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1 Introduction

The lack of signals from physics beyond the Standard Model (SM) at the Large Hadron

Collider (LHC) revives the question of which model constitutes the most appropriate ex-

tension of the SM and, if there is one, what is the energy scale where new features of

particle interactions ought to be observed. The failure of the criterion of naturalness for

new physics has caused a renaissance for models which aim to accommodate as much of

the present state of knowledge as possible, while ignoring the fine-tuning problem [1, 2].

In the construction of a realistic model beyond the SM, one is, in principle, free to choose

what features to be considered important. However, it is usually common practice that any

new model should, at least, contain a unification scale compatible with a naive expectation

for the proton life-time as well as a Yukawa sector compatible with low-energy data. In

addition, the model should allow for accommodation of a dark matter candidate as well as

the baryon asymmetry of the Universe.

In the present work, we will study a non-supersymmetric extension of the SM model

based on the gauge group SO(10), which has often been discussed in the previous lit-

erature [3–13]. The gauge group SO(10) has the clear advantage that all SM fermions,

including right-handed neutrinos, belong to the same 16 representation. However, the re-

alization of the mechanism for the breaking to the SM gauge group requires the presence
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of large Higgs representations, and the consequent split of the multiplets to mass ranges

differing in orders of magnitudes is an issue which, so far, has no satisfactory solutions in

non-supersymmetric scenarios. Ad-hoc assumptions have been introduced [3, 6], which al-

low for the choice of the multiplets of the Higgs representations taking part in the evolution

of the coupling constants. In particular, if a member of a Higgs multiplet has a vacuum

expectation value (vev), v, corresponding to the breaking of a subgroup, then the mass of

the whole multiplet is O(v) and will thus not contribute to the evolution of the coupling

constant for energies below v, whereas for energies above v, the multiplet will have a mass

of the order of the next, larger, mass scale where the larger symmetry appears.

In general, the viability of an SO(10) model is based on the ability to reproduce the

values of fermion masses and mixings at the electroweak (EW) scale, MZ. Recent fits to

fermion observables in non-supersymmetric contexts, which are discussed in refs. [2, 14, 15],

show that a Yukawa sector with 10H and 126H Higgs representations is, in terms of fields,

the most economical choice that can accommodate all known low-energy data. To perform

this task, one has either to extrapolate the values of the fermion parameters at the EW

scale to the grand unified theory (GUT) scale, MGUT, or in the opposite direction to impose

conditions on the Yukawa matrices defined at MGUT and evolve them down to MZ.

In this work, we will use the latter approach but, contrary to the procedure usually

adopted in the literature, we explicitly take into account the presence of intermediate gauge

groups, characterized by a mass scale MI. In fact, besides the evolution of the coupling

constants, such contributions are expected to modify the evolution of the fermion masses

and mixing, introducing relations among the Yukawa couplings at the same scale MI. We

quantify the impact of using such new contributions in the renormalization group equations

(RGEs) for fermion masses and mixings, considering an illustrative and simplified SO(10)

model with a breaking chain given by [8]:

SO(10)
MGUT − 210H−→ 4C 2L 2R

MI − 126H−→ 3C 2L 1Y
MZ − 10H−→ 3C 1Y , (1.1)

where the symbols should be self-explanatory. In the present model, the intermediate gauge

group is the Pati-Salam (PS) group SU(4) × SU(2)L × SU(2)R, which was introduced in

ref. [16], and in the first step, the breaking of SO(10) down to the PS group is achieved

by means of a 210H representation of Higgs. In the next step, the breaking of the PS

group down to the SM gauge group is performed by means of a 126H. At MZ, the final

step of the breaking of the SM gauge group to SU(3)C ×U(1)Y is obtained with a 10H, we

will, however, not consider any RG running below MZ. Given the exploratory character

of our study, we do not address other relevant open problems in SO(10) models, such as

the presence of a good dark matter candidate in the scalar spectrum or the possibility of

producing the correct amount of baryon asymmetry in the Universe. We will, however, pay

much attention to the energy of the GUT scale MGUT, the related coupling constant αGUT,

and the energy of the intermediate scale MI, since they are all necessary ingredients for a

correct evolution of fermion masses and mixings. The output of our analysis will be the

values of the elements of the Yukawa matrices at MGUT, which give a reasonable fit to the

fermion observables at MZ. These values can directly be compared to the corresponding
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ones obtained from an evolution without the intermediate scale starting at MGUT, thus

allowing a quantification of the new effects introduced by the PS gauge group.

This paper is organized as follows. In section 2, we present our notation for the relevant

fields and discuss the evolution of the gauge coupling constants. Then, in section 3, we

investigate the renormalization group running of the various Yukawa couplings such as the

ones for charge leptons, neutrinos, and Higgs self-couplings. Next, in section 4, we present

a numerical parameter-fitting procedure to determine the renormalization group running

of quark and lepton observables from the GUT scale MGUT down to the EW scale MZ and

to find the effect of the intermediate energy scale MI. In section 5, we give the numerical

results and discuss the obtained results. Finally, in section 6, we summarize the results

and present our conclusions. In addition, in appendix A, we list some useful RGEs for our

investigation.

2 Evolution of gauge coupling constants

We work in the framework of SO(10) with two representations of Higgs fields, namely the

10H and the 126H, which are both relevant for generating the fermion mass matrices. In

the PS group, the Higgs and matter fields decompose as

10H = (1, 2, 2)⊕ (6, 1, 1) ,

16 = (4, 2, 1)⊕ (4, 1, 2) ≡ FL + FR ,

126H = (6, 1, 1)⊕ (10, 1, 3)⊕ (10, 3, 1)⊕ (15, 2, 2) , (2.1)

where FL and FR are the left- and right-handed parts of the 16, respectively. It is useful

to introduce the following short-hand notations

Φ ≡ (1, 2, 2) , Σ ≡ (15, 2, 2) , ∆R ≡ (10, 1, 3) . (2.2)

These are the components of 126H and 10H which are involved in the breaking chain. It

is thus clear that the other components must live at the GUT scale in order not to affect

the breaking pattern [2]. For the sake of simplicity, we will restrict ourselves to one-loop

matching so that the evolution equations for the gauge coupling constants αi between two

energy scales M1 and M2 are given by the standard formula [17, 18]

