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1 Introduction

Conformal defects/interfaces/boundaries are interesting objects to study in quantum field
theory and continue to be a very active topic of investigation (e.g. [1]). They provide im-
portant insights into the formal structure of quantum field theory, they play a prominent
role in string theory and they have a wide variety of applications within the broad context
of condensed matter. In this paper we will consider renormalisation group (RG) interfaces.
An RG interface separates two distinct conformal field theories, CFTUV and CFTIR, with
CFTIR being the conformal field theory that arises after perturbing CFTUV by a rele-
vant operator and then flowing to the infrared. The RG interface provides an interesting
map between observables in the two theories, as discussed in [2, 3], and provides a novel
perspective on the challenging topic of classifying RG flows between CFTs.

Within the context of holography an interesting construction of planar RG interfaces,
separating two d = 3 SCFTs, was studied1 in [5]. In particular, strong numerical evidence
was provided for the existence of D = 11 supergravity solutions that describe an RG
interface between the N = 8 supersymmetric ABJM theory in d = 3 with SO(8) global

1Holographic RG interfaces associated with double trace deformations have also been discussed in [4].
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symmetry and N = 1 SCFTs with G2 global symmetry, which can be obtained from
the SO(8) theory via an RG flow. Furthermore, the interface preserves an N = (0, 1)
superconformal symmetry in d = 2. We will have more to say about these solutions in this
paper, as we summarise below.

The main focus of this paper, however, will be the construction of gravitational solu-
tions that holographically describe planar RG interfaces that separate two d = 4 SCFTs;
specifically, N = 4 SYM on one side of the interface with the “Leigh-Strassler” N = 1
SCFT [6] on the other. Recall that the Leigh-Strassler (LS) SCFT arises as the IR limit of
an RG flow after deforming N = 4 SYM by a specific N = 1∗ mass deformation which pre-
serves an SU(2)×U(1)R global symmetry. More precisely, viewing N = 4 SYM as N = 1
SYM coupled to three chiral multiplets, the N = 1∗ mass deformation arises by giving a
mass to one of the chiral multiplets. The RG flow, preserving d = 4 N = 1 Poincaré super-
symmetry as well as the SU(2)×U(1)R global symmetry, were holographically constructed
in [7], using a truncation of SO(6) D = 5 gauged supergravity. As such they give rise to
exact solutions of type IIB supergravity.

The new type IIB supergravity solutions in this paper, describing RG interfaces sep-
arating N = 4 SYM with the LS SCFT, will also be constructed using a truncation of
SO(6) D = 5 gauged supergravity (slightly enlarged from that used in [7]). Generically,
the RG interface solutions are supported by fermion and boson mass deformations on the
N = 4 SYM side of the interface, which have non-trivial dependence on the spatial co-
ordinate transverse to the planar interface. These deformations preserve N = 1 d = 3
superconformal symmetry as well as an SU(2) global symmetry (i.e. they break the U(1)R
symmetry of the Poincaré invariant RG flow). By contrast, on the LS side of the interface
there are no deformations for any relevant operators. On both sides of the interface there
are various operators with spatially dependent expectation values. While this is the generic
situation, there is a particularly interesting solution for which the spatially dependent mass
deformations on the N = 4 SYM side of the interface also vanish.

We construct the new RG interface solutions rather directly as follows. We start
with a D = 5 gravitational ansatz, with AdS4 slices, that manifestly preserves d = 3
superconformal invariance and then impose boundary conditions on the BPS equations
such that on one side of the interface we approach the LS fixed point. By integrating
the BPS equations we find solutions that are associated with N = 4 SYM on the other
side of the interface. In [8] we show that these gravitational solutions also arise, slightly
indirectly, as limiting solutions of a more general class of Janus2 solutions that are dual to
superconformal interfaces with N = 4 SYM on both sides of the interface. In the limit in
which the magnitude of the spatially dependent mass deformations on one of the N = 4
SYM sides of these Janus solutions diverges, we arrive at an RG interface solution with
N = 4 SYM on one side and LS on the other side, of the type discussed here.

2In this paper a Janus solution will refer to a co-dimension one planar conformal interface that has the
same CFT on either side of the interface or the same up to a discrete parity symmetry. This includes cases
where the coupling constants associated with exactly marginal operators vary as one crosses the interface, as
in e.g. [9–17], as well more general situations where spatially dependent relevant operators are active either
on the interface as in [18] or with non-vanishing spatial dependence away from the interface as in [5, 19, 20].
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We will also present an additional type IIB solution which arises as a limiting case of
the RG interface solutions. Specifically, when the magnitude of the mass deformation on
the N = 4 SYM side of the RG interface goes to infinity we obtain a new superconformal
Janus interface with the LS SCFT now on both sides of the interface, but related by a
discrete R-parity. More precisely, the D = 5 gravitational theory has a Z2 symmetry,
which for the N = 4 SYM AdS5 solution is dual to an R-symmetry of N = 4 SYM.
Furthermore, the D = 5 theory has two additional AdS5 solutions, which we label LS±,
each dual to the LS SCFT, which are related by the bulk Z2 symmetry. Similarly, the
Poincaré invariant RG flow solutions from the N = 4 SYM AdS5 solution to the LS± AdS5
solutions are also related by this symmetry. The new Janus solution, which we denote
by LS+/LS−, has a conformal boundary which approaches the LS+ AdS5 solution on one
side of the interface and the LS− AdS5 solution on the other. Interestingly, the LS+/LS−

Janus solutions are not supported by sources for operators on either side of the interface,
but just have operators taking spatially dependent expectation values.3 By determining
how the expectation value of a certain relevant operator of the LS theory behaves as the
mass deformation on the N = 4 SYM side diverges we are able to identify novel critical
exponents which we numerically determine.

