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1 Introduction

Multi-centered BPS black holes [3–12] and extremal non-BPS multi-centered black

holes [13–25] have been known in string theory for some time. These solutions are char-

acterized by bubble equations which determine the relative locations of the centers. For
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these solutions, brane probes capture the same information as the fully backreacted so-

lution. Taking one of the centers to be a probe supertube,1 one finds that the minimum

of the supertube potential exactly reproduces the equilibrium distance set by the super-

gravity bubble equations, both for BPS solutions [27] and for certain classes of extremal

non-BPS solutions [28].

While a lot of physics of multi-centered solutions has been understood for extremal

solutions, non-extremal solutions are much richer because they radiate and are thus more

realistic. Furthermore, they may shed light on important issues like the information para-

dox [29] (see [30] for a recent review). Dealing with full blown non-extremality is expected

to be a hard problem. Instead near-extremal solutions can be studied for better control.

By continuity, one would expect multi-centered solutions to exist for near-extremal systems

also, albeit the minima of the potential would be lifted from the marginal value, the lifting

governed by the amount of non-extremality. Indeed, such classically stable bound states

were discovered in [1, 2, 31–33] with one or several centers fully backreacted and one center

treated as a probe. This kind of analysis is helpful in the context of the fuzzball proposal

as well, for the construction of non-extremal microstate geometries (see [5, 34–37] for a

review of the fuzzball proposal). Only a handful of very specific backreacted non-extremal

solutions are known at this time [38–41]; see [31, 32] for new probe constructions.

We will focus on non-extremal multi-centered bound states by putting probe super-

tubes in non-extremal black hole backgrounds. In [2], two of us proposed that rotating

black holes will emit objects like supertubes to increase their entropy, quite like the Pen-

rose process. It was further argued that the signature of this instability would be the

minimum of the potential being lower than the value at the horizon. Such bound states

were indeed found in [2] (see also [1]). We demonstrate representative potentials of this

kind in figure 2.

While these findings based on the probe potential are suggestive of an interesting phase

diagram, to say anything definite a careful analysis of the statistical weight of different

configurations is required. This subtlety was discussed in [1], but the analysis was done in

the canonical ensemble. In applications where the black hole acts as a thermal bath, such

that its temperature does not change during the process under consideration, the canonical

ensemble is appropriate. However, when comparing stability of single center configurations

towards forming multi-centered configurations and studying mergers of other centers with

a black hole, the temperature of the black hole does change in general.

In this article we perform the analysis in the micro-canonical ensemble keeping energy,

charges and angular momenta fixed during (de-)mergers. One subtlety that comes up when

performing such an analysis is the determination of the angular momentum originating from

the interaction between the electric charge of the background and the magnetic charge of the

probe. The angular momentum of supertube probes in the supersymmetric BMPV black

hole [42] background was studied in the context of mergers in [27, 44], but the expressions

used were incorrect as they did not transform covariantly under Lorentz transformations.

1One typically considers supertubes, as such it is related by spectral flow to the most general smooth

zero entropy charge combination [26].
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We explain a correct procedure based on carefully applying the Noether method in the

main body of this article, but we can already give the source of the error here. The

electromagnetic angular momentum due to a magnetic monopole, m, and an electric point

charge, q, located at ~ρ from the former can be easily found to be

~j =

∫
d3r ~r × ( ~E × ~B) = −qm

4π
~ρ. (1.1)

However, if one naively tries to calculate the same in the probe limit from the static

Lagrangian q
∫
dtAiẋ

i using the procedure for Noether charge, the z-component turns

out to be

(jz)naive = qAφ = −qm
4π

(cos θ − k) , (1.2)

which is gauge dependent through the constant k = ±1: the gauge field is ill-defined on

the north or south pole of the sphere, depending on the choice of sign. Obviously, (jz)naive

cannot be correct. We show the covariant procedure in the probe limit in the next section

and generalize this gauge-independent procedure to extended objects. It was an implicit

gauge dependence which marred the computation of angular momentum in [27, 44].

We also find a curious feature that the ergoregion of a supertube, the region where

it cannot remain static and is dragged along an angular direction, is different from the

ergoregion for point-particles. Usually, the ergoregion is thought to be a property of the

background and not of the background-and-probe system. This feature applies to four-

dimensional probes as well. Wrapped brane probes become charged point particles with a

position dependent mass, and hence the ergoregion for such a particle can depend on the

embedding coordinates of the probe and not just on the background metric.

The main result of this paper builds on the carefully derived expression for the angular

momentum. We use the angular momenta of probe branes to study the phase diagrams

of multi-centered configurations graphically. In the micro-canonical ensemble a dominant

phase is the one with more entropy. We find that dynamical stability implies thermody-

namic stability (entropic dominance) but not vice versa. What was referred to as stable

bound states in our earlier work [2], the ones with the potential at the minimum lower than

that at the horizon (red curve in figure 2(a)), are indeed stable in a thermodynamic sense.

The story for the bound states at a local minimum of the probe potential that is higher

than that at the horizon (green curve in figure 2(b)) is not so straightforward. These were

referred to as metastable in [2] (in a quantum tunneling sense), but to be metastable the

single center configuration formed by merging the supertube with the black hole should

have more entropy. We however find that while this is the case in most of the region in

phase space, there are some regions where this is not true. This means that in such regions,

even though from the potential it seems that the supertube would want to tunnel through

the barrier to fall into the black hole, the black hole is not big enough, in a phase space

sense, to accommodate it. Since the entire phase space consists of not just one or two but

multi-center configurations, it is not possible to scan over all of them to say what the end

point would be, but it is certainly interesting to see that while the potential makes it seem

like a merger is not only possible but likely, the story is very different. We also find regions

where the potential would suggest the centers would merge, but a single center is simply
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not allowed for the corresponding charges. This is surprising because classically it seems

a black hole would absorb everything. Conversely, there are regions in which stable two

center configurations exist but no corresponding black hole which would have “spat out”

the supertube center.

Our results also give a glimpse of the phase space of non-extremal black holes and black

rings in Taub-NUT, as our two-center solutions can be related to non-extremal three-charge

black rings in Taub-NUT by spectral flow [45]. We comment on this in the conclusion.

The plan of this paper is as follows. In section 2 we derive the angular momentum for an

extended electric probe moving in the background of a magnetic monopole. In section 3 we

use the results of the preceding section to write down the potential and angular momentum

of a supertube in a Cvetic-Youm black hole. In section 4 we demonstrate the curious feature

that the ergoregion for a supertube differs from that of a point particle. In section 5 we

plot the phase space for single and two-center configurations with fixed energy, charge and

angular momentum. We conclude in section 6.

2 Angular momenta of a probe

In this section, we discuss the conserved angular momentum of a probe in a background

with a magnetic field. Naively, the angular momentum depends on the background gauge

potential, which is not gauge invariant. We discuss the procedure to find the correct gauge

invariant conserved angular momentum. For reasons of clarity, we explain the procedure

in detail for a point particle in four dimensions (inspired by [46]), and then generalize to a

p-brane in arbitrary spacetime dimensions.

2.1 Point particle in a magnetic field

Consider a (non-relativistic) probe particle in the background of a magnetic monopole:

S =

∫
dτ

(
1

2
M~̇x

2
+ qAiẋ

i

)
, (2.1)

with the background magnetic potential

A =
m

4π
(k − cos θ)dφ , (2.2)

with m the magnetic monopole charge and k = ±1, depending on the gauge choice. For

instance k = 1 gives a potential that is well defined on the north pole of the S2 spanned

by (θ, φ), and there is a Dirac string on the negative z-axis (θ = π).