α−1
i (M2) = α−1

i (M1)−
ai
2π

log

(
M2

M1

)
, (2.3)

where the coefficients ai can be obtained from, e.g., ref. [17]. At MGUT, the gauge couplings

are unified and the matching conditions are simply

α4C(MGUT) = α2R(MGUT) = α′
2L(MGUT) , (2.4)

where α4C, α2R, and α′
2L are the coupling constants of SU(4), SU(2)R, and SU(2)L above

MI, respectively. Next, we have to determine the running for a4C, a
′
2L, and a2R between

MGUT and MI. The relevant Higgs fields, which are participating in the running in this
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energy region, are Φ, Σ, and ∆R. Here, Φ and ∆R contribute to α4C, Φ and Σ to α2L, and

all three of them to α2R. At MI, we impose the relations [8]:

α3C(MI) = α4C(MI) , α2L(MI) = α′
2L(MI) , α−1

1Y(MI) =
3

5
α−1
2R(MI)+

2

5
α−1
4C(MI) , (2.5)

where α3C, α2L, and α1Y are the SM gauge coupling constants.

Eventually, in the running from MI down to MZ, the Higgs representations involved

in the RGEs are [under the SM gauge group SU(3)C × SU(2)L ×U(1)Y]

Φ = (1, 2)1/2 ⊕ (1, 2)−1/2 = Hu +Hd = φ1 + φ3 ,

Σ = (1, 2)1/2 ⊕ (1, 2)−1/2 = H ′
u +H ′

d = φ2 + φ4 . (2.6)

Hence, in this model, there are four Higgs SU(2) doublets to be dealt with. It is, however,

beyond the scope of the present work to discuss in detail the scalar potential of the model

and to identify which combination of potential parameters allows a unique light scalar

Higgs particle, in accordance with the recent discovery at the LHC.

At MZ ≃ 91.19GeV, imposing the experimental constraints, given by [19]

α3C(MZ) = 0.1176± 0.002 ,

α2L(MZ) = 0.033812± 0.000021 ,

α1Y (MZ) = 0.016946± 0.000006 , (2.7)

we obtain the values of the mass scales (to be used throughout this work):

MI = (1.5± 0.2) · 1012GeV , MGUT = (1.7± 0.6) · 1015GeV , (2.8)

and the value of the gauge coupling at MGUT is αGUT ≃ 0.027.

The errors on the mass scales only include the propagated uncertainties from the

SM coupling constants and the Z boson mass. Then, although the value of MGUT is

marginally compatible with a naive estimate of the life-time of the proton, which would

require MGUT ∼ 1016GeV, unknown threshold corrections [20] can easily increase the

estimated errors, thus allowing for a larger value of MGUT. We should stress again that

the main goal of this work is to quantify the effects of MI on the RGEs for the fermion

observables rather than to construct a realistic model based on SO(10).

3 RG running of Yukawa couplings

In this section, we briefly discuss the relevant RGEs and matching conditions among the

Yukawa couplings defined at the SO(10) breaking scale, i.e. the GUT scale, and at the

intermediate scale.

3.1 Charged leptons

At MGUT, the Yukawa sector reads

LY = 16 (h 10H + f 126H) 16 , (3.1)

– 4 –



J
H
E
P
1
2
(
2
0
1
4
)
0
5
2

where h and f are unknown symmetric couplings to be determined through a fitting pro-

cedure. Furthermore, in the region between MGUT and MI, the Yukawa part of the La-

grangian is given by [21]

−LY =
∑

i,j

(
Y

(10)
F ij F

iT
L ΦF j

R + Y
(126)
F ij F iT

L ΣF j
R + Y

(126)
R ij F iT

R ∆RF
j
R + h.c.

)
, (3.2)

where Y
(10)
F , Y

(126)
F , and Y

(126)
R are Yukawa couplings. In this region, the one-loop RGEs

for the effective Yukawa couplings have been computed in ref. [21] and given for reference

in appendix A.1. Furthermore, at MGUT, the couplings Y
(10)
F , Y

(126)
F , and Y

(126)
R have to

be matched to h and f :

1√
2
Y

(10)
F (MGUT) ≡ h ,

1

4
√
2
Y

(126)
F (MGUT) =

1

4
Y

(126)
R (MGUT) ≡ f , (3.3)

where the numerical factors are Clebsch-Gordan coefficients needed for a correct embedding

of PS into SO(10) [22]. Note that in order to derive the fermion mass matrices one has to

introduce the vev’s of the appropriate Higgs multiplets. In standard notation, the relevant

contribution to fermion masses and mixing come from the Φ submultiplet of the 10H and

the Σ submultiplet of the 126H, which can be written as

ku,d ≡ 〈Φu,d〉10 , vu,d ≡ 〈Σu,d〉126 . (3.4)

In particular, it is useful to introduce the ratios

rv ≡ ku
kd

, s ≡ vu
rvvd

, (3.5)

which allow us, using the Lagrangian given in eq. (3.1) and the previous definitions, to

obtain the following fermion mass matrices [14, 15, 23–25]

Mu = h ku + f vu , Md = h kd + f vd ,

MD = h ku − 3 f vu , Me = h kd − 3 f vd , MR = f vR , (3.6)

where Mu, Md, MD, Me, and MR are the up-type quark, down-type quark, Dirac, charged-

lepton, and right-handed neutrino mass matrices, respectively, and vR =
〈
∆R

〉
is the vev

of ∆R. Using the relations in eqs. (3.3)–(3.5), we can rewrite eq. (3.6) as

Mu =
rv√
2

(
kdY

(10)
F +

vd s

4
Y

(126)
F

)
,

Md =
kd√
2
Y

(10)
F +

vd

4
√
2
Y

(126)
F ,

Me =
kd√
2
Y

(10)
F − 3

vd

4
√
2
Y

(126)
F ,

MD =
rv√
2

(
kdY

(10)
F − 3

vd s

4
Y

(126)
F

)
. (3.7)
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Finally, in the region between MI and MZ, the RG running down to the SM produces

formally equivalent mass matrices, where we only have to distinguish among the upper

and lower component of the SU(2)L doublets:

