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Abstract: We discuss SU(5) Grand Unified Theories in the context of orientifold com-

pactifications. Specifically, we investigate two and three D-brane stack realizations of

the Georgi-Glashow and the flipped SU(5) model and analyze them with respect to their

Yukawa couplings. As pointed out in [1] the most economical Georgi-Glashow realization

based on two stacks generically suffers from a disastrous large proton decay rate. We show

that allowing for an additional U(1) D-brane stack this as well as other phenomenological

problems can be resolved. We exemplify with globally consistent Georgi-Glashow models

based on RCFT that these D-brane quivers can be indeed embedded in a global setting.

These globally consistent realizations admit rigid O(1) instantons inducing the perturba-

tively missing coupling 10105H. Finally we show that flipped SU(5) D-brane realizations

even with multiple U(1) D-brane stacks are plagued by severe phenomenological drawbacks

which generically cannot be overcome.
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1 Introduction

D-brane compactifications have been proven to be a promising framework for realistic

string model building. The basic building blocks of such constructions are D-branes which

fill out the four-dimensional space-time and wrap submanifolds in the internal manifold.

The gauge bosons live on the world volume of the respective D-brane while chiral matter

appears at intersections of different stacks of D-branes. The multiplicity of the latter is

given by the number of intersections of the respective submanifolds in the internal space.

Over the last decade many globally consistent semi-realistic D-brane models have been

constructed (for recent reviews, see [2–4]) .

In this work we are investigating how supersymmetric SU(5) GUT’s can be realized

in this framework with the emphasis on the realization of the superpotential.1 The SU(5)

1For global supersymmetric SU(5) D-brane realizations, see [5–13]. For a related study of GUT’s within

this framework, see [14].
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gauge symmetry arises from a stack a of 5 D-branes giving rise to the gauge symmetry

U(5)a which further splits into U(5)a = SU(5) × U(1)a. Here the abelian part generically

acquires a mass via the Green-Schwarz mechanism and survives only as global symmetry.

The 10 is localized at intersections of the U(5) stack a and its orientifold image a′. To

accommodate for the other matter fields 5, as well as the Higgs pair 5H and 5
H

, one needs

the presence of at least one, but potentially more U(1) stacks. The 5, 5H and 5
H

appear

then as bi-fundamentals at intersections of the U(5) stack and one of the U(1) stacks. The

singlets under the SU(5) arise at intersections between different U(1)-stacks.

The perturbative superpotential is given by all gauge invariant couplings that are

uncharged under all the global U(1)’s, the remnants of the Green-Schwarz mechanism.

While the couplings

1055
H

55H1 5
H
5H (1.1)

can in principle be perturbatively realized the other desired coupling

10(2,0)10(2,0)5
H

(1,1) (1.2)

is perturbatively forbidden since it violates the global selection rules. Here the subscripts

denote the charge of the respective matter fields under the global U(1)’s namely the one

originating from the U(5)a and the U(1) under which the Higgs field 5H is charged. Obvi-

ously, this coupling is not neutral under these two global U(1)’s and therefore perturbatively

forbidden.

Recently, it has been realized that D-instantons carry charge under these global U(1)’s [15–

17] (for recent reviews, see [18, 19]). For a specific product of matter fields they can com-

pensate for the overshoot in the global U(1) charge and induce the perturbatively missing

couplings. For a rigid O(1) instanton, which satisfies the severe constraints on the un-

charged zero mode structure [20–23], the charge under the global U(1)x arising from a

stack of Nx branes wrapping the cycle πX in the internal manifold is given by2

Qx = −Nx πE ◦ πx . (1.3)

Here πE denotes the orientifold invariant cycle wrapped by the D-instanton. The nonper-

turbative generation of Yukawa couplings via a rigid O(1) instanton has been explicitly

discussed in [33].

In this work we extend the analysis of supersymmetric SU(5) GUT’s in a global context

performed in [1], in which the authors pointed out that the most economical realization

based on two stacks of D-branes poses severe phenomenological drawbacks. We investigate

whether these drawbacks can be resolved by allowing additional D-brane stacks and find

that the Georgi-Glashow model can be accommodated via three D-brane stacks, overcom-

ing all problems encountered in the two D-brane stack realization. We present a global

realization based on rational conformal field theory (RCFT), that admits a rigid O(1)

2Other instanton configurations, such as multi-instantons [24–27] and so called rigid U(1) instantons [25,

28–32] can induce superpotential terms.
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Representation SM matter embedding Multiplicity

10 (qL, uR, eR) 3

5 (L, dR) 3

1 νR 3

5H + 5H (Hu, Tu) + (Hd, Td) 1 + 1

Table 1. Spectrum for the supersymmetric SU(5) model.

instanton inducing the perturbatively missing coupling 10105H. In contrast to Georgi-

Glashow D-brane realizations, flipped SU(5) D-brane realizations, even with multiple U(1)

stacks have severe phenomenological problems. Specifically, the intriguing flipped SU(5)

breaking mechanism of the GUT gauge symmetry down to the standard model gauge sym-

metry cannot lead to a consistent low energy theory without requiring the presence of

additional geometric symmetries.

The paper is organized as follows. In section 2 we analyze the Georgi-Glashow real-

ization via 2 and 3 D-brane stacks in a bottom-up fashion. At the end we present a global

three stack realization based on RCFT that exhibits a rigid O(1) instanton that induces the

desired coupling 10105H. In section 3 we perform an analogous analysis for the flipped

SU(5) model. We conclude with some final remarks in section 4. In the appendices A

and B we lay out the basic ingredients for our systematic bottom-up analysis and present

the results for the three-stack Georgi-Glashow realization. In appendix C we present all

details of the global realizations including the spectrum of the hidden sector.

2 Georgi-Glashow model

Before turning to D-brane realizations of the Georgi-Glashow model let us briefly intro-

duce the usual supersymmetric SU(5)-GUT model. Later on we discuss potential D-brane

realizations of it. The embedding of the standard model fields is displayed in table 1.

The superpotential is given by

W = 10 5 5
H

+ 1010 5H + 55H1 + 5H 5
H

, (2.1)

where the Yukawa coupling 10 55
H

induces the down-flavour quark masses, the coupling

10 10 5H the up-flavour quark and charged lepton masses, respectively, and the coupling

5 5H1 the Dirac neutrino masses.

The breaking down to the standard model gauge groups occurs via an adjoint 24,

which acquires a vev, of the form

〈24 〉 = diag

(
v, v, v,−

3

2
v,−

3

2
v

)
, (2.2)
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Sector Matter All Transformation Multiplicity

aa′ 10 a 3

ab 5 (a, b) 3

ab′ 5H + 5
H

(a, b) + (a, b) 1 + 1

bb′ 1 b 3

Table 2. Chiral spectrum for a D-brane realization of the SU(5) model.

where v is of the order 1016 GeV . The hypercharge U(1)Y is embedded in the SU(5) and

given by

U(1)Y = diag

(
−

1

3
,−

1

3
,−

1

3
,
1

2
,
1

2

)
(2.3)

which remains unbroken once the adjoint 24 acquires a vev of the type (2.2). After this

brief introduction of the Georgi-Glashow model we turn to the D-brane realization of it.

2.1 D-brane realization

The most economical way to embed the Georgi-Glashow SU(5) GUT in a D-brane config-

uration is via two stacks of D-branes a, b. Stack a contains 5 D-branes while stack b is just

a single D-brane, giving rise to the gauge symmetry U(5)a ×U(1)b. The abelian U(1)a and

U(1)b are generically anomalous and become massive via the Green-Schwarz mechanism.

Thus the resulting gauge symmetry is the desired SU(5). The massive U(1)a and U(1)b
survive as global symmetries in the low energy effective theory and have to be preserved

by all perturbative couplings.

In table 2 we display the origin of the respective matter fields for the realization of

the Georgi-Glashow SU(5) model based on two stacks of D-branes. This chiral spectrum

satisfies the string consistency conditions laid out in appendix A. Note that the hypercharge

U(1)Y is a subgroup of U(5) and thus is guaranteed to remain massless. Therefore tadpole

cancellation is the only constraint one has to ensure. However, for chiral matter with the

transformation property displayed in table 2 there is potentially a massless combination,

satisfying the constraints (A.6) and (A.7), given by

U(1)X =
1

4
U(1)a −

5

4
U(1)b . (2.4)

Let us stress that the conditions on the transformation properties of the chiral matter fields

arising from tadpole cancellation and masslessness of a U(1) derived in the appendix A are

just necessary constraints. Whether tadpoles are really cancelled and whether an abelian

symmetry remains massless or not, depends crucially on the concrete global realization.