Since the background magnetic field is spherically symmetric, one would expect angular

momentum to be conserved. However, with the conjugate momenta pi = ∂L/∂ẋi, the

“naive angular momentum” around the z-axis is given by:

(jz)naive = pφ = Mr2 sin2 θφ̇+ qAφ . (2.3)

This is not covariant under rotations. Take for example a rotation around the x-axis, such

that θ′ = π − θ and φ′ = 2π − φ. Then the gauge potential becomes

A′ =
m

4π
(− cos θ − k)dφ = A(k → −k) . (2.4)
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This rotates the position of the Dirac string. Of course, this is a gauge artifact and we

conclude that one needs to supplement a rotation by a compensating gauge transformation

to ensure that the angular momentum transforms covariantly under rotations. There are

several ways to find the form of the compensating gauge transformation. One can for

instance demand that the angular momentum transforms as a vector under rotations [47],

or one can use the angular momentum form ~L = M~r × ~̇r − qm
4π ~r/r [48]. Another way,

which we will use because of its straightforward extension to higher-dimensional probes, is

to implement the gauge transformation in the Noether procedure for the construction of

the angular momentum.

2.1.1 Angular momentum from Noether procedure

Under a general symmetry transformation of the embedding coordinates of the particle

x′ = x+ δx, the variation of the Lagrangian must be a total derivative:

δL =
∂L

∂xi
δxi +

∂L

∂ẋi
dδxi

dτ
≡ dK

dτ
. (2.5)

Using the Euler-Lagrange equations, this gives the conserved charge dQ/dτ = 0:

Q = piδx
i −K . (2.6)

In most applications, the contribution K for the conserved charges associated to rotations

is exactly zero and we find the standard expressions for the conserved (angular) momenta,

as in eq. (2.3). For an electric particle in a magnetic field however, the contribution K is ex-

actly the necessary compensating gauge transformation of the gauge field discussed earlier.

Take a rotation with infinitesimal generator δxI = ξI , where the subscript I labels the

rotation axis. The first term in the Lagrangian (2.1) is rotationally invariant. The second

term gives the contribution:

δξIL = q(LξIAi) ẋ
i ≡ dKI

dτ
, (2.7)

where Lξ is the Lie derivative. To see that this equation really gives the total derivative of

a function KI , remember that the potential A is gauge dependent. Hence it must only be

left invariant by rotations up to a gauge transformation:

δξIAi = LξIAi ≡ ∂iΛI . (2.8)

Therefore we find

KI = qΛI , (2.9)

and the conserved angular momentum charge is

jI = ξiIpi − qΛI . (2.10)

Explicitly, the generators for rotations along the three axes are:

ξX = − sinφ
∂

∂θ
− cosφ cot θ

∂

∂φ
,

ξY = cosφ
∂

∂θ
− sinφ cot θ

∂

∂φ
,

ξZ =
∂

∂φ
, (2.11)

– 5 –



J
H
E
P
1
2
(
2
0
1
3
)
0
5
4

they satisfy [ξX , ξY ] = −ξZ and cyclic permutations. The associated gauge transforma-

tions are

ΛX = −m
4π

(k cos θ − 1)
cosφ

sin θ
,

ΛY = −m
4π

(k cos θ − 1)
sinφ

sin θ
,

ΛZ =
km

4π
. (2.12)

Note that the condition LξAi = ∂iΛI does not fix the constants in the gauge transformations

ΛI (in particular ΛZ = k). We need to impose the Poisson brackets for the SO(3) algebra

of rotations:

{jX , jY } = −jZ (2.13)

and cyclic in X,Y, Z. In particular, this gives the condition

ξiX∂iΛY − ξiY ∂iΛX = −ΛZ , (2.14)

which determines ΛZ completely. The final expression for the covariant angular momentum

is then

jz = Mr2 sin2 θφ̇− qm

4π
cos θ. (2.15)

As a check, the static part of this expression is also obtained by integrating (~r× ( ~E× ~B))z
over all space.

2.2 Extended object in a magnetic field

We can readily extend the discussion to p-branes in arbitrary spacetime dimensions. The

action for a probe p-brane with charge q, in a background with a p-form magnetic poten-

tial is:

S =

∫
dp+1σL ≡

∫
dp+1σL0 + q

∫
Cp+1 , (2.16)

where σα, α = 0, . . . , p are the worldvolume coordinates, L0 denotes the other terms in the

worldvolume action (we do not need their exact form for the present discussion) and the

integral over the (p+ 1)-form is over the pullback on the p-brane’s worldvolume:∫
Cp+1 =

∫
dp+1σ

1

(p+ 1)!
Ci1...ip+1ε

α1...αp+1(∂α1x
i1) . . . (∂αp+1x

ip+1) . (2.17)

Under an infinitesimal symmetry transformation of the embedding coordinates x′(σ) =

x(σ) + δx(σ), the Lagrangian must be invariant up to a total derivative. This gives:

δL =

(
∂L

∂(∂αxi)

∂δxi

∂σα
+
∂L
∂xi

δxi
)
≡ ∂αKα . (2.18)

Using the Euler-Lagrange equations, this gives the conserved current (with pαi ≡
∂L/∂(∂αx

i)):

jα = pαi δx
i −Kα , (2.19)

– 6 –
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and the conserved charge (with dpσ ≡ dσ1 . . . dσp):

Q =

∫
dpσj0 =

∫
dpσ(p0

i δx
i −K0) . (2.20)

We could rewrite this in a reparametrization-invariant form, but for simplicity we will

just assume that σ0 is the timelike direction on the worldvolume so that we can integrate

charges over surfaces of constant σ0.

2.2.1 Angular momentum from Noether procedure

Consider the conserved charges for infinitesimal symmetry generators δx = ξI , labeled by

I. We assume that the term L0 is invariant under the symmetry, such that only the gauge

potential term transforms:

δIL =
q

(p+ 1)!
(LξICi1...ip+1)εα1...αp+1(∂α1x

i1) . . . (∂αp+1x
ip+1) ≡ ∂αKα

I . (2.21)

Just as for the point particle, the symmetry generators leave the gauge field invariant up

to a gauge transformation:

LξICp+1 ≡ dΛI , (2.22)

where ΛI are p-forms of gauge transformations. We get

Kα
I =

q

p!
ΛIi1...ipε

αα1...αp(∂α1x
i1) . . . (∂αpx

ip) . (2.23)

With ε012...p = −1, this gives the conserved charges:

QI =

∫
dpσ(p0

i ξ
i
I) + q

∫
ΛI . (2.24)

where the second term denotes the integral of the pull-back of Λ on the same σ0 = cst

surface as for the first integral.

As for the point particle, closed terms in the gauge transformations (terms for which

dΛI = 0) cannot be determined from (2.22). They can be fixed by demanding that the

Poisson brackets of the conserved charges satisfy the same symmetry algebra as the Lie

brackets of the symmetry generators ξA:

[ξA, ξB] = fAB
CξC , {QA, QB} = fAB

CQC . (2.25)

The non-trivial components of the Poisson brackets of the conserved charges are2

{QA, QB} =

∫
dpσ(ξiA∂iξ

j
B − ξ

i
B∂iξ

A
j )p0

i (2.28)

+

∫
dpσ(p+ 1)! (ξiA∂[iΛ

B
i1...ip] − ξ

i
B∂[iΛ

A
i1...ip])

(
εα1...αp∂α1x

i1 . . . ∂αpx
ip
)
.

