3 background is given by:

ds2 = R2
1 ds2AdS3

+R2
2 ds2S3 , (4.1)

G =
2(1− a2)

g2R1R2
2

(V olR1
(AdS3) + V olR2

(S3)) , (4.2)

F I =
(1− a2)

g
ǫIJKeJK , e

√
2φ =

g2R2
2

2(1− a2)
. (4.3)

In the above formulae g is the gauge coupling constant, a ≡ R2/R1, ǫ
IJK are the SU(2)

structure constants and eIJ are two forms made from the vielbein on the three-sphere (see

e.g. [36]). The supersymmetry is preserved due to the fact that the gauge field “cancels”

the spin connection on the internal space. The solution is quarter-BPS, i.e. there are four

conserved supercharges with a symmetry group

SU(1, 1|1)× SU(1, 1)× SU(2)2 .

There is a clear similarity to the 5-dimensional case, and the fact that the Killing spinor

transforms only under one SU(1, 1) of the AdS3 isometry group and is scalar under rotations

on the sphere means that now we have two ways of reducing along a circle while still

preserving supersymmetry. One can reduce on a circle either inside AdS3 or inside S3.

This leads to two different BPS solutions - AdS2×S3 with SU(2) gauge fields or AdS3×S2

with U(1) gauge fields.

The resulting 5d theory coming from the reduction of the N = (1, 0) in 6d has a

SU(2)× U(1) gauging (the extra U(1) can be realized by Scherk-Scwarz reduction) and is

of a runaway type, i.e. an N = 4 theory with extra vectormultiplets and no extrema of the

scalar potential, similar to some of the theories discussed in [36, 44, 45].

4.1 Reduction along AdS3

We can again use the BTZ form of the metric (3.11) and reduce the above solution along

the circle. The resulting solution has the near-horizon geometry of a black hole in 5d -

AdS2×S3 with the same SU(2) gauge field on the sphere. We further find two U(1) gauge

fields carrying an electric charge - one coming from the 6d tensor field and the other being

the Kaluza-Klein vector. The fermionic symmetries remain the same, but the symmetry

algebra does not contain the extra SU(1, 1) factor found in 6d. Such a solution cannot be

connected to any AdS5 vacuum, but near the horizon resembles already known attractors

in 5d (see e.g. [26, 36] for the case of supersymmetric AdS2×H3 with an SU(2) gauge field).

4.2 Reduction along S3

To reduce along S3, one can write down the metric of the sphere in the form

ds2S3/Zk
=
R2

2

4

(

sin2 θ dφ2 + dθ2 + (kdψ + cos θ dφ)2
)

, (4.4)
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with a slight generalization to a allow for quotients with a discrete group Zk. The resulting

solution is less surprising - it becomes the near-horizon geometry of a black string, AdS3×S2,

with magnetic charges through the sphere. The symmetry algebra contains one less SU(2)

factor compared to the 6d case. Again, it is found in a theory with no AdS5 vacuum, but

near the horizon it resembles the BB solutions in the previous section.

4.3 Reduction along both AdS3 and S3

Finally note that one can consecutively reduce along both circles in order to get a 4d

supersymmetric AdS2×S2 solution. In this case already the 5d supergravity is of runaway

type and this continues to hold in 4d. The remaining supersymmetry algebra of this

solution is SU(1, 1|1)× SU(2) and can also be found within the near-horizon geometries of

CK black holes and their generalizations.
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