The perturbative realized Yukawa couplings are

10(2,0) 5(−1,1) 5
H

(−1,−1) 5(−1,1) 1(0,−2) 5
H

(1,1) 5H
(1,1) 5

H

(−1,−1) , (2.5)
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where the indices indicate the charge under the global U(1)a and U(1)b symmetries, re-

spectively. The Yukawa coupling

10(2,0) 10(2,0) 5
H

(1,1) (2.6)

which contains the up-flavour quark coupling is perturbatively forbidden. An instanton

with global U(1) charge (−5,−1) under U(1)a and U(1)b can induce the missing coupling.

As shown in [33] one needs three different instantons with global U(1) charge (−5,−1) to

give masses to all three families. Note though that the non-perturbative generation of the

Yukawa coupling 10 10 5H suggests that the bottom quark is heavier than the top quark,

which is in contrast to experimental observations.

The perturbative realization of the Dirac neutrino mass term suggests that the neutrino

masses are of the same order as the other matter field masses. However, experiments

show that the neutrinos masses are 10−10 to 10−16 times smaller than the other matter

field masses. The see-saw mechanism gives a natural explanation for the smallness of the

neutrino masses. A necessary ingredient for the seesaw mechanism is a large Majorana

mass term

1(0,−2) 1(0,−2) (2.7)

which can be induced non-perturbatively by an instanton [15, 16, 23, 34–37] with global

U(1) charges (0, 4). If the Majorana mass term is in the range (1012 − 1015)GeV one

obtains neutrino masses of the observed order (10−2 − 1) eV .

Let us comment on potential phenomenological drawbacks of this 2-stack quiver.

(1) The perturbatively realized coupling 10 55
H

contains the Yukawa coupling giving

masses to the down-flavour quarks. On the other hand the coupling 1010 5H, which

contains the Yukawa coupling that gives masses to the up-flavour quarks is pertur-

batively forbidden. It is induced by an instanton and thus suppressed compared to

the coupling 10 5 5
H

. This suggests that for this quiver the bottom quark is heavier

than the top quark which is in contrast to experimental observations.

(2) The instanton inducing the perturbatively missing Yukawa coupling 10 105H also

generates the dangerous dimension 5 operator 1010 10 5 [1]. For the Georgi-Glashow

SU(5) model the dimension 5 operator 10 10 105 includes qL qL qL L and uR uR dR ER,

which if not sufficiently suppressed lead to a disastrous proton decay rate. Since the

Yukawa coupling 10 105H is responsible for the up-flavour quark coupling we expect

only a minor suppression from the instanton, which is not enough to saturate the

bounds on the proton lifetime.

(3) The chiral spectrum displayed in table 2 allows for a massless U(1)X given in equa-

tion (2.4). A massless U(1)X directly contradicts observations, and furthermore its

charge explicitly forbids Majorana neutrino masses, both perturbatively and non-

perturbatively. This model may be viable if the U(1)X photon acquires a sufficiently

large mass, and the mechanism responsible for that might also generate neutrino

– 5 –



J
H
E
P
1
2
(
2
0
1
0
)
0
1
1

Sector Matter All Transformation Multiplicity

aa′ 10 a 3

ab 5 (a, b) 3

ac 5H + 5
H

(a, c) + (a, c) 1 + 1

bc 1 (b, c) 3

Table 3. Spectrum for SU(5) three stack quiver with perturbative µ-term.

masses, but it would be preferable to achieve all that directly in string theory. This

is possible if the U(1)X acquires a mass from axion mixing. Note that this can hap-

pen even though the conditions (A.6) and (A.7) are satisfied, since the latter are just

necessary, but not sufficient, conditions to have a massless U(1)X .3

As we will show momentarily all these problems can be overcome if one allows for an addi-

tional U(1) stack c. The U(1)c becomes again massive via the Green-Schwarz mechanism

and survives only as a global symmetry. The second problem, namely that the instanton

that induces the desired Yukawa coupling 1010 5H generically also generates dimension

five proton decay operators, can be avoided if the matter fields 5 carry some global charge

U(1)b while the Higgs field 5H is rather charged under the global U(1)c. As we show

in appendix B if we furthermore want to avoid the presence of R-parity violating cou-

plings 10 5 5 and 5 5H there are only two different types of choices for the origins of the

fields transforming non-trivially under the SU(5). Within each choice there are different

realizations of the Georgi-Glashow model, depending on the transformation behaviour of

the right-handed neutrinos which are singlets under the SU(5). In appendix B we derive

all three-stack quivers that mimic the Georgi-Glashow model, pass all string consistency

conditions as well as some minimal phenomenological requirements.

In the following we will discuss for each type one representative. We first discuss the

configuration in which the µ-term is realized perturbatively

2.1.1 Three-stack quiver with perturbatively realized µ-term

In table 3 we display the origin of the respective matter fields for a realization of the Georgi-

Glashow SU(5) model based on three stacks of D-branes. It corresponds to configuration

6 in table 9 in appendix B.

In contrast to the realization based on two stacks of D-branes here we have only two

perturbatively realized couplings, namely

5(−1,1,0) 1(0,−1,1) 5
H

(1,0,−1) 5H
(1,0,−1) 5

H

(−1,0,1) , (2.8)

where the subscripts again denote the respective global U(1) charges. The couplings

10(2,0,0) 10(2,0,0) 5
H

(1,0,−1) and 10(2,0,0) 5(−1,1,0) 5
H

(−1,0,1) (2.9)

3As discussed in appendix A the condition of having a massless U(1) imposes constraints on the cycles

the D-branes wrap. However, these constraints imply restrictions on the transformation behaviour of the

chiral matter. Nevertheless the latter are just necessary conditions not sufficient.
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can be induced non-perturbatively via the instantons E1 and E2 which have global U(1)-

charge (−5, 0, 1) and (0,−1,−1), respectively. To get the desired hierarchy between the

up-flavour and down-flavour quark masses we expect the ratio to be4

e−S
E1

ins : e−S
E2

ins ≃ 100 . (2.10)

Note that the neutrino Dirac mass term is realized perturbatively. Thus in order to obtain

the observed small neutrino masses we expect the presence of a large Majorana mass term

for the right-handed neutrinos, which can be induced by an instanton E3 carrying global

U(1) charge (0, 2,−2). With the string scale of the order 1018 GeV and a suppression factor

e−S
E3

ins ≃ 10−5 we obtain via the seesaw mechanism neutrino masses in the observed range.

Let us now discuss if this setup indeed overcomes all the issues encountered for the

2-stack realization. First note that for the three-stack setup displayed in table 3 both

couplings, the 10 105H as well as 105 5
H

are perturbatively forbidden. In case the sup-

pression factor of the instanton inducing the latter one is larger than the suppression factor

of the instanton generating the coupling 10 10 5H one gets the desired hierarchy between

top and bottom quark masses. Furthermore, the instanton inducing the coupling 10 105H

does not carry the right global charge to induce the dangerous dimension 5 operator, which

could lead to a disastrous proton decay rate. Finally, this setup does not satisfy the nec-

essary conditions on having a massless U(1), thus all linear combinations of U(1)a, U(1)b
and U(1)c are massive. That allows the presence of the Majorana mass term for the right-

handed neutrino induced by a D-instanton, which was potentially forbidden in the 2-stack

realization.

2.1.2 Three-stack quiver with non-perturbative µ-term

Again we discuss here only one representative of all the possible solutions displayed in

appendix B. The chiral spectrum of this quiver is displayed in table 4 and corresponds to

configuration 9 in table 10 in appendix B.

For this quiver the only perturbatively realized Yukawa coupling is

10(2,0,0) 5(−1,1,0) 5
H

(−1,−1,0) , (2.11)

which gives masses to the down-flavour quarks. The other desired couplings

10(2,0,0) 10(2,0,0) 5
H

(1,0,1) 5H
(1,0,1) 5

H

(−1,−1,0) (2.12)

5(−1,1,0) 5
H

(1,0,1)1(0,2,0) 5(−1,1,0) 5
H

(1,0,1)1(0,0,2)

are induced via the D-instantons E1, E2, E3 and E4 which carry global U(1) charges

E1 = (−5, 0,−1) E2 = (0, 1,−1) E3 = (0,−3,−1) E4 = (0,−1,−3) . (2.13)

4To be precise the instanton E1 induces only masses for one up-flavour quark family, thus one needs

two additional instantons giving masses to the other two up-flavour quark families. Generically they have

different suppression factor. Thus the ratio e−S
E1

ins : e−S
E2

ins ≃ 100 explains the hierarchy between the top

and bottom-quark mass.
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Sector Matter All Transformation Multiplicity

aa′ 10 a 3

ab 5 (a, b) 3

ab′ 5
H

(a, b) 1

ac′ 5H (a, c) 1

bb′ 1 b 1

cc′ 1 c 2

Table 4. Chiral spectrum for SU(5) model based on three stacks of D-branes with non-perturbative

µ-term.