2Note that the Poisson brackets involve functional derivatives. For any two functionals F =∫
dpσ f [~x(σ), ~p(σ), ∂α~x(σ)] and G =

∫
dpσ g[~x(σ), ~p(σ), ∂α~x(σ)] , the Poisson brackets are

{F,G} =

∫
dpσ

(
δF

δpi(σ)

δG

δxi(σ)
− δF

δxi(σ)

δG

δpi(σ)

)
. (2.26)

with
δF

δxi(σ)
=

∂f

∂xi
− ∂

∂σα

(
∂f

∂∂αxi

)
,

δF

δpi(σ)
=

∂f

∂pi
, (2.27)

and analogously for G.
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Since the first term equals fAB
CξiCp

0
i , the Poisson bracket equations (2.25) give the follow-

ing constraint on the gauge parameters:

iξA(dΛB)− iξB (dΛA) = fAB
C(ΛC + dλC) . (2.29)

We have allowed for an arbitrary (p − 1)-form λC on the right-hand side, since the gauge

transformations Λ are p-forms that have a “gauge invariance” themselves: ΛC → ΛC+dλC ;

the term proportional to dλC is a total derivative and will thus not contribute to the integral

QC as given in (2.24).

2.2.2 A string in five dimensions

Let us work this out for an example. Consider a string in five-dimensional Minkowski

spacetime, with spatial coordinates:

x1 = sin θ cosφ , x3 = cos θ cosψ ,

x2 = sin θ sinφ , x4 = cos θ sinψ , (2.30)

and a background magnetic field

C2 = m(k − cos2 θ)dφ ∧ dψ . (2.31)

We choose worldvolume coordinates σ0 = τ, σ1 = σ.

We concentrate on the conserved charges for rotations in the 12 and 34 planes. From

the Noether procedure, we find these are:

Q12 =

∫
dσ(pτψ + Λ12) , Q34 =

∫
dσ(pτψ + Λ34) . (2.32)

with dΛ12 = dΛ34 = 0. By demanding that all of the angular momentum charges obey the

SO(4) algebra (see appendix A for more details),

{Qik, Qj`} = δi`Qkj − δk`Qij + δkjQi` − δijQk` , (2.33)

we find the one-forms:

Λ12 = mk dψ , Λ34 = m(1− k) dφ . (2.34)

Note that even though these one-forms satisfy are closed, dΛ13 = dΛ34 = 0, they are not

globally exact and thus not pure gauge: there is no globally well-defined (p − 1) form λ

which can transform them to zero as Λ→ Λ + dλ.

The gauge-independent conserved charges are then:

Q12 = Q0
12 +

∫
dσ
(
m cos2 θ

)
∂σψ , Q34 = Q0

34 +

∫
dσ
(
m sin2 θ

)
∂σφ (2.35)

Here Q0
ij denotes the orbital angular momentum (the part coming from L0 in (2.16)).

We will make use of this result in the following section, where we consider supertubes

in a non-extremal black hole background with a background magnetic field.
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3 Supertube probe in a non-extremal black hole background

In this section, we give the potential and angular momenta for a supertube in the back-

ground of the five-dimensional Cvetic-Youm black hole. We use the discussion of the

previous section to obtain the gauge invariant angular momenta.

3.1 Background

The Cvetic-Youm black hole [49–51] is a non-extremal, rotating three charge black hole of

five-dimensional supergravity. It has two angular momenta in two independent planes in

R4. We give the solution in the M-theory frame where it arises from a T 6 compactification.

The three charges come from M2 branes wrapped on three orthogonal T 2’s inside T 6.

The solution depends on six parameters: m encodes the temperature, the three ‘boosts’

δI control the charges and a1, a2 determines the angular momenta. The metric and gauge

field are

ds2
11 = −(H1H2H3)−2/3Hm(dt+ k)2 + (H1H2H3)1/3ds2

4 +

3∑
I=1

(H1H2H3)1/3

HI
ds2
I ,

A3 =

3∑
I=1

A(I) ∧ ωI , A(I) = coth(δI)H
−1
I (dt+ k) +B(I) − coth(δI)dt , (3.1)

where ds2
I and ωI are the flat metric and volume form on the Ith torus. The rotation

one-form k and magnetic parts B(I) of the gauge fields are3

k =
m

f

[
−c1c2c3

Hm
(a1 cos2 θ dψ + a2 sin2 θ dφ) + s1s2s3(a2 cos2 θ dψ + a1 sin2 θ dφ)

]
,

B(I) =
m

fHm

cJcK
sI

(a1 cos2 θ dψ + a2 sin2 θdφ) , (3.2)

with I, J,K all different and we write

cI ≡ cosh δI , sI ≡ sinh δI . (3.3)

The four-dimensional base metric is

ds2
4 =

fr2

g
dr2 + f(dθ2 + sin2 θ dφ2 + cos2 θ dψ2)

+H−1
m (a1 cos2 θ dψ + a2 sin2 θdφ)2 − (a2 cos2 θ dψ + a1 sin2 θ dφ)2 . (3.4)

The solution is built from the functions

HI = 1 +
ms2

I

f
, Hm = 1− m

f
, f = r2 + a2

1 sin2 θ + a2
2 cos2 θ ,

g = (r2 + a2
1)(r2 + a2

2)−mr2 ≡ (r2 − r2
+)(r2 − r2

−) . (3.5)

3Note that B(I) blows up in the zero charge limit δI → 0. This is an artefact of the form we chose to

present the gauge fields in (3.1). The fields B(I) appear through the actual physical gauge fields A(I), which

do vanish in this limit (the B(I)-term cancels the divergent contribution coming from k in eq. (3.1)).
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The roots of the function g(r) give the radial position of the inner and outer horizon:

(r±)2 =
1

2

(
m− a2

1 − a2
2 ±

√(
m− a2

1 − a2
2

)2 − 4a2
1a

2
2

)
. (3.6)

The ADM mass, electric charges and angular momenta of the black hole are (in units where

G5 = π/4):

MADM =
m

2

∑
I

cosh 2δI , Jψ = −m(a1c1c2c3 − a2s1s2s3) ,

QI =
m

2
sinh 2δI , Jφ = −m(a2c1c2c3 − a1s1s2s3) .

(3.7)

There are two extremal limits. The supersymmetric extremal limit is m, a1, a2 → 0 and

|δI | → ∞ while keeping fixed the charges QI and ratios ai/
√
m. The four-dimensional

base space becomes flat and one recovers the supersymmetric rotating three-charge BMPV

black hole [42] with MADM =
∑

I |QI |. In the rest of this paper, we reserve the term

“supersymmetric limit” for the choice QI > 0. The non-supersymmetric extremal limit is

obtained by putting m = (|a1| + |a2|)2 and has MADM >
∑

I |QI |. This is the ‘ergo-cold’

black hole studied in [43].

3.2 Potential and angular momentum of a supertube

We consider supertubes with the two charges q1 and q2 corresponding to M2 branes on the

first two T 2’s. We use lower case for probe charges, upper case for background charges.