Mu =
rv√
2

(
kdY

(10)
u +

vd s

4
Y (126)
u

)
,

Md =
kd√
2
Y

(10)
d +

vd

4
√
2
Y

(126)
d ,

Me =
kd√
2
Y (10)
e − 3

vd

4
√
2
Y (126)
e ,

MD =
rv√
2

(
kdY

(10)
ν − 3

vd s

4
Y (126)
ν

)
, (3.8)

with the matching conditions at MI given by

Y (10)
u (MI) = Y

(10)
d (MI) = Y (10)

ν (MI) = Y (10)
e (MI) ≡ Y

(10)
F ,

Y (126)
u (MI) = Y

(126)
d (MI) = −1

3
Y (126)
ν (MI) = −1

3
Y (126)
e (MI) ≡ Y

(126)
F , (3.9)

where the factor 1/3 is a consequence of the property of the vev 〈Σ〉 ∼ diag(1, 1, 1,−3). In

this region, the Yukawa Lagrangian is given by

−LY =
∑

i,j

(
Y

(10)
u ij qiL φ̃1u

j
R + Y

(126)
u ij qiL φ̃2u

j
R + Y

(10)
d ij qiL φ3d

j
R + Y

(126)
d ij qiL φ4d

j
R (3.10)

+ Y
(10)
ν ij ℓiL φ̃1N

j
R + Y

(126)
ν ij ℓiL φ̃2N

j
R + Y

(10)
e ij ℓiL φ3e

j
R + Y

(126)
e ij ℓiL φ4e

j
R + h.c.

)
,

where qL and ℓL are the usual quark and lepton SU(2) doublets, respectively, and uR, dR,

and eR are the corresponding SU(2) singlets, and NR is the right-handed neutrino field.

The RGEs of the Yukawa couplings from MI to MZ are presented in appendix A.2. To all

Higgs fields, one can assign vev’s φi = vi/
√
2, which, in terms of the vev’s of eq. (3.4), read

v1 = ku , 4v2 = vu , v3 = kd , 4v4 = vd . (3.11)

In our investigation, for the sake of simplicity, these vev’s will be considered as fixed

quantities.

3.2 Neutrinos

In the RG running of the Yukawa couplings, a further complication arises from the fact

that besides the intermediate energy scale MI, there are also three seesaw energy scales

related to the three heavy right-handed neutrinos which need to be taken into account.

The picture can be simplified by assuming that all heavy neutrinos obtain the same mass

at a seesaw energy scale coinciding with MI. In order to define the concept of neutrino

masses and leptonic mixing as functions of the renormalization scale µ, we use the standard

see-saw formula:

mν(µ) = MT
D(µ)M

−1
R (µ)MD(µ) , (3.12)
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where MD and MR are µ-dependent quantities. In particular, above the seesaw energy

scale, i.e. above the intermediate scale where µ > MI, the matrix MR(µ) in eq. (3.12) is a

RG running quantity defined as

MR =
1

4

〈
∆R

〉
Y

(126)
R . (3.13)

Hence, assuming that 〈∆R〉 is a µ-independent quantity, its evolution is fully determined

by the evolution of Y
(126)
R . In this energy region, MD(µ) is given by the Dirac mass

matrix in eq. (3.7), and thus, it obtains contributions from Y
(10)
F and Y

(126)
F . Inserting the

expressions for MD and MR into the seesaw relation in eq. (3.12) for the light neutrino

masses, we obtain

mν =
r2v
2

(
k2dY

T (10)
F M−1

R Y
(10)
F − 3

vdkds

4
Y

T (126)
F M−1

R Y
(10)
F

− 3
vdkds

4
Y

T (10)
F M−1

R Y
(126)
F +

9v2ds
2

16
Y

T (126)
F M−1

R Y
(126)
F

)
. (3.14)

Below the seesaw scale, i.e. below the intermediate scale where µ < MI, we will instead

consider an effective neutrino mass operator:

Lν =
1

4

∑

a,b=1,2

∑

i,j

κ
(a,b)
ij

(
ℓiLδǫδγ φ̃aγ

)(
φ∗
bαǫ

αβℓCj
Lβ

)
+ h.c. , (3.15)

where κ
(a,b)
ij are flavor matrices satisfying κ

(a,b)
ij = κ

(b,a)
ji [26] and ǫαβ is the two-dimensional

antisymmetric tensor. Now, the light neutrino mass matrix can be expressed in terms of

these effective coefficients and it is thus given by

mν =
1

2

∑

a,b=1,2

κ(a,b)v∗av
∗
b . (3.16)

Then, we can construct the matching conditions at MI. This is performed by comparing

eq. (3.16) with eq. (3.14) using the relations in eq. (3.11), which then gives the following

expressions

κ(1,1) = Y
T (10)
F M−1

R Y
(10)
F ,

κ(1,2) = −3Y
T (126)
F M−1

R Y
(10)
F ,

κ(2,1) = −3Y
T (10)
F M−1

R Y
(126)
F ,

κ(2,2) = 9Y
T (126)
F M−1

R Y
(126)
F . (3.17)

The RGEs for the coefficients κ
(a,b)
ij are presented for reference in appendix A.3. These

RGEs depend on the Higgs self-couplings λijkl, which need to be taken into consideration

in a consistent way. We will discuss these Higgs self-couplings in the next subsection.
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3.3 Higgs self-couplings

As previously observed, our model contains four Higgs doublets at low energies, two dou-

blets from Φ, i.e. φ1 and φ3, and two from Σ, i.e. φ2 and φ4. The doublets φ1 and φ2

couple to up-type quarks and leptons, whereas the doublets φ3 and φ4 couple to down-type

quarks and leptons. The quartic terms in the scalar potential have the general form

V (φ) =
1

4!