The first term in (2.12), induced by the instanton E1, gives masses to the up-flavour quarks

as well as to the charged leptons. Since the top-quark is the heaviest Standard model field

particle the suppression of the instanton must be very small. The suppression factor of E2

on the other hand should be rather large to account for a µ-term of the order 100GeV .

The instantons E3 and E4 induce the Dirac neutrino masses. Together with D-instantons

that generate Majorana masses for the right-handed neutrinos they give via the see-saw

mechanism the observed small neutrino masses.5

Let us again discuss whether this quiver indeed overcomes all the issues encountered

for the two stack quiver. The major drawback of the two-stack quiver, namely that the

instanton that induces the desired Yukawa coupling 1010 5H also generates the danger-

ous dimension five operator 10 1010 5̄, is not a problem for this quiver. Also this quiver

like the 3-stack quiver discussed before does not exhibit any abelian symmetry that re-

mains massless. Thus all perturbatively missing terms can be generated via D-instantons.

However the perturbative realization of down flavour quark masses compared to the non-

perturbative up flavour quark mass suggests exactly the opposite mass hierarchy compared

to the observed one. Let us point out though that both couplings are further suppressed

via world-sheet instantons which after all can in principle suppress the down-flavour quark

masses such that the top-quark is indeed as observed the heaviest standard model particle.

The latter is however not the generic case and usually requires some amount of fine-tuning.

2.2 Global realization of a three-stack quiver

Here we present a global realization of a three-stack quiver which is similar to the ones we

discussed above. We will see that one can indeed find a rigid O(1) instanton that exhibits

the correct zero mode structure to induce the perturbatively forbidden Yukawa coupling

10 10 5H. The model is based on RCFT which are called Gepner orientifolds.

Gepner orientifolds are constructed by replacing the geometric notion of curled extra

dimensions to form a compact manifold, by an algebraic procedure where the internal sector

consists of tensor products of N = 2 minimal superconformal models with total central

5Large suppression factors of E3 and E4 can account for the smallness of the neutrino mass [38]. In that

case no Majorana masses for the right-handed neutrinos should be generated.
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charge c = 9 [39–44].6 In this context, there has been an extensive search for all possible

embeddings of the standard model gauge theory in D-brane configurations [48–51].

Before presenting a concrete example let us describe our search for realistic three-stack

quivers, which is based on a previous study performed in [50]. There the authors searched

first for local configurations of D-brane boundary states that reproduce the chiral spectrum

of the MSSM or extensions of it, such as SU(5) GUT’s. These local D-brane boundary state

configurations were required to not saturate the tadpole constraints and moreover give rise

to a hypercharge embedding that is compatible with the MSSM hypercharge assignment

and does not become massive via the Green-Schwarz mechanism. In a few cases the D-

brane boundary state configuration that gives rise to the MSSM, called visible sector in the

following, was enough to satisfy the tadpole constraints. However, generically one needs

additional boundary states to cancel the tadpoles. In the search performed in [50] the

authors required that these additional boundary states, usually called hidden sector, are

added in such a way that one does not have any chiral matter fields charged with respect

to gauge groups in the visible and hidden sector, simultaneously. With this approach the

authors found many globally consistent configurations, that give realistic chiral spectra,

where the latter include also SU(5) GUT and Pati-Salam-realizations.

In this work we follow a similar path. We take the subset of local configurations that

give rise to a SU(5) GUT-like spectrum and analyze the superpotential by looking at the

global U(1) charges of the respective matter fields. In case a desired Yukawa coupling is

missing we are looking for a rigid O(1) instanton that has the correct zero mode structure

to induce the missing coupling. To be more precise we identify all instanton boundary

states that are orientifold invariant and do not exhibit any additional neutral fermionic

zero modes apart from the two universal θα modes [20–23]. Then we further require that

the intersection pattern of this instanton boundary state with the visible D-brane boundary

state configuration is in such a way that it gives the correct charged zero mode structure

to induce the perturbatively forbidden, but desired coupling.

Once such an instanton is found we are looking for a hidden sector that cancels the

tadpoles in such a way that it does not intersect with the instanton. This way it is ensured

that the instanton does not exhibit any additional zero modes charged with respect to the

hidden sector, which would kill the instanton contribution to the perturbatively missing

coupling. In general, an already known solution to the tadpole cancellation condition is not

very likely to satisfy this criterion, so one usually has to perform a new search for hidden

sectors, imposing the instanton zero-mode constraint. Note that this constraint is rather

strong, since it demands complete absence of zero-modes, even vector-like ones.

In addition to intersecting the instanton brane, the hidden sector branes may also

intersect the observable matter brane. This is usually indeed what happens, although

there are rare examples where there is no massless observable-hidden matter at all [50],

or where no hidden sector is needed to cancel all tadpoles [49]. In the latter case, the

problem is of course already solved, but then one looses the possibility of using the hidden

sector for supersymmetry breaking. Apart from these rare cases, the common procedure

6For some initial studies on closed Gepner constructions see [45–47].
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is to allow observable-hidden matter, provided it is completely vector-like with respect to

the entire gauge group. In that case, the additional matter may acquire a mass without

any gauge symmetry breaking. In principle, one may relax the above restriction further

and even allow observable-hidden matter that is chiral, but that becomes vector-like if

the hidden sector gauge symmetry is removed. Then it depends on further details of the

hidden sector dynamics what ultimately happens to the exotic observable-hidden matter,

but it is not difficult to think of scenarios where it becomes sufficiently massive. In explicit

examples, the number of tadpole solutions increases by several orders of magnitude under

these relaxed conditions in comparison to the strict ones (i.e. those allowing only vector-

like observable-hidden matter). Our attitude here is that chiral observable-hidden matter

of this kind is a lesser evil than superfluous instanton zero modes, and therefore we use

the relaxed condition, after checking that the strict one does not generate any solutions.

Previous searches have shown that under the strict observable-hidden conditions, instantons

with the correct zero mode structure to generate desired interactions [1, 23] are very rare.

In [50] the authors found 7 different semi-realistic three-stack realizations of the SU(5)

GUT’s. In this search they allowed also for O(1) gauge groups for the additional third

D-brane stack. Let us also point out that this subset mainly contains setups in which the µ

term is perturbatively forbidden.7 Thus configurations of the type discussed 2.1.1 are not

contained in the search we will perform. We leave it for future work to extend the search of

three-stack quivers by also including quivers in which the µ-term is perturbatively realized.

Performing the analysis in the fashion described above we find one type of configuration

that gives rise to a semi realistic model and exhibits a rigid O(1) instanton generating the

perturbatively forbidden Yukawa coupling 10 10 5H. The visible sector consists of three

stacks of branes giving rise to the gauge symmetry

U(5)a × U(1)b × O(1)c . (2.14)

The spectrum of a specific model is displayed in table 5 , where any constituent D-brane

boundary state of the hidden sector is denoted by h. For the sake of clarity we do not

display any specifics of the hidden sector. For the details, such as the hidden sector gauge

symmetry as well as the spectrum within the hidden sector we refer to appendix C.

Note that for this particular configuration there are three pairs of Higgs and no neu-

trinos. Moreover the hidden sector intersects chirally with the visible sector, giving rise

to exotics. The net number of SU(5) exotics is as expected zero, thus they are non-chiral

with respect to the GUT gauge symmetry. However, the exotics carry different charge

with respect to the hidden gauge groups. They only acquire mass after a breakdown of the

hidden gauge group or via D-instantons inducing mass terms for them.