The dipole charge, which we call d3, is an M5 brane along those two T 2’s and along a

one-cycle in the four-dimensional base which we parameterize by an angular coordinate α

and two constants b1, b2 describing its embedding as

ψ = b1α , φ = b2α . (3.8)

The supertube potential is (see appendix B and [2]):

H =
1

|d3|

√
HmH1H2H3g

(4)
αα

R2

√
q̃2

1 + d2
3

R2

H2
2

√
q̃2

2 + d2
3

R2

H2
1

+
1

d3

Hmkα
R2

q̃1q̃2 − d3m
Q3

Q1Q2
B(3)
α

− coth δ1

(
q̃1

H1
− q1

)
− coth δ2

(
q̃2

H2
− q2

)
− d3 coth δ1 coth δ2

kα
H1H2

, (3.9)

where kα, g
(4)
αα, B

(3)
α are the pullbacks of the rotation one-form, the four-dimensional met-

ric (3.4) and the third magnetic field on the supertube worldvolume. The two kinds of

charges appearing above are related as

q̃1 = q1 − d3A
(2)
α , q̃2 = q2 − d3A

(1)
α , (3.10)

where A
(I)
α are the pullbacks of the gauge fields on the supertube worldvolume. Note that

q̃1 and q̃2 are the brane source charges which are not conserved or quantized but q1 and q2

are the Page charges which are conserved and quantized (see [33, 52–54]). Thus the latter
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quantities will have to be kept track of when discussing supertube and black hole mergers.

We have also introduced the square radius:

R2 ≡ H1H2H3g
(4)
αα −Hmk

2
α . (3.11)

The angular momenta of the supertube are (see appendix B)

ji
TD4

=
1

d3

g
(4)
αi kα − kig

(4)
αα

g
(4)
αα

√
H1H2H3Hmg

(4)
αα

R2

√
q̃2

1 + d2
3

R2

H2
2

√
q̃2

2 + d2
3

R2

H2
1

+
g

(4)
αi Z

3 − kikαHm

R2

q̃1q̃2

d3
+ d3bj(−Cij + κi) + q̃2A

(2)
i + q1A

(1)
i , (3.12)

where i, j run over ψ, φ; ki are the (non-pulled back) components of k in (3.2), g(4) again

stands for the 4D metric (3.4) and the two-form components appearing in this expression are

Cψφ = − Q3

fH2

[
(r2 + a2

2 +ms2
2) cos2 θ − M(s2

2 − s2
1)

fH1
(a2

1 − a2
2) cos2 θ sin2 θ

]
, (3.13)

We have defined the constants

κψ = −Q3 , κφ = 0 . (3.14)

We derive the form of the angular momentum from a DBI treatment in appendix B. The

constants κi are determined by demanding that the angular momentum charges in the

flat space limit, or equivalently at spatial infinity, satisfy the SO(4) algebra as discussed in

section 2. A non-trivial check of the constants κi fixing the gauge ambiguity, is that the an-

gular momentum is symmetric under the unphysical relabeling (b1, ψ, θ)↔ (b2, φ, π/2− θ).
At first sight, the angular momenta do not seem to be symmetric under interchange of

the tori 1 and 2 (while the Hamiltonian clearly is). However, a closer look shows that this

symmetry of the supertube physics is present: the antisymmetric terms, residing solely in

terms in the last line of (3.12), nicely cancel when expanding those terms.

3.3 Comparison with the literature

We can rearrange the angular momenta in its physically interesting components: the part

along the supertube j‖ and the part transverse to its worldvolume j⊥:

j‖ ≡ b1jψ + b2jφ , j⊥ ≡ b1jφ − b2jψ . (3.15)

The parallel component takes the particularly simple form

j‖ =
q1q2

d3
− b1b2d3Q3 . (3.16)

The transverse angular momentum is not very elucidating. We only explicitly give two

interesting limits. For the probe embedding we will use later, θ = 0 and b2 = 0, only the

gauge field term has a non-zero contribution, irrespective of the supertube position:

j
(b2=θ=0)
⊥ = b1jφ = b1d3Q3 . (3.17)
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Second, we discuss the full expression for a supersymmetric background (BMPV black

hole), evaluated at the supersymmetric bound state:

jsusy
⊥ = −d3Q3(b21 cos2 θ − b22 sin2 θ)− q1q2

d3
b1b2(cos2 θ − sin2 θ) . (3.18)

The angular momenta of a supersymmetric black hole-supertube bound state have ap-

peared before. However, only the full backreacted solution gives the correct result. See

for instance [45] for a detailed account on the asymptotic charges of the two-center bound

state. In our conventions, these are supertubes in the BMPV background with embedding

b1 = −b2 = 1, corresponding to a supertube along the Gibbons-Hawking fibre. The angular

momenta are:

jsusy
‖ = d3Q3 +

q1q2

d3
, jsusy

⊥ =

(
−d3Q3 +

q1q2

d3

)
cos(2θ) . (3.19)

Note that jGH⊥ is the symplectic product of the charge vectors of the black hole and the

supertube. For probe supertubes in supersymmetric black hole backgrounds, jsusy
⊥ has been

computed in [27] and [44] without fixing the gauge ambiguity discussed in section 2.4

4 Ergoregions for supertubes different from those of point particles

In this section we demonstrate explicitly a curious feature — that the existence of an

ergoregion is not just a background property, but can depend on the details of a probe in

the background as well. This would make it possible for a supertube to be static inside the

region where a point particle cannot be. To this end, we compare the ergoregion for probe

particles to that of probe supertubes in the Cvetic-Youm background.

The black hole ergoregion is defined as the region of spacetime outside the horizon

where every asymptotically timelike Killing vector becomes spacelike. For the Cvetic-

Youm black hole in the M-theory frame, the relevant asymptotically timelike Killing vector

is ∂/∂t and the ergoregion is5

r+ < r < rerg(θ) , (4.1)

with r+ the outer horizon radius and Hm(rerg(θ)) = 0:

(r+)2 =
1

2

(
m− a2

1 − a2
2 +

√(
m− a2

1 − a2
2

)2 − 4a2
1a

2
2

)
,

(rerg)2 = m− a2
1 sin2 θ − a2

2 cos2 θ . (4.2)

In the ergoregion, a point particle cannot be held static. If we were to insist on a static

worldline, the particle’s action would be complex. The wordline action of a static point

4The authors of [27] noted that the gauge-dependent charges computed from the Noether procedure do

match the charges in the harmonic functions (termed “Gibbons-Hawking charges”) when the black hole

and the supertube coalign on the three-dimensional base of Taub-NUT.
5In principle there is a continuous family of such Killing vectors of the form ∂t + vi∂i, where i runs over

the compact directions and |vi| < 1. By symmetry the minimum region will be for vi = 0. As explained

in [38, 55], when there is broken symmetry by having momentum along one of the torus directions, the

correct procedure is to boost to a frame where the momentum become zero to get the ergoregion.
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particle in a gravitational background is:

Spp = −M
∫
dt
√
−gtt . (4.3)

so that the ergoregion is defined to be the region where gtt > 0. For a point particle in the

Cvetic-Youm metric (3.1), this agrees with the ergoregion defined as in (4.1).