∑

a,b,c,d=1,2,3,4

λabcd

(
φ†
aφb

)(
φ†
cφd

)
. (3.18)

This is a rather tedious expression which can, however, be simplified using the fact that

the quartic couplings obey the following relations [derived from the form of the potential

in eq. (3.18)]

λabcd = λcdab = λ∗
badc . (3.19)

The RGEs for the Higgs self-couplings are given by [27]

16π2dλabcd

dt
=

1

6

∑

m,n=1,2,3,4

(2λabmnλnmcd + λabmnλcmnd + λamnbλmncd

+ λamndλcnmb + λamcnλmbnd)− 3(3g22 + g2Y )λabcd

+ 9(3g42 + g4Y )δabδcd + 36g22g
2
Y

(
δadδbc −

1

2
δabδcd

)

+
∑

m,n=1,2,3,4

(λmbcdAam + λamcdAmb + λabmdAcm + λabcmAmd)

− 48Habcd, (a, b, c, d = 1, 2, 3, 4) , (3.20)

where we have defined the auxiliary quantities

Aab ≡ tr(3Y u†
a Y u

B + 3Y d†
a Y d

b + Y e†
a Y e

b ) (3.21)

and

Habcd ≡ tr(3Y u†
d Y u

c Y u†
b Y u

a + 3Y d†
a Y d

b Y
d†
c Y d

d + Y e†
a Y e

b Y e†
c Y e

d (3.22)

+ 3Y u†
a Y u

b Y d†
d Y d

c + 3Y d†
b Y d

a Y
u†
c Y u

d − 3Y d†
d Y d

c Y
u†
b Y u

a − 3Y u†
a Y u

d Y d†
b Y d

c ) .

Furthermore, the following abbreviations have been used

Y u
1 ≡ Y (10)

u , Y u
2 ≡ Y (126)

u , Y d
3 ≡ Y

(10)
d , Y d

4 ≡ Y
(126)
d ,

Y e
3 ≡ Y (10)

e , Y e
4 ≡ Y (126)

e , otherwise zero . (3.23)

Above MI, there are four distinct Higgs self-couplings λi (i = 1, 2, 3, 4), which are matched

to the low-energy counterparts at MI as

λabcd

4!
= λ1 for a, b, c, d = {1, 3} ,

λabcd

4!
= 2λ2 for a, b = {1, 3} and c, d = {2, 4} ,

λabcd

4!
= λ3 for {a, b}, {c, d} = {1, 2}, {1, 4}, {3, 2}, {3, 4} ,

λabcd

4!
= 4λ4 for = {2, 4} . (3.24)
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Note that the RG running of the Higgs couplings above MI is irrelevant for the evolution of

the fermion masses and mixing parameters and therefore not taken into account here. In

order to perform a numerical computation of the RG running of the fermionic parameters,

one has to specify the choice of the initial conditions for the Higgs couplings. For the sake

of simplicity, we allowed one of the Higgs couplings, λ1, to be free and the other three were

fixed to λ2 = 2 · 10−2, λ3 = 1 · 10−4, and λ4 = 4 · 10−3.

4 Numerical parameter-fitting procedure

In this section, we present the numerical strategy that we have used to show the effect of

the intermediate scale MI on the extrapolated values of fermion masses and mixings from

the GUT scale MGUT. As we previously explained, we adopt the procedure of considering

the entries of the couplings h and f as well as the vevs as our free parameters and evolving

them down to the EW scale MZ, where the values of masses and mixings of quarks, charged

leptons, and neutrinos are known. There are in total 19 free parameters at MGUT which

need to be determined, including one Higgs self-coupling at MI. Without loss of generality,

we can work in the basis where the Yukawa coupling matrix h is real and diagonal. Then,

we have three parameters in the real diagonal Yukawa coupling matrix h, twelve in the

complex and symmetric Yukawa coupling matrix f , one in the parameter rv (which can be

chosen to be real), two in the complex parameter s, and finally one in the vevs kd = vd. In

addition we shall fit one of the Higgs couplings λ1 at the intermediate scale.

The evolved observables depend on all the parameters, so an analytical minimization

of the χ2 function is not feasible. Hence, we adopt a numerical strategy, which consists of

the following steps:

• First, the values of the parameters at MGUT are randomly generated according to

some prior distribution.

• Then, they are evolved down to MZ after solving the RGEs discussed in previous

sections.

• Next, at MZ, the observables can then be constructed and compared to experimental

data.

• Finally, the procedure is repeated with new randomly sampled parameter values from

a reduced parameter space and the result is given when convergence on the point with

largest likelihood occurs, i.e. the best-fit point.

The advantage of using such a sampling algorithm rather than a simple parameter scan is

that it is significantly more computationally efficient. For the sampling procedure, we used

the software MultiNest, which is based on nested sampling normally used for calculation of

the Bayesian evidence [28–30]. Nested sampling reduces the many-dimensional integration

of the likelihood to a one-dimensional integral, which significantly will increase the speed

of the calculation [31, 32]. The sampling space is reduced for each iteration, removing

points with small values of the likelihood. Thus, in each step of iteration, we will replace
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Quark sector Lepton sector

Observable Xi σexp
i Observable Xi σexp

i

md (GeV) 2.9 · 10−3 1.215 · 10−3 me (GeV) 4.8657 · 10−4 2.4339 · 10−5

ms (GeV) 5.5 · 10−2 1.55 · 10−2 mµ (GeV) 1.0272 · 10−1 5.14 · 10−3

mb (GeV) 2.89 9.0 · 10−2 mτ (GeV) 1.74624 8.731 · 10−2

mu (GeV) 1.27 · 10−3 4.6 · 10−4 r ≡ ∆m2
21

∆m2
31

0.030 0.0033

mc (GeV) 6.19 · 10−1 8.4 · 10−2 sin2 θℓ12 0.30 1.3 · 10−2

mt (GeV) 171.7 3.0 sin2 θℓ13 2.3 · 10−2 2.3 · 10−3

sin θq12 2.246 · 10−1 1.1 · 10−3 sin2 θℓ23 0.41 3.1 · 10−2

sin θq13 3.5 · 10−3 3 · 10−4

sin θq23 4.2 · 10−2 1.3 · 10−3

δCKM 1.2153 5.76 · 10−3

Table 1. The observables used in the χ2 for parameter fit at the GUT scale. The experimental

values {Xi} of the observables are the values of the observables at the EW scale and the values

{σexp
i

} are the respective experimental uncertainties. The values of the quark and charged lepton

masses are taken from ref. [33], the quark mixing parameters from ref. [14], and the neutrino mass-

squared differences and the leptonic mixing angles from ref. [34].