Let us turn to the Yukawa couplings. The only perturbatively realized coupling is the

7In the search performed in [50] three-stack quivers with a perturbatively realized µ-term were considered

as two stack quivers, rather than three stack quivers, due to the fact that the chiral spectrum arises from

only two stacks. From the available data we can therefore not decide if a third brane with the right

properties can be found.
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H
E
P
1
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(
2
0
1
0
)
0
1
1

Sector Matter All Transformation Multiplicity

aa′ 10 a 3

ab 5 (a, b) 3

ab′ 5
H

(a, b) 3

ac 5H (a, c) 3

ah 5ex (a, h) 4

ah 5
ex

(a, h) 4

Table 5. Visible spectrum of a globally consistent SU(5) model based on three stacks of D-branes.

down flavour coupling

10(2,0,0) 5(−1,1,0) 5
H

(−1,−1,0). (2.15)

For the up flavour Yukawa coupling

10(2,0,0) 10(2,0,0) 5
H

(1,0,1) (2.16)

which is perturbatively absent we find an instanton that wraps a rigid orientifold invariant

cycle that has the following intersection pattern with the visible branes

πE ◦ πa = 1 πE ◦ πb = 0 πE ◦ πc = 1 . (2.17)

Thus it gives the correct uncharged and charged zero mode structure to induce the desired

but perturbatively missing coupling. Note also that this instanton does not intersect with

any of the hidden D-brane boundary states and thus does not exhibit any zero modes

charged with respect to the hidden sector that would spoil the generation of 10105H. The

suppression of the instanton turns out to be too large to account for the observed masses

of the standard model. Let us stress though that this analysis is performed at the exact

RCFT point and moving away from this exact point in moduli space might improve the

situation.

Let us turn to the µ-term

5H
(1,0,1) 5

H

(−1,−1,0) (2.18)

which is perturbatively forbidden and can be generated by an instanton with the intersec-

tion pattern

πE ◦ πa = 0 πE ◦ πb = −1 πE ◦ πc = 1 (2.19)

In order to be compatible with phenomenology one expects the instanton to exhibit a

large suppression factor. Unfortunately, for this specific example we do not find any rigid

O(1) instantons with such intersection pattern.
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Representation SM matter embedding Multiplicity U(1)X

10 (qL, dR, νR) 3 1
2

5 (L, uR) 3 −3
2

1 eR 3 5
2

5H + 5H (Hd, Td) + (Hu, Tu) 1 + 1 −1 1

10H + 10H (∆) + (∆) 1 + 1 1
2 − 1

2

Table 6. Spectrum for the D-brane realization of the flipped SU(5) model.

Despite its phenomenological problems, such as absence of µ-terms and Dirac mass

term for the neutrinos, a highly suppressed top-quark mass, as well as the presence of

additional exotics that are chiral with respect to the hidden sector but not with respect

to the SU(5), this configuration serves as global realization of the SU(5) quivers discussed

above in which one can find an instanton that satisfies the severe zero mode constraints to

induce a perturbatively missing coupling 10105H. Let us stress again that we looked only

in a small phenomenologically interesting subset of SU(5) quivers while other appealing

quivers with a perturbatively realized µ-term were not covered by this search. Additionally,

we only allowed for rigid O(1) instantons to give non-perturbative contributions to the

superpotential. However, as shown in [24–27] also multi-instanton configurations and so

called rigid U(1) instantons [25, 28–32] can generate some of the missing Yukawa couplings.

We leave it for future work to extend the here performed analysis by extending the class of

local configurations and by including additional effects for the non-perturbative generation

of desired couplings.

3 Flipped SU(5) model

In this section we discuss the realization of supersymmetric flipped SU(5)-GUT models in

orientifold models. Before we present and analyze specific D-brane configurations which

give rise to flipped SU(5) gauge theory in four-dimensional space-time let us give a brief

introduction to the flipped SU(5) model. It consists of a non-abelian part SU(5) accom-

panied with an abelian U(1)X gauge symmetry. The standard model matter fields appear

as antisymmetric 101

2

, anti-fundamental 5−3

2

and singlet 15

2

under the SU(5), where the

subscript denote the charge of the respective representation under the U(1)X . In table 6 we

present the embedding of the standard model fields into the flipped SU(5) multiplets. In

addition to the electroweak Higgs fields 5H and 5H the flipped SU(5) model also contains

the Higgs fields 10H and 10H, whose presence is crucial for the breaking mechanism of

the GUT gauge symmetry down to the Standard model gauge symmetry. Note that the

spectrum assignment is similar to the one of the Georgi-Glashow model with the exchange

uR ↔ dR eR ↔ νr Hu ↔ Hd . (3.1)

– 12 –



J
H
E
P
1
2
(
2
0
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Sector Matter All Transformation Multiplicity U(1)X

aa′ 10 a 3 1
2

ab 5 (a, b) 3 −3
2

ab′ 5H + 5
H

(a, b) + (a, b) 1 + 1 −1 1

bb′ 1 b 3 5
2

aa′ 10H + 10
H

a +
a

1 + 1 1
2 − 1

2

Table 7. Chiral spectrum for the flipped SU(5) model.

The hypercharge is a subgroup of SU(5) × U(1)X , given by

U(1)Y = −
1

5
diag

(
−

1

3
,−

1

3
,−

1

3
,
1

2
,
1

2

)
+

2

5
U(1)X . (3.2)

In addition to the gauge symmetries there is a discrete Z2 symmetry 10H → −10H. Then

the superpotential takes the form

W = 105 5
H

+ 1010 5H + 55H1 + 5H 5
H

+ 10H 10H 5H + 10
H

10
H

5
H

. (3.3)

Here the first three terms give masses to the standard fields after the electroweak Higgses

acquire a vev, the fourth term is the µ-term, and the last two terms are crucial for the

doublet-triplet splitting after the component ∆45 and ∆45 of 10H and 10
H

, respectively,

acquire a vev of the GUT scale.

3.1 D-brane realization

Again the most economical way to embed the flipped SU(5) model in a D-brane con-

figuration is via two stacks of D-branes a, b. Stack a contains 5 D-branes while stack b

consists of just a single D-brane. Thus the resulting gauge symmetry is then U(5)a×U(1)b,

where the abelian U(1)a and U(1)b are generically anomalous and become massive via the

Green-Schwarz mechanism. However, in order to mimic the flipped SU(5) model the lin-

ear combination

U(1)X =
1

4
U(1)a −

5

4
U(1)b (3.4)

has to remain massless, thus has to satisfy the constraints (A.6) and (A.7) displayed in

appendix A. In table 7 we display the origin of the respective matter fields for the realization

of the flipped SU(5) model based on two stacks of D-branes.

Let us again discuss the superpotential terms, beginning with the terms that give

eventually masses to the standard model fields. The perturbatively realized couplings are

10(2,0) 5(−1,1) 5
H

(−1,−1) 5(−1,1) 1(0,−2) 5
H

(1,1) 5H
(1,1) 5

H

(−1,−1) . (3.5)

They contain the Yukawa couplings that give masses to the up-flavour quarks, the charged

leptons as well as the neutrinos and also the µ-term. Here the subscripts denote again the
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charges under the global U(1)’s. However the coupling

10(2,0) 10(2,0) 5
H

(1,1) (3.6)

whose presence is required to give masses to the down-flavour quarks is perturbatively

forbidden. It can be generated by an instanton which carries the charge (−5,−1) under

the global U(1)’s. Since the instanton induced Yukawa matrix factorizes one needs three

different instantons to generate masses for all three families. Thus the non-perturbative

nature of the coupling 10 10 5H cannot only explain the observed mass hierarchy between

top and bottom quarks but also potentially explains the hierarchy between the different

down-flavour families.

Let us now turn to the superpotential terms which are crucial for the GUT-breaking

down to the Standard model gauge symmetry. Both terms

10H
(2,0) 10

H
(2,0) 5

H
(1,1) 10

H

(−2,0) 10
H

(−2,0) 5
H

(−1,−1) (3.7)

whose presence is crucial are perturbatively forbidden. While the first one will be generated

by the same instanton which also generates the Yukawa coupling 1010 5H8 an instanton

with charge (5, 1) under the global U(1) charges can induce the perturbatively missing

coupling 10
H

10
H

5
H

.

While this D-brane quiver after taking into account the non-perturbative effects can

in principle mimic the flipped SU(5) model it has some phenomenological flaws, which we

will discuss below.