Our constructions also include a class of D = 5 solutions that approach the LS± AdS5
solution on one side of the interface and are singular on the other side. The singulari-
ties, with scalar fields reaching the boundary of the scalar manifold, are similar to the
singularities that arise in Poincaré invariant RG flows (e.g. [7]). Similar solutions, using
spatially dependent sources, were also found in a bottom up context in [21] (see also [5]).
In [21] it was suggested that these solutions can be interpreted as being dual to bound-
ary CFTs. An interesting difference between our solutions and those of [21] is that on the
LS side the sources vanish. We leave a further investigation of these solutions, including
the precise nature of the singularity in D = 10 and the corresponding dual interpretation,
to future work.

We now return to the solutions discussed in [5] which describe RG interfaces between
N = 8 SO(8) ABJM theory in d = 3 with N = 1 SCFTs with G2 global symmetry. These
solutions were found numerically4 using a truncation of D = 4 SO(8) gauged supergravity,
as limiting cases of a more general class of Janus solutions that are holographically dual
to superconformal interfaces that separate two copies of the N = 8 SO(8) theory on either
side of the interface and preserving, in general N = (0, 1) superconformal symmetry in
d = 2. It was also shown that these more general Janus solutions are associated with
boson and fermion mass deformations, on either side of the interface, that preserve the
d = 2 N = 1 superconformal symmetry. Here we will construct the RG interface solutions
more directly, and hence clarify various aspects of the full moduli space of these solutions
as well as elucidate some new properties.

3An interesting open question, which is beyond the scope of this paper, is to elucidate whether or not
there are distributional sources that are located on the interface itself. For the LS+/LS− Janus interface,
it seems difficult to envisage distributional sources for the scalar operators, while maintaining conformal
symmetry, due to their irrational scaling dimensions.

4These solutions have also been discussed using a perturbative construction in [22].
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The D = 4 gravity theory has two G2 invariant AdS4 solutions, labelled G±2 , which
are dual to two N = 1 SCFTs related by the action of a discrete CP transformation, as
we will argue. Correspondingly, there are two different families of RG interface solutions.
In general, the RG interface which separates the N = 8 SO(8) theory with one of the G±2
SCFTs, is associated with spatially dependent mass deformations5 just on the N = 8 side
of the interface. Furthermore, we also show that there are again two particularly interesting
solutions for which this source actually vanishes. Additionally, we show that in the limit in
which the source diverges, in one of the two families of solutions, one obtains the G+

2 /G
−
2

Janus solution of [5] describing an interface solution which has the two G2 invariant SCFTs
on either side of the interface. We also determine critical exponents associated with how
this solution is approached.

The plan of the paper is as follows. In section 2 we discuss theD = 5 gauge supergravity
solutions associated with the interfaces of d = 4 SCFTs, while in section 3 we discuss the
D = 4 gauge supergravity solutions associated with the interfaces of d = 3 SCFTs. We end
the paper with some discussion in section 4. In appendix A we include some details of the
holographic renormalisation that we use to analyse the D = 4 gravity solutions. For the
D = 5 case, which is considerably more involved, details are provided in [8].

Note added. After this work was finished, two papers appeared [26, 27] which discuss
interfaces of CFTs within holography from a different point of view.

2 Interfaces of d = 4 SCFTs

2.1 N = 1∗ one-mass deformations of N = 4 SYM

We begin by recalling a few aspects of homogeneous (i.e. spatially independent) N = 1∗

“one-mass deformations” of N = 4 SYM theory.6 We can view the field content of N = 4
SYM in terms of N = 1 language as a vector multiplet, which includes the gauge-field
and the gaugino, coupled to three chiral superfields Φa. Under the decomposition of the
R-symmetry SU(3)×U(1)1 ⊂ SU(4)R the Φa transform in the 3 of SU(3) ⊂ SU(4)R. The
N = 1∗ one-mass deformations are obtained by adding mass terms associated with one of
the chiral superfields, say Φ3. Specifically, we add to the superpotential WSYM of N = 4
SYM the term

∆WSYM ∼ m tr
(
Φ2

3

)
, (2.1)

with m a complex and, for homogeneous deformations, constant parameter. This defor-
mation gives rise to complex masses for the bosons and fermions in the chiral multiplets.
There is no mass deformation for the gaugino, consistent with preserving N = 1 supersym-
metry. This homogeneous deformation (i.e. with m constant), preserves an SU(2)×U(1)R

5Spatially dependent mass deformations of ABJM theory that preserve supersymmetry have also been
discussed in [19, 23–25].

6The possibility of SCFTs arising from such mass deformations were first discussed in [28] and see [6]
for a later treatment.
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global symmetry with U(1)R an R-symmetry. The SU(2) factor arises from the decom-
position SU(2) × U(1)2 ⊂ SU(3), and the U(1)R is a diagonal subgroup of U(1)1 × U(1)2.
Under RG flow this deformation leads to the Leigh-Strassler SCFT in the IR, which has the
SU(2)×U(1)R global symmetry. The dual gravitational solutions describing the Poincaré
invariant RG flow between N = 4 SYM and the LS fixed point, were constructed in [7, 29],
as we will recall below.

