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1 Introduction

Contemporary experimental high energy physics is concentrated on the Large Hadron Col-

lider (LHC) at CERN. Our ability to utilize the huge amount of data delivered by the

experiment towards further scientific progress relies on a quantitative understanding of all

relevant scattering processes in the Standard Model. Otherwise, we are unable to extract
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signals of new physics from the background. Precise theoretical predictions in Quantum

Chromodynamics (QCD) at the LHC require not only amplitudes at leading order (LO) and

next-to-leading order (NLO), but also next-to-next-to leading order (NNLO) corrections

to comply with the level of accuracy of the data. For some processes, two-loop amplitudes

are important already at NLO because the LO terms begin at one loop.

The text book approach to perturbative scattering amplitudes is through Feynman

rules and diagrams. Although it tracks interactions of particles very intuitively and in prin-

ciple always works, this method suffers from severe computational problems with increasing

loop level or number of external legs. The main reason is that the gauge redundancy of

the theory introduces virtual intermediate states that are off-shell. Not even very power-

ful computers are able to deal with many of the phenomenologically interesting processes

without new clever ways to attack the problem.

The last two decades have seen many attempts to surmount the computational bottle-

neck. The lesson is to exploit analyticity and unitarity of the scattering matrix. Analyticity

allows for amplitudes to be reconstructed from their singularity structure, whereas by uni-

tarity, residues at the poles factorize onto products of simple amplitudes. Two of the most

successful advances are the original unitarity method for loop amplitudes developed by

Bern, Dixon, Dunbar and Kosower [1, 2] and the Britto-Cachazo-Feng-Witten (BCFW)

recursion relations [3, 4] for trees. In these works, striking and otherwise completely un-

expected structure and simplicity are revealed by virtue of retaining only physical on-shell

information in a Lagrangianless setting. In a nutshell, all trees may now be constructed

recursively and further fused into loops.

The basic idea of the unitarity method (see also later studies, e.g. refs. [5–24]) is to

reconstruct the amplitude from double cuts that place internal lines in a given channel on

their mass-shell and break it into a product of trees. Many individual contributions share

such minimal cuts and are therefore hard to separate. Therefore intermediate algebraic

steps are typically needed. In that view, the generalized unitarity method [7, 18] is more

efficient because several propagators are cut simultaneously and thus fewer integrals are

isolated. Thanks to the unitarity method, otherwise unfeasible computations of 2 → 2

massless scattering processes in QCD have been carried out.

In the last couple of years, two-loop amplitudes have received substantial attention in

the literature. The integrand-level reduction method of Ossola, Papadopoulos and Pittau

(OPP) has been extended to multi loops using computational algebraic geometry, and

a general way of classifying high-loop unitarity cut solutions is now available [47, 54–

65]. These techniques were used by Badger, Frellesvig and one of the present authors to

calculate the planar part of the all-plus two-loop five-gluon amplitude in QCD [58] and also

demonstrated for the planar triple box [56]. In ref. [66] the unitarity method was applied

to two-loop diagrams to determine their integral bases.

Working directly at the level of the integral basis, the maximal unitarity formalism

initiated by Kosower and Larsen in ref. [46] has emerged as an extension of the quadruple

and triple cut at one loop [7, 18]. In maximal unitarity one expands the amplitude in a

basis of integrals and seeks to isolate the integral coefficients by finding multidimensional

complex integration contours that are uniquely associated with each individual master
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integral. One of the major advantages of maximal unitarity is that one may circumvent

the integrand basis which is typically considerably larger than the integral basis. After

the reduction onto master integrals is complete, each coefficient is extracted as a linear

combination of residues of the product of trees that arise when the diagram falls apart

on-shell. The tree-level data is easy to manage using superspace techniques [67, 68]. The

leading singularity method [42, 43] previously addressed hepta-cuts and octa-cuts at two

loops in N = 4 super Yang-Mills theory.

Until now, maximal unitarity has remained relatively unexplored in the nonplanar

sector [50]. In this paper, we extend the framework to two-loop crossed-box integrals with

up to four external massive legs. Indeed, inspection of the nonplanar part of the integral

basis for, e.g., gg → V1V2 computed in ref. [69] shows that in practice the two-loop crossed

boxes constitute most of the nonplanar basis.1 Remarkably, we find that essentially all

features of maximal unitarity observed in the planar sector [46–49] carry over directly to

the nonplanar sector. In particular, in determining projectors for the master integrals, we

find that the global structure of the maximal cut seems to govern consistency equations

from integration-by-parts (IBP) identities and the number of master integrals. Moreover,

we show that the constraints are inherited through chiral branchings between distinct

classes of hepta-cut solutions.

The paper is organized in the following way. In section 2 we review the maximal uni-

tarity method and the theory of multivariate residues. In sections 3-5 we respectively

parametrize the hepta-cut solutions using mutually projecting kinematics, analyze the

global structure of the maximal cut and impose consistency relations in order to uniquely

fix the projectors for the master integral coefficients for all kinematically inequivalent con-

figurations. Finally, in section 6, we present an enhanced algorithm to compute degenerate

multivariate residues from generalized unitarity cuts and apply the technique to massive

integrals with doubled propagators.

2 Maximal unitarity

The modern version of the unitarity method relies on the existence of a finite basis of

linearly independent master integrals {Ii} onto which the amplitude in consideration can

be expanded, up to additional rational terms,

AL-loop
n =

∑
i∈Basis

ciIi + rational terms . (2.1)

Therefore, if the basis integrals are known explicitly in dimensional regularization, calcu-

lating an amplitude boils down to determining the rational coefficients {ci}. The trick is

to apply generalized unitarity cuts to either side of eq. (2.1),

∆AL-loop
n =

∑
i∈Basis

ci∆Ii , (2.2)

and exploit that the cut amplitude factorizes onto simpler quantities.

1Moreover, we have checked that the remaining crossed triangles also have leading singularities, and

they are therefore expected to be amenable to the techniques used here.
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At the one-loop level, the basis consists of boxes, triangles and bubbles with scalar

numerators only. Here the computation has already been fully automated, see refs. [7, 18,

19, 25]. For instance, a box coefficient is isolated by a quadruple cut and thereby becomes

the product of the trees at the four corners, evaluated in on-shell kinematics. The on-shell

internal lines are complex valued for general external momenta. This implies that the cut

prescription in terms of Dirac Delta functions necessarily must be reformulated by means

of a multidimensional complex contour integral encircling global poles [46, 47].

At two loops and beyond, the situation is more intricate, one of the main reasons

being that a minimal integral basis is not yet known. Integrals with numerator insertions

are in general algebraically irreducible and the reduction to master integrals inevitably

involves IBP identities. As a consequence, multiple contributions contaminate the unitarity

cuts. Although maximal cuts for four particles at two and three loops have superficial

resemblance to the quadruple cut at one loop, it is also challenging to extract the coefficients

because the cut does not localize integrals to a point, but rather an algebraic curve [46, 47]

or generally speaking, an algebraic surface [51, 64].

In the last couple of years, maximal unitarity has been applied to the planar double box

with up to four external massive legs [46, 48, 49] in general theories and to the massless two-

loop crossed box [50]. Recently, the formalism was also extended to amplitude contributions

whose maximal cuts define multidimensional algebraic varieties [51], exemplified for the

planar triple box at three loops. Along these lines, the unitarity cut prescription has been

extended to accommodate loop integrals with doubled or higher powers of propagators [52].

2.1 Multivariate residues

Inspired by the discussion in the introduction, we start by reviewing basic theory of mul-

tivariate residues, with emphasis on computation of nondegenerate residues. We also refer

the reader to classical text books by Griffiths and Harris [71] and Hartshorne [72].

Let U = {z ∈ Cn : ‖z− ξ‖ < ε} for ε > 0 be a small ball around z = ξ and assume that

f and h are holomorphic maps in a neighborhood of the closure Ū of U . For our purposes,

it is in fact sufficient to think of each component of f and h as just being multivariate

polynomials of certain degrees. Furthermore, suppose that f−1(0) ∩ U = {ξ}, i.e. the

components of f have exactly one simultaneous zero ξ ∈ U . Then for the meromorphic

n-form,

ω =
h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

, (2.3)

the associated residue at z = ξ is computed by an integral over a contour that is topologi-

cally equivalent to a torus of real dimension n embedded in Cn. In detail we have

Res {f1,...,fn},ξ(ω) =
1

(2πi)n

∮
Γε

h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

, (2.4)

where Γε = {z ∈ Cn : |fi(z)| = εi}.
We remark several elementary properties of the residue. The residue is linear in h,

but alternating in the fis. Moreover, the value of a residue is invariant under nonsingular
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complex coordinate transformations. It is not hard to prove by Stokes’ theorem that if

locally h ∈ If = 〈f1, . . . , fn〉, where If is the ideal generated by the fis, that is,

h(z) = a1(z)f1(z) + · · ·+ an(z)fn(z) , (2.5)

for holomorphic functions ai in a neighborhood of ξ, then we have

Res {f1,...,fn},ξ(ω) = 0 . (2.6)

For the calculation of a residue we distinguish between three classes of increasing

difficulty: factorizable, nondegenerate and degenerate residues. If each fi defines a uni-

variate polynomial, i.e. fi(z) = fi(zi), the contour factorizes onto a product of univariate

contours such that the residue can be obtained in a manner that trivially resembles the

one-dimensional case,

Res {f1,...,fn},ξ(ω) =
1

(2πi)n

∮
|f1(z1)|=ε1

dz1

f1(z1)
· · ·
∮
|fn(zn)|=εn

dzn
fn(zn)

h(z) . (2.7)

If the fis are not univariate polynomials and the Jacobian determinant of f1, . . . , fn eval-

uated at z = ξ is nonzero,

J(ξ) ≡ det
i,j

(
∂fi
∂zj

) ∣∣∣∣
z=ξ

6= 0 , (2.8)

the residue is said to be nondegenerate. In that case it is natural to define the residue via

appropriate coordinate transformation as

Res {f1,··· ,fn},ξ(ω) = h(ξ)/J(ξ) . (2.9)

We immediately recognize the localization property (2.9) as the obvious generalization of

the Dirac delta function to several complex variables once we define

∫ [ n∏
k=1

dzk

]
h(z)

n∏
j=1

δ(zj − ξj) ≡
1

(2πi)n

∮
Γε(ξ)

dz1 ∧ · · · ∧ dzn
h(z)∏n

j=1(zj − ξj)
. (2.10)

In particular, this observation allows us to define generalized unitarity cuts of amplitude

contributions that only factorize for complex kinematics.

In general, a multivariate residue is neither nondegenerate nor factorizable and we then

proceed by means of computational algebraic geometry and use the transformation law

and Gröbner basis method as we will explain in section 6. Examples of multiloop unitarity

cuts that give rise to degenerate multivariate residues include among others the three-loop

planar triple box [51] and integrals with doubled or higher powers of propagators [52]. In

the two-loop crossed-box computation we will mostly encounter nondegenerate residues.
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`2

Figure 1. The two-loop crossed-box integral. All external particles may be massive.

3 Parametrization of hepta-cut solutions

The dimensionally regularized Feynman scalar integral for the two-loop crossed box ampli-

tude contribution with possibly massive external legs k1, . . . , k6 distributed across all six

vertices is

X2,1,1[1] =

∫
RD

dD`1
(2π)D

∫
RD

dD`2
(2π)D

7∏
k=1

1

fk(`1, `2)
(3.1)

where the inverse propagators are

f1 = `21 , f2 = (`1 − k1)2 , f3 = (`1 − k1 − k2)2 ,

f4 = `22 , f5 = (`2 − k4)2 , f6 = (`1 + `2 + k5)2 , f7 = (`1 + `2 + k3 + k5)2 .

(3.2)

Conventions and momentum flow are shown in figure 1. The Feynman iε-prescription has

been suppressed as it is irrelevant for our purposes. Generally speaking, this integral will

have a nontrivial polynomial numerator function denoted Φ(`1, `2) and is in that situation

referred to as a tensor integral even though all Lorentz indices are properly contracted.

The seven inverse propagators {fi} generate a polynomial ideal I = 〈f1, . . . , f7〉 and

the hepta-cut equations define a complex algebraic curve (or two-dimensional real surface)

which is the zero locus of I. In our notation,

S ≡ Z(I) =
{

(`1, `2) ∈ (C4)⊗2 | `21 = 0 , (`1 − k1)2 = 0 , (`1 − k1 − k2)2 = 0 ,

`22 = 0 , (`2 − k4)2 = 0 , (`1 + `2 + k5)2 = 0 ,

(`1 + `2 + k3 + k5)2 = 0
}
. (3.3)
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The curve is generally reducible and the algebraic set S can always be decomposed uniquely

into a union of a finite number n of irreducible components which are in one-to-one corre-

spondence with the inequivalent hepta-cut solutions,

S =
n⋃
i=1

Si , Si 6⊂ Sj if i 6= j . (3.4)

The existence of such a decomposition can be proved by algebraic geometry and primary

decomposition of the polynomial ideal, see ref. [57]. The number of solutions within an

integral topology depends on the kinematic configuration, in particular the distribution of

massive and massless legs.

In the rest of this paper, we examine four-dimensional amplitude contributions with

two-loop crossed box topology with k5 = k6 = 0, allowing any other configuration of

massive and massless external legs. The Mandelstam invariants are throughout this paper

defined as

s12 ≡ (k1 + k2)2 , s13 ≡ (k1 + k3)2 , s14 ≡ (k1 + k4)2 , (3.5)

so that momentum conservation can be stated as

s12 + s13 + s14 = m2
1 +m2

2 +m2
3 +m2

4 . (3.6)

The four-point massless two-loop crossed box was previously studied in terms of

residues and multidimensional contour integrals by one of the present authors in ref. [50]

and by integrand-level reduction by Badger, Frellesvig and the other author in ref. [54].

3.1 Mutually projected kinematics

Scattering amplitudes of massless particles are naturally encoded in the spinor helicity

formalism by Lorentz invariant inner products of commuting spinors λαi and λ̃α̇i . For a

momentum ki with k2
i = 0 we have the representation kαα̇i = λαi λ̃

α̇
i . It is then possible to

define antisymmetric chiral and antichiral brackets,

〈ij〉 = −〈ji〉 ≡ εαβλαi λ
β
j , [ij] = −[ji] ≡ εα̇β̇λ

α̇
i λ

β̇
j , (3.7)

and make contact to the Mandelstam invariants,

sij = 〈ij〉[ji] = 2ki · kj . (3.8)

We treat the massive hepta-cut equations for the two-loop crossed box using mutually

projected kinematics [15, 18]. Thereby the spinor helicity formalism and massive momenta

become compatible. Given a pair of massive momenta (ki, kj), the idea is to obtain mass-

less momenta (k[i , k
[
j) each of which is the massless projection of one of the massive legs

in the direction of the other masslessly projected leg. Here we will consider four-point

kinematics with mutually projecting pairs (k1, k2) and (k3, k4). Other choices are of course

also possible. Within each pair we define

k[,µj,1 = kµj,1 −
k2
j,1

2kj,1 · k[j,2
k[,µj,2 , k[,µj,2 = kµj,2 −

k2
j,2

2kj,2 · k[j,1
k[,µj,1 , (3.9)
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so that (k[,µj,1 , k
[,µ
j,2 ) are massless momenta by construction. It is easy to verify that

kj,1 · k[j,2 = k[j,1 · kj,2 = k[j,1 · k[j,2 . (3.10)

We streamline notation and define the frequently used quantity

γj,12 = 2k[j,1 · k[j,2 , (3.11)

which upon identification in eq. (3.9) leads to a quadratic equation whose solutions are

γ±j,12 = kj,1 · kj,2 ±
[
(kj,1 · kj,2)2 − k2

j,1k
2
j,2

]1/2
. (3.12)

It is perhaps more useful from a practical point of view to express the massless pro-

jections in terms of the corresponding massive momenta. To that end we let (i, ı̄) denote

a mutually projecting pair and define

ρj,i =
k2
j,i

2kj,i · kj,̄ı
. (3.13)

Then it is straightforward to invert eq. (3.9) with the result

k[,µj,i = (1− ρj,1ρj,2)−1(kµj,i − ρj,ik
µ
j,̄ı) . (3.14)

On the other hand, the decomposition of the massive legs in terms of a pair of flattened

momenta reads

kµj,i = k[,µi + ρj,ik
[,µ
ı̄ . (3.15)

It is convenient to introduce short hand notation ρ12 ≡ ρ1,1, ρ21 ≡ ρ1,2 and γ12 ≡ γj,12

so that ρ12 = m2
1/γ12 and ρ21 = m2

2/γ12, and similarly for the other mutually projecting

pair. If m1m2 = 0 we have γ12 = s12 and likewise for γ34. Our final results can therefore

be expressed in terms of the nonzero masses among {m1,m2,m3,m4}, γ12 and γ34 if re-

spectively m1m2 6= 0 and m3m4 6= 0, along with two independent Mandelstam invariants,

say s12 and s14.