(1) The perturbatively realized Yukawa coupling 10 55
H

contains the Yukawa couplings

giving masses to the up-flavour quarks and the neutrinos. Thus they are expected to

be of the same order which is in contradiction to experiments that observe a hierarchy

of 10−16 between the top- quark mass and the neutrino masses. Note though that

this is not a problem due to the D-brane realization but rather a problem within

the flipped SU(5) model. In [52] the authors present a flipped SU(5) model which

allows for additional singlets Φ, which are uncharged under the SU(5) as well as

under the U(1)X . These singlets couple to the left-handed neutrinos via the coupling

10
H

10Φ. After the 10
H

gets a vev on the order of the GUT-scale the Yukawa

coupling effectively becomes a large Majorana neutrino mass which via the seesaw

mechanism may explain the smallness of the neutrino masses. However for the D-

brane realization of the flipped SU(5) model with only two D-brane stacks one cannot

accommodate a matter field which is not charged under the SU(5) and the U(1)X .9

8This coupling will be actually induced by a fourth instanton with the same charge under the global

U(1)’s as the instantons inducing the Yukawa coupling 10105
H. Note that the Higgs 10

H are basically

a fourth family and thus in order to induce the Yukawa coupling 1010 5
H for all three families as well as

for the Higgs fields 10
H one needs four different instantons with the global U(1)-charge (−5,−1). Note

also that this potentially implies that one has to perform a field redefinition in order to have the correct

superpotential.
9In principle the desired singlet could be an open string moduli transforming as an adjoint under the

U(1)b.
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(2) As already discussed in [1] an instanton inducing the coupling 10 105H also generates

the dimension 5 operator 10 1010 5. The latter contains the dangerous dimension 5

operator qL qL qL L which if not sufficiently suppressed leads to a disastrous proton

decay rate. To match the observed hierarchy between the top-quark and bottom-

quark mass we expect the instanton suppression on the order of 10−2, which is not

enough to saturate the bounds on the proton lifetime. Moreover, in the quiver dis-

played in table 7 the dimension 5 operator 105 51 is perturbatively realized. This

operator includes the dimension five operator uR uR dR ER, which also has to be

highly suppressed to saturate the bounds on the proton lifetime. Since it is pertur-

batively realized and thus only suppressed by the string scale Ms it poses a serious

phenomenological problem and predicts a proton lifetime not compatible with exper-

imental observations.

(3) The quiver displayed in table 7 generically predicts the presence of the terms

10(2,0) 10
H

(−2,0) 10H
(2,0) 10

H

(−2,0). (3.8)

Note that only one linear combination 1̃0 =
∑

I cI10
I + cH 10H, where I runs over

all three families, becomes massive. However, independent on whether the linear

combination 1̃0 is interpreted as the Higgs 10H or as one of the three family matter

fields 10 the presence of a mass term of the form (3.8) poses serious problems. In

the latter case it would induce a tadpole after 10H acquires a vev, indicating an

instability of the vacuum. For the former situation in which 1̃0 is interpreted as the

Higgs 10H the mass term would forbid the simultaneous acquirement of a vev for

10H and 10
H

, otherwise supersymmetry is broken at the GUT scale.

Note, however that the mass term 10H 10
H

is induced via the three-point couplings

(Φ5 − Φ1) 10
H

10H (3.9)

where Φ5 and Φ1 denote the scalar fields transforming in the adjoint of the overall

U(1) of the U(5) D-brane stack and of the U(1) D-brane stack. These vevs are related

to the position in the internal space and in case they take the same value the mass is

zero and the problematic term (3.8) is absent. Generically it requires a large amount

of fine-tuning to avoid the presence of the mass terms of the form (3.8).

(4) In the quiver displayed in table 7 the coupling

10H
(2,0) 5(−1,1) 5

H

(−1,−1) (3.10)

is perturbatively realized. Note that the field redefinition which is necessary to ensure

that only the Yukawa couplings 10 10 5H and 10H 10H 5H are present but no mixed

terms 10H 10 5H, which would lead to large masses for some of the MSSM matter

fields cannot ensure the absence of the Yukawa coupling (3.10) (see footnote 8).

However, after the component ∆45 of 10H acquires a vev of the GUT scale the

presence of the term (3.10) would give rise to a large R-parity violating term Hu L,

which is not compatible with experimental observations.
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While the problem (3) can be avoided with some amount of fine-tuning the issues (1)

and (2) can be overcome by allowing for another U(1) brane stack, analogously to the

Georgi-Glashow D-brane realization. However, even in a three-stack realization one faces

the serious issue of the presence of the superpotential term 10H 55
H

that leads to the large

R-parity violating term LHu, thus giving Hu and L mass of the order of MGUT , after the

component ∆45 of 10H acquires a vev of the GUT scale.

For specific string compactifications there may exist additional symmetries which

emerge from the compactification manifold. In case such a symmetry forbids the unde-

sired couplings the quiver displayed in table 7 is a viable D-brane configuration. However,

let us emphasize that such symmetries may also forbid some of the desired couplings.

Moreover, for a generic compactification we do not expect such symmetries to appear.

Summarizing we have shown that D-brane realization of the flipped SU(5) has serious

phenomenological problems. Some of the problems can be overcome by allowing additional

D-brane stacks. However for a generic string embedding the D-brane quivers mimicking

the flipped SU(5) model exhibit the superpotential term 10H 55
H

, that gives rise to an

R-parity violating term of the order of MGUT .

4 Conclusions

In this work we discussed the realization of SU(5) GUT’s in the framework of orientifold

compactifications. We analyze how in such compactifications the superpotential can be

accommodated, where we assume that perturbatively non-realized couplings are gener-

ated via D-instanton effects. Often times the D-instanton that induces a desired Yukawa

coupling also generates a coupling that poses phenomenological problems. For the SU(5)

orientifold realizations the coupling 10105H is perturbatively forbidden, and thus needs

to be realized non-perturbatively. However, in the most economical SU(5) realization the

D-instanton giving rise to the 10105H induces also the dangerous dimension 5 operator

1010105. The presence of the latter would lead to a disastrous proton decay rate.

We show that this problem can be overcome by allowing for an additional D-brane

stack. We display viable SU(5) quivers based on three stacks of D-branes and investigate

them with respect to their phenomenology. Furthermore, we present global Gepner model

realizations of these quivers. These models exhibit D-instantons that satisfy the severe

constraints on the zero mode structure to induce the coupling 10105H. Unfortunately the

instanton suppressions are too high to be phenomenologically viable. Nevertheless, these

examples serve as global realization of the phenomenological viable SU(5) quivers. The

performed search of global realizations contained only a small subset of viable quivers and

it would be interesting to extend the search by also allowing quivers with a perturbatively

realized µ-term.

Finally, we perform an analogous analysis for flipped SU(5) models. In the absence

of any additional geometric symmetries of the compactification manifold D-brane quivers

mimicking the flipped SU(5) model exhibit severe phenomenological problems. The 10H

required for the intriguing SU(5) breaking mechanism generically couples to the standard
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model fields. After acquiring a vev of the GUT scale it induces large masses for the standard

model fields not compatible with observations.
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A String consistency conditions and phenomenological constraints

In this appendix, we briefly summarize string consistency conditions that D-brane quivers

have to satisfy. The latter contain constraints arising from tadpole cancellation and con-

straints that have to be fulfilled in case a linear combination
∑

x qxU(1)x should remain

massless and thus survive as abelian gauge symmetry in the low energy effective action.

For a more detailed description, we refer the reader to [53] (for an analogous analysis

see [49, 54]).10

A.1 Tadpole cancellation

The tadpole cancellation condition, given by
∑

x

Nx

(
πx + π′

x

)
= 4πO , (A.1)

is a condition on the cycles that the D-branes wrap. Here πx, π′
x and πO denote the

homology class of the cycles the brane x, its orientifold image x′ and the orientifold O wrap.

Moreover, Nx is the number of D-brane for stack x. Multiplying the tadpole cancellation

condition with the homology class πa corresponding to the cycle wrapped by the D-brane

stack a and using the chiral spectrum displayed in table 8 one derives constraints on the

transformation behaviour of the chiral matter given by

#
(

a

)
+ (Na − 4)#

(
a

)
+ (Na + 4)#

(
a

)
= 0 , (A.2)

Note that for Na > 2 this condition is the usual anomaly cancellation condition for non-

abelian SU(Na) gauge symmetries. For Na = 2 it is a string-theoretic condition for anti-

symmetric U(2) tensors that does not correspond to any field-theoretic anomaly condition.

10For analogous work see [1, 32, 37, 55–61]. First local (bottom-up) constructions were discussed in [62–

64].

– 17 –



J
H
E
P
1
2
(
2
0
1
0
)
0
1
1

Representation Multiplicity

a
1
2 (πa ◦ π′

a + πa ◦ πO6)

a
1
2 (πa ◦ π′

a − πa ◦ πO6)

( a, b) πa ◦ πb

( a, b) πa ◦ π′
b

Table 8. Chiral spectrum.