the points with the smallest values of the likelihood by points with larger values of the

likelihood. Eventually, we will find the point with the largest value of the likelihood, which

is then the point that we will use for the fit. This point is called the best-fit point. Since

this method is Bayesian, we necessarily have to make a choice of prior distributions for the

parameters, which are fitted at MGUT. Note that we are not interested in the Bayesian

analysis as such, and therefore, these priors could be considered simply as a bound on

the parameter space. Nevertheless, since the orders of magnitude were unknown for the

parameters in the matrices h and f , it was relevant to use logarithmic priors, ranging

from 10−15 to 10−1. For the remaining parameters suitable uniform priors were used. The

comparison to the EW data is performed by maximizing the value of the logarithm of the

likelihood L, which to a rather good approximation, i.e. the Gaussian approximation, is

related to the χ2 through χ2 = −2 log(L). The χ2 function is, as usual, defined as

χ2 ≡
n∑

i=1

(
Xi − µi

σexp
i

)2

, (4.1)

where Xi is the experimental value of the ith observable, µi the expectation value from

the model, and σexp
i the experimental uncertainty. All observables which were used are

presented in table 1.

For the purpose of this work, we only consider normal hierarchy (NH) for the neutrino

masses.1 In addition, we have not used the experimental uncertainties for the charged

1This is motivated by the difficulty to perform a proper fit for the inverse hierarchy (IH) for the neutrino

masses using models similar to ours [2, 15].
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leptons, since these errors are very small. The minimization procedure of the χ2 would not

converge in a reasonable time using the true experimental errors, since even a relatively

small deviation from the experimental value would have a large impact on the magnitude

of the χ2. In the present investigation, we are not interested in determining the values

of the charged lepton masses to a great precision but rather to obtain values which are

relatively close to the values measured at MZ, with a precision comparable to that of the

measurements on the other SM observables. Therefore, we choose to impose a relative

error on the charged lepton masses of 5%.

Thus, the final result of this procedure will be the determination of the unknown para-

meters and, correspondingly, the values of the fermion observables at MGUT. The effect

of MI on the RG running is appreciated by comparing such values with the ones obtained

from RG running without MI, however still taking the seesaw scale into account.

5 Numerical results and discussion

Using the numerical parameter-fitting procedure described in section 4, we perform a fit of

the SO(10) model parameters at the GUT scale MGUT such that the experimentally known

values of the physical fermion observables at the EW scale MZ are reproduced. Applying

this procedure, the obtained values of the Yukawa couplings at MGUT are:

h ≃




5.03 · 10−5 0 0

0 −4.92 · 10−3 0

0 0 5.54 · 10−1


 , (5.1)

f ≃




3.14 · 10−5i −7.21 · 10−4 − 5.37i · 10−5i −1.31 · 10−3

−7.21 · 10−4 − 5.37 · 10−5i 1.09 · 10−3 − 7.26 · 10−3i −6.91 · 10−5 + 2.39 · 10−2i

−1.31 · 10−3 −6.91 · 10−5 + 2.39 · 10−2i 5.56 · 10−2 + 4.53 · 10−2i


 .

(5.2)

The fit of the vevs kd and vd was done under the simplifying assumption that kd = vd and

the best-fit value of this parameter was found to be kd = vd ≃ 3.75GeV. Furthermore,

the best-fit values of the parameters s and rv were found to be s ≃ 3.57 · 10−2 + 0.40i and

rv ≃ 65.3, respectively, which means that the best-fit value of the parameter ku is given

by ku ≃ 245GeV using eq. (3.5). Since we have the freedom of rescaling the values of

the vevs by dividing them with a common factor and multiplying the Yukawa couplings

with the same common factor, the fit has been performed in such a way that the sum of

the squares of the Higgs field vevs in eq. (3.11) is equal to 246GeV. At the intermediate

scale MI, the values of the Higgs self-couplings had to be determined. These values are, in

principle, arbitrary as long as the correct results are reproduced and the values are below

the perturbative limit. Hence, only one of the Higgs self-couplings λ1 was part of the fit

and was fitted to a value of λ1 ≃ 8.23 ·10−4, while the rest were kept fixed. The fit resulted

in a value of the χ2 function given in eq. (4.1) that is χ2 ≃ 12.7, which is reasonable for

this fit taking its complexity into account.
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Quark sector Lepton sector

Observable µi gi Observable µi gi

md (GeV) 3.6 · 10−4 2.1 me (GeV) 4.8 · 10−4 0.22

ms (GeV) 0.037 1.1 mµ (GeV) 0.10 −0.055

mb (GeV) 2.9 0.11 mτ (GeV) 1.7 0.52

mu (GeV) 1.4 · 10−3 −0.28 r ≡ ∆m2
21

∆m2
31

0.036 −1.5

mc (GeV) 0.68 −0.73 sin2 θℓ12 0.28 1.5

mt (GeV) 170 1.1 sin2 θℓ13 0.022 0.41

sin θq12 0.23 −0.45 sin2 θℓ23 0.42 −0.41

sin θq13 0.0035 0.0

sin θq23 0.042 0.078

δCKM 1.2 −0.029

Table 2. The values {µi} of the observables in the SO(10) model at the EW scale presented

together with the respective pulls {gi}.

The values of the observables in the SO(10) model at the EW scale are given in table 2

together with the corresponding pulls for these observables. In general, the pull is defined as

gi ≡
Xi − µi

σexp
i

, (5.3)

where Xi is the value of the ith observable at the EW scale (given in table 1 for all observ-

ables used), µi is the value in the SO(10) model, and σexp
i is the experimental uncertainty

(again given in table 1 for all observables used). The observables which are most difficult

to accommodate are the down, strange, and top quark masses as well as the quantities

r and sin2 θℓ12, although the experimental values are reproduced within about 2σ. The

absolute neutrino mass scale can be inferred once the vev vR in eq. (3.6) is determined by

demanding that the small neutrino mass-squared difference ∆m2
21 (or the large one ∆m2

31)

resulting from the fit procedure reproduces the experimental value of ∆m2
21 = 7.5·10−5 eV2

(or ∆m2
31 = 2.5 · 10−3 eV2). It turns out that vR ≃ 1.3 · 1014GeV and therefore the neu-

trino masses will have the following values: mν1 ≃ 8.0 · 10−3 eV, mν2 ≃ 1.2 · 10−2 eV,

and mν3 ≃ 4.6 · 10−2 eV. In addition, the values of the leptonic Dirac and Majorana CP-

violating phases δ, ρ, and σ can be predicted (which are independent of vR), they are

δ ≃ 1.67 ≃ 0.53π, ρ ≃ 4.00, and σ ≃ 3.76. However, note that the values of these phases

are dependent on the best-fit point, and there are several points with similar values of the

χ2, which would give rather different values for the three phases. Nevertheless, the value

obtained for leptonic Dirac CP-violating phase δ can be compared with values of δ from

global fits, which all favor a value of δ = 3π/2 [35–37].