We adopt a loop momentum parametrization of the form,

`µ1 =
1

2
〈λ−1 |γ

µ |λ̃′−
1 〉 =

1

2
〈λ1|γµ|λ̃′1] , `µ2 =

1

2
〈λ−2 |γ

µ |λ̃′−
2 〉 =

1

2
〈λ2|γµ|λ̃′2] , (3.16)

so that `21 = `22 = 0. The various loop spinors are then constructed from the spinors

corresponding to the two mutually projecting pairs with general complex coefficients,

|λ+
1 〉 = ξ1|1[,+〉+ ξ2

〈4[1[〉
〈4[2[〉

|2[,+〉 , |λ̃′−
1 〉 = ξ′1|1[,−〉+ ξ′2

[4[1[]

[4[2[]
|2[,−〉 ,

|λ+
2 〉 = ξ3

〈1[4[〉
〈1[3[〉

|3[,+〉+ ξ4|4[,+〉 , |λ̃′−
2 〉 = ξ′3

[1[4[]

[1[3[]
|3[,−〉+ ξ′4|4[,−〉 . (3.17)
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In this way, massive external momenta are related to chiral and antichiral spinors corre-

sponding to their massless projections through 2kµi = 〈i[|γµ|i[]. Expanded explicitly in the

basis of four-vectors the two loop momenta read

`µ1 (ξi, ξ
′
i) = ξ1ξ

′
1k
[,µ
1 + ξ2ξ

′
2

k[1 · k[4
k[2 · k[4

k[,µ2

+
ξ1ξ
′
2

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉+

ξ2ξ
′
1

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 , (3.18)

`µ2 (ξi, ξ
′
i) = ξ3ξ

′
3

k[1 · k[4
k[1 · k[3

k[,µ3 + ξ4ξ
′
4k
[,µ
4

+
ξ3ξ
′
4

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉+
ξ4ξ
′
3

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉 , (3.19)

and therefore we are able to eventually fix two of the complex parameters. This freedom

amounts sort of a gauge choice. We emphasize that this choice is not necessarily the same

for all on-shell branches. In fact, this is not possible in the two-loop crossed box as opposed

to the planar case [49].

3.2 Four-mass hepta-cut equations

To begin with we will derive the hepta-cut equations for nonzero external masses in all

four corners. Besides the on-shell constraints for `1 and `2 which are already satisfied

automatically, it thus remains to examine the other five massive hepta-cut equations. Three

of them are very simple because they only involve one of the loop momenta. Indeed, it

takes little effort to realize that

(`1 − k1)2 = 0 =⇒ m2
1(1− ξ1ξ

′
1)− k[1 · k[4

k[2 · k[4
ξ2ξ
′
2γ12 = 0 , (3.20)

(`1 − k1 − k2)2 = 0 =⇒ s12 −m2
1 − γ12ξ1ξ

′
1 −

k[1 · k[4
k[2 · k[4

m2
2ξ2ξ

′
2 = 0 , (3.21)

(`2 − k4)2 = 0 =⇒ m2
4(1− ξ4ξ

′
4)− k[1 · k[4

k[1 · k[3
ξ3ξ
′
3γ34 = 0 . (3.22)

Lorentz products of flattened momenta are needed throughout this calculation. Before we

continue let us therefore for completeness derive the necessary expressions. The trick is of

course to apply eq. (3.14) and thereby invoke the massive vectors whose contractions are

well known. In fact,

k[1 · k[3 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

1

[
γ34(m2

2 +m2
3 − s14) +m2

3(m2
1 +m2

3 − s12 − s14)
]

+ γ12

[
m2

3(m2
1 +m2

4 − s14) + γ34(m2
2 +m2

4 − s12 − s14)
]}
, (3.23)

k[1 · k[4 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

1

[
γ34(m2

1 +m2
3 − s12 − s14) +m2

4(m2
2 +m2

3 − s14)
]

+ γ12

[
m2

4(m2
2 +m2

4 − s12 − s14) + γ34(m2
1 +m2

4 − s14)
]}
. (3.24)
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We also have

k[2 · k[3 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

2

[
m2

3(m2
1 +m2

4 − s14) + γ34(m2
2 +m2

4 − s12 − s14)
]

+ γ12

[
m2

3(m2
1 +m2

3 − s12 − s14) + γ34(m2
2 +m2

3 − s14)
]}
, (3.25)

k[2 · k[4 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

2

[
γ34(m2

1 +m2
4 − s14) +m2

4(m2
2 +m2

4 − s12 − s14)
]

+ γ12

[
m2

4(m2
2 +m2

3 − s14) + γ34(m2
1 +m2

3 − s12 − s14)
]}
. (3.26)

In addition, we use the same technique to also provide explicit formulas for various con-

tractions of flattened momenta with the external massive legs needed in one of the on-shell

equations below,

k[1 · k3 = +
γ12[m2

1(m2
2 +m2

3 − s14) + γ12(m2
2 +m2

4 − s12 − s14)]

2(γ2
12 −m2

1m
2
2)

, (3.27)

k[2 · k3 = − γ12[γ12(m2
2 +m2

3 − s14) +m2
2(m2

2 +m2
4 − s12 − s14)]

2(γ2
12 −m2

1m
2
2)

. (3.28)

Another rather trivial, but useful, identity is m2
i = 2k[i · ki. Finally, in what proceeds, we

will also encounter the quantities

τ ≡ 〈1
[4[〉〈2[3[〉
〈2[4[〉〈1[3[〉

, τ̄ ≡ [1[4[][2[3[]

[2[4[][1[3[]
, (3.29)

which are complex conjugates of each other for real external momenta as indicated. But

actually τ = τ̄ . For completeness, τ can be expanded and re-expressed in terms of the

independent kinematic invariants described above in the following way,

τ = τ̄ = − γ34(γ12 +m2
1)

(γ34 +m2
3)[(γ12γ34 −m2

1m
2
3)(γ12γ34 −m2

2m
2
4) + γ12γ34s12s14]

×
[
(γ12 +m2

2)(γ34 +m2
3)(m2

2 +m2
3 − s14) + 2m2

2m
2
3s12+

(γ12 +m2
2)m2

3(m2
1 −m2

2 − s12) + (γ34 +m2
3)m2

2(m2
4 −m2

3 − s12)
]
. (3.30)

Let us now return to the hepta-cut equations for loop momentum `1. For general

masses m1 6= 0 6= m2 we obtain the solution

ξ1ξ
′
1 =

γ12s12 − (γ12 +m2
2)m2

1

γ2
12 −m2

1m
2
2

≡ ξ̄1 , ξ2ξ
′
2 =

m2
1(m2

1 + γ12 − s12)k[2 · k[4
(γ2

12 −m2
1m

2
2)k[1 · k[4

≡ ξ̄2 . (3.31)

In contrast to the planar double box, there is only one additional nontrivial on-shell

constraint for loop momentum `2. Rewriting eq. (3.22) in the slightly more suggestive

form,

ξ3ξ
′
3 + µ(ξ4ξ

′
4 − 1) = 0 , µ ≡ m2

4k
[
1 · k[3

γ34k[1 · k[4
, (3.32)

we see that ξ3ξ
′
3 = 0 if m4 = 0 or ξ4ξ

′
4 = 1.
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The foresight in the choice of parametrization of `1 and `2 implies that the coupled

on-shell equations are also quite compact actually. It happens that one of them factorizes

completely in a symmetric manner,

(`1 + `2)2 = 0 =⇒ (ξ1(ξ3 + ξ4) + ξ2(τξ3 + ξ4))× (ξ′1(ξ′3 + ξ′4) + ξ′2(τξ′3 + ξ′4)) = 0 ,

(3.33)

whereas the other can be written

(`1 + `2 + k3)2 = 0 =⇒

m2
3 + 2

{
k[1 · k3ξ1ξ

′
1 +

[
τk[1 · k[3 +

m2
3k
[
1 · k[4
γ34

]
(ξ1ξ

′
2 + ξ′1ξ2)

+
m2

3k
[
1 · k[4

2k[1 · k[3
ξ3ξ
′
3 +

k[1 · k[4k[2 · k3

k[2 · k[4
ξ2ξ
′
2 +

γ34

2
ξ4ξ
′
4

}
= 0 .

(3.34)

Upon insertion of eqs. (3.31) and (3.32) into eq. (3.34) we immediately find

ξ4ξ
′
4 = −

(
γ34 −

m2
3m

2
4

γ34

)−1{
m2

3

(
1 +

m2
4

γ34

)
+ 2

[
k[1 · k3ξ̄1 +

k[1 · k[4
k[2 · k[4

k[2 · k3ξ̄2

+

(
τk[1 · k[3 +

m2
3k
[
1 · k[4
γ34

)
(ξ1ξ

′
2 + ξ′1ξ2)

]}
,

(3.35)

or in the slightly more appealing form,

ξ4ξ
′
4 = 1 +

τ(ξ̄1 + ξ̄2 + ξ1ξ
′
2 + ξ′1ξ2)

(1− τ)(ξ̄1 − τ ξ̄2)
. (3.36)

In the last step we recast the equation by means of the two identities

τ

(τ − 1)(ξ̄1 − τ ξ̄2)
=

2k[1 · k[4
γ2

34 −m2
3m

2
4

[
m2

3 + γ34τ
k[1 · k[3
k[1 · k[4

]
, (3.37)

ξ̄1 + τ2ξ̄2

(τ − 1)(ξ̄1 − τ ξ̄2)
=

γ34

γ2
34 −m2

3m
2
4

[
m2

3

(
1 +

m2
4

γ34

)
+ 2

(
k[1 · k3ξ̄1 +

k[1 · k[4
k[2 · k[4

k[2 · k3ξ̄2

)]
,

(3.38)

which can be verified through eqs. (3.23)–(3.28) and (3.30) along with expressions for ξ̄1

and ξ̄2 given in eq. (3.31), although that task is rather tedious.

In order to solve the hepta-cut equations, we decompose the reducible ideal generated

by the list of rewritten inverse propagators into an intersection of six prime ideals. Then

we compute generating sets that form Gröbner bases over the field of rational functions

in each irreducible ideal and obtain the associated zero loci by hand. The six distinct

hepta-cut solutions are really three pairs of parity conjugates (S1,S2), (S3,S4), (S5,S6)

and each on-shell branch is topologically equivalent to a Riemann sphere, parametrized by

a free variable z ∈ C.

– 11 –



J
H
E
P
1
2
(
2
0
1
4
)
0
0
6

We choose to make the behavior under parity conjugation manifest and present the

solutions in a symmetric manner such that S2k−1 and S2k for k = 1, 2, 3 are related to each

other by simply interchanging (ξ1, . . . , ξ4) ←→ (ξ′1, . . . , ξ
′
4). In terms of the parameters

(ξ1, ξ2, ξ3, ξ4) and (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4), the solutions are

S1 : (ξ1, ξ2, ξ3, ξ4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
(ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,

ξ̄2

z
,− (ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)
,

(ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)

)
, (3.39)

S2 : (ξ1, ξ2, ξ3, ξ4) =

(
ξ̄1,

ξ̄2

z
,− (ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)
,

(ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)

)
(ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
, (3.40)

S3 : (ξ1, ξ2, ξ3, ξ4) =

(
1,− ξ̄2

ξ̄1
, z, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,−ξ̄1, 0, 1

)
, (3.41)

S4 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1,−ξ̄1, 0, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1,− ξ̄2

ξ̄1
, z, 1

)
, (3.42)

S5 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1,−τ ξ̄2, µ, z

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) = (1,−1/τ, 1, 0) , (3.43)

S6 : (ξ1, ξ2, ξ3, ξ4) = (1,−1/τ, 1, 0) , (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,−τ ξ̄2, µ, z

)
. (3.44)

The branches are written in terms of independent kinematic constants ξ̄1, ξ̄2, τ and

µ (3.30)–(3.32). For completeness we include the explicit forms of the variables in the

four-vector expansions of the two loop momenta for all hepta-cut solutions in appendix A.

3.3 Massless limits

We will also analyze the crossed double box with one, two and three massless legs. Integrals

for this kinematics are also relevant for higher-multiplicity scattering processes, starting

already at five external massless particles.

Let us look more closely at the hepta-cut equations and their solutions. We focus on

the two momenta in the crossed end of the diagram and assume that m1m2 6= 0. The only

dependence on m3 is implicitly through other parameters, e.g. τ and µ. In particular, all

on-shell equations and their solutions have the correct limits for m3 → 0. Moreover, it is

clear that µ → 0 for m4 → 0 so that eq. (3.32) should be replaced by ξ3ξ
′
3 = 0. It can

be shown that the number of branches remains six and the explicit solutions follow from

the four-mass case once we let µ → 0. The configurations corresponding to this class of

kinematics are illustrated in figure 2.

The situation is slightly more complicated when momenta k1 and k2 in the planar

end become massless. Here, the massless limits are not smooth and hence they should be

treated carefully. We see that ξ̄1 → 1 as m2 → 0 and m1 arbitrary. Also, ξ̄1 → 1 +m2
2/γ12

when m1 → 0. Therefore the equation ξ1ξ
′
1− ξ̄1 = 0 will not give rise to branchings. But if

at least one mass among {m1,m2} is zero, ξ̄2 = 0 and we instead get the equation ξ2ξ
′
2 = 0

and eq. (3.31) must be replaced by a pair of solutions, i.e. ξ′2 = 0 and ξ2 free or vice versa.
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k2 k3
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`1 `2

Figure 2. The first class of two-loop crossed-box integrals includes the four-mass case and related

massless limits, i.e. three-mass and short-side two-mass with massless legs in the nonplanar end of

the diagram. Massless and massive external legs are denoted by single and doubled lines respectively.