However, since these anti-symmetric tensors carry a charge under the phase symmetry

of U(2), they can be distinguished from SU(2) singlets. Therefore this condition can be

imposed on the field theory spectrum, and it must be imposed to have any chance to find

a string theory embedding. For Na = 1 the anti-symmetric tensor cannot even be detected

in the massless spectrum, and hence a given field theory spectrum may correspond to a

string theory spectrum with any number of chiral anti-symmetric tensors (where “chiral” is

defined as for Na > 2), which are infinite towers with a vanishing ground state dimension.

However, since that number must be an integer, this still imposes a condition

#( a) + 5#( a) = 0 mod3 . (A.3)

A.2 Massless U(1)’s

In order to have a massless linear combination U(1)11

U(1) =
∑

x

qx U(1)x (A.4)

the cycles that the D-brane stacks x wrap have to satisfy [63]
∑

x

qxNx(πx − π′
x) = 0 . (A.5)

Analogously to the tadpole cancellation, multiplying both sides with the homology class πa

and using the relations displayed in table 8 one obtains constraints on the transformation

properties of the chiral matter. They take the form
∑

x6=a

qx Nx#
(

a, x

)
−

∑

x 6=a

qx Nx#
(

a, x

)
= qa Na

(
#

(
a

)
+ #

(
a

))
(A.6)

for Na > 1. The case Na = 1 requires a little more care due to the fact that in massless

spectrum the antisymmetric tensor is absent. Using (A.2) to express the “would be”

antisymmetrics in terms of the fundamentals and symmetrics one obtains

∑

x6=a

qx Nx#
(

a, x

)
−

∑

x6=a

qx Nx#
(

a, x

)
= qa

#( a) + 8#( a)

3
. (A.7)

11Note that higher-dimensional anomalies might affect the four-dimensional theory upon decompactifica-

tions and render masses to gauge bosons which are free of four dimensional anomalies [65–68].
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Since the flipped SU(5) model requires an additional abelian gauge symmetry, namely

U(1)X we require these constraints on the chiral spectrum of the flipped SU(5) model to

be satisfied by the linear combination U(1)X .

A.3 Derivation for RCFT models

The foregoing derivations were made using the language of D-branes wrapping cycles on a

manifold. Here we will show how the same formulas can be derived using boundary and

crosscap states on RCFT orientifolds. For equation (A.2) it suffices to refer to [54]. In [48]

this was worked out for the simple current boundary state formalism developed in [69].

Equation (A.6) can be derived as follows. The condition that a massless U(1) boson

does not couple to an RR-axion is [48]

∑

x

qxNx(Rx(m,J) − Rxc(m,J)) = 0 , (A.8)

where qx and Nx are as above, and Rx(m,J) are the boundary coefficients as defined in [69].

Here x labels distinct boundary state, and (m,J) labels Ishibashi states, closed string states

that can propagate in the transverse channel of an annulus, where m refers to a state in the

bulk theory, and J is a degeneracy label. Which m’s appear and with which degeneracy

is determined by the modular invariant partition function. Eq. (A.8) must be satisfied

for every Ishibashi state which contains massless spinors.12 This is determined only by m

and not by J .

In order to derive (A.6) it turns out that we need only a subset of these condi-

tions namely

∑

x

qxNx(Rx(m,J) − Rxc(m,J))wm = 0 (A.9)

where wm is the Witten index, counting the difference of spinors and anti-spinors in a

character. No sum over m is implied. This condition is a subset of (A.8) because in general

there are some Ishibashi states with an equal number of spinors and anti-spinors, which

would contribute to U(1) mass, but not to (A.9). Hence the condition we will derive is a

necessary, but not sufficient condition for a vanishing U(1) mass.

We now perform a transformation from the transverse channel to the direct channel of

the annulus, in a completely analogous way as the derivation of cubic anomaly cancellation

from tadpole cancellation. The Witten indices transform exactly like characters, but are

constants. Hence under this transformation we get wm =
∑

i wiSim, where S is the modular

transformation matrix. Now we multiply the equations with a factor

∑

J ′

Ra(m,J ′)g
Ω,m
J ′J

S0m

, (A.10)

12In [48] it is stated erroneously that this condition should hold for all Ishibashi states. However, in

the actual standard model search presented in this paper, the condition was limited to Ishibashi states

containing massless spinors.
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where gΩ,m is the Ishibashi metric [69] on each degeneracy space. Finally we sum over m

and J to obtain

∑

x

qxNx

∑

i

wi

∑

m,J ′,J

SimRa(m,J ′)g
Ω,m
J ′J Rx(m,J)

S0m

− (x → xc) = 0 . (A.11)

The last sum is precisely the expression for the annulus coefficients, and hence we get

∑

x

qxNx

∑

i

wi(A
i
ax − Ai

axc) = 0 . (A.12)

The contraction with the chiral characters wi turns this into the chiral intersection, i.e

the first term is precisely #( a, x) as defined above. This expression should hold for any

boundary state label a. If one chooses a label a that coincides with one of the labels x

which participates in the U(1) symmetry of interests (i.e. qaNa 6= 0), then one may write

∑

i

wiAi
aa =

1

2

∑

i

wi(A
i
aa + M i

a) +
1

2

∑

i

wi(A
i
aa − M i

a) =
(
#

(
a

)
+ #

(
a

))

Note that the sum in (A.8) is over pairs (x, xc) of conjugate boundary labels, labelled by

x. Furthermore, if (A.12) holds for a label a it automatically holds for its conjugate ac,

because
∑

i wiA
i
ax = −

∑
i wiA

i
acxc. Hence we can use the same basis of pairs (a, ac) for

all boundary labels, and then only the case x = a can occur. The final result is then indeed

precisely (A.6).

Note that using the completeness condition for boundaries [70],
∑

a R∗am,JR∗am′,J ′ =

δm,m′δJ,J ′ , one can invert the derivation, so that (A.9) can be derived from (A.6). How-

ever (A.8) does not follow, and hence, as already stated above, (A.6) is in general only

a necessary condition for masslessness of a U(1). We have examined in a few cases how

close it is to being sufficient. It turns out that very often the quantity Rx(m,J) − Rxc(m,J)

vanishes for all x if the Witten index of m is zero. This is true, for example, for all mod-

ular invariant partition functions and all orientifolds of the tensor products (3, 3, 3, 3, 3),

(3, 8, 8, 8), (6, 6, 6, 6) and (2, 2, 2, 2, 2, 2). Hence in all these cases (A.6) is actually sufficient,

provided all boundary labels a are taken into account. The tensor product (4, 4, 10, 10) pro-

vides some examples where Rx(m,J) − Rxc(m,J) does not vanish if wm = 0, but only for a

relatively small set of values of x. So cases where (A.6) is not sufficient are rare.

The practical use of (A.6) is in determining if a postulated brane configuration has

any chance of having a massless U(1) boson (for example Y ) in an explicit realization in

string theory. Once one has found such a realization, one might as well check (A.8) directly.

Hence in practice the set of labels a for which one uses it is just the set of branes appearing

in the postulated brane configuration. Then certainly it is just a necessary, and not a

sufficient condition.

This condition also plays a rôle in the discussion of charge violation by instantons.

Then a is a candidate instanton brane, and the left-hand side of (A.12) must be non-zero

to get the required charge violation. Clearly a non-vanishing charge violation implies that

the corresponding U(1) must be massive, but the converse is not necessarily true: for a
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massive U(1) it may happen that there are no branes that violate conservation of the

charge. This was pointed out already in [16] (in particular footnote 16 in that paper). We

see now that this can only happen if there are contributions to the vector boson mass from

Ishibashi states with a vanishing Witten index.

A.4 Phenomenological requirements

There are various phenomenological constraints which arise from experiments. We list

them below.

• All the Yukawa couplings that give masses to the three families are realized, either

perturbatively or non-perturbatively via D-instantons. Thus we require the presence

of the terms 10 10 5H, 10 55
H

and 55H1.

• For the flipped SU(5) model we require the presence of terms 10H 10H 5H and

10
H

10
H

5
H

which are crucial for the breaking pattern of the flipped SU(5) down to

the standard model gauge symmetry.

• We forbid any R-parity violating couplings 10 55 or 5 5H on perturbative or non-

perturbative level. Specifically that implies that none of the instantons whose pres-

ence is required to induce some of the missing but desired couplings induces also the

R-parity violating couplings.