In the sequel we will construct gravitational RG interface solutions that have N = 4
SYM and the LS fixed point on either side of the planar interface. As we will see, the
solutions have non-vanishing sources for boson and fermion masses on the N = 4 SYM
side of the interface that depend on the spatial direction transverse to the interface, which
we take to be y3. In field theory language this means that m → m(y3) in (2.1). From
the analysis of [30] we deduce that this can preserve supersymmetry, provided that we
include specific F terms in the superpotential. This leads to the same fermion masses, of
the form mtrχ2

3 + h.c., but deforms the scalar mass term via |m|2tr|Z3|2± (m′trZ2
3 + h.c.),

where Z3 and χ3 the bosonic and fermionic components of the superfield Φ3, respectively.
The bosonic mass term m′ breaks the SU(2)×U(1)R global symmetry of the homogeneous
mass deformations down to SU(2). Moreover, the deformation will preserve d = 3 N = 1
superconformal symmetry of the interface provided that m(y3) ∝ 1/y3. Further details on
these field theory results can be found in [8].

2.2 The D = 5 gravity model

We will use a D = 5 theory of gravity, called the N = 1∗ one mass model in [31], that arises
as a consistent truncation of N = 8 SO(6) gauged supergravity and hence as a consistent
Kaluza-Klein truncation of type IIB supergravity [32, 33] reduced on a five-sphere. This
means, by definition, that solutions can be uplifted on the five-sphere to obtain exact
supergravity solutions of type IIB [34, 35]. We will follow the conventions used in [31] and
in particular use a mostly minus (+,−,−,−,−) signature for the metric.

The bosonic field content consists of the metric coupled to a complex scalar z and a
real scalar β. The gravity-scalar part of the Lagrangian takes the form

L = −1
4R+ 3(∂β)2 + 1

2Kzz̄∂µz∂
µz̄ − P , (2.2)

where Kzz̄ = ∂z∂z̄K and the Kähler potential is given by

K = −4 log(1− zz̄) . (2.3)

The scalar potential P can be derived from a superpotential-like quantity

W = 1
L
e4β

(
1 + 6z2 + z4

)
+ 2
L
e−2β

(
1− z2

)2
, (2.4)

via

P = 1
8e
K
(1

6∂βW∂βW +Kz̄z∇zW∇z̄W −
8
3WW

)
, (2.5)
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with Kz̄z = 1/Kzz̄ and ∇zW ≡ ∂zW + ∂zKW . As in [31] we can write the complex scalar
field in terms of two real scalar fields, α and φ, via

z = tanh
[1

2
(
α− iφ

)]
. (2.6)

We note that the bosonic part of this theory is invariant under the Z2 symmetry,

z → −z . (2.7)

This model admits an AdS5 vacuum solution, with z = β = 0 and radius L, that
uplifts to the AdS5 × S5 solution, dual to N = 4 SYM theory. By analysing the linearised
fluctuations of the scalar fields around this solution we deduce that φ is dual to a fermion
mass operator O∆=3

φ , with conformal dimension ∆ = 3, while α and β are dual to bosonic
mass operators O∆=2

α and O∆=2
β , both with ∆ = 2. Schematically, we have7

φ ↔ O∆=3
φ = tr(χ3χ3 + cubic in Za) + h.c. ,

α ↔ O∆=2
α = tr(Z2

3 ) + h.c. ,

β ↔ O∆=2
β = tr(|Z1|2 + |Z2|2 − 2|Z3|2) , (2.8)

where Za and χa are the bosonic and fermionic components of the chiral superfields Φa that
we discussed in the previous subsection. Notice that this truncation is suitable for studying
real mass deformations of N = 4 SYM theory. We also note that for the N = 4 SYM AdS5
solution the bulk Z2 symmetry (2.7) can be identified8 as being dual to a discrete (internal)
R-parity transformation of N = 4 SYM.

The D = 5 model also admits two other AdS5 solutions, which we label by LS±,
given by

z = ±i(2−
√

3) ⇔ φ = ∓π6 , α = 0 ,

β = −1
6 log(2) , L̃ = 3

25/3L, (2.9)

with L̃ the radius of the AdS5 space for both LS± solutions. The two solutions are related
by the bulk Z2 symmetry (2.7) of the D = 5 gravitational theory. When uplifted to
type IIB these fixed point solutions preserve SU(2)×U(1)R global symmetry and are each
holographically dual to the N = 1 SCFT found by Leigh and Strassler in [6]. By examining
the linearised fluctuations of the scalar fields about the LS± AdS5 solutions, we find that
α is dual to an irrelevant operator O∆=2+

√
7

α with conformal dimension ∆ = 2 +
√

7. The
linearised modes involving φ and β mix, and after diagonalisation we find modes that are
dual to one relevant and one irrelevant operator in the LS SCFT, which we label O∆=1+

√
7

φ,β

and O∆=3+
√

7
φ,β with dimensions ∆ = 1 +

√
7 ∼ 3.6 and ∆ = 3 +

√
7, respectively.

Gravitational solutions for the homogeneous RG flows, preserving d = 4 Poincaré
invariance and flowing from theN = 4 SYM AdS5 solution in the UV to LS+ (or LS−) AdS5

7Recall that the supergravity modes do not capture the Konishi operator tr(|Z1|2 + |Z2|2 + |Z3|2).
8More precisely, there is a Z4 symmetry of N = 4 SYM which gives a Z2 transformation on the

bosonic fields.
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solution in the IR, were constructed in [7, 29]. These flows, which preserve SU(2)×U(1)R
global symmetry, are driven by a supersymmetric source for the relevant fermion mass
operator O∆=3

φ and the bosonic mass operator O∆=2
β in N = 4 SYM. Furthermore, these

solutions and can be constructed using the D = 5 gravitational theory after setting the
real part of the complex field to zero, Re(z) = 0 i.e. α = 0. The interface solutions which
we construct in this paper, break the U(1)R symmetry and as a consequence we need to
take Re(z) 6= 0 i.e. α 6= 0. We also note that the solutions flowing to the LS+ and the LS−

AdS5 solutions are related by the bulk Z2 symmetry (2.7). We mentioned above that this
bulk symmetry can be identified as an R-parity transformation acting on N = 4 SYM in
the UV and so, since the LS± solutions are both dual to the same SCFT, we conclude that
the R-parity is inducing an automorphism on the LS SCFT itself.