We solved the hepta-cut equations for this class of kinematics and found eight distinct

solutions that can be parametrized as follows,

S̃1 : (ξ1, ξ2, ξ3, ξ4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1, 0,−

1 + τz

1− τ
,
1 + τz

1− τ

)
,

S̃2 : (ξ1, ξ2, ξ3, ξ4) =

(
ξ̄1, 0,−

1 + τz

1− τ
,
1 + τz

1− τ

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
,

S̃3 : (ξ1, ξ2, ξ3, ξ4) =

(
1, z,− 1 + z

1 + τz
, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1, 0,

µτ(1 + τz)

τ − 1
,
1 + τz

1− τ

)
,

S̃4 : (ξ1, ξ2, ξ3, ξ4) =

(
ξ̄1, 0,

µτ(1 + τz)

τ − 1
,
1 + τz

1− τ

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1, z,− 1 + z

1 + τz
, 1

)
,

S̃5 : (ξ1, ξ2, ξ3, ξ4) = (1, 0, z, 1) , (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,−ξ̄1, 0, 1

)
,

S̃6 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1,−ξ̄1, 0, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) = (1, 0, z, 1) ,

S̃7 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1, 0, µ, z

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) = (1,−1/τ, 1, 0) ,

S̃8 : (ξ1, ξ2, ξ3, ξ4) = (1,−1/τ, 1, 0) , (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1, 0, µ, z

)
. (3.45)

Notice that six of the tilded solutions are inherited from the four-mass case in the

limit ξ̄2 → 0. The new branches are denoted S̃3 and S̃4. We invite the reader to refer
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k2 k3

k4

`1 `2
k1

k2 k3

k4

`1 `2

k1

k2 k3

k4

`1 `2
k1

k2 k3

k4
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k1

k2 k3

k4

`1 `2
k1
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k4

`1 `2

k1

k2 k3

k4

`1 `2

Figure 3. The three-mass and the two-mass short-side integrals with massless legs in the planar

end of the diagram together with diagonal and long-side two-mass integrals, one-mass integrals and

finally the zero-mass integral correspond to degenerate massless limits.

to appendix A for the full expressions of the loop momenta on each branch. The various

kinematic configurations are depicted in figures 2 and 3.
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Solution S1 Solution S2

Solutions S3,5 Solutions S4,6

Figure 4. The four possible vertex configurations of the four-mass two-loop crossed box. Black,

white and gray blobs denote chiral, antichiral and nonchiral vertices respectively. The opposite-

chirality diagrams are not in one-to-one correspondence with the hepta-cut solutions.

3.4 Classification of kinematic solutions

The degeneracy of maximal-cut solutions is customarily understood diagrammatically from

the possible distributions of chiralities at the on-shell vertices. Momentum conservation

in a three-point vertex forces either square or angle spinor products to align. Phrased

slightly differently, the positive or negative chirality spinors of the momenta are collinear,

λa ∝ λb ∝ λc or λ̃a ∝ λ̃b ∝ λ̃c. We choose to depict such vertices as ◦ and • and refer

to them as antichiral (MHV) and chiral (MHV) respectively. Vertices involving more than

three particles or massive momenta do not have a well-defined chirality.

In recent studies, a one-to-one correspondence between diagrams and kinematic solu-

tions was found for the planar double box with up to four massive legs [47–49, 53], the

two-loop crossed box [50] and the planar three-loop triple box [51].

The situation is different for the two-loop crossed box. Consider the four-mass case

which we know gives rise to six classes of hepta-cut solutions. The maximal cut leaves two

massless on-shell three-vertices in a 2-mass-easy sub-box and hence we would erroneously

predict only four solutions based on the diagrams in figure 4. The cause of this mismatch

is that solutions S3 and S5 actually correspond to the same opposite-chirality diagram and

similarly for S4 and S6.

4 Residues of the loop integrand and topological structure

The internal momenta have eight degrees of freedom in strictly four dimensions and there-

fore we are left with one free parameter, after imposing the hepta-cut constraints. This
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implies that after promoting the original real slice contours of integration to seven-tori

encircling the simultaneous zeros of the denominators in the crossed box integral, the inte-

grand is localized onto the Riemann sphere associated with one of the hepta-cut equations

found in the previous section.

The maximal cut involves an inverse Jacobian that has multiple poles in the remaining

variable z. These poles are known as composite leading singularities. For integrals with

tensor numerators, additional poles in the integrand must be taken into account. Once the

pole structure is properly understood, we can define the hepta-cut integral by a weighted

residue expansion over a minimal set of all poles. We return to this part of the computation

shortly.

In order to actually perform the hepta-cut contour integrals, it is necessary to break

the automatic satisfaction of the on-shell constraints `21 = `22 = 0 which instead should

be imposed by localization. To that end it is advantageous to introduce new parameters

ζ1, ζ2 ∈ C and two null-vectors η1, η2 with the obvious properties,

/η
µ
1
|λ+

1 〉 6= 0 6= /η
µ
1
|λ̃′−

1 〉 , /η
µ
2
|λ+

2 〉 6= 0 6= /η
µ
1
|λ̃′−

2 〉 , (4.1)

and then shift the loop momentum parametrization such that

`µ1 =
1

2
〈λ1|γµ|λ̃′1] + ζ1η

µ
1 , `µ2 =

1

2
〈λ2|γµ|λ̃′2] + ζ2η

µ
2 . (4.2)

In general, this choice is tied to the specific on-shell solution in question. An appropriate

choice in any case is to take the masslessly projected legs because it simplifies the calcula-

tion. For instance, let η1 = k[2 and η2 = k[3. Then for all four-mass solutions S1, . . . ,S4 it

is clear that

`21 = γ12ξ1ξ
′
1ζ1 = 0 , `22 = γ34ξ4ξ

′
4ζ2 = 0 , (4.3)

and therefore we obtain the desired solution ζ1 = ζ2 = 0 since ξ1ξ
′
1 6= 0 6= ξ4ξ

′
4 for general

momenta. The same arguments show that a valid choice for solutions S5 and S6 is η1 = k[2
and η2 = k[4 because in that situation ξ1ξ

′
1 6= 0 6= ξ3ξ

′
3.

We also need to include the Jacobian JL × JR due to coordinate transformation from

loop four-momenta to parameter space. This can easily be done by Wick rotation to

Euclidean spacetime where the volume of the 4-parallelotope spanned by a set of four

vectors qµi can be computed from the corresponding Gram determinant up to an overall

sign, which we eventually determine numerically along with potential factors of i introduced

by the analytic continuation,

det
µ,i

qµi = ±
(

det
i,j
qi · qj

)1/2
. (4.4)

The set of variables parametrizing the two loop momenta `1 and `2 after removal of re-

dundant degrees of freedom also depend on the branch in question. In S1 and S3 we keep

the variables α = (ζ1, ξ
′
1, ξ2, ξ

′
2) and β = (ζ2, ξ3, ξ

′
3, ξ4) and thus fix ξ1 = ξ′4 = 1. The

corresponding Jacobians to appear in the numerator are then

JLS1,3 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ′1

4k[2 · k[4
, JRS1,3 = det

µ,i

∂`µ2
∂βi

= i
γ2

34k
[
1 · k[4ξ′4

4k[1 · k[3
. (4.5)
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Notice that these forms are not constant because the parametrization is not linear in the

parameters as opposed to previous work [50] in the purely massless case. Similarly for S2

and S4 where α = (ζ1, ξ1, ξ2, ξ
′
2) and β = (ζ2, ξ3, ξ

′
3, ξ
′
4) so that

JLS2,4 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ1

4k[2 · k[4
, JRS2,4 = det

µ,i

∂`µ2
∂βi

= i
γ2

34k
[
1 · k[4ξ4

4k[1 · k[3
. (4.6)

We finally compute the Jacobians appropriate to solutions S5 and S6,

JLS5 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ1

4k[2 · k[4
, JRS5 = det

µ,i

∂`µ2
∂βi

= iγ2
34

(
k[1 · k[4
k[1 · k[3

)2

ξ3 , (4.7)

JLS6 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ′1

4k[2 · k[4
, JRS6 = det

µ,i

∂`µ2
∂βi

= iγ2
34

(
k[1 · k[4
k[1 · k[3

)2

ξ′3 . (4.8)

4.1 Hextuply pinched genus-3 curve

The preceding discussions now lead us to the definition of localization of the two-loop

crossed-box integral onto the Riemann sphere associated with the ith branch. Changing

integration variables from loop momenta (`µ1 , `
µ
2 ) to parameters (ξi, ξ

′
i), replacing real slice

integration contours by a multidimensional tori encircling the joint solution of the hepta-

cut constraints and subsequently performing seven contour integrals using eq. (2.9) give

rise to a total Jacobian Ji,

X∗∗2,1,1[1]Si ≡
∮

Γi

dzJi(z) . (4.9)

The generic form of this Jacobian is a product of ni simple-pole factors associated with the

pinching points or intersections with neighboring Riemann spheres,

Ji ≡
h(z)∏ni

k=1(z − zi;k)
, (4.10)

where h(z) is a regular function of z. For the two-loop crossed box integrals with up to

four massive legs and no doubled propagators, the Jacobian will at most define a quartic

polynomial because ni ≤ 4 for all i as we shall see below.

It is straightforward to obtain the Jacobians explicitly after the inverse propagators

have been expanded in parameter space. For brevity we merely state the results here. We

refer the reader to e.g. refs. [46, 50, 51] for related examples. In advance of calculations

below, we identify a frequently occurring kinematic constant along the lines of ref. [49],

γ? ≡
γ12γ34

32(γ2
12 −m2

1m
2
2)(γ2

34 −m2
3m

2
4)k[1 · k[4

. (4.11)
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The multivariate residues evaluated at the simultaneous zeros of the denominators are,

X∗∗2,1,1[1]S1,2 = +
γ?(1− τ)(ξ̄1 − τ ξ̄2)

τ ξ̄2
1(1 + µτ)

∮
dz

z

(z + 1)
(
z + 1

τ

) (
z + ξ̄2

ξ̄1

)(
z + τ ξ̄2

ξ̄1

) , (4.12)

X∗∗2,1,1[1]S3,4 = − γ?
ξ̄1 − τ ξ̄2

∮
dz(

z + ξ̄1−ξ̄2
ξ̄1−τ ξ̄2

)(
z − µτ(ξ̄1−ξ̄2)

ξ̄1−τ ξ̄2

) , (4.13)

X∗∗2,1,1[1]S5,6 = +
γ?

ξ̄1 − τ ξ̄2

∮
dz(

z − ξ̄1−τ2ξ̄2
τ(ξ̄1−τ ξ̄2)

)(
z + µ(ξ̄1−τ2ξ̄2)

ξ̄1−τ ξ̄2)

) , (4.14)

where the pole locations in the Jacobians are directly exposed,

{z1;1, . . . , z1;4} =

{
−1,−1

τ
,− ξ̄2

ξ̄1
,−τ ξ̄2

ξ̄1

}
= {z2;1, . . . , z2;4} ,

{z3;1, z3;2} =

{
− ξ̄1 − ξ̄2

ξ̄1 − τ ξ̄2
,
µτ(ξ̄1 − ξ̄2)

ξ̄1 − τ ξ̄2

}
= {z4;1, z4;2} ,

{z5;1, z5;2} =

{
ξ̄1 − τ2ξ̄2

τ(ξ̄1 − τ ξ̄2)
,−µ(ξ̄1 − τ2ξ̄2)

ξ̄1 − τ ξ̄2

}
= {z6;1, z6;2} . (4.15)

Solutions S1 and S2 give rise to additional singularities where either of the loop momenta

become infinite for a finite value of the post hepta-cut degree of freedom z. Finally, in each

solution there is a pole at z =∞ which may be encircled. The union of the singular point

loci for all six branches therefore contains 24 points.

This leads to the definition of the octa-cut of a general tensor integral with numerator

insertion Φ(`1(z), `2(z)),

X∗∗2,1,1[Φ(`1(z), `2(z)]
∣∣
8−cut

≡
6∑
i=1

∮
Γi

dzJi(z)Φ(`1(z), `2(z)) , (4.16)

Here, Γi is a weighted linear combination of small circles around the poles in the remaining

variable z chosen so that the integrals extract the residues of the loop integrand. Denoting

the weight of the residue evaluated at z = ξ for the ith branch by ω(i, ξ), we have

X∗∗2,1,1[Φ(`1(z), `2(z))]
∣∣
8−cut

=

|S|∑
i=1

∑
ξ∈poles

ω(i, ξ) Res
z=ξ

Ji(z)Φ(z)
∣∣
Si
. (4.17)

Not all of these residues are independent though, as can be explained from the global

structure of the unitarity cut [47, 64]. Indeed, consider an arbitrary integrand test function

of the two loop momenta, Φ(`1(z), `2(z)), and assume regularity on the Jacobian poles. It

is then very easy to prove the residue relation,

Res
Si∩Sj

J(z)Φ(`1(z), `2(z))
∣∣
Si

= − Res
Si∩Sj

J(z)Φ(`1(z), `2(z))
∣∣
Sj
, (4.18)

where the left and right hand sides of the equation are understood to be evaluated in

local coordinates on solutions Si and Sj respectively. Other choices are equally valid, e.g

symmetric in i and j. For the purpose of completeness, let us state all such identities:
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Figure 5. Topological depiction of the genus-3 algebraic curve defined by the hepta-cut of the

prime configuration of the two-loop crossed box primitive amplitude. The one-dimensional complex

curve should be understood as the filled two-dimensional real surface. Degeneracies appropriate to

specific kinematics arise upon contraction of tubes along straight horizontal and vertical lines in

the paper plane through the handles of the surface.

Res
z=z1,1

J1(z)Φ(z)|S1 = − Res
z=z4,1

J4(z)Φ(z)|S4 ,

Res
z=z1,2

J1(z)Φ(z)|S1 = − Res
z=z6,2

J6(z)Φ(z)|S6 ,

Res
z=z1,3

J1(z)Φ(z)|S1 = − Res
z=z3,2

J3(z)Φ(z)|S3 ,

Res
z=z1,4

J1(z)Φ(z)|S1 = − Res
z=z5,1

J5(z)Φ(z)|S5 ,

Res
z=z2,1

J2(z)Φ(z)|S2 = − Res
z=z3,1

J3(z)Φ(z)|S3 ,

Res
z=z2,2

J2(z)Φ(z)|S2 = − Res
z=z5,2

J5(z)Φ(z)|S5 ,

Res
z=z2,3

J2(z)Φ(z)|S2 = − Res
z=z4,2

J4(z)Φ(z)|S4 ,

Res
z=z2,4

J2(z)Φ(z)|S2 = − Res
z=z6,1

J6(z)Φ(z)|S6 .

(4.19)

This pattern of intersections confirms the global topological structure of the hepta-cut in

figure 6. This picture follows by pinching the tubes of the genus-3 surface six times along

a horizontal and a vertical line passing through the center of the object, see figure 5. The

number of independent residues is reduced to 16. The residues at infinity and in numera-

tor insertions are not shared. However, within each Riemann sphere the one-dimensional

global residue theorem ensures that the sum of all residues vanish.