• We forbid the presence of the dimension five operator 10 1010 5 on perturbative

or non-perturbative level. For the flipped SU(5) model we also require the absence

of the dimension five operator 10 551, again on perturbative and non-perturbative

level. As before that implies that none of the instantons whose presence is required

to induce some of the missing but desired couplings induces also these dimension five

operators.

• For the Georgi-Glashow D-brane realization often times an instanton which is re-

quired to generate a desired Yukawa coupling also induces a tadpole 1 and thus an

instability for the setup. We rule out any setup which requires the presence of such

an instanton.

B Georgi-Glashow realizations based on three stacks

In this appendix we present all 3-stack realizations of the Georgi-Glashow model that satisfy

all the string consistency conditions as well as all the phenomenological constraints laid

out in appendix A. We distinguish between two different types of setups, for the first type

the µ-term is perturbatively realized and for the second type the µ-term is perturbatively

forbidden and must be generated non-perturbatively.

In table 9 we display all possible solutions with exactly three right-handed neutrinos. In

the second line we display all possible origins for the matter fields.13 We find 12 different

13Note that this is true up to symmetries. For instance we take into account the symmetry under the

exchange of stack b with stack c. Moreover here we only display solutions with a perturbatively realized

µ-term.
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Solution #
10 5 5H 5

H
1

a (a, b) (a, c) (a, c) (b, c) (b, c) (b, c) (b, c) b b c c

1 3 3 1 1 0 0 0 0 0 0 0 3

2 3 3 1 1 0 0 0 1 0 1 0 1

3 3 3 1 1 1 0 0 0 1 0 0 1

4∗ 3 3 1 1 0 0 0 0 0 3 0 0

5 3 3 1 1 0 0 0 3 0 0 0 0

6 3 3 1 1 0 3 0 0 0 0 0 0

7∗ 3 3 1 1 3 0 0 0 0 0 0 0

8∗ 3 3 1 1 0 1 0 1 1 0 0 0

9∗ 3 3 1 1 0 0 0 0 3 0 0 0

10 3 3 1 1 0 1 0 0 0 1 1 0

11 3 3 1 1 1 0 0 1 0 0 1 0

12 3 3 1 1 0 0 0 0 0 0 3 0

Table 9. 3-stack quiver realizations of the Georgi-Glashow model with pert. µ-term.

D-brane configurations, where solutions marked with a ∗ potentially exhibit a massless

U(1). In section 2.1.1 we discuss in detail the phenomenology of the configuration 6.

In table 10 we display all possible 3 D-brane-stack realizations of the Georgi-Glashow

model in which the µ-term is not perturbatively realized. These satisfy the severe string

consistency constraints as well as the phenomenological conditions laid out in the pre-

vious appendix. Again solutions marked with a ∗ potentially exhibit a massless U(1).

In section 2.1.2 we discuss the configuration 9 as a representative with respect to their

phenomenology in detail.

C Globally consistent 3-stack model

Here we present globally consistent Gepner configurations that give rise to a Georgi-

Glashow-like structure and exhibit an instanton that induces the perturbatively missing

Yukawa coupling 10 105H. We find two different types of global realizations and we present

a representative of each here. Before doing so let us however explain the notation in the

tables to come.

In the first column the table displays the whole number of states for a particular sector.

The last column gives the net chirality of these states. The gauge groups are displayed

in the first row, where a V stands for fundamental, V̄ for anti-fundamental, S for the

symmetric, A for the anti-symmetric and Ad for the adjoint under the respective gauge

group. The column denoted by Ins represents the rigid O(1)-instanton which will induce

the Yukawa coupling 10 10 5H. Fields charged with respect to it denote the charged zero
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Solution #
10 5 5

H
5H 1

a (a, b) (a, b) (a, c) (b, c) (b, c) (b, c) (b, c) b b c c

1 3 3 1 1 0 0 0 1 0 0 0 2

2∗ 3 3 1 1 0 0 0 0 0 2 0 1

3 3 3 1 1 1 0 1 0 0 0 0 1

4∗ 3 3 1 1 0 0 0 2 0 1 0 0

5 3 3 1 1 1 0 0 1 1 0 0 0

6 3 3 1 1 0 0 1 0 2 0 0 0

7 3 3 1 1 1 0 0 0 0 1 1 0

8 3 3 1 1 0 0 2 0 0 0 1 0

9 3 3 1 1 0 0 0 0 1 0 2 0

Table 10. 3-stack quiver realizations of the Georgi-Glashow model with non-pert. µ-term.

modes. One can easily see that the representatives below indeed exhibit the correct charged

zero mode structure to induce the coupling 1010 5H.

C.1 Gepner orientifold of type I

We find 6 global realizations with gauge group U(5)×U(1)×O(1)×O(2)×O(1)×O(1)×

U(1) × O(1) × O(1) × U(3) where the first 3 gauge groups (the highlighted ones) denote

the visible sector. The 6 different global realizations differentiate only in their massless

spectrum in the hidden sector, the visible sector is for all 6 realizations the same.

Let us specify the Gepner orientifold. The internal sector of these models consists

of a tensor product of four copies of N = 2 superconformal minimal models with levels

ki = {1, 10, 22, 22}. This tensor product has 50 symmetric modular invariant partition

functions. The one of our interest yields a closed string spectrum characterized by Hodge

numbers h11 = 32, h12 = 20 and 237 singlets. These numbers identify it uniquely. This

MIPF allows 4 different orientifold choices, according to the prescription given in [69]. The

results below were obtained for one of these four (according to the labelling conventions

used in [50] this case corresponds to MIPF nr. 26, orientifold nr. 1). A representative of

these 6 realizations is displayed in table 11.

Here we divided the table into the following segments: the standard model fields (1-5),

where the neutrinos arise from the non-chiral sector displayed in line 5, the instanton zero

modes (6-7), chiral observable-hidden matter (8-15), non-chiral observable-hidden matter

(16-23), non-chiral observable rank two tensors (24-30), chiral matter within the hidden

sector (31-42), and non-chiral matter within the hidden sector (42-53).

Anti-symmetric tensors for O(1) and U(1) are shown even though their ground state

dimension vanishes. The multiplicities of these sectors are however well-defined, and they

manifest themselves at higher excitation levels and, if they are chiral, through the tadpole
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cancellation condition (A.2). Note that anti-symmetric tensors are important if a matter

brane is converted to an instanton brane, because they lead to additional zero-modes that

kill the amplitude. As is clear from the tables, they are completely absent for the instantons

we consider.

C.2 Gepner orientifold of type II

The difference to the six solutions above is that the hidden gauge symmetry is slightly

different. The whole gauge symmetry is U(5)×U(1)×O(1)×U(1)×O(2)×O(1)×O(2)×

O(1) × O(1) × O(1) × U(3), where again the first three gauge groups denote the visible

sector. We find 12 different solutions which have again the same spectrum in the visible

sector but different massless spectrum in the hidden sector. The Gepner orientifold is the

same as above. Below we display the spectrum of one representative.

Again we divide the table into the different segments: the standard model fields (1-5),

where the neutrinos arise from the non-chiral sector displayed in line 5, the instanton zero

modes (6-7), chiral observable-hidden matter (8-16), non-chiral observable-hidden matter

(17-24), non-chiral observable rank two tensors (25-31), chiral matter within the hidden

sector (32-41), and non-chiral matter within the hidden sector (42-59).
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Num. Mult. U(5) U(1) O(1) O(2) O(1) O(1) U(1) O(1) O(1) U(3) Inst Chir.