2.3 BPS equations for conformal interfaces

The D = 5 ansatz for the conformal interface solutions is given by

ds2
5 = e2Ads2(AdS4)− dr2 , (2.10)

where the function A as well as the scalar fields β, z are taken to be functions of r only.
Here ds2(AdS4) is the metric on AdS4 of radius `, given, for example, in Poincaré type
coordinates by

ds2(AdS4) = `2
[
−dx

2

x2 + 1
x2

(
dt2 − dy2

1 − dy2
2

)]
, (2.11)

with 0 < x <∞. The factor of ` can be absorbed after redefining A, but we find it helpful
to keep it. The AdS4 isometries of the ansatz implies that it generically preserves a d = 3
conformal symmetry.

We recover the metric on AdS5 with radius L if we set

eA = L

`
cosh r

L
, (2.12)

and −∞ < r < ∞. To see this more clearly, one can first change coordinates via
cosh(r/L) = 1/ cosµ, with −π/2 < µ < π/2. Then making the additional change of
coordinates y3 = x sinµ, Z = x cosµ, we obtain the metric for AdS5 written in Poincaré
coordinates

ds2 = L2
[
−dZ

2

Z2 + 1
Z2

(
dt2 − dy2

1 − dy2
2 − dy2

3

)]
, (2.13)

with the ranges 0 < Z < ∞ and −∞ < y3 < ∞. The conformal boundary is located
at Z = 0 and y3 parametrises one of the spatial dimensions of this boundary. Note that
the coordinates x, µ are polar coordinates constructed from y3, Z. Thus, the conformal
boundary of AdS5 in the coordinates (2.10), (2.12) consists of three components: r → ∞
and x 6= 0, associated with the half space parametrised by (t, yi) with y3 > 0, r → −∞
and x 6= 0, associated with the half space parametrised by (t, yi) with y3 < 0, and these
are joined at the plane (t, yi) with y3 = 0, associated with x = 0.

– 7 –
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We are interested in constructing interface solutions that preserve supersymmetry.
Using the supersymmetry transformations and conventions given in [31], for the D = 5
ansatz we are considering, one can derive the following BPS equations:

∂rA+ i

`
e−A − 1

3e
−iξ+K/2W = 0 ,

i∂rξ −
1
2 (∂zK∂µz − ∂z̄K∂µz̄)− i

3 Im
(
e−iξ+K/2W

)
= 0 ,

∂rz + 1
2e
−iξ+K/2Kzz̄∇z̄W = 0,

∂rβ + 1
12e

−iξ+K/2∂βW = 0. (2.14)

Here ξ = ξ(r) is a phase that appears in the expression for the Killing spinors. More details
of this calculation as well as the explicit form of the preserved Killing spinors are given
in [8]. It is also interesting to highlight that, naively, these BPS equations appear to be
over constrained due to the reality of A and β. This turns out not to be the case, due to
specific form of W in (2.4), and we also expand upon this point in more detail in [8].

Of most significance here is to note that if the above BPS equations are satisfied then
the full equations of motion are satisfied and, furthermore, after uplifting to type IIB, the
D = 10 solutions generically preserve an N = 1, d = 3 superconformal supersymmetry. We
note here that the BPS equations are obviously invariant under the Z2 symmetry of the
theory, z → −z, mentioned earlier. In addition, they are also invariant under the Z2 action

r → −r, z → z̄, ξ → −ξ + π . (2.15)

Combining these two we also have the symmetry

r → −r, z → −z̄, ξ → −ξ + π . (2.16)

It is worth noting that this last symmetry leaves invariant9 each of the two LS± AdS5
solutions, and is dual to a discrete CP symmetry10 of the LS SCFT.

2.4 The N = 4 SYM/LS RG interface and LS+/LS− Janus

We first consider solutions of the form (2.10) that describe a conformal RG interface be-
tween N = 4 SYM and the LS SCFT. The D = 5 gravity theory has two AdS5 solutions,
LS±, related by the Z2 symmetry (2.7) and each dual to the LS SCFT; for definiteness
we focus on LS+. We therefore want to solve the BPS equations and impose boundary
conditions on the ansatz (2.10) so that as r →∞, say, we approach the N = 4 SYM AdS5
solution while as r → −∞ we approach the LS+ AdS5 solution.

9The phase ξ appearing in the Killing spinor changes by this transformation. However, for each of the
LS± AdS5 solutions there is twice as much supersymmetry as the interface solutions and the transformation
takes one Killing spinor to another one.

10There is an analogue of this symmetry for Poincaré invariant flow solutions from the N = 4 SYM AdS5

solution to each of the LS± solutions and one can identify the symmetry in N = 4 SYM as a CP .
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2.4.1 Holographic renormalisation

Before describing the solutions, we discuss a few subtleties that arise in determining the
sources and expectation values of various operators in the dual field theory when imple-
menting holographic renormalisation. The N = 4 SYM side is the more intricate, so we
discuss that first. We begin by noting that we can develop the asymptotic expansion to
the BPS equations schematically given, as r →∞, by

A = r

L
+ . . . ,

φ = φ(s)e
−r/L + · · ·+ φ(v)e

−3r/L + · · · ,

α = α(s)
r

L
e−2r/L + α(v)e

−2r/L + · · · ,

β = β(s)
r

L
e−2r/L + β(v)e

−2r/L + · · · , (2.17)

with a number of relations amongst the various constant coefficients appearing. For ex-
ample, the terms φ(s), α(s) and β(s), which denote the source terms for the dual operators,
must satisfy11 α(s) = −L

` φ(s) and β(s) = −2
3φ

2
(s).