The upshot is that we only need to encircle 10 global poles to produce a complete basis

of homology for S1 ∪ · · · ∪ S6. In particular, the contributions from branches S3, . . . ,S6

are redundant, because each of them only has a single pole (at z = ∞) besides those

located at intersections with S1 and S2. To minimize an overcomplete basis we may simply

set extraneous residue weights to zero. It is natural to choose an ordered set of winding

numbers, call it Ω, so that we encircle all Jacobian poles along with poles in numerator

insertions where both loop momenta become infinite simultaneously. Following the notation
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1 ∩ 4

1 ∩ 6

1 ∩ 5

1 ∩ 3

2 ∩ 4

2 ∩ 6

2 ∩ 5

2 ∩ 3

∞LR ∞LR

4 ∩ 6

4 ∩ 8

1 ∩ 6

1 ∩ 8

3 ∩ 7

3 ∩ 5 2 ∩ 5

2 ∩ 7

1 ∩ 3 2 ∩ 4

Figure 6. Global structure of the hepta-cut of the two-loop crossed box; the figures show in-

tersections of the irreducible components of the algebraic curve defined by the zero locus of the

polynomial ideal generated by the inverse propagators in the case of four external massive legs

(left) and at least one massless particle (right). All degenerate configurations considered in this

paper fall within these two topological pictures. The straight lines are drawn for simplicity and

should be interpreted as Riemann spheres.

of ref. [47], the weights of the ten global poles can be written

Ω = (ω1∩4, ω1∩6, ω1∩3, ω1∩5, ω1,∞LR , ω2∩3, ω2∩5, ω2∩4, ω2∩6, ω1,∞LR) ≡ (ω1, . . . , ω10) .

(4.20)

By convention, a residue with weight ωi∩j is evaluated on the ith branch. Later it may be

convenient to instead encircle infinity poles, since the scalar integrals yield simpler residues

there.

4.2 Octuply pinched genus-3 curve

Let us now relax the condition m1m2 6= 0 and analyze the analytic structure of the loop

integrand under those circumstances. The eight hepta-cut solutions for this class of kine-

matics were determined in section 3.3. The topological picture is that of an octuply pinched

genus-3 surface, where tubes have been contracted along one vertical and two horizontal

lines through the center as shown in figure 5.

We can reproduce this situation locally from coincidence of residues. Localizing the

scalar master integral onto each of the eight Riemann spheres parametrized by the hepta-

cut solutions S̃1 through S̃8 yields four pairs of one-dimensional contour integrals,

X∗∗2,1,1[1]S̃1,2 = +
γ?(1− τ)

τ ξ̄1(1 + µτ)

∮
dz

z(z + 1)(z + 1/τ)
, (4.21)

X∗∗2,1,1[1]S̃3,4 = − γ?(1− τ)

τ ξ̄1(1 + µτ)

∮
dz

z(z + 1)(z + 1/τ)
, (4.22)
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X∗∗2,1,1[1]S̃5,6 = −γ?
ξ̄1

∮
dz

(z + 1)(z − µτ)
, (4.23)

X∗∗2,1,1[1]S̃7,8 = +
γ?
ξ̄1

∮
dz

(z + µ)(z − 1/τ)
. (4.24)

The residues at the poles in the displayed loop integrands again satisfy a rich set of linear

relations across the irreducible components of the genus-3 curve and thus reflect the global

structure of the unitarity cut. In fact,

Res
z=0

J̃1(z)Φ(z)|S̃1 = − Res
z=0

J̃3(z)Φ(z)|S̃3 ,

Res
z=−1

J̃1(z)Φ(z)|S̃1 = − Res
z=−1

J̃6(z)Φ(z)|S̃6 ,

Res
z=−1/τ

J̃1(z)Φ(z)|S̃1 = − Res
z=−µ

J̃8(z)Φ(z)|S̃8 ,

Res
z=−1

J̃3(z)Φ(z)|S̃3 = − Res
z=µτ

J̃5(z)Φ(z)|S̃5 ,

Res
z=−1/τ

J̃3(z)Φ(z)|S̃3 = − Res
z=1/τ

J̃7(z)Φ(z)|S̃7 ,

Res
z=0

J̃2(z)Φ(z)|S̃2 = − Res
z=0

J̃4(z)Φ(z)|S̃4 ,

Res
z=−1

J̃2(z)Φ(z)|S̃2 = − Res
z=−1

J̃5(z)Φ(z)|S̃5 ,

Res
z=−1/τ

J̃2(z)Φ(z)|S̃2 = − Res
z=−µ

J̃7(z)Φ(z)|S̃7 ,

Res
z=−1

J̃4(z)Φ(z)|S̃4 = − Res
z=µτ

J̃6(z)Φ(z)|S̃6 ,

Res
z=−1/τ

J̃4(z)Φ(z)|S̃4 = − Res
z=1/τ

J̃8(z)Φ(z)|S̃8 .

(4.25)
In the purely massless limit, m1, . . . ,m4 → 0, the kinematic quantities defined above

reduce as follows,

ξ̄1 → 1 , ξ̄2 → 0 , µ→ 0 , τ → χ

1 + χ
, γ? =

1

16χs3
12

, (4.26)

where χ ≡ s14/s12. We point out that the hepta-cut contributions in eqs. (4.21)–(4.24) in

ref. [50] after appropriate reparametrization,

X∗∗2,1,1[1]S̃5,6 = − 1

16s3
12

∮
dz

z(z + χ)
, (4.27)

X∗∗2,1,1[1]S̃7,8 = − 1

16s3
12

∮
dz

z(z − χ− 1)
, (4.28)

X∗∗2,1,1[1]S̃1,2,3,4 = − 1

16s3
12

∮
dz

z(z − χ)(z − χ− 1)
. (4.29)

5 Master integral projectors

The hepta-cut localizes the two-loop crossed-box integrand onto a variety of linked Riemann

spheres associated with the joint solutions of the on-shell equations. What remains is a

one-dimensional complex contour integral whose integrand has poles. We can now choose

contours that extract residues of the integrand and effectively obtain an octa-cut such that

the integral is completely localized to a point in C8. On top of that, consistency of the

unitarity method imposes nontrivial constraints on these contours, however.

The reason is that converting a real slice integral into a multidimensional contour

integral in general does not respect various relations among integrals. Each identity leads
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to a constraint which at two loops always can be rearranged and phrased as vanishing of a

certain function upon integration over RD × RD. Schematically,

X∗∗2,1,1[Φ(`1, `2)] = 0 =⇒ X∗∗2,1,1[Φ(`1, `2)]
∣∣
8−cut

= 0 . (5.1)

It is easy to understand the nature of these relations if we imagine that we compute an

amplitude diagram by diagram. All contractions between loop momenta and external

vectors are expressible in terms of the eight fundamental scalar products `i · ej for i =

1, 2 and j = 1, 2, 3, 4 where e = (k1, k2, k4, ω). Here, ω is a spurious direction that is

perpendicular to the subspace spanned by the four external momenta.

Odd powers of `1·ω and `2·ω vanish upon integration, whereas even powers are reducible

in four dimensions. It readily follows that `1 · k1, `1 · k2 and `2 · k4 can be written in terms

of inverse propagators and external invariants. Moreover, `2 · k2 depends linearly on `1 · k4

and `2 ·k1. The latter two may be selected as irreducible scalar products. Accordingly, the

general numerator polynomial for the problem at hand can be parametrized as follows,

N =
∑

{α1,...,α4}

cα1···α4(`1 · k4)α1(`2 · k1)α2(`1 · ω)α3(`2 · ω)α4 . (5.2)

The integrand reduction can be obtained by imposing renormalizability conditions that

constrain the exponents of the ISPs and performing the multivariate polynomial division

of N modulo a Gröbner basis constructed from the seven inverse propagators. The lat-

ter part including identification of ISPs is carried out automatically by the Mathematica

package BasisDet [57]. The integrand contains 19 parity-odd and 19 parity-even elements

as previously reported [54].

The analysis above suggests that the amplitude contribution in question contains 19

genuine integrals of the form

X∗∗2,1,1[n,m] ≡ X∗∗2,1,1

[(
(`1 + k4)2

2

)n((`2 + k1)2

2

)m]
. (5.3)

Many integrals are expressible as linear combinations of integrals with lower-rank tensors

and fewer than seven propagators. This reduction is achieved due to IBP relations that

follow from inserting a total derivative into the loop integrand and discarding the boundary

term in D dimensions. The relations take the form

X∗∗2,1,1[n,m] =
∑

(p,q)∈Basis

cpqX
∗∗
2,1,1[p, q] + · · · , (5.4)

where · · · means fewer-propagator topologies that have vanishing hepta-cuts, and the con-

sistency constraint thus reads

X∗∗2,1,1[n,m]
∣∣
8−cut

=
∑

(p,q)∈Basis

cpqX
∗∗
2,1,1[p, q]

∣∣
8−cut

. (5.5)

The IBP relations can be generated by various public computer codes. For this project

we used the Mathematica package FIRE [70]. We list below a few examples. There are two
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relations which hold for arbitrary values of the external masses,

X∗∗2,1,1[0,−1] = A ·X∗∗2,1,1[0, 0] +B ·X∗∗2,1,1[−1, 0] ,

X∗∗2,1,1[−1,−1] = A ·X∗∗2,1,1[−1, 0] +B ·X∗∗2,1,1[−2, 0] , (5.6)

for A and B given by

A =
1

4

(
s14 +

m2
1m

2
3 −m2

2m
2
4

s12

)
, B = −1

2

(
1 +

m2
1 −m2

2

s12

)
. (5.7)

If for instance m2 = m3 = m4 = 0 and m1 is nonzero, then there is one additional relation

among these integrals,

X∗∗2,1,1[−2, 0] = − s2
12s14

16(m2
1 − s12)

X∗∗2,1,1[0, 0]− 1

8

(
3 +

2s14

m2
1 − s12

)
X∗∗2,1,1[−1, 0] . (5.8)

The parity-odd terms in the integrand basis of course vanish identically after the loop

momentum integration has been performed, but they are nonetheless very important for

integrand-level reduction and unitarity purposes. It is sufficient to require that the full

variety of integrals with Levi-Civita insertions, after invoking momentum conservation,

ε(`1, k2, k3, k4) , ε(`2, k2, k3, k4) , ε(`1, `2, k1, k2) , ε(`1, `2, k1, k3) , ε(`1, `2, k2, k3) ,

(5.9)

continue to integrate to zero on general contours in C4 × C4.

Our goal of the rest of this paper is to massage the amplitude master equation (2.1)

into a form that allows us to project the master integral coefficients.

5.1 One-mass projectors

The simplest configuration is the one-mass diagram with, say, m1 6= 0. As in the purely

massless case [50, 54], there are two master integrals so the amplitude contribution can be

expressed as

A(2)
4 = c1X

∗∗
2,1,1[1] + c2X

∗∗
2,1,1[(`1 + k4)2/2] + · · · , (5.10)

where integrals with less than seven propagators are truncated. Since momentum k4 is

massless, we have `1 · k4 = (`1 + k4)2/2. We decide to encircle the following set of global

poles,

{G̃i} = (G̃1∩6, G̃1∩8, G̃3∩5, G̃3∩7, G̃1∩3, G̃2∩5, G̃2∩7, G̃4∩6, G̃4∩8, G̃2∩4) ≡ (G̃1, . . . , G̃10) ,

(5.11)

and let Ω̃ denote the corresponding weights,

Ω′ = (ω̃1∩6, ω̃1∩8, ω̃3∩5, ω̃3∩7, ω̃1∩3, ω̃2∩5, ω̃2∩7, ω̃4∩6, ω̃4∩8, ω̃2∩4) ≡ (ω̃1, . . . , ω̃10) . (5.12)
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The hepta-cut two-loop crossed box integrals reduce to

X∗∗2,1,1[1]S̃1,2 −→ −
m2

1 − s12

χs12

∮
dz

z(z + 1)(z + (s12(1 + χ)−m2
1)/(χs12))

, (5.13)

X∗∗2,1,1[1]S̃3,4 −→ +
m2

1 − s12

χs12

∮
dz

z(z + 1)(z + (s12(1 + χ)−m2
1)/(χs12))

, (5.14)

and likewise for the remaining four solutions, which we do not explicitly need here. Notice

that we stripped off the overall factor. As expected we immediately derive five linearly

independent contour constraints arising from parity-odd numerator insertions,


1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1





ω̃1∩6

ω̃1∩8

ω̃3∩5

ω̃3∩7

ω̃1∩3

ω̃2∩5

ω̃2∩7

ω̃4∩6

ω̃4∩8

ω̃2∩4



= 0 . (5.15)

Moreover, there are three linearly independent IBP constraints,

Ω̃ · (0, 1, 0, 1, 0, 0, 1, 0, 1, 0) = 0 , (5.16)

Ω̃ · (1, −1, 1, −1, 0, 1, −1, 1, −1, 0) = 0 , (5.17)

Ω̃ · (1, 1, −1, −1, 2, 1, 1, −1, −1, 2) = 0 . (5.18)

The residues computed by the master integrals around the global poles are

Res{G̃i}X
∗∗
2,1,1[1] =

(
− 1, − χs12

m2
1 − (1 + χ)s12

, 1,
χs12

m2
1 − (1 + χ)s12

,
χs12

m2
1 − (1 + χ)s12

,

− 1, − χs12

m2
1 − (1 + χ)s12

, 1,
χs12

m2
1 − (1 + χ)s12

,
χs12

m2
1 − (1 + χ)s12

)
,

Res{G̃i}X
∗∗
2,1,1[`1 · k4] =

χs2
12

2(m2
1 − (1 + χ)s12)

(0, 1, 0, −1, −1, 0, 1, 0, −1, −1) . (5.19)

We exploit the freedom to choose contours after imposing the reduction conditions and

define two master integral projectors (also called master contours) which extract of either

of the master integral coefficients,

M1 ·
(

Res
{G̃i}

X∗∗2,1,1[1], Res
{G̃i}

X∗∗2,1,1[`1 · k4]
)

= (1, 0) , (5.20)

M2 ·
(

Res
{G̃i}

X∗∗2,1,1[1], Res
{G̃i}

X∗∗2,1,1[`1 · k4]
)

= (0, 1) . (5.21)
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Here, M1 and M2 are just particular lists of the winding numbers of the corresponding

global poles with the property that they only receive contribution from one master integral,

which is also normalized to unity.