The supertube is an extended object; its wordvolume potential involves more metric

components. The “supertube-ergoregion”, which we define as the region outside the horizon

where the potential for a static supertube is not defined, can depend on the way the

supertube is embedded in spacetime. The relevant term of the supertube potential (3.9) is:

1

|d3|

√
HmH1H2H3g

(4)
αα

R2

√
q̃2

1 + d2
3

R2

H2
2

√
q̃2

2 + d2
3

R2

H2
1

. (4.4)

The necessary condition for the potential to be real is

Hmg
(4)
αα ≥ 0 . (4.5)

This condition is the analog of Hm > 0 for a point particle.6 However, unlike the point par-

ticle, this condition depends on the embedding parameters b1, b2 of the supertube through

the pull-back of the metric:

g(4)
αα=f(sin2 θ b22 + cos2 θ b21) +H−1

m (a1 cos2 θ b1 + a2 sin2 θ b2)2−(a2 cos2 θ b1+a1 sin2 θ b2)2

(4.6)

The ergoregion is then defined as

r+ < r < rerg(θ, b1, b2) . (4.7)

where rerg is now the root of Hmg
(4)
αα. It is straightforward to see that Hmg

(4)
αα > 0 when

Hm > 0; this follows immediately because the sum of the first and last terms in (4.6) is

positive. Hence the supertube ergoregion is contained in the ergoregion of point particles.

Thus, it is possible for a supertube to be static when a point particle is being frame dragged!

See figure 1 for some elucidating plots.

A similar phenomenon can occur for point particles in four-dimensional background as

well, when the mass of the point particle depends on the position. A position-dependent

mass is generic for wrapped brane probes. One can in principle obtain such point particles

by dimensional reduction of the supertube along its worldvolume, giving a point particle

in a non-extremal rotating D0-D2-D6 black hole.7

6One could object that in principle R2 = H1H2H3g
(4)
αα − Hmk

2
α can become negative and cause the

expressions under the square roots to become negative as well. However, R2 is proportional to the αα

component of the eleven-dimensional metric as g
(11)
αα = R2(H1H2H3)−2/3 and hence absence of CTC’s

outside the black hole horizon ensures that R2 ≥ 0.
7For dimensional reduction, one needs to consider the generalization of the Cvetic-Youm black hole

to R1,3 × S1 asymptotics first. So far, the most general non-extremal rotating black hole solution of the

four-dimensional STU model has only D0-D4 charges (and charge configurations related by dualities) [56].

Static non-extremal black holes in four-dimensions are the D0-D4 [57, 58], D0-D2-D6 [59], and solutions

with more charges are implicitly contained in the integration algorithm of [60, 61] and the H-FGK formalism

of [59, 62].
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Figure 1. Comparison of the ergoregions for point particles (blue, dashed) and supertubes (green,

full) for different supertube embeddings. The background parameters used in the plots are m =

5000, a1 = 10, a2 = −40. We give the ergoregions in the (ρ, θ)-plane, with ρ =
√
r2 − r2+ (horizon

is at ρ = 0).

5 Phase space of supertube-black hole bound states

In the supersymmetric limit, the background black hole becomes the BMPV solution and

the configurations are supersymmetric two-center bound states. These were constructed

in the probe limit first in [44, 63] and the fully back-reacted solution has been known for

years [27, 45]. Both the probe treatment and the supergravity back-reaction show that the

supertube settles at a radius set by the ‘bubble equation’:

q1q2

d2
3

= H3g
(4)
αα =

(
r2 +Q3

)
(b21 cos2 θ + b22 sin2 θ) , (5.1)

where g
(4)
αα is the pull-back of the base space metric given (4.6) in the supersymmetric limit

with a1 → 0, a2 → 0. As the supertubes are limits of black rings with vanishing entropy,

these are toy models of rings that sit at a stable distance from the black hole. Interestingly,

this configuration is also related to a pure black ring by spectral flow [45].

In [64], the authors showed that in the canonical ensemble, black rings and supertubes

can be adiabatically brought to the horizon of a BMPV black hole by varying the transverse

angular momentum of the supertube, j⊥, such that the end product is again a BMPV black

hole with |J1| = |J2|. This is due to a flat direction in the potential, which can extend

from spatial infinity to the black hole horizon for certain charges (the bubble equation (5.1)

allows a one-dimensional space of equilibrium separations). At non-zero temperature, the

flat direction gets lifted and hence the question of moving a supertube into the black hole

adiabatically is not well-posed. Therefore we pick charges such that the buble equation

gives a flat direction that cannot extend into the black hole. For a non-extremal black hole,

the flat direction gets lifted to an isolated minimum outside the horizon. We consider the

possible transition between those bound states at isolated minima through tunneling.
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(a) Supersymmetric background (m̂ = 0). Vary-

ing the background angular momentum changes

the form of the potential, but not the position of

the minimum.
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(b) Non-extremal background with m̂ = 1. Gener-

ically, the supersymmetric minimum gets lifted.

For an intermediate m̂-range, local minima are

possible, that can even be dynamically stable,

at lower energy than the horizon value (red,

solid line).

Figure 2. The supertube Hamiltonian in the black hole background. We use the embedding

b1 = 1, b2 = 0, θ = 0 and the rescaled variables of section 5.3, with all charges equal Q̂ ≡ Q̂1 = Q̂2 =

Q̂3, q̂ ≡ q1 = q2. We choose d̂3 = 1 and self-dual angular momenta Ĵφ = −Ĵψ of the background.

We rescaled the potential Ĥ = H/q and plot versus the radial coordinate ρ =
√
r2 − r2+. The

horizon is at ρ = 0. The supersymmetric minimum sits at the value ρ = ρ∗ ' 9949.87 obtained

from the bubble equation (5.1).

In [2], two of us studied the physics of probe supertubes for non-zero temperature,

in the non-extremal Cvetic-Youm background. We showed that two-center bound states

also exist when the black hole is no longer supersymmetric and has a non-zero Hawking

temperature (see also [1]). See figure 2 for a few plots of the supertube potential in the

non-extremal Cvetic-Youm background in five dimensions. In the plots, we normalize the

potential to zero at the horizon of the black hole. Remarkably, at low temperature (low

m, near-extremal black hole), the marginally stable supersymmetric minima can become

stable: the energy of the bound state is an absolute minimum, with a lower potential

value than the at the black hole horizon. As we raise the temperature, stable bound states

become only local minima and eventually disappear. Very far from extremality, there are

no bound states, only the black hole exists.

In this section, we wish to investigate these supertube-black hole bound states in more

detail. We also compare the bound states of a supertube and a non-extremal black hole,

with the single-center non-extremal black hole that is formed by merging the supertube

with the black hole. By merger we mean the black hole that results after tunneling of the

supertube from its (meta)stable position into the black hole horizon. Hence the energy,

charges and angular momenta of the merged configurations are the sum of the energies,

charges and angular momenta of the background and the supertube probe, where the energy

and angular momentum of the probe are evaluated at the radius at which the supertube

potential reaches a local minimum. We examine the parameter space of bound states and

see in which regions in parameter space bound states exist and if they have more entropy

than the merged black hole state.
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We adopt the same terminology as in [2]. We say that the bound state is dynami-

cally stable when the potential at the local minimum is lower than that at the horizon.

When the bound state has more entropy than the single center solution we will call it

thermodynamically stable. Similarly, we will say the bound state is dynamically metastable

when the potential at the local minima is higher than that at the horizon and finally,

when the bound state has less entropy than the single center solution we will refer to it as

thermodynamically unstable.

5.1 Bound states, mergers and their entropies

The Bekenstein-Hawking entropy of the Cvetic-Youm black hole is [50]

SBH = 2π
√

(Jmax
+ )2 − J2

+ + 2π
√

(Jmax
− )2 − J2

− . (5.2)

The angular momenta are:

J± =
Jφ ± Jψ

2
= −m

2
(a2 ± a1)(c1c2c3 ∓ s1s2s3) ,

Jmax
± =

m3/2

2
(c1c2c3 ∓ s1s2s3) . (5.3)

A single-center black hole exists when there are no closed timelike curves outside the

horizon, or equivalently when the entropy has no imaginary part. This happens when the

angular momenta obey the “cosmic censorship bounds”:

|J±| ≤ |Jmax
± | . (5.4)

In the supersymmetric limit J− = 0 and the bounds reduce to |J+| ≤
√
Q1Q2Q3.