As r → ∞ we approach a component of the conformal boundary located on one side
of the interface, with metric AdS4 as in (2.11). Thus, this expansion is naturally suited
to obtaining the sources and expectation values for the various operators when N = 4
SYM is placed on AdS4. In fact the field theory sources on AdS4 are given by φ(s), α(s),
β(s) and we note that `φ(s), `2α(s), `2β(s) are invariant under Weyl rescalings of the AdS4
radius `. Since we are primarily interested in the associated quantities when the theory
is placed on flat space we need to carry out a suitable Weyl transformation, with Weyl
factor x2/`2 acting on (2.11). A subtlety in this approach, is that the source terms give
rise to terms in the conformal anomaly quadratic and quartic in the sources as in [36, 37]
and discussed in detail in [8], which needs to be carefully tracked in order to carry out
the Weyl transformation in detail. An alternative, equivalent procedure, is to implement
an asymptotic change of coordinates generalising that discussed below (2.12), so that one
approaches the conformal boundary associated with the theory on flat space. An additional
subtlety in carrying out the holographic renormalisation is that one must specify a number
of finite counterterms that are dual to a choice of renormalisation scheme. The details of
the scheme that we employ (which is more general, but consistent with the “Bogomol’nyi
trick” of [31, 38, 39]) are discussed in [8].

The upshot of a rather long analysis is the following. A solution with boundary con-
ditions (2.17) is associated with the following sources for N = 4 SYM on flat space:

`φ(s)
y3

,
`2α(s)
y2

3
,

`2β(s)
y2

3
, (2.18)

with y3 > 0, and the BPS equations imply that

α(s) = −L
`
φ(s) , β(s) = 2

3φ
2
(s) . (2.19)

11Note the bulk scalar fields are dimensionless.
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Note in particular, that all sources can be expressed in terms of φ(s), which we will use in
the plots below.

Furthermore, for the associated expectation values of the operators in flat spacetime,
we have

〈Oα〉 = 1
4πGL

`2

y2
3

(
α(v) + α(s) log

(
y3
`e2δα

))
, (2.20)

which then, along with φ(s) determines the remaining expectation values via

〈Oφ〉 = 4
3
`

y3
〈Oβ〉φ(s) − 2L 1

y3
〈Oα〉 −

L

4πG
`

y3
3
φ(s) ,

〈Oβ〉 = 4`
L
〈Oα〉φ(s) −

(1 + 4δα − 4δβ)
2πGL

`2

y2
3
φ2

(s) . (2.21)

Here δα, δβ are finite counterterms which we have not fixed. While the sources transform
covariantly under Weyl transformations of the boundary theory, the expectation values do
not, as the presence of the log terms in these expressions make manifest. In our numerical
results below, we will fix ` = 1 (as well as L = 1) and discuss the values of φ(s) and
α(v), which for a definite choice of finite counterterms then gives all of the sources and
expectation values.

We now consider similar issues for the LS+ side of the interface, which turn out to be
considerably simpler. Firstly, since the scalar operators have irrational scaling dimensions
there are no finite counterterms that one can add. Secondly, and for similar reasons, the
conformal anomaly does not contain any source terms for the scalar operators. Thirdly,
it turns out to be not possible to add sources for the relevant operator O∆=1+

√
7

φ,β in the
LS theory and be consistent with the BPS equations. To see this latter point one needs
to examine the linearised solutions to the BPS equations, expanding about the LS+ AdS5
solution as r → −∞. Since we want to approach the LS+ AdS5 solution we need to also
demand that there are no source terms for the two irrelevant operators O∆=2+

√
7

α and
O∆=3+

√
7

φ,β . In addition to a universal mode associated with shifts in the coordinate r, we
then find that there is a single BPS mode of the form, as r → −∞,

z = i
(
2−
√

3
)

+ iζer(1+
√

7)/L̃ + . . . ,

β = −1
6 log 2 + bζer(1+

√
7)/L̃ + . . . , (2.22)

parametrised by real ζ and

b = 1
18
(
3 + 2

√
3
) (

1 +
√

7
)
. (2.23)

This mode is associated with the relevant operator O∆=1+
√

7
φ,β in the LS+ theory acquiring

an expectation value. More precisely, for this side of the interface at r → −∞, which is
y3 < 0 in the flat space boundary, using (2.22) we can define

〈O∆=1+
√

7
φ,β 〉 ∝

(
`

−y3

)1+
√

7
ζ . (2.24)

The two irrelevant operators O∆=2+
√

7
α and O∆=3+

√
7

φ,β also acquire expectation values pro-
portional to ζ.
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Figure 1. The family of D = 5 BPS solutions is summarised by parametrically plotting the real
and imaginary parts of the scalar field z. The blue dot is the N = 4 SYM AdS5 solution and the
two red dots are the two LS ± AdS5 solutions. The blue curves are dual to N = 4 SYM/LS+ RG
interfaces. For these solutions, the bottom panels plot ζ and α(v), which fix the expectation values
on the LS+ and N = 4 SYM side, respectively, as a function of φ(s) which fix the sources on the
N = 4 SYM side. The dashed blue line in the top panel is the RG interface solution for which
all sources vanish on the N = 4 SYM side of the interface. As φ(s) → +∞ one approaches the
LS+/LS− Janus solution (red curve). The black curves become singular at |z| = 1.