The eight contour constraints together with either of the projectors are in practice

arranged as 10×10 matrices. The rank is 10 and the solutions for the weights are uniquely

determined. We find that the projectors are characterized by the 10-tuples

M1 =
1

16
(−3, 1, 3, −1, 2, −3, 1, 3, −1, 2) , (5.22)

M2 =
1

8χs2
12

(−m2
1 + (1− 2χ)s12, 3m2

1 − (3 + 2χ)s12, m
2
1 − (1− 2χ)s12,

− 3m2
1 + (3 + 2χ)s12, 2(−m2

1 + (1 + 2χ)s12), −m2
1 + (1− 2χ)s12,

3m2
1 − (3 + 2χ)s12, m

2
1 − (1− 2χ)s12, −3m2

1 + (3 + χ)s12,

2(−m2
1 + (1 + 2χ)s12)) . (5.23)

The master integral coefficients can be written compactly in terms of tree-level data as

ci =

∮
Mi

dz J̃(z)
∑

helicities
particles

6∏
k=1

Atree
(k) (z) , (5.24)

where the rescaled Jacobian for this configuration is defined by

J̃(z) ≡ ±m
2
1 − s12

χs12

1

z(z + 1)(z + (s12(1 + χ)−m2
1)/(χs12)

. (5.25)

The computation of the remaining one-mass configurations is essentially equivalent to

the one described here and the projectors are similar. The lack of symmetry in the two-loop

crossed box suggests that we also derive projectors for the one-mass diagram with m4 6= 0

(or m3 6= 0). The hepta-cuts in the limit m1,m2,m3 → 0 follow from eqs. (4.21)–(4.24),

X∗∗2,1,1[1]S̃1,2 −→ +
1

χ

∮
dz

z(z + 1)(z + (s12(1 + χ)−m2
4)/(χs12))

, (5.26)

X∗∗2,1,1[1]S̃3,4 −→ −
1

χ

∮
dz

z(z + 1)(z + (s12(1 + χ)−m2
4)/(χs12))

, (5.27)

whereas the singular point locus and parity-odd vanishing constraints carry over directly

from the calculation above. The residues in the masters are

Res{G̃i}X
∗∗
2,1,1[1] =

s12

(m2
4 − s12)(m2

4 − (1 + χ)s12)

(
m2

4 − (1 + χ)s12, χs12, (1 + χ)s12 −m2
4,

− χs12, s12 −m2
4, m

2
4 − (1 + χ)s12, χs12, (1 + χ)s12 −m2

4, −χs12, s12 −m2
4

)
,

(5.28)

Res{G̃i}X
∗∗
2,1,1[(`1 + k4)2/2] =

χs2
12

2(m2
4 − (1 + χ)s12)

(0, 1, 0, −1, −1, 0, 1, 0, −1, −1) ,

(5.29)
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and the unique projectors read

M1 =
m2

4 − s12

16s12
(3, −1, −3, 1, −2, 3, −1, −3, 1, −2) , (5.30)

M2 =
1

8χs2
12

((1− 2χ)s12 −m2
4, 3m2

4 − (3 + 2χ)s12, m
2
4 − (1− 2χ)s12,

(3 + 2χ)s12 − 3m2
4, 2((1 + 2χ)s12 −m2

4), (1− 2χ)s12 −m2
4,

3m2
4 − (3 + 2χ)s12, m

2
4 − (1− 2χ)s12, (3 + 2χ)s12 − 3m2

4,

2((1 + 2χ)s12 −m2
4)) . (5.31)

These master contours respect the three linearly independent IBP constraints

Ω̃ · (0, 1, 0, 1, 0, 0, 1, 0, 1, 0) = 0 , (5.32)

Ω̃ · (1, −1, 1, −1, 0, 1, −1, 1, −1, 0) = 0 , (5.33)

Ω̃ · (1, 1, −1, −1, 2, 1, 1, −1, −1, 2) = 0 . (5.34)

The expressions for the one-mass projectors derived here are consistent with the purely

massless calculation reported in ref. [50].

5.2 Two-mass projectors

As previously explained, there are four kinematically inequivalent distributions of massless

and massive external legs in the two-mass four-point crossed box. Indeed, we distinguish

between the two-mass short-side diagrams with either both massive legs situated in the

planar or nonplanar end and the long-side and diagonal diagrams. From the point of view

of the global structure of the hepta-cut, the latter three are similar and can be treated

within the regime of the octuply pinched genus-3 curve whereas the first diagram is a

variant of the three- and four-mass case.

The long-side two-mass diagram can be studied by taking over the singular point lo-

cus (5.12), basis integral decomposition as well as the parity-odd contour constraints (5.15)

it turns out. We assume that m1m4 6= 0 and m2 = m3 = 0. Under these circumstances,

the relevant hepta-cuts are

X∗∗2,1,1[1]S̃1,2 −→ +
s12 −m2

1

χs12

∮
dz

z(z + 1)(z + λ)
, (5.35)

X∗∗2,1,1[1]S̃3,4 −→ −
s12 −m2

1

χs12

∮
dz

z(z + 1)(z + λ)
, (5.36)

where the pole location λ is defined by

λ ≡ m2
1(m2

4 − s12) + s12(s12(1 + χ)−m2
4)

χs2
12

. (5.37)

These hepta-cuts clearly coincide with eqs. (5.13)–(5.14) and (5.26)–(5.27) in the respective

limits, m4 → 0 and m1 → 0.
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The residues associated with the two master integrals are as follows,

Res{G̃i}X
∗∗
2,1,1[1] = N1(r1, r2, −r1, −r2, r3, r1, r2, −r1, −r2, r3) , (5.38)

Res{G̃i}X
∗∗
2,1,1[(`1 + k4)2/2] = N2(0, −1, 0, 1, 1, 0, −1, 0, 1, 1) , (5.39)

where N1 and N2 are given by

N1 ≡
s12

(m2
4 − s12)((m2

1 +m2
4)s12 − (1 + χ)s2

12 −m2
1m

2
4)
, (5.40)

N2 ≡
χs3

12

2(m2
1 − s12)(m2

4 − s12) + 2χs2
12

, (5.41)

and the ris are defined as

r1 ≡ s12(m2
4 − (1 + χ)s12)−m2

1(m2
4 − s12) , r2 ≡ χs2

12 , r3 ≡ (m2
1 − s12)(m2

4 − s12) .

(5.42)

The projectors for the coefficients c1 and c2 become

M1 =
m2

4 − s12

16s12
(3, −1, −3, 1, −2, 3, −1, −3, 1, −2) , (5.43)

M2 =
1

8χs3
12

(q1, q2, −q1, −q2, q3, q1, q2, −q1, −q2, q3) , (5.44)

for constants q1, q2 and q3 where

q1 ≡ +m2
1(m2

4 − s12)− s12(m2
4 − (1− 2χ)s12) , (5.45)

q2 ≡ − 2χs2
12 − 3(m2

1 − s12)(m2
4 − s12) , (5.46)

q3 ≡ + 2(2χs2
12 + (m2

1 − s12)(m2
4 − s12)) . (5.47)

For this external kinematics, the three independent consistency relations from IBP identi-

ties are

Ω̃ · (0, 1, 0, 1, 0, 0, 1, 0, 1, 0) = 0 , (5.48)

Ω̃ · (1, −1, 1, −1, 0, 1, −1, 1, −1, 0) = 0 , (5.49)

Ω̃ · (1, 1, −1, −1, 2, 1, 1, −1, −1, 2) = 0 . (5.50)

We have also derived projectors for the two-mass diagonal configuration. The compu-

tation essentially resembles that of the two-mass long-side diagram, meaning that the same

singular point locus, integral basis and contour constraints can be used. For m2 = m4 = 0

and m1m3 6= 0, the hepta-cuts evaluated at the branches S1, . . . ,S4 are

X∗∗2,1,1[1]S̃1,2 −→ +
(m2

1 − s12)(m2
3 − s12)

χs2
12 −m2

1m
2
3

∮
dz

z(z + 1)(z + λ)
, (5.51)

X∗∗2,1,1[1]S̃3,4 −→ −
(m2

1 − s12)(m2
3 − s12)

χs2
12 −m2

1m
2
3

∮
dz

z(z + 1)(z + λ)
, (5.52)
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where the third pole λ is now defined by

λ ≡ s12(m2
1 +m2

3 − (1 + χ)s12)

m2
1m

2
3 − χs2

12

. (5.53)

It can be shown that the master contours for this kind of integrals are characterized by the

following numbers,

M1 =
1

16
(3, −1, −3, 1, −2, 3, −1, −3, 1, −2) , (5.54)

M2 =
1

8(m2
3 − s12)(m2

1m
2
3 − χs2

12)
(q1, q2, −q1, −q2, q3, q1, q2, −q1, −q2, q3) , (5.55)

and the three independent weights q1, q2 and q3 in M2 are

q1 ≡ +m2
1(3m2

3 − s12)− s12(m2
3 − (1− 2χ)s12) ,

q2 ≡ −m2
1(m2

3 − 3s12) + s12(3m2
3 − (3 + 2χ)s12) ,

q3 ≡ − 2(m2
1(m2

3 + s12) + s12(m2
3 − (1 + 2χ)s12)) . (5.56)

Our next example is the short-side two-mass diagram withm1m2 6= 0 andm3 = m4 = 0

which is a smooth limit of the three- and four-mass case. Accordingly, we now have the

master equation

A(2)
4 = c1X

∗∗
2,1,1[1] + c2X

∗∗
2,1,1[(`1 + k4)2/2] + c3X

∗∗
2,1,1[((`1 + k4)2/2)2] + · · · , (5.57)

and we must choose a new singular point locus for this computation. It is natural to

encircle the following ten global poles,

{Gi} = (G1∩4, G1∩6, G1∩3, G1∩5, G1,∞LR , G2∩3, G2∩5, G2∩4, G2∩6, G2,∞LR) ≡ (G1, . . . ,G10) .

(5.58)

We remind that (G1, . . . ,G5) and (G5, . . . ,G10), are located at the following values of z on

the Riemann sphere parametrized by S1 and S2 respectively,{
−1,−1

τ
,− ξ̄2

ξ̄1
,−τ ξ̄2

ξ̄1
, 0

}
. (5.59)

Evidently, on-shell branches three through six are eliminated and we retain only the fol-

lowing two hepta-cut integrals,

X∗∗2,1,1[1]S1,2 −→ +N

∮
dz

z

(z + 1)(z + 1/τ)(z + ξ̄2/ξ̄1)(z + τ ξ̄2/ξ̄1)
, (5.60)

where the overall constant is given by

N ≡ (γ2
12 −m2

1m
2
2)3

γ3
12(γ12 +m2

2)(m2
1m

2
2 + χγ12s12)

, (5.61)

and the poles are located at

1/τ =
γ12(γ12 + χs12)

m2
1m

2
2 + χγ12s12

,
ξ̄2

ξ̄1
=

m2
1m

2
2(γ12 + χs12)

γ12(m2
1m

2
2 + χγ12χ12)

,
τ ξ̄2

ξ̄1
=
m2

1m
2
2

γ2
12

. (5.62)
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Requiring that all parity-odd numerator insertions have vanishing hepta-cuts translates

into the statement


1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1





ω1∩4

ω1∩6

ω1∩3

ω1∩5

ω1,∞LR

ω2∩3

ω2∩5

ω2∩4

ω2∩6

ω2,∞LR



= 0 . (5.63)

There are two linearly independent constraints from IBP relations,

Ω · (0, 1, 0, 1, −1, 0, 1, 0, 1, −1) = 0 , (5.64)

Ω · (1, −1, 1, −1, 0, 1, −1, 1, −1, 0) = 0 . (5.65)

Resolving the contour constraints leaves three contour weights undetermined, exactly bal-

ancing the number of master integrals for this problem. The master contours which pick

up contribution from one basis integral and annihilate the other two are,

M1 ·
(

Res
{Gi}

X∗∗2,1,1[1], Res
{Gi}

X∗∗2,1,1[(`1 + k4)2/2], Res
{Gi}

X∗∗2,1,1[((`1 + k4)2/2)2]
)

= (1, 0, 0) ,

M2 ·
(

Res
{Gi}

X∗∗2,1,1[1], Res
{Gi}

X∗∗2,1,1[(`1 + k4)2/2], Res
{Gi}

X∗∗2,1,1[((`1 + k4)2/2)2]
)

= (0, 1, 0) ,

M3 ·
(

Res
{Gi}

X∗∗2,1,1[1], Res
{Gi}

X∗∗2,1,1[(`1 + k4)2/2], Res
{Gi}

X∗∗2,1,1[((`1 + k4)2/2)2]
)

= (0, 0, 1) .

(5.66)

After changing the remaining one-dimensional contour into a linear combination of

small circles around the global poles, the three master integrals reduce to the following

residues,

Res{Gi}X
∗∗
2,1,1[1] = N1(r1,−r2,−r1, r2, 0, r1,−r2,−r1, r2, 0) , (5.67)

Res{Gi}X
∗∗
2,1,1[(`1 + k4)2/2] = N2(0, −1, 0, 1, 0, 0, −1, 0, 1, 0) , (5.68)

Res{Gi}X
∗∗
2,1,1[((`1 + k4)2/2)2] = N3(0, r3, 0, −r3, r1, 0, r3, 0, −r3, r1) , (5.69)

where

N1 ≡ −
m2

1m
2
2 + χγ12s12

χs12(γ12 +m2
2)(γ2

12 +m2
1m

2
2 + χγ12s12)

, (5.70)

N2 ≡ +
(γ12 +m2

1)(m2
1m

2
2 + χγ12s12)

2(γ2
12 +m2

1m
2
2 + χγ12s12)

, (5.71)

N3 ≡ +
(γ12 +m2

1)2(γ12 +m2
2)(m2

1m
2
2 + χγ12s12)

4γ12(γ2
12 −m2

1m
2
2)(γ2

12 +m2
1m

2
2 + χγ12s12)

, (5.72)
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and

r1 ≡ γ2
12 +m2

1m
2
2 + χγ12s12 , r2 ≡ χγ12s12 , r3 ≡ γ2

12 −m2
1m

2
2 . (5.73)

The projectors for the integral coefficients take the form

M1 =
(γ12 +m2

2)χs12

4(m2
1m

2
2 + γ12χs12)

(−1, 0, 1, 0, 0, −1, 0, 1, 0, 0) , (5.74)

M2 =
1

2(γ12 +m2
1)(m2

1m
2
2 + γ12χs12)

(q1, q2, q3, q4, q5, q1, q2, q3, q4, q5) , (5.75)

M3 =
γ12(γ2

12 −m2
1m

2
2)

(γ12 +m2
1)2(γ12 +m2

2)(m2
1m

2
2 + γ12χs12)

(1, 1, 1, 1, 2, 1, 1, 1, 1, 2) . (5.76)

where q1, . . . , q5 are defined by

q1 ≡ γ2
12 −m2

1m
2
2 − γ12χs12 , q2 ≡ − 2m2

1m
2
2 − γ12χs12 ,

q3 ≡ γ2
12 −m2

1m
2
2 + γ12χs12 , q4 ≡ q1 − q2 + q3 , q5 ≡ q1 + q3 . (5.77)

We point out that although the projectors are functions of irrational quantities such as

γ12 which has a square root, the final integral coefficients obtained in this way are rational

in external invariants.

5.3 Three-mass projectors

The three-mass case with m1 = 0 or m2 = 0 and the remaining three external masses

nonzero is similar to the two-mass long-side calculation previously presented. Here we will

instead focus on the three-mass diagram with m4 = 0 which has the two-mass short-side

diagram with m1m2 6= 0 as a smooth limit. This means that we can continue to use the

integral basis (5.57), the singular point locus (5.58) and the parity-odd constraints (5.63).

Moreover, the contour constraints from IBP relations are identical to those in eqs. (5.64)–

(5.65).