To find the entropy of the bound state, we consider the Bekenstein-Hawking entropy of

the background black hole only, since a supertube is a fundamental object without entropy.

We will compare this to the entropy of the black hole that is formed after tunneling of the

supertube into the background black hole. The charges of the merged state are

Qtot
1,2 = Q1,2 + q1,2 , Qtot

3 = Q3 , (5.5)

and the angular momenta are

J tot
φ = Jφ + jφ , J tot

ψ = Jψ + jψ . (5.6)

We evaluate the supertube angular momenta ji at the local minimum of the supertube

potential. Then the merger of the supertube and the black hole describes the black hole

that results from tunneling of the supertube into the background black hole. Note that

this is again a Cvetic-Youm black hole with only electric charges Qtot
I : since the charge d3

of the supertube is a dipole charge, it does not contribute to the asymptotic charges of the

black hole.
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m Q Ji d3 q

n1 2 2 3 1 2

n2 0 0 0 1 1

Table 1. Scaling X → λn1
1 λn2

2 X of paramaters that leave the probe potential invariant.

5.2 Parameter space

We want to understand the parameter space of black hole-supertube bound states. There

are nine parameters: six for the black hole (m,Q1, Q2, Q3, Jφ, Jψ) and three for the super-

tubes (d3, q1, q2). Inspired by [1] we make a restriction of this parameter space to visualize

the different regimes.

First we restrict to the ‘diagonal’ model, all electric charges are equal:

Q ≡ Q1 = Q2 = Q3 , q ≡ q1 = q2 . (5.7)

Second we use the two scaling symmetries of the system. The probe potential is invariant

under the two scalings X → λn1
1 λn2

2 X of the charges X (see also [1]), as explained in

table 1. The first scaling is an invariance of the equations of motion of five-dimensional

N = 2 supergravity under conformal length rescalings. It maps a background black hole

solution to another black hole solution. The second one only affects the probe charges. Both

scalings affect the potential by a total conformal factor and do not change the physics.

We will use the scaling symmetries to eliminate the freedom of the charges d3 and Q,

and define scale invariant charges as X̂ = Q
n2−n1

2 d3
−n2X. In particular we choose

Q̂ = 1 , m̂ =
m

Q
, Ĵi =

Ji

Q3/2
, d̂3 = 1 , q̂ =

q

d3Q1/2
. (5.8)

This leaves us with a four-dimensional parameter space. We make two-dimensional slices

of phase space by additionally fixing the ratio Jφ/Jψ and the probe charge.

Note that the probe approximation is valid when the probe mass is small compared to

the background mass: mp �M . Since the ratio of these two masses has the same scaling

behaviour as the ratio of the probe and background electric charges, we have:

mp

M
=

d3

Q1/2

m̂p

M̂
. (5.9)

By making the ratio d3/Q
1/2 small, we can always make sure the probe regime is valid.

5.3 Scans of parameter space

To study the existence of metastable and stable bound states, we perform a numerical scan

of parameter space. We choose the probe charges and charge ratio

q̂ = 10 , (5.10)

and the probe embedding

b1 = 1 , b2 = 0 , θ = 0 . (5.11)
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With this choice of embedding, the local minima of the potential are at sin θ = 0 due

to symmetry.

The total charges are

Qtot
1,2 = Q+ q , Qtot

3 = Q , (5.12)

and the angular momenta are (see (3.16) and (3.17))

Ĵ tot
φ = Ĵφ +

d3

Q1/2
, Ĵ tot

ψ = Ĵψ +
d3

Q1/2
q̂2 . (5.13)

The remaining parameter space is four-dimensional: the three rescaled variables (m̂, Ĵφ, Ĵψ)

and the charge ratio d3/Q
1/2 that fixes the probe-to-background mass ratio (see (5.9)). For

illustrative purposed, we only make plots of phase space for one value of this ratio. We fix:

d3/Q
1/2 = 10−3 . (5.14)

Other values do not change the qualitative observations. We perform two 2-dimensional

slicings, one with self-dual angular momenta Jφ = −Jψ, one with Jφ = 0. The self-dual

angular momenta have a well-defined supersymmetric limit m̂→ 0 keeping the charges at

fixed positive values.

5.3.1 Background with self-dual angular momenta

We first consider a background with self-dual angular momenta:

Ĵφ = −Ĵψ . (5.15)

We examine the phase space of supertube bound states in the (Ĵψ, m̂)-plane of the

background black hole, in figure 3(a). Note that the line m̂ = 0 for |Ĵψ| ≤ 1 corresponds

to BMPV black holes.

We see that from the global picture we may conclude that thermodynamic stability

goes hand in hand with dynamical stability. The boundary between the thermodynamically

stable and metastable states (boundary between light-grey and dark-grey regions) follows

closely the boundary between the regions in phase space with dynamically stable and

dynamically metastable bound states (black, dashed line). All dynamically stable bound

states are also thermodynamically stable compared to the black hole with the same total

charges that describes the merger of the background with the supertube. On the other

hand, most dynamically metastable states are thermodynamically unstable compared to

the merged black hole.

We observe two very interesting exceptions to the general observation. The first is

that right to the left of/above the black, dashed line, there is a thin dark-grey band of

dynamically metastable states that are nevertheless thermodynamically stable over the

merged black hole. Even though the two-center potential tells us that the supertube at the

horizon has lowest energy, the larger entropy of the bound state compared to the merged

state shows that the supertube and the black hole do not form a stable single-center end

product for the charge configurations in this small band. It is likely that the correct end
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Figure 3. Figure (a): self-dual angular momenta of the background. The right graph is a zoom of

the bottom region of the left one. The black hole background exists for given m for angular momenta

in between the red (solid) lines. Bound states exist between the blue (dash-dot) and the red (solid)

lines. Dynamically stable bound states exist between the black (dashed) and the red (solid) lines.

In the dark-grey region, the bound state has more entropy than the merger of the background black

hole with the supertube (i.e. the bound state is thermodynamically stable). In the light-grey region,

the merger is most entropic. Figure (b): the background black hole has Ĵφ = 0. The right graph is

a zoom of the bottom region of the left one. Bound states exist between the blue (dash-dot) and

the red (solid) lines. Dynamically stable bound states exist between the black (dashed) and the

red (solid) lines. In the dark-grey region, the bound state has more entropy than the merger of the

background black hole with the supertube (i.e. the bound state is thermodynamically stable). In

the light-grey region, the merger is most entropic.

point for this set of charges is some other multi-centered configuration. However, the end

point is definitely not a single center black hole.

For the second interesting exception, note that there is a small white band near the

cosmic censorship bound of the background black hole (red, solid line) for positive Ĵψ and
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for low background temperature (low m̂), where the merger itself is forbidden by cosmic

censorship. For dynamically metastable bound states (on the left of the black, dashed

line) this result is surprising because one would expect everything to fall into a black hole.

Nevertheless, the black hole cannot absorb the supertube on account of shortage of phase

space. We expect that for dynamically metastable bound state in this region, there are

other decays products of black holes and supertubes with other charge channels, or possibly

more supertubes. For dynamically stable bound states in this region (on the right of the

black, dashed line) there is no reason to expect any other phase. However, it is interesting

to note that we cannot think of the supertube being “spat out” in this case as there is no

corresponding single center black hole.