2.4.2 The solutions

We have numerically constructed RG interface solutions by starting with the LS+ side at
r = −∞, shooting out with the mode associated with 〈O∆=1+

√
7

φ,β 〉, parametrised by ζ, and
then seeing where one ends up at r = ∞. The main results are presented in figures 1–3.
There is another set of physically equivalent solutions that start with LS− side at r = −∞,
which can be obtained using the Z2 symmetry (2.7), which we won’t explicitly discuss.

Figure 1 provides a parametric plot of the real and imaginary parts of the scalar
field, z, for the solutions we have found. The blue dot at the origin is the N = 4 SYM
AdS5 solution while the two red dots are the two LS± AdS5 solutions, related by the Z2
symmetry (2.7). The blue curves are a one parameter family of RG interface solutions with
N = 4 SYM theory on one side (y3 > 0) and LS+ on the other (y3 < 0). We have also
plotted in the bottom left panel ζ, which gives the expectation values of the LS SCFT, as
in e.g. (2.24), as a function of φ(s), which we recall fixes the fermion mass deformation as
well as all other sources on the N = 4 SYM theory side via (2.18), (2.19). Similarly in the
bottom right panel we have plotted α(v) which, along with φ(s), fixes the expectation value
on the N = 4 SYM theory side, as a function of φ(s). The RG interface solutions exist in
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Figure 2. The BPS solution for the dashed blue curve in figure 1, describing an N = 4 SYM/LS
RG interface, for which all sources vanish i.e. φ(s) = 0. We have plotted A′ = dA/dr as well as the
three scalar functions as a function of r. The LS+ AdS5 solution is approached at r → −∞ while
the N = 4 SYM AdS5 solution is approached at r → ∞. The red dashed lines, which give the
associated values of the LS+ AdS5 solution, have been added to guide the eye.

the range −∞ < φ(s) <∞ with 0 < ζ < ζcrit ≈ 0.0281. When φ(s) → +∞ (and ζ → ζcrit)
the solutions approach the red curve while when φ(s) → −∞ (and ζ → 0) they approach a
vertical line along the imaginary z axis.

We next note that the lower panels in figure 1 clearly reveal the existence of an RG
interface solution for which φ(s) = 0. This means that all sources on the N = 4 SYM
side vanish, and since the sources always vanish on the LS+ side, remarkably this is an
RG interface solution that has vanishing sources away from the interface. For this special
solution, marked by the dashed blue line in figure 1, we can determine the expectation
values of the operators in the two SCFTS. On the LS+ side we find ζ ≈ 0.0040. For the
N = 4 side, recalling from (2.19)–(2.21) that the expectation values of the scalar operators
are all determined by α(v) and φ(s), we note that α(v) = 0.3553.

The general behaviour of the radial functions for all of the N = 4 SYM/LS+ RG inter-
face solutions (blue curves in figure 1) have a similar form. As a representative example,
in figure 2 we display the metric and scalar functions for the special source-free solution
with φ(s) = 0.

We next consider how the RG interface solutions behave as φ(s) → −∞ (and ζ → 0),
when they approach a vertical blue line in figure 1. In this limit, one can show that
the solutions have a region, on the N = 4 SYM side, that closely approaches the Poincaré
invariant RG flow solution fromN = 4 SYM to the LS+ fixed point, as one might anticipate.
To make this precise12 we can reinstate ` and then hold φ(s) fixed while taking ` → ∞,
so that we are solving the BPS equations on the N = 4 SYM side such that the 1

` term
12In order to recover the expectation value of scalar operators of the Poincaré invariant RG flow one

needs to carefully track log terms that arise due to the conformal anomaly — see [8].
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Figure 3. We display the limiting behaviour of N = 4 SYM/LS RG interface solutions of figure 1
using parametric plots of A′ versus Im(z). As φ(s) → −∞ the solutions in figure 1 approach a
vertical blue line. In this limit (top panel) the solutions approximate two solutions, the dashed red
line, which is the Poincaré invariant RG flow solution from N = 4 SYM to the LS+ fixed point,
joined with the vertical blue line, which is the LS+ fixed point itself. As φ(s) → +∞ the solutions in
figure 1 approach the red curve in figure 1. In this limit (bottom panel) the solutions approximate
two solutions, the dashed red line, which is the Poincaré invariant RG flow solution from N = 4
SYM to the LS− fixed point, joined with the dark blue line which is the LS+/LS− Janus solution.

in (2.14) is not playing a significant role. With ` = 1, as we have assumed in our numerics,
we can see the approach to the Poincaré invariant solution by simply plotting parametrically
the behaviour of A′ with respect to the imaginary part of z (recall that in the Poincaré
invariant RG solution the real part of z vanishes) as we have done in figure 3. Interestingly,
in the limit that as φ(s) → −∞ we can analyse the way in which ζ → 0 on the LS+ side.
This gives rise to the following critical exponent, which from our numerics is given by

ζ ∼ |φ(s)|−γ , γ ≈ 1.6457 . (2.25)

Recalling that ζ is giving the expectation value of an operator with conformal dimension
1 +
√

7 as in (2.24), it seems highly likely that the exact critical exponent is −1 +
√

7 and
it would be interesting to prove this.