In order to better perceive the impact of MI, we show the results of the RG running

of the fermion observables from MGUT down to MZ (solid curves in figures 1–3), i.e. the

numerical solutions to the RGEs for the six quark masses (figure 1), the three charged lepton
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Figure 1. The RG running of the up-type (left plot) and down-type (right plot) quark masses,

respectively, with (solid curves) and without (dashed curves) the intermediate energy scale MI as

functions of the energy scale µ.

masses and the ratio of the small and large neutrino mass squared differences (figure 2),

and the three leptonic mixing angles and the three quark mixing angles (figure 3). These

results are compared with the case where there is no intermediate scale MI, i.e. solving the

RGEs assuming the same values of h and f given in eqs. (5.1) and (5.2) and performing

the RG running from MGUT down to MZ (dashed curves in figures 1–3). The model we use

for this comparison is the SM with a type-I seesaw in which the three heavy neutrinos are

integrated out at different energy scales. For the RG running in the SM-like model, we use

the same starting point at MGUT [as in the case of the SO(10) model] in order to quantify

the impact of MI at MZ. Note that one can compare the two models in two different ways.

In the first case, one can use the same starting point at MGUT, then evolve the two models

down to MZ and there make a comparison. In the second case, one can make a new fit

using the SM RGEs, which would then reproduce the experimental values at MZ and then

compare the two models at MGUT. In the present analysis, we have chosen to use the first

case for the comparison. The RG running for the SM-like model was performed using the

Mathematica software package REAP [38].

Now, we will discuss the results presented in figures 1–3 in some more depth and detail.

First, in figure 1, in the case of the model with MI, we observe that the slope of the RG

running of the quark masses changes direction at MI: from MGUT down to MI, it decreases

monotonically, whereas from MI down to MZ, it increases monotonically. The reason for

this change of direction in the evolution can be deduced from the change of sign in front

of the gauge coupling terms, which dominate the β-functions in the RGEs that are given

in appendices A.1 and A.2. As expected, in the case of the model without MI, i.e. the SM

case, the RG running from MGUT down to MZ increases monotonically. Thus, at the MZ,

the quark masses in the two cases will differ, and they will be larger in the SM case than

in the model with MI. The smallest difference is for the top quark mass, which is 10 %

larger at MZ, whereas the largest difference is for the bottom quark mass, which is 65 %
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Figure 2. The RG running of the charged lepton masses (left plot) and the ratio of the small and

large neutrino mass-squared differences (right plot), respectively, with (solid curves) and without

(dashed curves) the intermediate energy scale MI as functions of the energy scale µ.
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Figure 3. The RG running of the leptonic mixing angles (left plot) and the quark mixing parameters

(right plot), respectively, with (solid curves) and without (dashed curves) the intermediate energy

scale MI as functions of the energy scale µ.

larger. The other differences at MZ are 21 %, 44 %, 36 %, and 34 % for the up, down,

charm, and strange quark, respectively. In general, the relative RG running for the quark

masses is substantial, both with and without MI and it is essentially of the same size for

both the up-type and down-type quarks.

Then, in figure 2, the RG running of the lepton masses is presented. In the left plot of

figure 2, we display the RG running of the charged lepton masses, which exhibits a similar

pattern to that of the RG running of the quark masses for the model with MI. However,

in the SM case, the RG running has the opposite direction, i.e. it decreases monotonically

from MGUT to MZ. Hence, at MZ, all charged lepton masses are approximately 21 %

smaller in the SM case than in the model with MI. Note that there is no obvious cause

for the decrease of the charged lepton masses and the increase of the quark masses from
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the RGEs, which are given in ref. [38], but rather a combined effect of several different

terms in these equations. In the right plot of figure 2, we show the RG running of the

quantity r ≡ ∆m2
21/∆m2

31. This quantity exhibits significant RG running in both models,

even though the behavior is rather different. However, this is to be expected, since the

models differ most significantly in the neutrino sector. In the so-called SM, there are three

seesaw scales which have a large effect on the RG running of r. In particular, the most

substantial effect is caused by the crossing of the threshold imposed by the largest heavy

neutrino mass, which is around 5.8 · 1014GeV. The RG running in the model with MI is

moderate from MGUT down to MI but significant from MI down to MZ. At MZ, the value

of r is 27 % larger in the SM than in the model with MI.

Finally, in figure 3, we present the RG running of the leptonic and quark mixing angles.

In the left plot of figure 3, we display the RG running of the leptonic mixing angles. The

evolution of these angles is negligible between MGUT and the seesaw scale for the model

with MI. However, from the seesaw scale down to MZ, θ
ℓ
12 increases monotonically whereas

θℓ23 decreases monotonically. The RG running of θℓ13 is negligible. The exact reason for the

behavior of the RG running of each parameter is difficult to pinpoint, since we evolve the

Yukawa matrices and not the leptonic mixing angles themselves. However, the magnitude

of the RG running is what would be expected from other analyses of seesaw models (see,

e.g., ref. [39] and references therein). In the SM, the angles are all larger at MZ, with the

smallest difference occurring for θℓ13, which is only 3 % larger, and the largest difference for

θℓ23, which is 17 % larger. The difference for θℓ23 is 16 % larger. In the right plot of figure 3,

we show the RG running of the quark mixing angles. Unlike the other observables, we do

not see a significant impact of MI on the evolution of the quark mixing angles, except for

θq23, which, in the SM, is 20 % smaller at MZ. To conclude, the RG running in the model

withMI is naturally rather different from previous models presented in the literature, which

is clearly realized in the comparison with the SM.