For this problem, we will use the hepta-cuts for S1 and S2 from eq. (4.14) with µ = 0

and without the overall factor of γ?,

X∗∗2,1,1[1]S1,2 −→
(1− τ)(ξ̄1 − τ ξ̄2)

τ ξ̄2
1

∮
dz

z

(z + 1)(z + 1/τ)(z + ξ̄2/ξ̄1)(z + τ ξ̄2/ξ̄1)
. (5.78)

It is possible to obtain rather clean forms of the residues computed by the hepta-cut master

integrals at the singular point locus, if we prefer quantities constructed from flat momenta,

ξ̄1, ξ̄2 and τ , instead of the usual Mandelstam variables and external masses. Indeed, the
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residues can be expressed as

Res{Gi}X
∗∗
2,1,1[1] =

(
− 1

ξ̄1 − ξ̄2
,

τ

ξ̄1 − τ2ξ̄2
,

1

ξ̄1 − ξ̄2
, − τ

ξ̄1 − τ2ξ̄2
, 0,

− 1

ξ̄1 − ξ̄2
,

τ

ξ̄1 − τ2ξ̄2
,

1

ξ̄1 − ξ̄2
, − τ

ξ̄1 − τ2ξ̄2
, 0

)
, (5.79)

Res{Gi}X
∗∗
2,1,1[(`1 + k4)2/2] =

(
0, −(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4

ξ̄1 − τ2ξ̄2
, 0,

(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4
ξ̄1 − τ2ξ̄2

, 0,

0, −(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4
ξ̄1 − τ2ξ̄2

, 0,
(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4

ξ̄1 − τ2ξ̄2
, 0

)
,

(5.80)

Res{Gi}X
∗∗
2,1,1[((`1 + k4)2/2)2] =(

0,
(1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
, 0, −(1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
,

(1− τ)(ξ̄ − τ ξ̄2)(k[1 · k[4)2

τ
, 0,

(1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
, 0,

− (1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
,

(1− τ)(ξ̄ − τ ξ̄2)(k[1 · k[4)2

τ

)
. (5.81)

The master contours that respect all integral reduction identities and extract either of the

three master integrals are

M1 = N1(1, 0, −1, 0, 0, 1, 0, −1, 0, 0) , (5.82)

M2 = N2(q1, q2, q3, q4, q5, q1, q2, q3, q4, q5) , (5.83)

M3 = N3(1, 1, 1, 1, 2, 1, 1, 1, 1, 2) . (5.84)

In these equations, the overall constants N1, N2 and N3 are

N1 ≡
γ12m

2
1m

2
3 − χ(γ12 +m2

1)(γ12 +m2
2)s12

4m2
1(m2

2(γ12 +m2
1)− γ12m2

3) + 4χγ12s12(γ12 +m2
1)
, (5.85)

N2 ≡
1

2(γ2
12 +m2

1m
2
2 + γ12(m2

1 +m2
2 −m2

3))

× 1

m2
1(m2

2(γ12 +m2
1)− γ12m2

3) + χγ12(γ12 +m2
1)s12

, (5.86)

N3 ≡
γ12(γ2

12 −m2
1m

2
2)

γ2
12 +m2

1m
2
2 + γ12(m2

1 +m2
2 −m2

3)

× 1

m4
1m

2
2 + χγ2

12s12 + γ12m2
1(m2

2 −m2
3 + χs12)

, (5.87)

along with the residue weights q1, . . . , q5,

q1 ≡ γ4
12 −m4

1m
4
2 + γ3

12(m2
1 +m2

2 −m2
3 − χs12)

− γ12m
2
1m

2
2(m2

1 +m2
2 −m2

3 + χs12) + γ2
12(m2

1m
2
3 − χ(m2

1 +m2
2)s12) , (5.88)
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q2 ≡ m2
1(−2(γ12 +m2

1)m2
2(γ12 +m2

2)

+ γ12(γ12 + 2m2
2)m2

3)− χγ12(γ12 +m2
1)(γ12 +m2

2)s12 , (5.89)

q3 ≡ γ4
12 −m4

1m
4
2 + γ3

12(m2
1 +m2

2 −m2
3 + χs12)

− γ12m
2
1m

2
2(m2

1 +m2
2 −m2

3 − χs12)− γ2
12(m2

1m
2
3 − χ(m2

1 +m2
2)s12) , (5.90)

q4 ≡ q1 − q2 + q3 , (5.91)

q5 ≡ q1 + q3 . (5.92)

We note that the three-mass projectors written here reduce to the two-mass short-side

formula (5.66) in the limit m3 → 0.

5.4 Four-mass projectors

We finally examine the principal kinematic configuration with four distinct external masses

m2
i = k2

i 6= 0. The intermediate calculations are more complicated because neither γ12 nor

γ14 can be simplified to rational expressions. In order to simplify the computation to the

maximum extent possible prior to solving for the projectors, we will encircle a slightly

different set of global poles compared to the previous examples. More specifically, we

exploit that integrand of the scalar master integral, evaluated on branches three through

six, has vanishing residues at infinity.

It is convenient to arrange the poles so that Gi and Gi+5 are still parity conjugates of

each other. The set of global poles is

{Gi} = (G1∩4, G1∩5, G3,∞R , G5,∞R , G1,∞LR , G2∩3, G2∩6, G4,∞R , G6,∞R , G2,∞LR) . (5.93)

The residues at these poles can be streamlined by rescaling all hepta-cut Jacobians J1, . . . , J6

by a common factor,

Ji → (1 + µτ)(ξ̄1 − ξ̄2)Ji , (5.94)

and this is what we will do implicitly below. This constant will eventually drop out when

we compute integral coefficients.

Without repeating the exercise, we know that the contour constraints from parity-odd

numerator insertions are


1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1





ω1∩4

ω1∩5

ω3,∞R

ω5,∞R

ω1,∞LR

ω2∩3

ω2∩6

ω4,∞R

ω6,∞R

ω2,∞LR



= 0 . (5.95)
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Prior to presenting the residues computed by the three master integrals, it proves

advantageous to define the following four constants constructed out of various previously

defined quantities,

r1 ≡ −
τ(ξ̄1 − ξ̄2)

ξ̄1 − τ2ξ̄2
, (5.96)

r2 ≡ −
m2

4

2
− µ(1− τ)(ξ̄1 − τ ξ̄2)k[1 · k[4 , (5.97)

r3 ≡ +
m2

4

2
+ (1− 1/τ)(ξ̄1 − τ ξ̄2)k[1 · k[4 , (5.98)

r4 ≡ − (1− 1/τ)(1 + µτ)2(ξ̄1 − ξ̄2)(ξ̄1 − τ ξ̄2)(k[1 · k[4)2 . (5.99)

In terms of the ris, the residues of the master integrals can be brought to a particularly

simple form,

Res{Gi}X
∗∗
2,1,1[1] = (−1, r1, 0, 0, 0, −1, r1, 0, 0, 0) , (5.100)

Res{Gi}X
∗∗
2,1,1[(`1 + k4)2/2] = (r2, r1r3, 0, 0, 0, r2, r1r3, 0, 0, 0) , (5.101)

Res{Gi}X
∗∗
2,1,1[((`1 + k4)2/2)2] = (−r2

2, r1r
2
3, 0, 0, r4, −r2

2, r1r
2
3, 0, 0, r4) . (5.102)

There are again two linearly independent consistency equations arising from the IBP

identities,

Ω · (1, 0, 2, 0,−1, 1, 0, 2, 0,−1) = 0 , (5.103)

Ω · (0, 1, 0, 2,−1, 0, 1, 0, 2,−1) = 0 . (5.104)

At first sight these constraints differ from those found in the two- and three-mass calcu-

lations, see e.g. eqs. (5.64)–(5.65). However, the two pairs of equations enforce the same

constraints, as can be argued easily. We may express the constraints without imposing the

global residue theorem. For the four-mass case we then have

ω1∩3 + ω1∩4 + ω2∩3 + ω2∩4

−ω1,∞LR − ω2,∞LR − ω1,∞ − ω2,∞ + 2ω3,∞ + 2ω4,∞ = 0 , (5.105)

ω1∩5 + ω1∩6 + ω2∩5 + ω2∩6

−ω1,∞LR − ω2,∞LR − ω1,∞ − ω2,∞ + 2ω5,∞ + 2ω6,∞ = 0 . (5.106)

These equations encompass either form of the IBP constraints, i.e. eqs. (5.64)–(5.65)

and (5.103)–(5.104). This can be shown by writing out the latter explicitly, i.e.

ω1∩3 + ω1∩4 + ω2∩3 + ω2∩4 − ω1,∞LR − ω2,∞LR = 0 , (5.107)

ω1∩5 + ω1∩6 + ω2∩5 + ω2∩6 − ω1,∞LR − ω2,∞LR = 0 , (5.108)

and

ω1∩4 + ω2∩3 − ω1,∞LR − ω2,∞LR − ω1,∞ − ω2,∞ + 2ω3,∞ + 2ω4,∞ = 0 , (5.109)

ω1∩5 + ω2∩6 − ω1,∞LR − ω2,∞LR − ω1,∞ − ω2,∞ + 2ω5,∞ + 2ω6,∞ = 0 . (5.110)
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Then it is immediately clear that we obtain the same answer from eqs. (5.105)–(5.106)

when we truncate to linearly independent sets of residues by the global residue theorem.

Returning to actual calculation with the representation (5.102) of the residues at hand,

it is quite easy to solve the set of linear equations to derive compact expressions for the

three master integral projectors,

M1 = − 1

4r1(r2 + r3)r4

(
2r1r3r4, −2r2r4, r1r3(r2

2 + r2r3 − r4),

r2(r1r3(r2 + r3) + r4), 2r1r2r3(r2 + r3),

2r1r3r4, −2r2r4, r1r3(r2
2 + r2r3 − r4),

r2(r1r3(r2 + r3) + r4), 2r1r2r3(r2 + r3)
)
, (5.111)

M2 = +
1

4r1(r2 + r3)r4

(
2r1r4, 2r4, r1(r2

2 − r2
3 − r4), r1(r2

2 − r2
3)− r4, 2r1(r2

2 − r2
3),

2r1r4, 2r4, r1(r2
2 − r2

3 − r4), r1(r2
2 − r2

3)− r4, 2r1(r2
2 − r2

3)
)
,

(5.112)

M3 =
1

4r4
(0, 0, 1, 1, 2, 0, 0, 1, 1, 2) . (5.113)

This result completes our derivation of master integral projectors for the two-loop crossed

box with up to four massive external legs.

6 Reduction of integrals with doubled propagators

Feynman integrals with doubled and in general higher powers of propagators frequently ap-

pear in loop amplitude computations, for instance in IBP identities, Schwinger parametriza-

tions or bubble insertions. It was recently explained that generalized unitarity cuts of such

integrals are naturally treated as degenerate multivariate residues using computational

algebraic geometry [52]. In that connection, several examples were given for one- and

two-loop integrals with massless kinematics. This method extends seamlessly to multiloop

integrals with external masses, as we will demonstrate shortly. However, the calculation

can be accelerated by using the Bezoutian matrix algorithm.

6.1 Unitarity cut algorithm: Bezoutian matrix method

We very briefly review the unitarity cut algorithm for integrals with higher powers of

propagators. For more details and examples, please refer to refs. [51, 52]. The main

ingredient needed is computational algebraic geometry.

Recall that a residue is nondegenerate, if the Jacobian at the pole ξ is nonzero, i.e.,

J(ξ) = det
i,j

(
∂fi
∂zj

)∣∣∣∣
z=ξ

6= 0 . (6.1)

In this case, the value of the residue is simply calculated by Cauchy’s theorem in higher

dimensions, i.e. eq. (2.9). However, the Jacobian clearly vanishes if there is one or more
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doubled propagators being cut and the residue is degenerate, so this approach does not

apply. To solve the problem, we need techniques from algebraic geometry. There are two

ways of evaluating such residues:

1. The transformation law (see for instance ref. [72]). This theorem can be used to

convert a degenerate residue at the simultaneous zero of the inverse propagators to

a factorizable residue. The explicit transformation matrix is found by the Gröbner

bases method. The algorithm is described in refs. [51, 52].

2. The Bezoutian matrix method. Here one determines the duality structure [71] of the

multivariate residues, which in turn can be calculated easily. In general, the Bezoutian

matrix method is considerably faster than the transformation law for complicated cuts

with many independent external invariants.

Our Mathematica package MathematicaM22 is capable of computing multivariate residues

using either of these techniques. In what follows, we outline the Bezoutian matrix approach

and provide some basic examples.

Let I = 〈f1, . . . , fn〉 be an ideal in the ring R = C[z1, . . . , zn]. Assume that I is a

zero-dimensional ideal, i.e. the zero locus Z(I) = {ξ1, . . . , ξk} consists of finite number of

discrete points. For a zero-dimensional ideal I, the quotient ring R/I is a finite dimensional

C-linear space.

Before we calculate individual residues, we first examine the structure of the sum of

residues by Bezoutian Matrix. Then we eventually get individual residues from partition

functions. For a polynomial h in R, we define the global residue as

Res(h) =
∑
i

Res ξi

(
hdz1 ∧ · · · ∧ dzn

f1 · · · fn

)
(6.2)

which is just the sum of all residues. By Stokes’ theorem, the values of the residues only

depend on h’s equivalence class [h] in R/I. Furthermore, we can define an inner product

〈 , 〉 in R/I,

〈g, h〉 ≡ Res(g · h) . (6.3)

Theorem 1 〈 , 〉 is a nondegenerate inner product in R/I.

The proof of the theorem is given in ref. [72]. This theorem implies that, given a linear

basis {pi} for R/I, we can find its dual basis {∆i} in R/I, such that

〈pi,∆j〉 = δij . (6.4)

In practice, the basis and dual basis can be found by the Gröbner basis method and the

Bezoutian matrix [74]. The procedure involves the following steps:

1. Calculate G, the Gröbner basis of I in the DegreeLexicographic order. Denote the

leading terms for all polynomials in G as LT (G). Then all monomials in R which are

lower than LT (G) constitute {pi}, which is the canonical linear basis for R/I.

2The package can be downloaded from https://bitbucket.org/yzhphy/mathematicam2.
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2. Introduce a set of auxiliary variables {y1, . . . , yn} and define the Bezoutian matrix B

for I as,

Bij ≡
fi(y1, . . . , yj−1, zj , . . . , zn)− fi(y1, . . . , yj , zj+1, . . . , zn)

zj − yj
. (6.5)

Calculate its determinant, detB.

3. Define G̃ as the set G after the replacement zi → yi. Perform the polynomial division

of the Bezoutian determinant, detB, over G⊗G̃. Then the remainder can be written,∑
i

ai(y)pi(z) , (6.6)

where the pis form the canonical linear basis for R/I, and the ai(y)s are polynomials

in the y-variables only.

4. The dual basis {∆i}, with respect to the inner product 〈 , 〉, is defined as ∆i = ai(z).

The dual basis explicitly characterizes the structure of global residues. Let the decom-

position of the unit 1 over the dual basis be given as

1 =
∑
i

µi∆i . (6.7)

Then for an arbitrary numerator h, expand [h] over the canonical linear basis,

[h] =
∑
i

λipi , (6.8)

and the global residue is given as [74],

Res(h) =
∑
i

λiµi . (6.9)

This formula is the result of the definition of the dual basis, and provides a very efficient

way of calculating the residues.

To get individual residues, we can use the formula (6.9) and the new ingredient partition

functions of Z(I).

Theorem 2 Let I be a zero-dimensional ideal and Z(I) = {ξ1, . . . , ξk} be its zero locus.

Denote Oi as the local ring of ξ, Oi = {f/g | g(ξi) 6= 0, f ∈ R, g ∈ R}, and IOi as the ideal

generated by I in Oi. Then there is a set of partition functions, e1, . . . , ek, each of which

is an element in R/I, such that,

1. In R/I,
∑

i ei = 1, e2
i = ei and eiej = 0 if i 6= j.

2. ei ∈ IOj if i 6= j, and ei − 1 ∈ IOi.
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This theorem can be proved by construction [75]. Then for each individual residue at

ξi [74], we have the result

Res ξi

(
hdz1 ∧ · · · ∧ dzn

f1 · · · fn

)
= Res(h · ei) . (6.10)

Explicitly, the partition functions e1, . . . , ek can be constructed by the method of La-

grange interpolation. The computation via Bezoutian matrix method is realized in our

package, MathematicaM2. We demonstrate this computation by a simple example before

we return to generalized unitarity cuts of integrals with doubled propagators. To com-

pare with the transform law method described in [50, 51], we present some one-loop and

two-loop residues computations in Example 2, 3.