1 3 A 0 0 0 0 0 0 0 0 0 0 3

2 3 V V∗ 0 0 0 0 0 0 0 0 0 -3

3 3 V V 0 0 0 0 0 0 0 0 0 -3

4 3 V 0 V 0 0 0 0 0 0 0 0 3

5 12 0 V V 0 0 0 0 0 0 0 0 0

6 1 V 0 0 0 0 0 0 0 0 0 V -1

7 1 0 0 V 0 0 0 0 0 0 0 V 0

8 1 V 0 0 V 0 0 0 0 0 0 0 1

9 1 V 0 0 0 0 0 V∗ 0 0 0 0 1

10 1 V 0 0 0 0 0 0 V 0 0 0 -1

11 1 V 0 0 0 0 0 0 0 V 0 0 1

12 1 V 0 0 0 0 0 0 0 0 V∗ 0 -1

13 1 0 V 0 0 0 0 V∗ 0 0 0 0 1

14 1 0 V 0 0 0 0 V 0 0 0 0 -1

15 1 0 0 V 0 0 0 0 0 0 V 0 -1

16 2 V 0 0 0 0 0 V 0 0 0 0 0

17 4 V 0 0 0 0 0 0 0 0 V 0 0

18 4 0 V 0 V 0 0 0 0 0 0 0 0

19 6 0 V 0 0 V 0 0 0 0 0 0 0

20 2 0 V 0 0 0 V 0 0 0 0 0 0

21 2 0 0 V V 0 0 0 0 0 0 0 0

22 2 0 0 V 0 V 0 0 0 0 0 0 0

23 4 0 0 V 0 0 0 0 V 0 0 0 0

24 3 Ad 0 0 0 0 0 0 0 0 0 0 0

25 2 S 0 0 0 0 0 0 0 0 0 0 0

26 7 0 Ad 0 0 0 0 0 0 0 0 0 0

27 8 0 S 0 0 0 0 0 0 0 0 0 0

28 8 0 A 0 0 0 0 0 0 0 0 0 0

29 5 0 0 A 0 0 0 0 0 0 0 0 0

30 4 0 0 S 0 0 0 0 0 0 0 0 0

31 1 0 0 0 V 0 0 V 0 0 0 0 1

32 1 0 0 0 0 V 0 V 0 0 0 0 -1

33 1 0 0 0 0 0 V V 0 0 0 0 -1

34 1 0 0 0 0 0 0 S 0 0 0 0 1

35 1 0 0 0 0 0 0 A 0 0 0 0 -1

36 1 0 0 0 0 0 0 V V 0 0 0 1

37 1 0 0 0 0 0 0 V 0 V 0 0 1

38 1 0 0 0 0 0 0 V 0 0 V 0 -1

39 1 0 0 0 0 0 0 0 V 0 V 0 1

Table 11: Complete spectrum of a global model of type I. (Continued on next page)
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Table 11 (continued from previous page)

Num. Mult. U(5) U(1) O(1) O(2) O(1) O(1) U(1) O(1) O(1) U(3) Inst Chir.

40 2 0 0 0 0 0 0 0 0 V V 0 2

41 1 0 0 0 0 0 0 0 0 0 S 0 -1

42 1 0 0 0 0 0 0 0 0 0 A 0 -1

43 1 0 0 0 S 0 0 0 0 0 0 0 0

44 1 0 0 0 V V 0 0 0 0 0 0 0

45 1 0 0 0 0 V V 0 0 0 0 0 0

46 1 0 0 0 0 S 0 0 0 0 0 0 0

47 1 0 0 0 0 V V 0 0 0 0 0 0

48 2 0 0 0 0 V 0 0 V 0 0 0 0

49 2 0 0 0 0 V 0 0 0 V 0 0 0

50 1 0 0 0 0 0 S 0 0 0 0 0 0

51 1 0 0 0 0 0 V 0 V 0 0 0 0

52 1 0 0 0 0 0 V 0 0 V 0 0 0

53 1 0 0 0 0 0 0 Ad 0 0 0 0 0

54 1 0 0 0 0 0 0 0 A 0 0 0 0
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Num. Mult. U(5) U(1) O(1) U(1) O(2) O(1) O(2) O(1) O(1) O(1) U(3) Inst. Chir.

1 3 A 0 0 0 0 0 0 0 0 0 0 0 3

2 3 V V∗ 0 0 0 0 0 0 0 0 0 0 -3

3 3 V V 0 0 0 0 0 0 0 0 0 0 -3

4 3 V 0 V 0 0 0 0 0 0 0 0 0 3

5 6 0 V V 0 0 0 0 0 0 0 0 0 0

6 1 V 0 0 0 0 0 0 0 0 0 0 V -1

7 1 0 0 V 0 0 0 0 0 0 0 0 V 0

8 1 V 0 0 0 V 0 0 0 0 0 0 0 1

9 1 V 0 0 0 0 0 V 0 0 0 0 0 1

10 1 V 0 0 0 0 0 0 V 0 0 0 0 -1

11 1 V 0 0 0 0 0 0 0 V 0 0 0 -1

12 1 V 0 0 0 0 0 0 0 0 V 0 0 1

13 1 V 0 0 0 0 0 0 0 0 0 V∗ 0 -1

14 1 0 V 0 V 0 0 0 0 0 0 0 0 1

15 1 0 V 0 V∗ 0 0 0 0 0 0 0 0 -1

16 1 0 0 V V 0 0 0 0 0 0 0 0 1

17 4 V 0 0 0 0 0 0 0 0 0 V 0 0

18 4 0 V 0 0 V 0 0 0 0 0 0 0 0

19 2 0 V 0 0 0 V 0 0 0 0 0 0 0

20 6 0 V 0 0 0 0 V 0 0 0 0 0 0

21 1 0 0 V 0 V 0 0 0 0 0 0 0 0

22 1 0 0 V 0 0 0 V 0 0 0 0 0 0

23 3 0 0 V 0 0 0 0 V 0 0 0 0 0

24 4 0 0 V 0 0 0 0 0 V 0 0 0 0

25 3 Ad 0 0 0 0 0 0 0 0 0 0 0 0

26 2 S 0 0 0 0 0 0 0 0 0 0 0 0

27 7 0 Ad 0 0 0 0 0 0 0 0 0 0 0

28 8 0 S 0 0 0 0 0 0 0 0 0 0 0

29 8 0 A 0 0 0 0 0 0 0 0 0 0 0

30 1 0 0 S 0 0 0 0 0 0 0 0 0 0

31 1 0 0 A 0 0 0 0 0 0 0 0 0 0

32 1 0 0 0 S 0 0 0 0 0 0 0 0 -1

33 1 0 0 0 A 0 0 0 0 0 0 0 0 1

34 1 0 0 0 V V 0 0 0 0 0 0 0 1

35 1 0 0 0 V 0 V 0 0 0 0 0 0 1

36 1 0 0 0 V 0 0 V 0 0 0 0 0 1

37 1 0 0 0 0 0 0 V 0 0 0 V 0 -1

38 1 0 0 0 0 0 0 0 V 0 0 V 0 1

39 2 0 0 0 0 0 0 0 0 0 V V 0 2

Table 12: Complete spectrum of a global model of type II. (Continued on next page)
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Table 12 (continued from previous page)

Num. Mult. U(5) U(1) O(1) U(1) O(2) O(1) O(2) O(1) O(1) O(1) U(3) Inst. Chir.

40 1 0 0 0 0 0 0 0 0 0 0 S 0 -1

41 1 0 0 0 0 0 0 0 0 0 0 A 0 -1

42 1 0 0 0 Ad 0 0 0 0 0 0 0 0 0

43 2 0 0 0 V 0 0 0 0 0 0 V∗ 0 0

44 1 0 0 0 0 S 0 0 0 0 0 0 0 0

45 1 0 0 0 0 V V 0 0 0 0 0 0 0

46 1 0 0 0 0 V 0 V 0 0 0 0 0 0

47 1 0 0 0 0 0 S 0 0 0 0 0 0 0

48 1 0 0 0 0 0 V V 0 0 0 0 0 0

49 1 0 0 0 0 0 V 0 V 0 0 0 0 0

50 1 0 0 0 0 0 V 0 0 V 0 0 0 0

51 1 0 0 0 0 0 V 0 0 0 V 0 0 0

52 1 0 0 0 0 0 0 S 0 0 0 0 0 0

53 3 0 0 0 0 0 0 V V 0 0 0 0 0

54 3 0 0 0 0 0 0 V 0 V 0 0 0 0

55 1 0 0 0 0 0 0 V 0 0 V 0 0 0

56 1 0 0 0 0 0 0 0 A 0 0 0 0 0

57 2 0 0 0 0 0 0 0 V V 0 0 0 0

58 2 0 0 0 0 0 0 0 0 A 0 0 0 0

59 1 0 0 0 0 0 0 0 0 V V 0 0 0
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[60] R. Blumenhagen, A. Deser and D. Lüst, FCNC processes from D-brane instantons,

arXiv:1007.4770 [SPIRES].

[61] F. Fucito, A. Lionetto, J.F. Morales and R. Richter, Dynamical supersymmetry breaking in

intersecting brane models, JHEP 11 (2010) 024 [arXiv:1007.5449] [SPIRES].

[62] I. Antoniadis, E. Kiritsis and T.N. Tomaras, A D-brane alternative to unification,

Phys. Lett. B 486 (2000) 186 [hep-ph/0004214] [SPIRES].
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