6 Summary and conclusions

In this work, we have explored the effects of an intermediate energy scale on the evolution

of the fermion masses and mixings in an SO(10) model with a Pati-Salam intermediate

gauge group. The effects have been compared to the evolution from the GUT scale down

to the EW scale in a SM-like model with three additional right-handed neutrinos. In order

to quantify the differences between the two models, we have first determined the entries

of the Yukawa couplings h and f at the GUT scale, such that the fermion observables at

the EW scale are reproduced with good accuracy in this SO(10) model. The same values

of the h and f couplings were then used as a starting point at the GUT scale for the RG

running in the SM, which allows for a comparison at the EW scale. We have found that

the solutions to the RGEs, i.e., the values of the fermion observables, at the EW scale in

the SM, disagree compared to the SO(10) model well beyond experimental uncertainties,

which are at the level of 30 % for the quark masses. Note that there is basically no RG

running of the quark mixing angles, neither in the SO(10) model with an intermediate

energy scale nor in the SM-like model. Thus, the result of our analysis is that the presence
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of intermediate scales has significant effects on the RG running of the fermion observables,

and therefore, such intermediate scales must be taken into account in computations for a

GUT model with intermediate gauge groups.
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A Renormalization group equations

In this appendix, we list the RGEs for (i) the Yukawa couplings from MGUT to MI, (ii) the

Yukawa couplings from MI to MZ, and (iii) RGEs for the effective neutrino mass matrix.

A.1 RGEs for the Yukawa couplings from MGUT to MI

Firstly, we present the RGEs for the Yukawa couplings from the GUT scale MGUT to the

intermediate scale MI, which are given by

16π2dY
(10)
F

dt
=

(
Y

(10)
F Y

(10)†
F +

15

4
Y

(126)
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where g2L, g2R, and g4C are the SU(2)L, SU(2)R, and SU(4)C gauge coupling constants,

respectively.
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A.2 RGEs for the Yukawa couplings from MI to MZ

Secondly, we present the RGEs for the Yukawa couplings from the intermediate scale MI

to the electroweak scale MZ, which are given by
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, (A.8)
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, (A.9)
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where g3, g2, and gY are the SU(3)C, SU(2)L, and U(1)Y gauge coupling constants, respec-

tively.

A.3 RGEs for the effective neutrino mass matrix

Similarly, we display the RGEs for coefficients of the effective neutrino mass matrix, which

are given by

16π2dκ
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dt
= 6tr

(
Y (10)
u Y (10)†

u
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, (A.10)
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, (A.11)
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, (A.13)

where the parameters λijlm are the Higgs self-couplings, which have to be accounted for in

a consistent way.
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[6] R.N. Mohapatra and G. Senjanović, The Superlight Axion and Neutrino Masses,

Z. Phys. C 17 (1983) 53 [INSPIRE].

[7] K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand

unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].

[8] N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand

unification, Phys. Rev. D 46 (1993) 2261 [INSPIRE].

[9] K. Matsuda, Y. Koide and T. Fukuyama, Can the SO(10) model with two Higgs doublets

reproduce the observed fermion masses?, Phys. Rev. D 64 (2001) 053015 [hep-ph/0010026]

[INSPIRE].

[10] K. Matsuda, Y. Koide, T. Fukuyama and H. Nishiura, How far can the SO(10) two Higgs

model describe the observed neutrino masses and mixings?, Phys. Rev. D 65 (2002) 033008

[Erratum ibid. D 65 (2002) 079904] [hep-ph/0108202] [INSPIRE].

[11] S. Bertolini, L. Di Luzio and M. Malinsky, Intermediate mass scales in the

non-supersymmetric SO(10) grand unification: A reappraisal,

Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE].

[12] S. Bertolini, L. Di Luzio and M. Malinsky, Seesaw Scale in the Minimal Renormalizable

SO(10) Grand Unification, Phys. Rev. D 85 (2012) 095014 [arXiv:1202.0807] [INSPIRE].

[13] F. Buccella, D. Falcone, C.S. Fong, E. Nardi and G. Ricciardi, Squeezing out predictions with

leptogenesis from SO(10), Phys. Rev. D 86 (2012) 035012 [arXiv:1203.0829] [INSPIRE].

[14] A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models,

Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].

[15] A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024

[arXiv:1306.4468] [INSPIRE].

[16] J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275

[Erratum ibid. D 11 (1975) 703-703] [INSPIRE].

– 19 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.73.055001
http://arxiv.org/abs/hep-ph/0510139
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510139
http://dx.doi.org/10.1007/JHEP08(2013)021
http://arxiv.org/abs/1305.1001
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1001
http://dx.doi.org/10.1016/0550-3213(81)90266-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B177,60
http://dx.doi.org/10.1016/0550-3213(82)90346-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B199,223
http://dx.doi.org/10.1103/PhysRevD.26.2396
http://inspirehep.net/search?p=find+J+Phys.Rev.,D26,2396
http://dx.doi.org/10.1007/BF01577819
http://inspirehep.net/search?p=find+J+Z.Physik,C17,53
http://dx.doi.org/10.1103/PhysRevLett.70.2845
http://arxiv.org/abs/hep-ph/9209215
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9209215
http://dx.doi.org/10.1103/PhysRevD.46.2261
http://inspirehep.net/search?p=find+J+Phys.Rev.,D46,2261
http://dx.doi.org/10.1103/PhysRevD.64.053015
http://arxiv.org/abs/hep-ph/0010026
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010026
http://dx.doi.org/10.1103/PhysRevD.65.033008 10.1103/PhysRevD.65.079904
http://arxiv.org/abs/hep-ph/0108202
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0108202
http://dx.doi.org/10.1103/PhysRevD.80.015013
http://arxiv.org/abs/0903.4049
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4049
http://dx.doi.org/10.1103/PhysRevD.85.095014
http://arxiv.org/abs/1202.0807
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.0807
http://dx.doi.org/10.1103/PhysRevD.86.035012
http://arxiv.org/abs/1203.0829
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0829
http://dx.doi.org/10.1103/PhysRevD.83.095002
http://arxiv.org/abs/1102.5148
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5148
http://dx.doi.org/10.1007/JHEP09(2013)024
http://arxiv.org/abs/1306.4468
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4468
http://dx.doi.org/10.1103/PhysRevD.10.275
http://inspirehep.net/search?p=find+J+Phys.Rev.,D10,275


J
H
E
P
1
2
(
2
0
1
4
)
0
5
2

[17] I.G. Koh and S. Rajpoot, Finite N = 2 extended supersymmetric field theories,

Phys. Lett. B 135 (1984) 397 [INSPIRE].