We now consider what happens to the RG interface solutions as φ(s) → +∞, when
ζ → ζcrit ≈ 0.0281, as in the lower left panel of figure 1. In this limit the blue curves
in figure 1 approach the red curve which is a new type of interface solution. Indeed, the
red curve describes a Janus solution with LS+ on one side of the interface and LS− on the
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other. Interestingly, on both sides of the Janus interface we have vanishing sources. We can
also show that this solution is invariant under the Z2 symmetry (2.15). The way in which
the RG interface solutions approach this LS+/LS− Janus is also interesting. From figure 1
one might expect that on the N = 4 SYM side of the interface (r →∞), the solution starts
to approach the Poincaré invariant RG flow solution from N = 4 SYM to the LS− fixed
point. Indeed, this is the case, with the limiting solutions behaving analogously to those
in figure 3. Focussing now on the LS+ side we obtain another critical exponent:

ζcrit − ζ ∼ φ−γ(s) , γ ≈ 1.6459 , (2.26)

and again we believe this to be exactly −1 +
√

7.
Figure 1 also shows that there is a one parameter family of solutions which approach

LS+ as r → −∞, and then approach a singular behaviour, with |z| → 1, at some finite
value of r. These solutions can be characterised by the expectation value of the operator
〈O∆=1+

√
7

φ,β 〉 in the LS SCFT and have ζ > ζcrit, seemingly existing for arbitrary large values
of ζ. Although not plotted in figure 1 there are also singular solutions starting at LS+ with
ζ < 0 and hitting a singularity at |z| = 1. These solutions describe configurations of the
LS SCFT when placed on a half space without sources and with non-vanishing expectation
values. Similar solutions were discussed in [21] in a bottom up context where they were
interpreted as being dual to boundary CFTs. An important difference, however, is that the
solutions in [21] were supported by non-vanishing sources. We also note that the singularity
of the solutions we have constructed are similar to the singularities that arise in Poincaré
invariant RG flows (e.g. [7]) and it would be interesting to investigate this further.

3 Interfaces of d = 3 SCFTs

We now consider interfaces between superconformal field theories in d = 3. Strong numer-
ical evidence for these solutions was provided in [5] where they arose as limiting solutions
of a larger family of Janus solutions. Here we will construct the solutions more directly
and hence determine the moduli space of these solutions. We will also elucidate some of
the physical properties of these solutions, analogous to the D = 5 case.

3.1 The D = 4 gravity model

We will use the conventions of [5] and, in particular, we now switch to a mostly plus
signature (−,+,+,+). The D = 4 theory couples a metric to a complex scalar z with
Lagrangian given by13

L = 1
2R−Kzz̄∂µz∂

µz̄ − P , (3.1)

where Kzz̄ = ∂z∂z̄K and the Kähler potential is given by

K = −7 log(1− zz̄) . (3.2)

13We have set g = (
√

2L)−1 in [5].
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The potential P is defined to be

P = eK
(
Kzz̄∇zV∇z̄V − 3VV

)
, (3.3)

where Kzz̄ is the inverse of Kzz̄ and

V = 1
L

(
z7 + 7z4 + 7z3 + 1

)
,

∇zV = ∂zV + V∂zK . (3.4)

It will be convenient to split z into its real and imaginary parts as follow

z = X + iY . (3.5)

This model admits five AdS4 fixed points. First, there is the vacuum AdS4 solution,
with z = 0, which uplifts to the maximally supersymmetric AdS4 × S7 solution dual to
the SO(8) invariant ABJM theory.14 Next, there are two AdS4 fixed points, labelled G±2 ,
which are dual to N = 1 SCFTs in d = 3 with G2 global symmetry and related to each
other by a discrete CP symmetry, as we explain below. Finally, there are also two AdS4
fixed points, labelled SO(7)±, which do not preserve any supersymmetry, and will not be
relevant for the interface solutions we discuss in this section.

We first consider the linearised spectrum about the ABJM AdS4 solution, with z = 0.
Fluctuations of the scalar field z = X + iY have mass squared equal to −2/L2 and hence
correspond to operators with ∆ = 1, 2 depending on how we quantise. To preserve N = 8
supersymmetry we require Y is dual to a fermion mass operator O∆=2

Y , with conformal
dimension ∆ = 2, while X is dual bosonic mass operator O∆=1

X , with conformal dimension
∆ = 1 (e.g. [5]). This can be implemented by adding suitable boundary terms to the ac-
tion. In appendix A we have summarised the supersymmetric holographic renormalisation
scheme we employ which incorporates these boundary terms as well as specific finite coun-
terterms, which allows us to obtain the sources and expectation values of the dual fermion
and boson mass operators.

We next consider the two G±2 AdS4 solutions given by

z = z(G±
2 ) ≡

√(
2
√

3− 3
)
± i

√
5 +

√(
2
√

3 + 3
) , L̃ = 55/4

25/439/8L , (3.6)

with L̃ the radius of the AdS4 space for both G±2 solutions. By examining the linearised
fluctuations of the scalar field z about these solutions, we find modes associated with two
irrelevant operators in the G±2 SCFTs, O∆=1+

√
6

z and O∆=2+
√

6
z with conformal dimensions

∆ = 1 +
√

6 ∼ 3.45 and ∆ = 2 +
√

6, respectively.
Gravitational solutions for the homogeneous RG flows, preserving d = 3 Poincaré

invariance and flowing from maximally supersymmetric d = 3 SCFT in the UV to the G±2
14For all of the solutions we discuss we can also take the quotient S7/Zk associated with other ABJM

theories. This will not break supersymmetry for k = 1, 2.
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fixed points in the IR, were studied in [40–43]. These flows are driven by a supersymmetric
source for the relevant fermion and bosonic mass operators O∆=2

Y and O∆=1
X , respectively,

and preserve N = 1 supersymmetry as well as the G2 global symmetry. It is also interesting
to point out that the two G±2 SCFTs are related by a discrete CP symmetry. To see this,
we recall that the ABJM field theory has such a symmetry, which also involves exchanging
the two gauge groups of the theory [44]. The RG flow from ABJM to the G+

2 fixed point
is mapped to the RG flow from ABJM to the G−2 fixed point under this CP action and
hence the two fixed points themselves are similarly mapped into each other.