Example 1 Let I = 〈(z1 +z2)2, z2
2 +z2

1−2〉. There are two residues located at ξ1 = (−1, 1)

and ξ2 = (1,−1). Both residues are degenerate. From the Gröbner basis computation, the

linear basis {pi} for R/I is,

{z2
2 , z1, z2, 1} . (6.11)

The Bezoutian matrix is,

B =

(
y1 + z1 + 2z2 2y1 + y2 + z2

y1 + z1 y2 + z2

)
. (6.12)

Its determinant is detB = −2y1z1 + 2y2z2 − 2y2
1 + 2z2

2. So after the polynomial division

over the Gröbner basis of I, we have the dual basis,

{∆i} = {2,−2z1, 2z2, 2
(
z2

2 − 2
)
} . (6.13)

Consider the numerator h = z2
2. From the dual basis structure, we immediately get

decomposition,

1 =
1

2
∆1 . (6.14)

Hence {µi} = {1
2 , 0, 0, 0}. Now it is clear that,

Res(h) =
1

2
. (6.15)

Furthermore, we construct partition functions for this ideal according to ref. [75]. By

Lagrangian interpolation, we obtain two polynomials

l1 = −1

2
(z1 − 1) , l2 =

1

2
(z1 + 1) , (6.16)

such that li(ξj) = δij, i, j = 1, 2. Since the two poles both have multiplicity 2, the partition

functions are [75],

e1 = 1− (1− l21)2 =
1

4
(2− 2z1 + z2) mod I , (6.17)

e2 = 1− (1− l22)2 =
1

4
(2 + 2z1 − z2) mod I . (6.18)
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Here, to simplify the expression, we performed a polynomial division over I. Then the local

residues are,

Res ξ1

(
hdz1 ∧ · · · ∧ dzn

f1 · · · fn

)
= Res(h · e1) =

1

4
, (6.19)

Res ξ2

(
hdz1 ∧ · · · ∧ dzn

f1 · · · fn

)
= Res(h · e2) =

1

4
. (6.20)

Example 2 We calculate the two multivariate residues from the maximal cut of the one-

loop massless box diagram and then compare the efficiency of Bezoutian method and the

transformation law method. The Feynman integral of the box diagram is,

I�(σ1, . . . , σ4) ≡
∫
RD

dD`

(2π)D

4∏
k=1

1

fσkk (`)
, (6.21)

where the denominators are,

f1 = `2 , f2 = (`− k1)2 , f3 = (`− k1 − k2)2 , f4 = (`+ p4)2 . (6.22)

We parametrize the loop momentum ` as,

`µ = α1k
µ
1 + α2k

µ
2 +

α3s12

2〈14〉[42]
〈1|γµ |2〉+

α4s12

2〈24〉[42]
〈2|γµ |1〉 . (6.23)

The box integrand has two quadruple-cut poles,

(α1, α2, α3, α4) = (1, 0, 0,−χ) ≡ ξ1 , (α1, α2, α3, α4) = (1, 0,−χ, 0) ≡ ξ2 . (6.24)

Consider the residue of the triple propagator integral I�(3, 1, 1, 1). The dual basis {∆i}
from the Bezoutian matrix computation is

{∆i} =
s6

12

χ3(1 + χ)

{
−1, α3,−α4 − 3χ, α3(α3 + 3χ),−α2

4 − 3α4χ− 3χ2,−(α4 + χ)3
}
,

(6.25)

and the partition functions are,

{e1, e2} =
1

χ3

{
−α4

(
α2

4 + 3α4χ+ 3χ2
)
, (α4 + χ)3

}
. (6.26)

Then we have

Res ξ1

(
dα1 ∧ · · · ∧ dα4

f3
1 f2f3f4

)
= Res(e1) = +

1 + χ

s6
12

, (6.27)

Res ξ2

(
dα1 ∧ · · · ∧ dα4

f3
1 f2f3f4

)
= Res(e2) = −1 + χ

s6
12

. (6.28)

This is a very simple example. Using the package MathematicaM2, the whole computa-

tion takes 0.54 seconds, via Bezoutian method. The computation based on transformation

law [52], gives the same result, but takes 1.07 seconds. There is no significant efficiency

difference between the two methods, for this one-loop example.
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Example 3 We calculate one of the multivariate residues from the maximal cut of the two-

loop massless double-box diagram and again compare the efficiency of Bezoutian method and

the transformation law method. The Feynman integral of the double-box diagram is,

P ∗∗2,2(σ1, . . . , σ7) ≡
∫
RD

dD`1
(2π)D

∫
RD

dD`2
(2π)D

7∏
k=1

1

fσkk (`)
, (6.29)

where the denominators are,

f1 = `21 , f2 = (`1 − k1)2 , f3 = (`1 − k1 − k2)2 ,

f4 = `22 , f5 = (`2 − k4)2 , f6 = (`2 − k3 − k4)2 , f7 = (`1 + `2)2 . (6.30)

The loop momenta are parametrized as,

`µ1 = α1k
µ
1 + α2k

µ
2 +

α3s12

〈14〉[42]
〈1|γµ |2〉+

α4s12

〈24〉[41]
〈2|γµ |1〉 ,

`µ2 = β1k
µ
3 + β2k

µ
4 + β3 +

β3s12

〈31〉[14]
〈3|γµ |4〉+

β4s12

〈41〉[13]
〈4|γµ |3〉 . (6.31)

Consider the residue at

(a1, a2, a3, a4, b1, b2, b3, b4) = (1, 0,−χ, 0, 0, 1, z, 0) ≡ ξ. (6.32)

By the Bezoutian matrix method, we find that

Res ξ

(
dα1 ∧ · · · ∧ dα4 ∧ dβ1 ∧ · · · ∧ dβ4

f1f2f3f4f5f6f3
7

)
=
χ2(1 + χ)2

z(z + χ)3
. (6.33)

The computation takes 1.28 seconds with a numerical value of χ. The transformation law

methods takes 10.7 seconds with a numerical value of χ. So for this two-loop example, the

Bezoutian method is about 8 times faster.

6.2 Example: one-mass two-loop crossed box

The previous examples show that the Bezoutian matrix algorithm is significantly faster

than the transformation law method for massless two-loop problems. The difference is

even more profound for nonplanar diagrams with external masses, as we shall see shortly.

We will be slightly more general than in eq. (3.2) and define the two-loop crossed box

integral with arbitrary integer powers (σ1, . . . , σ9) of propagators and irreducible numera-

tors as

X∗∗2,1,1(σ1, . . . , σ9) ≡
∫
RD

dD`1
(2π)D

∫
RD

dD`2
(2π)D

9∏
k=1

1

fσkk (`1, `2)
, (6.34)

where the seven propagators f1, . . . , f7 can be found in eq. (3.1) with k5 = k6 = 0 and

f8 ≡
1

2
(`1 + k4)2 , f9 ≡

1

2
(`2 + k1)2 . (6.35)
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k1

k2

k3 k4

Figure 7. The four-point two-loop crossed-box diagram with one external massive leg and a

doubled propagator, which is depicted by a black dot. The massive momentum k4 is marked by a

doubled line.

In order to unambiguously define the degenerate multivariate residue associated with the

maximal cut, the inverse propagators are grouped into seven factors gi ≡ fσii . As in [52]

we will for technical simplicity only consider cuts in strictly four dimensions, postponing

the analysis in D = 4− 2ε dimensions to future work.

For simplicity we assume for now that m1m2 = 0 so that a general integral can be

expanded onto a basis of two masters,

X∗∗2,1,1(σ1, . . . , σ9) = c1X
∗∗
2,1,1(1, . . . , 1, 0, 0) + c2X

∗∗
2,1,1(1, . . . , 1,−1, 0) + · · · . (6.36)

As an example, we will examine the one-mass doubled propagator integral with indices

(2, 1, . . . , 1, 0, 0) (see figure 7) and reconstruct the coefficients c1 and c2 to leading order

in dimensional regularization using the projectors derived in the previous section. Let

m1 = m2 = m3 = 0 and m4 6= 0. The degenerate multivariate residues at the simultaneous

zeros of the inverse propagators specified by S ′1, . . . ,S ′8 are computed using our package,

MathematicaM2,

X∗∗2,1,1(2, 1, . . . , 1, 0, 0)S̃1,2 = +
γ?

χ2s2
12

∮
dz

s12(2(1 + χ) + (1 + 2χ)z)−m2
4

z(z + 1)2(z + (s12(1 + χ)−m2
4)/(χs12))2

,

X∗∗2,1,1(2, 1, . . . , 1, 0, 0)S̃3,4 = − γ?
χ2s2

12

∮
dz

s12(2(1 + χ) + (1 + 2χ)z)−m2
4

z(z + 1)2(z + (s12(1 + χ)−m2
4)/(χs12))2

,

X∗∗2,1,1(2, 1, . . . , 1, 0, 0)S̃5,6 = − γ?
s12

∮
dz

2 + z

(z + 1)2(z +m2
4/s12)

,

X∗∗2,1,1(2, 1, . . . , 1, 0, 0)S̃7,8 = − γ?
m2

4

∮
dz

h(z)

(z + µ)3(z − 1/τ)2
. (6.37)

In these equations, h is a cubic polynomial,

h(z) = µτz3 − µ(2− (3 + τ)µτ)z2 − µ2(4 + τ(1− µτ))z − µ3τ . (6.38)
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The variables µ and τ as functions of χ, s12 and m4 are

µ =
m2

4(m2
4 − (1 + χ)s12)

χs2
12

, τ =
χs12

(1 + χ)s12 −m2
4

. (6.39)

Actually, we do not explicitly need the doubled propagator hepta-cuts for S̃5, . . . , S̃8

as the Jacobian poles are located on the intersections between the on-shell branches and

no further poles are generated [52]. Given these hepta-cut integrals, it is easy to reproduce

the residue relations.

It is convenient to strip off the overall factor γ? = (16χs3
12)−1 from all hepta-cuts as

we will do now. The residues computed by the doubled propagator scalar integral at the

singular point locus (5.12) thus read

Res{Gi}X
∗∗
2,1,1(2, 1, . . . , 1, 0, 0)

=
1

(m2
4 − s12)2(m2

4 − (1 + χ)s12)2
(r1, r2, −r1, −r2, r3, r1, r2, −r1, −r2, r3) ,

(6.40)

for r1, r2 and r3 given by

r1 ≡ (m2
4 − 2s12)(m2

4 − (1 + χ)s12)2 ,

r2 ≡ χs2
12(2(1 + χ)s12 − (2 + χ)m2

4) ,

r3 ≡ (m2
4 − s12)2(2(1 + χ)s12 −m2

4) . (6.41)

This information allows us to derive the desired coefficients by applying the relevant pro-

jectors (5.30). The result is as follows,

X∗∗2,1,1(2, 1, . . . , 1, 0, 0) = +
m2

4 − 2s12

(m2
4 − s12)s12

X∗∗2,1,1(1, . . . , 1, 0, 0)

− 2m2
4

(m2
4 − s12)(m2

4 − (1 + χ)s12)s12
X∗∗2,1,1(1, . . . , 1,−1, 0) + · · ·

(6.42)

which is consistent with the D = 4 limit of the following IBP relation in D = 4 − 2ε

dimensions generated by FIRE [70],

X∗∗2,1,1(2, 1, . . . , 1, 0, 0) =

+
(1 + 2ε)(2(1 + χ)(1 + ε)s2

12 +m2
4(m2

4(1 + ε)− (χ+ 3(1 + ε))s12)

(1 + ε)s12(m2
4 − s12)(m2

4 − (1 + χ)s12))
X∗∗2,1,1(1, . . . , 1, 0, 0)

− 2(1 + 2ε)(1 + 4ε)m2
4

(1 + ε)(m2
4 − s12)(m2

4 − (1 + χ)s12)s12
X∗∗2,1,1(1, . . . , 1,−1, 0) + · · · . (6.43)

It only takes a few seconds to obtain each of the degenerate multivariate residues (6.37)

in Mathematica using the Bezoutian matrix algorithm and numerical values for the external

invariants. Remarkably, the Bezoutian matrix algorithm is at least 20 − 25 times faster

compared to the transformation law method for this problem and in purely analytic mode,

the difference is even more significant.
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m1 m2 m3 m4 |S| Res Odd Even MIs

6= 0 0 0 0 8 10 5 3 (0, 0), (1, 0)

0 0 0 6= 0 8 10 5 3 (0, 0), (1, 0)

6= 0 0 6= 0 0 8 10 5 3 (0, 0), (1, 0)

6= 0 0 0 6= 0 8 10 5 3 (0, 0), (1, 0)

6= 0 0 6= 0 6= 0 8 10 5 3 (0, 0), (1, 0)

6= 0 6= 0 0 0 6 10 5 2 (0, 0), (1, 0), (2, 0)

6= 0 6= 0 6= 0 0 6 10 5 2 (0, 0), (1, 0), (2, 0)

6= 0 6= 0 6= 0 6= 0 6 10 5 2 (0, 0), (1, 0), (2, 0)

Table 1. Classification of all kinematically distinct diagrams from the viewpoint of the maximal

cut. The columns list whether the external masses m1, m2, m3 and m4 are zero or not, the

number |S| of hepta-cut solutions, the number of independent residues, the number of parity-odd

and parity-even contour constraints and finally the set of master integrals. The notation for the

master integrals refers to the powers of the two irreducible numerator insertions.

7 Discussion and conclusion

In the present paper we have extended the four-dimensional maximal unitarity method [46,

47] to two-loop integrals with crossed box topology with one through four massive external

legs. In practice, these integrals cover most of the nonplanar basis at four points [69].

In generalized unitarity, amplitudes are expanded onto a basis of master integrals with

rational coefficients which are then extracted systematically by taking cuts that promote

multiple internal lines simultaneously to on-shell regions of momentum space. As this in

general involves complex kinematics, cuts are realized by replacing real slice integrations

by multidimensional contours that encircle the global poles of the loop integrand. These

contours are subject to the consistency requirement that the unitarity procedure respects

the reduction onto master integrals which relies on vanishing of parity-odd integrands and

total derivatives upon integration [46].

Our principal result is unique analytic contours for all basis integral coefficients in all

inequivalent configurations of massive and massless external momenta in the four-point

two-loop crossed box, valid to O(ε0) in the dimensional regulator. The content of this

paper is also relevant for higher-multiplicity scattering of massless particles. The maximal

cut defines a nodal algebraic curve associated with a hextuply or octuply pinched genus-3

Riemann surface whose components are Riemann spheres. The first category includes con-

tributions where both legs in the planar end of the diagram are massive, whereas the second

covers the rest. The number of linearly independent residues is always ten as expected. We

find that for the sixfold degenerate curve, the projectors for all three master integrals are

unique once we impose five linearly independent Levi-Civita constraints and two linearly

independent IBP conditions. The Levi-Civita constraints are resolved for weights that re-

spect parity. In the four-mass case, unlike the situation for the four-mass double box [49],

the IBP constraints are not satisfied automatically for the two-loop crossed box.