[18] D.R.T. Jones, The Two Loop β-function for a G1 ×G2 Gauge Theory,

Phys. Rev. D 25 (1982) 581 [INSPIRE].

[19] Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics,

Phys. Lett. B 667 (2008) 1 [INSPIRE].

[20] R.N. Mohapatra and M.K. Parida, Threshold effects on the mass scale predictions in SO(10)

models and solar neutrino puzzle, Phys. Rev. D 47 (1993) 264 [hep-ph/9204234] [INSPIRE].

[21] T. Fukuyama and T. Kikuchi, Renormalization group equation of quark lepton mass matrices

in the SO(10) model with two Higgs scalars, Mod. Phys. Lett. A 18 (2003) 719

[hep-ph/0206118] [INSPIRE].

[22] C.S. Aulakh and A. Girdhar, SO(10) a la Pati-Salam, Int. J. Mod. Phys. A 20 (2005) 865

[hep-ph/0204097] [INSPIRE].

[23] B. Dutta, Y. Mimura and R.N. Mohapatra, Suppressing proton decay in the minimal SO(10)

model, Phys. Rev. Lett. 94 (2005) 091804 [hep-ph/0412105] [INSPIRE].

[24] B. Dutta, Y. Mimura and R.N. Mohapatra, Neutrino mixing predictions of a minimal

SO(10) model with suppressed proton decay, Phys. Rev. D 72 (2005) 075009

[hep-ph/0507319] [INSPIRE].

[25] G. Altarelli and G. Blankenburg, Different SO(10) Paths to Fermion Masses and Mixings,

JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE].

[26] W. Grimus and L. Lavoura, Renormalization of the neutrino mass operators in the

multi-Higgs-doublet standard model, Eur. Phys. J. C 39 (2005) 219 [hep-ph/0409231]

[INSPIRE].

[27] T.P. Cheng, E. Eichten and L.-F. Li, Higgs Phenomena in Asymptotically Free Gauge

Theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

[28] F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative

to MCMC methods for astronomical data analysis,

Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

[29] F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference

tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601

[arXiv:0809.3437] [INSPIRE].

[30] F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the

MultiNest Algorithm, arXiv:1306.2144 [INSPIRE].

[31] J. Skilling, Nested Sampling, AIP Conf. Proc. 735 (2004) 395.

[32] J. Skilling, Nested sampling for general Bayesian computation, Bayesian Anal. 1 (2006) 833.

[33] Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses,

Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].

[34] M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino

mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

[35] F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of

three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018

[arXiv:1312.2878] [INSPIRE].

– 20 –

http://dx.doi.org/10.1016/0370-2693(84)90302-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B135,397
http://dx.doi.org/10.1103/PhysRevD.25.581
http://inspirehep.net/search?p=find+J+Phys.Rev.,D25,581
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://inspirehep.net/search?p=find+J+Phys.Lett.,B667,1
http://dx.doi.org/10.1103/PhysRevD.47.264
http://arxiv.org/abs/hep-ph/9204234
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9204234
http://dx.doi.org/10.1142/S0217732303009848
http://arxiv.org/abs/hep-ph/0206118
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206118
http://dx.doi.org/10.1142/S0217751X0502001X
http://arxiv.org/abs/hep-ph/0204097
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204097
http://dx.doi.org/10.1103/PhysRevLett.94.091804
http://arxiv.org/abs/hep-ph/0412105
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0412105
http://dx.doi.org/10.1103/PhysRevD.72.075009
http://arxiv.org/abs/hep-ph/0507319
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507319
http://dx.doi.org/10.1007/JHEP03(2011)133
http://arxiv.org/abs/1012.2697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2697
http://dx.doi.org/10.1140/epjc/s2004-02075-0
http://arxiv.org/abs/hep-ph/0409231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409231
http://dx.doi.org/10.1103/PhysRevD.9.2259
http://inspirehep.net/search?p=find+J+Phys.Rev.,D9,2259
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://arxiv.org/abs/0704.3704
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3704
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/0809.3437
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3437
http://arxiv.org/abs/1306.2144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2144
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1103/PhysRevD.77.113016
http://arxiv.org/abs/0712.1419
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1419
http://dx.doi.org/10.1007/JHEP12(2012)123
http://arxiv.org/abs/1209.3023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3023
http://dx.doi.org/10.1103/PhysRevD.89.093018
http://arxiv.org/abs/1312.2878
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2878


J
H
E
P
1
2
(
2
0
1
4
)
0
5
2

[36] D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted,

Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].

[37] M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing:

status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

[38] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass

parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].

[39] T. Ohlsson and S. Zhou, Renormalization Group Running of Neutrino Parameters, Nature

Commun. 5 (2014) 5153 [arXiv:1311.3846] [INSPIRE].

– 21 –

http://dx.doi.org/10.1103/PhysRevD.90.093006
http://arxiv.org/abs/1405.7540
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7540
http://dx.doi.org/10.1007/JHEP11(2014)052
http://arxiv.org/abs/1409.5439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5439
http://dx.doi.org/10.1088/1126-6708/2005/03/024
http://arxiv.org/abs/hep-ph/0501272
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501272
http://arxiv.org/abs/1311.3846
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3846

	Introduction
	Evolution of gauge coupling constants
	RG running of Yukawa couplings
	Charged leptons
	Neutrinos
	Higgs self-couplings

	Numerical parameter-fitting procedure
	Numerical results and discussion
	Summary and conclusions
	Renormalization group equations
	RGEs for the Yukawa couplings from M(GUT) to M(I)
	RGEs for the Yukawa couplings from M(I) to M(Z)
	RGEs for the effective neutrino mass matrix