5.3.2 Background with rotation in one plane

We consider a background where one of the angular momenta of the background black hole

is zero

Jφ = 0 . (5.16)

The non-zero angular momentum is then along the cycle on which the supertube is wrapped.

We plot the phase space in figure 3(b)). The findings are qualitatively the same as for a

background with self-dual angular momenta. The quantitative differences are that ther-

modynamically stable bound states exist up to Ĵψ = 0 as the background temperature

goes to zero,8 and that the small band of dynamically metastable bounds states that are

thermodynamically stable compared to the merger does not significantly widen at low m̂.

6 Conclusions

Multi-centered black hole bound states exhibit rich physics and have been important in

shedding light on various aspects of supergravity and string theory. There has been progress

in the construction of multi-centered bound states in the case of non-extremal configura-

tions recently. On the probe level, one can establish that supertubes form locally stable

bound states with the non-extremal black hole [1, 2, 31–33], which serve as testing grounds

for more intricate bound states of black holes and black rings. While the aforementioned pa-

pers studied the dynamics for a probe center around a non-extremal black hole, in this paper

we went beyond dynamics to study the thermodynamics of such multi-centered solutions.

Our work confirms earlier conjectures based on the D1-D5 decoupling limit of [2], where

we compared stability and metastability of probe branes to entropies of the dual CFT states

at the orbifold point. In this paper we can study entropies directly in the gravitational

description that is dual to a strongly coupled CFT unlike the weakly coupled CFT at

the orbifold point. We find that dynamical stability (potential at the local minimum of

8At first sight, it might seem confusing that e.g. the black, dashed boundary line (separating dynamically

stable and dynamically meta-stable states) ends in the point Ĵψ = 0 for m̂→ 0 in the graph where Ĵφ = 0,

while for Ĵφ = −Ĵψ, the intersection with m̂ = 0 seems to be at finite Ĵφ. However, strictly speaking, there

are no dynamically bound states for m̂ = 0 so that the black, dashed line is discontinuous at the point

m̂ = 0 for the graph Ĵφ = −Ĵψ; such dynamically bound states only appear as soon as we add even the

smallest bit of self-dual angular momentum.
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the supertube potential lower than that at the horizon) implies thermodynamic stability

(entropic dominance of the bound state over the black hole with the same total charges).

In the other direction, the connection is less strong. Dynamic metastability (potential at

the local minimum of the supertube potential higher than that at the horizon) is largely

synonymous with thermodynamic instability (entropic dominance of the merged state over

the bound state with the same total charges). However, there is band of dynamically

metastable states which are nevertheless thermodynamically stable. In addition there is

another band of states, comprising both dynamically metastable and dynamically stable

states, which have no corresponding merged single center black hole.

These exceptions lead us to believe that there are some dynamically metastable config-

urations which could tunnel into other multi-centered configurations but not single center

black holes. This indicates a very rich physics for non-extremal multi-centered solutions.

Through T-dualities and spectral flow, the supertube-black hole bound states we have

studied in this paper should be dual to black rings in Taub-NUT, where the charge of

the ring is large compared to the Taub-NUT charge (see [45] for this transformation in a

supersymmetric setup). Hence we can ‘predict’ the existence of new non-extremal black

rings in Taub-NUT space! The curious fact is that the Taub-NUT center becomes a probe

in our setup. However, by playing with the ratio of probe and background charges, we can

have integer charges of the probe and still be well in the probe regime.

It would be very interesting to further explore the phase space of charged multicenter

bound states, similar to the phase structure of five-dimensional black holes and black

rings in GR [65, 66]. One straightforward application is to study bound states in minimal

supergravity in five dimensions (three equal M2 charges from the eleven-dimensional point

of view). This is the charge setup of the four-dimensional probes used in [1], the four-

dimensional t3-model. This theory has a restricted set of parameters such that it becomes

possible to study phase diagrams explicitly, but it is still rich in physics. In particular, the

probes in this theory are no longer supertubes. Note that there is a possible complication,

since in principle the DBI action for probes in thermal backgrounds needs to be corrected

as in [67–71].

Methods such as the blackfold approach [72, 73] can complement our probe approxi-

mation. As we noted above, the back-reaction of the supertube-black hole bound states of

our current analysis can be related through T-dualities and spectral flow to a very massive

non-extremal black ring with tree electric and three dipoles charges in Taub-NUT. Such

black rings can be treated as blackfolds in a certain regime, depending on the ratio of the

size of the Taub-NUT circle and the thickness of the ring horizon. To treat with such so-

lutions of five-dimensional supergravity, the blackfold approach needs to be extended first

to theories with Chern-Simons couplings of the gauge fields.
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A Gauge parameters for a probe string

We write the Euclidean coordinates of four-dimensional flat space as

x1 = sin θ cosφ , x3 = cos θ cosψ ,

x2 = sin θ sinφ , x4 = cos θ sinψ , (A.1)

We get the following rotation generators ξij = xi∂j − xj∂i:

ξ12 = ∂φ ,

ξ34 = ∂ψ ,

ξ23 = − sinφ cosψ ∂θ − cot θ cosφ cosψ ∂φ − tan θ sinφ sinψ ∂ψ ,

ξ13 = − cosφ cosψ ∂θ + cot θ sinφ cosψ ∂φ − tan θ cosφ sinψ ∂ψ ,

ξ14 = − cosφ sinψ ∂θ + cot θ sinφ sinψ ∂φ + tan θ cosφ cosψ ∂ψ ,

ξ24 = − sinφ sinψ ∂θ − cot θ cosφ sinψ ∂φ + tan θ sinφ cosψ ∂ψ . (A.2)

They satisfy the SO(4) algebra:

[ξik, ξj`] = δi`ξkj − δk`ξij − δkjξi` − δijξk` . (A.3)

The Lie derivative of C2 = m(k − cos2 θ) determines the exterior derivative of the

gauge one-forms Λ through (2.22):

LξijC2 ≡ dΛij (A.4)

A set of one-forms that satisfies this condition is:

Λ12 = −k dψ ,
Λ13 = m sinφ sinψ dθ − (k +m) cosψ cot θ sinφdψ − k cosφ sinψ tan θ dφ ,

Λ14 = −m cosψ sinφdθ − (k +m) cot θ sinψ sinφdψ + k cosφ cosψ tan θ dφ ,

Λ23 = −m cosφ sinψ dθ + (k +m) cosφ cosψ cot θ dψ − k sinφ sinψ tan θ dφ ,

Λ24 = m cosφ cosψ dθ + (k +m) cot θ sinψ cosφ dψ + k cosψ sinφ tan θ dφ ,

Λ34 = (k +m) dφ . (A.5)

The arbitrary choice for Λ12,Λ34 was fixed by demanding that these gauge one-forms obey

the condition (2.29):

iξBdΛA − iξAdΛB = fAB
C(ΛC + dλ′C) . (A.6)
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With the current choice of ΛI , the gauge transformations λC are

fAB
CλC = −1

2
(ξiAΛBi − ξiBΛiA) . (A.7)

The conserved charges Qij = ξkijpk + Λij satisfy the Poisson brackets for SO(4).

B The probe Hamiltonian and angular momentum

The procedure to find the probe Hamiltonian is very similar to that described in appendix B

of [2]. We will only sketch the procedure here and highlight the differences with [2].