Overall, the results exhibit a very interesting and naively unexpected simplicity, which

clearly deserves more attention. Indeed, the systematics of the contour constraints (e.g.
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eqs. (5.64)–(5.65)) are remarkable. Instead of being a set of disconnected calculations,

the inequivalent kinematic configurations related through a rich underlying structure that

seems to be governed by the global picture of the hepta-cut. As summarized in table 1, we

find that the contour constraints are identical for all configurations within a particular class

of hepta-cut solutions, for example all the way from the three-mass diagram with m1m2 = 0

to the purely massless case. The IBP contours seem to be even more systematic. In all

cases with six hepta-cut solutions we find two linearly independent IBP constraints. The

chiral branching from 6 → 8 hepta-cut solutions triggers the emergence of an additional

IBP constraint. Interestingly, as for the planar double box [49], the IBP constraints are

inherited through chiral branchings. To see this, let us instead consider hepta-cuts from

the eightfold degenerate genus-3 curve, with the set of global poles,

(G̃1∩6, G̃1∩8, G̃3∩5, G̃3∩7, G̃3,∞R , G̃2∩5, G̃2∩7, G̃4∩6, G̃4∩8, G̃4,∞R) . (7.1)

As pointed out in appendix B, these poles exactly correspond to poles on the hextuply

pinched genus-3 curve. It is now an easy task to check that two of the three IBP constraints

are inherited. The same observation applies to the four-mass computation.

In view of the complexity of the hepta-cut expressions and the typical amount of effort

required to generate IBP relations for high-rank integrals with many external relations, it

is also striking that the constraints coefficients are simply integers. This also applies to

the planar double box with up to four external masses [46, 48, 49] and the planar triple

box [50]. This is a clear hint of a general principle that may be explained by algebraic

geometry.

The last part of this paper described a new algorithm based on the Bezoutian matrix

and Gröbner bases to compute degenerate multivariate residues which typically appear in

more complicated calculations. This algorithm was applied to a few simple examples and

to the reduction of a massive two-loop crossed box integral with a doubled propagator onto

master integrals with only single propagators. Our tests have shown that the Bezoutian

matrix algorithm is considerably faster than the transformation law method [51] for two-

loop problems. The multivariate residues from the massive two-loop crossed box integral

are computed at least 20− 25 times faster. Accordingly, we expect the Bezoutian method

to become increasingly valuable for multiscale problems involving two-loop topologies with

fewer propagators and at three loops and beyond (see e.g. ref. [51]).

We end this paper by suggesting interesting projects for future research. It is desirable

to understand the nature of the contour constraints in complete detail. In particular,

is it possible to fully determine constraints arising from integration-by-parts identities

directly from the underlying algebraic geometry? Recent progress for the planar double

box shows that discrete symmetries to some extent determine these constraints [49]. Such

symmetries seem to be less constraining at higher genera. We also find it urgent to extend

maximal unitarity to D dimensions to recover terms missed in strictly 4D. Another very

important next step is to extend the method to basis integrals with five external legs, for

example the pentabox and turtle-box and the related nonplanar diagrams. First of all

from a phenomenological point of view, but we also hope that a generalization beyond four

external particles will offer insight in uniqueness of projectors [47]. We expect the one-mass
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hepta-cuts presented in this paper to be valuable in that direction, because octa-cuts may

be evaluated as hepta-cuts followed by a particular choice of contour that puts the last

propagator on-shell. Theoretically speaking, the master integral coefficients for all-massive

six-point planar and nonplanar double boxes are exciting to compute because in those cases

the on-shell parametrization is irrational and hence the maximally cut integrals suffer from

genuine branch cuts [47]. Ultimately, it would be intriguing to implement the formalism

numerically. We are looking forward to address some of these questions soon.
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A Explicit parametrization of hepta-cut solutions

In this appendix we provide explicit forms of the loop momenta in all branches for the two

distinct classes of hepta-cut solutions considered in the present paper. We also shed light

on the pole structure.

Before we begin, recall that `1 and `2 are written in a basis of mutually flattened

momenta and parametrized by the complex variables ζi, ξi and ξ′i,

`µ1 (ζi, ξi, ξ
′
i) = ζ1η

µ
1 + ξ1ξ

′
1k
[,µ
1 + ξ2ξ

′
2

k[1 · k[4
k[2 · k[4

k[,µ2

+
ξ1ξ
′
2

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉+

ξ2ξ
′
1

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 , (A.1)

`µ2 (ζi, ξi, ξ
′
i) = ζ2η

µ
2 + ξ3ξ

′
3

k[1 · k[4
k[1 · k[3

k[,µ3 + ξ4ξ
′
4k
[,µ
4

+
ξ3ξ
′
4

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉+
ξ4ξ
′
3

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉 . (A.2)

After imposing the constraints of the maximal cut we find two distinct classes of multiply

degenerate kinematic solutions. In all cases, ζ1 = ζ2 = 0. For the sake of completeness we

list the expansions of all inverse propagators in parameter space with η1 = k[2 and η2 = k[4
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utilized in the computation of maximally cut integrals.

`21 = γ12ζ1ξ1ξ
′
1 , (A.3)

`22 = γ34
k[1 · k[4
k[1 · k[3

ζ2ξ3ξ
′
3 , (A.4)

(`1 − k1)2 = m2
1 + γ12ζ1ξ1ξ

′
1 − γ12ζ1 −m2

1ξ1ξ
′
1 − γ12

k[1 · k[4
k[2 · k[4

ξ2ξ
′
2 , (A.5)

(`1 − k12)2 = m2
1 + γ12ζ1ξ1ξ

′
1 − γ12ζ1 −m2

1ξ1ξ
′
1 − γ12

k[1 · k[4
k[2 · k[4

ξ2ξ
′
2 , (A.6)

(`2 − k4)2 = m2
4 + γ34

k[1 · k[4
k[1 · k[3

ζ2ξ3ξ
′
3 −m2

4(ζ2 + ξ4ξ
′
4)− γ34

k[1 · k[4
k[1 · k[3

ξ3ξ
′
3 , (A.7)

(`1 + `2)2 = γ12ζ1ξ1ξ
′
1 + γ34

k[1 · k[4
k[1 · k[3

ζ2ξ3ξ
′
3 (A.8)

+ 2k[1 · k[4(ξ1(ξ3 + ξ4) + ξ2(τξ3 + ξ4))× (ξ′1(ξ′3 + ξ′4) + ξ′2(τξ′3 + ξ′4)) ,

(`1 + `2 + k3)2 = m2
3 + γ12ζ1ξ1ξ

′
1 + γ34

k[1 · k[4
k[1 · k[3

ζ2ξ3ξ
′
3

+ 2k[1 · k[4(ξ1(ξ3 + ξ4) + ξ2(τξ3 + ξ4))× (ξ′1(ξ′3 + ξ′4) + ξ′2(τξ′3 + ξ′4))

+ 2

{
k[1 · k3ξ1ξ

′
1 +

m2
3k
[
1 · k[4

2k[1 · k[3
ξ3ξ
′
3 +

γ34

2
ξ4ξ
′
4

+

[
τk[1 · k[3 +

m2
3k
[
1 · k[4
γ34

]
(ξ1ξ

′
2 + ξ′1ξ2) +

k[1 · k[4k[2 · k3

k[2 · k[4
ξ2ξ
′
2

}
.

(A.9)

A.1 The four-mass case and smooth massless limits

The first class of solutions to the hepta-cut equations covers the four-mass case but also

applies in the limit where one or two external legs in the crossed end of the diagram become

massless. We simplify expressions by virtue of introducing a new variable w(z) defined by

w(z) =
1 + z

1 + τz
⇐⇒ z(w) = − 1− w

1− τw
. (A.10)

Then we have the following six inequivalent solutions,

`µ1 |S1 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 +
ξ̄2

2z

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉+

ξ̄1z

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 ,

`µ2 |S1 = − 1 + τz

(1− τ)(ξ̄1 − τ ξ̄2)z

{
µτw(z)(ξ̄1z + ξ̄2)

k[1 · k[4
k[1 · k[3

k[,µ3 − (ξ̄1z + τ ξ̄2)k[,µ4

− 1

2
µτw(z)(ξ̄1z + τ ξ̄2)

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉+
1

2
(ξ̄1z + ξ̄2)

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉

}
,

(A.11)

`µ1 |S2 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 +
ξ̄1z

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉+

ξ̄2

2z

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 ,
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`µ2 |S2 = − 1 + τz

(1− τ)(ξ̄1 − τ ξ̄2)z

{
µτw(z)(ξ̄1z + ξ̄2)

k[1 · k[4
k[1 · k[3

k[,µ3 − (ξ̄1z + τ ξ̄2)k[,µ4

− 1

2
µτw(z)(ξ̄1z + τ ξ̄2)

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉+
1

2
(ξ̄1z + ξ̄2)

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉

}
,

(A.12)

`µ1 |S3 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
ξ̄1

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉 − ξ̄2

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 ,

`µ2 |S3 = k[,µ4 +
z

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉 , (A.13)

`µ1 |S4 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
ξ̄2

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉 − ξ̄1

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 ,

`µ2 |S4 = k[,µ4 +
z

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉 , (A.14)

`µ1 |S5 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
ξ̄1

2τ

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉 − ξ̄2τ

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 ,

`µ2 |S5 = µ
k[1 · k[4
k[1 · k[3

k[,µ3 +
z

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉 , (A.15)

`µ1 |S6 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
τ ξ̄2

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉 − ξ̄1

2τ

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉 ,

`µ2 |S6 = µ
k[1 · k[4
k[1 · k[3

k[,µ3 +
z

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉 . (A.16)

The displayed kinematic constants were defined in eqs. (3.30)–(3.32) in the main text. It

follows that solutions S1 and S2 give rise to a singularity in both the left and right loop

momentum when z → 0, whereas S3 through S6 have no poles for finite values of z and

thus produce holomorphic integrands insertions.

A.2 Degenerate massless limits

As explained in the body of this paper, ξ̄2 = 0 for m1m2 = 0 and for this class of kinematics

the zero locus of the inverse propagators decomposes into a union of eight irreducible

components. Moreover, we have ξ̄1 = 1 −m2
1/s12 along with various other simplifications

which we do not show here in detail. Explicitly,

`µ1 |S̃1 = (1−m2
1/s12)

{
k[,µ1 +

z

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉
}
,

`µ2 |S̃1 = − 1 + τz

1− τ

{
µτw(z)

k[1 · k[4
k[1 · k[3

k[,µ3 − k
[,µ
4

+
µτw(z)

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉 − [1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉

}
(A.17)
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`µ1 |S2 = (1−m2
1/s12)

{
k[,µ1 +

z

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉

}
`µ2 |S2 = − 1 + τz

1− τ

{
µτw(z)

k[1 · k[4
k[1 · k[3

k[,µ3 − k
[,µ
4

+
〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉+
µτw(z)

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉

}
, (A.18)

`µ1 |S̃3 = (1−m2
1/s12)

{
k[,µ1 +

z

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉
}
,

`µ2 |S̃3 = − 1 + τz

1− τ

{
µτw(z)

k[1 · k[4
k[1 · k[3

k[,µ3 − k
[,µ
4

− µτ

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉+
w(z)

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉

}
, (A.19)

`µ1 |S̃4 = (1−m2
1/s12)

{
k[,µ1 +

z

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉
}

`µ2 |S̃4 = − 1 + τz

1− τ

{
µτw(z)

k[1 · k[4
k[1 · k[3

k[,µ3 − k
[,µ
4

+
w(z)

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉 − µτ

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉

}
, (A.20)

`µ1 |S̃5 = (1−m2
1/s12)

{
k[,µ1 −

1

2

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉

}
,

`µ2 |S̃5 = k[,µ4 +
z

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉 , (A.21)

`µ1 |S6 = (1−m2
1/s12)

{
k[,µ1 −

1

2

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉
}
,

`µ2 |S̃6 = k[,µ4 +
z

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉 , (A.22)

`µ1 |S̃7 = (1−m2
1/s12

{
k[,µ1 −

ξ̄1

2τ

[1[4[]

[2[4[]
〈1[,−|γµ |2[,−〉

}
,

`µ2 |S̃7 = µ
k[1 · k[4
k[1 · k[3

k[,µ3 +
z

2

[1[4[]

[1[3[]
〈4[,−|γµ |3[,−〉 , (A.23)

`µ1 |S̃8 = (1−m2
1/s12)

{
k[,µ1 −

ξ̄1

2τ

〈1[4[〉
〈2[4[〉

〈2[,−|γµ |1[,−〉
}
,

`µ2 |S̃8 = µ
k[1 · k[4
k[1 · k[3

k[,µ3 +
z

2

〈1[4[〉
〈1[3[〉

〈3[,−|γµ |4[,−〉 . (A.24)

B Structure of global poles

With the discussion of the previous section in mind, we explain that the global poles are

inherited through chiral branchings. To that end, define the following eight Jacobian global
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poles in class (a),

G1 ≡ S1 ∩ S4 , G2 ≡ S1 ∩ S6 , G3 ≡ S1 ∩ S3 , G4 ≡ S1 ∩ S5 ,

G5 ≡ S2 ∩ S3 , G6 ≡ S2 ∩ S5 , G7 ≡ S2 ∩ S4 , G8 ≡ S2 ∩ S6 , (B.1)

along with the additional poles in numerator insertions,

G5 ≡ S1|z=0 , G10 ≡ S1|z=0 , G11 ≡ S1|z=∞ , G12 ≡ S2|z=∞ ,

G13 ≡ S3|z=∞ , G14 ≡ S4|z=∞ , G15 ≡ S5|z=∞ , G16 ≡ S6|z=∞ . (B.2)

As the total sum of residues for a meromorphic differential form on CP1 vanishes, only ten

residues evaluated at, say, {G1, . . . ,G10} are independent.

Moreover, in class (b) we define the global poles

G′1 ≡ S ′1 ∩ S′6 , G′2 ≡ S ′1 ∩ S′8 , G′3 ≡ S ′3 ∩ S′5 , G′4 ≡ S ′3 ∩ S′7 , G′5 ≡ S ′1 ∩ S′3 ,
G′6 ≡ S ′2 ∩ S′5 , G′7 ≡ S ′2 ∩ S′7 , G′8 ≡ S ′4 ∩ S′6 , G′9 ≡ S ′4 ∩ S′8 , G10′ ≡ S ′2 ∩ S′4 . (B.3)

All primed branches are obviously holomorphically parametrized and hence none of them

have singularities for additional finite values of z. However, there are possibly eight residues

at infinity,

G̃11 ≡ S1|z=∞ , G̃12 ≡ S2|z=∞ , G̃13 ≡ S3|z=∞ , G̃14 ≡ S4|z=∞ ,

G̃15 ≡ S5|z=∞ , G̃16 ≡ S6|z=∞ , G̃17 ≡ S7|z=∞ , G̃18 ≡ S8|z=∞ . (B.4)

At this stage, it is not hard to realize that the eight Jacobian poles in class (a) are

inherited by class (b). The map goes as follows,

(G1,G2,G3,G4,G6,G7,G8,G9)
ξ̄2→0−−−→ (G1,G2,G3,G4,G6,G7,G8,G9) (B.5)

and similarly for the residues at z = 0 and z =∞,

(G11,G12,G5,G10,G13,G14,G15,G16)
ξ̄2→0−−−→ (G̃11, G̃12, G̃13, G̃14, G̃15, G̃16, G̃17, G̃18) . (B.6)

The remaining two Jacobian global poles G̃5 and G̃10 are located at the nodal points S1∩S3

and S2 ∩S4 respectively, and are thus generated by chiral branching from 6→ 8 hepta-cut

solutions. By the one-dimensional Global Residue Theorem, the number of independent

residues is clearly invariant.
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