B.1 Probe Lagrangian

We write the background metric as

ds2
11 = −(H1H2H3)−2/3Hm(dt+ k)2 + (H1H2H3)1/3ds2

4 +
3∑
I=1

(H1H2H3)1/3

HI
ds2
I , (B.1)

and we introduce coordinates on the three torii as (z, x11), (y1, y2) and (y3, y4):

ds2
1 = dz2 + dx2

11 , ds2
2 = dy2

1 + dy2
2 , ds2

3 = dy2
3 + dy2

4 . (B.2)

The probe is a supertube, consisting of an M5-brane with dissolved M2-branes. The M5-

brane wraps the coordinates of the first two T 2’s (x11, z, y1, y2), as well as a direction in the

non-compact space. Two M2-branes are dissolved in the M5, they are wrapped on torus

1 and torus 2. To find the Hamiltonian description of this M5-brane, it is easiest to first

reduce to 10D type IIA supergravity on the direction x11. The M5-brane probe becomes a

D4-brane, for which the action is:

SD4 = SDBI + SWZ, (B.3)

SDBI = −|ND4|TD4

∫
d5ξe−Φ

√
− det (g +B + F ), (B.4)

SWZ = ND4TD4

∫
d5ξ (C5 + C3 ∧ (B + F )) . (B.5)

The embedding is given by ξ0 ≡ τ = t, ξ1 = z, ξ2 = α, ξ3 = y1, ξ
4 = y2 and:9

ψ = b1α+ v1τ , φ = b2α+ v2τ . (B.6)

The parameters vi (which are new with respect to the discussion in [2]) determine the

angular velocity of the supertube. We will set these to zero in the end since we are

interested in static supertubes. They are needed to determine the angular momenta of the

tube, as we will see shortly.

9We use the world-volume Levi-Civita symbol convention εξ
0ξ1ξ2ξ3ξ4 = +1.
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The metric, dilaton, NS-NS form B2, and R-R form C3 in 10D can be read off easily

from the 11D background 3.1 (or from [2]). The relevant components of C5 can be obtained

by dualizing C3 using dC5 = − ∗ dC3 −H3 ∧ C3 (since C1 = 0), and are given by:10

Ctψz12 =
m cos2 θ

fH1
(a2c1c2s3 − a1s1s2c3) , (B.7)

Ctφz12 =
m sin2 θ

fH1
(a1c1c2s3 − a2s1s2c3) , (B.8)

Cψφz12 = − Q3

fH2

[
(r2 + a2

2 +ms2
2) cos2 θ − m(s2

2 − s2
1)

fH1
(a2

1 − a2
2) cos2 θ sin2 θ

]
. (B.9)

Finally, the world-volume field on the D4-brane is given by:

F = E dξ0 ∧ dξ1 + B dξ1 ∧ dα. (B.10)

The electric field E is a source for F1 charge in the D4 worldvolume while the magnetic

field B is a source for D2 charge.

After some algebra, one finds the Born-Infeld and Wess-Zumino Lagrangians are:

LBI =−TD4
Z

H2

[
Z3

H2
1

(
Z((g(4)

ατ )2−g(4)
ααg

(4)
ττ )+

Hm

Z2
[g(4)
αα(1+kτ )2+kα(g(4)

ττ kα−2g(4)
ατ (1+kτ ))]

)
+
Hm

Z2
[(1 + kτ )B̃ + kαẼ ]2 − Z(Ẽ2g(4)

αα + 2B̃Ẽg(4)
ατ + B̃2g(4)

ττ )

]1/2

, (B.11)

LWZ = TD4(Ctαz34 + (v1b2 − v2b1)Cψφz34 − B̃Cτ34 − ẼCα34) , (B.12)

where we remind the reader that g(4) is the four-dimensional base metric (3.4) and k

the rotation one-form (3.2). The shifted electric and magnetic fields appearing in this

expression are defined as

Ẽ = (B + F )τz , B̃ = (B + F )zα , (B.13)

and the worldvolume components of the two-form and three-form fields are

Cτ34 = A
(2)
t + v1A

(2)
ψ + v2A

(2)
φ , Bτz = A

(1)
t + v1A

(1)
ψ + v2A

(1)
φ ,

Cα34 = A
(2)
α = b1A

(2)
ψ + b2A

(2)
φ , Bzα = −A(1)

α = −(b1A
(1)
ψ + b2A

(1)
φ ) .

For later use, we give the electric field at zero velocity (vi = 0):

Ẽ = q̃2
kαHm

ρ2
+ q̃1

√
HmZ3gαα
ρ2

√√√√√ q̃2
1 + ρ2

H2
2

q̃2
2 + ρ2

H2
1

, (B.14)

with the shifted charges q̃1, q̃2 defined in eq. (3.10).

10We use the 10D convention εtrθφψzy1y2y3y4 = +1 for the Levi-Civita symbol.
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B.2 Probe Hamiltonian

The electric field E is not a conserved quantity, so we need to Legendre transform the

Lagrangian with respect to E to obtain the Hamiltonian of the tube, which will depend on

the conserved charges q1, q2.

The conserved F1 Page charge is given by:

q1 =
∂L
∂E

. (B.15)

The Hamiltonian H is then given by:

H = q1E − L. (B.16)

We further denote the D2-charge by q2 and D4-dipole charge by d3, so:

q2 ≡ d3B, d3 ≡ ND4TD4 . (B.17)

Then, working in units where the masses of the three tori are equal to 1 (see appendix A

and B of [2] for more details), and setting the angular velocity parameters v1 = v2 = 0, we

obtain the Hamiltonian given in (3.9).

B.3 Probe angular momentum

The background breaks rotational invariance, so there will not be a full SO(4) algebra of

conserved angular momenta for the supertube. However, the background (3.1) still has

SO(2)× SO(2) symmetry generated by Killing vectors ∂φ and ∂ψ, so the angular momenta

j12 = jφ and j34 = jψ will be conserved quantities. The angular momentum along the

x3 − x4 plane is given by:

jψ =
∂L

∂(∂τψ)
+ TD4d3b2κ1 =

∂L
∂v1

+ TD4d3b2κψ, (B.18)

where we have added an a priori arbitrary constant to the quantity needed to fix the gauge

ambiguity as discussed in section 2. In an analogous fashion, we have:

jφ =
∂L
∂v2

+ TD4d3b1κφ. (B.19)

Again, after taking the partial derivatives, we set v1 = v2 = 0; the result is the expres-

sion (3.12).

At spatial infinity, rotational invariance is asymptotically realized; so all of the angular

momenta of the supertube should asymptotically be conserved and satisfy the full SO(4)

algebra. Equivalently, we can consider the flat space limit of the background; in this limit,

we again have rotational invariance and a full SO(4) algebra of conserved angular momenta

for the tube. For these limits, we can thus apply the reasoning of section 2 and determine

the constants κi from demanding that ji are the correct generators in the SO(4) algebra

of conserved angular momenta; this determines them to be given as in (3.14):

κψ = −Q3 , κφ = 0 . (B.20)
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[50] M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory,

Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].

[51] S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates,

Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].

[52] D.N. Page, Classical Stability of Round and Squashed Seven Spheres in Eleven-dimensional

Supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].

[53] J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65

[arXiv:1209.6056] [INSPIRE].

[54] D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117 [INSPIRE].

[55] V. Cardoso, O.J. Dias and R.C. Myers, On the gravitational stability of D1−D5− P black

holes, Phys. Rev. D 76 (2007) 105015 [arXiv:0707.3406] [INSPIRE].
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