3.2 BPS equations for conformal interfaces

The D = 4 ansatz for the conformal interface solutions is given by

ds2
4 = e2Ads2 (AdS3) + dr2 , (3.7)

where the function A as well as the scalar field z are taken to be functions of r only. Here
ds2(AdS3) is the metric on AdS3 of radius `, and hence the ansatz generically preserves
a d = 2 conformal symmetry. The metric on AdS4 with radius L is recovered by setting
eA = L

` cosh r
L with −∞ < r <∞.

We now impose the conditions for supersymmetry. Using the supersymmetry transfor-
mations15 given in [19], for the D = 4 ansatz we are considering, we obtain the following
BPS equations:

∂rA−
i

`
e−A = eiξeK/2V ,

∂rz = −e−iξeK/2Kzz̄∇z̄V ,

∂rξ + 3Ar = −eK/2Im
(
Veiξ

)
, (3.8)

whereAr = i
6(∂zK∂rz−∂z̄K∂rz̄). Here ξ = ξ(r) is a phase that appears in the expression for

the Killing spinors. If the BPS equations are satisfied then the full equations of motion are
satisfied and, furthermore, after uplifting to D = 11 supergravity, the solutions generically
preserve an N = 1 superconformal supersymmetry in d = 3. Notice that the BPS equations
are invariant under the Z2 action

r → −r, z → z̄, ξ → −ξ + π , (3.9)

analogous to what we saw in the D = 5 case in (3.9). This symmetry takes the G+
2 AdS4

solution to the G−2 AdS4 solution and hence can be identified with the CP transformation
mentioned above. Note that the D = 4 theory does not have a discrete symmetry acting on
the scalar manifold, analogous to the z → −z symmetry that we saw for the D = 5 model.

15Note that we should identify Vhere = 1
2W

there. We have also changed the projection in (A.12) of [19]
to Γt̂ŷ ε̂ = +ε̂ which implies that in the BPS equations of (A.24) of [19] we should take x→ −x.
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3.3 The ABJM/G±2 RG interfaces and G+
2 /G−2 Janus

We first consider solutions of the form (3.7) that describe a conformal RG interface between
ABJM theory and one of the two G±2 SCFTs. We therefore want to solve the BPS equations
and impose boundary conditions on the ansatz (3.7) so that as r → ∞, say, we approach
the N = 8 AdS4 solution while as r → −∞ we approach either the G+

2 or the G−2 invariant
AdS4 solutions. It is important to emphasise that the lack of a discrete symmetry of the
BPS equations that just acts on the scalars (analogous to the z → −z symmetry we saw
in the D = 5 model), means that these two types of interface are now physically distinct.
Indeed we will explicitly see this in the behaviour of the solutions.

3.3.1 Holographic renormalisation

We now discuss some features of holographic renormalisation, starting with the N = 8
ABJM side of the RG interface. As r → ∞ we can develop the asymptotic expansion to
the equations of motion schematically given by

A = r

L
+ · · · ,

X = X(1)e
−r/L +X(2)e

−2r/L + · · · ,

Y = Y(1)e
−r/L + Y(2)e

−2r/L + · · · . (3.10)

Using the boundary counterterms summarised in appendix A, we can then identify the
sources dual to the operators O∆=1

X and O∆=2
Y on the AdS3 boundary to be X(s) and Y(s),

respectively, where

X(s) = −X(2) + 3X2
(1) − 3Y 2

(1) ,

Y(s) = Y(1) . (3.11)

We note that `2X(s) and `Y(s) are invariant under Weyl rescaling of the AdS3 radius `.
Supersymmetry imposes additional relations between the expansion coefficients and, in
particular, we find that

X(s) = −L
`
Y(1) ,

Y(s) = Y(1) . (3.12)

We are interested in obtaining the expectation values for the scalar operators in flat
space. We can follow the discussion as for the D = 5 case, but things are now simpler since
there is no conformal anomaly in the D = 4 setting. After some calculation we find that
with flat metric ds2 = −dt2 + dy2

1 + dy2
2, and the spatial modulation in the y2 direction,

the sources are given by

`2

y2
2
X(s) ,

`

y2
Y(s) , (3.13)
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with y2 > 0 (since we are considering the r → ∞ end). Furthermore, the expectation
values for ABJM theory are given by

〈OX〉 = 7
4πGL

`

y2
X(1) ,

〈OY 〉 = − L
y2
〈OX〉 . (3.14)

Thus, for BPS configurations we see that for the ABJM side of an RG interface we can
characterise both scalar sources using Y(s) and both expectation values can be determined
from X(1).

For the G±2 side of the interface, things are simpler. First, holographic renormalisation
for the G±2 fixed points does not contain any local finite counterterms. Next, recall that
the complex scalar is dual to two operators O∆=1+

√
6 and O∆=2+

√
6. Since these are

both irrelevant operators we need to demand that their associated source terms vanish as
r → −∞ in order that we approach the G±2 AdS4 solution. Examining the BPS equations
we then find that there is a universal mode associated with shifts in the coordinate r. Of
more interest is that there is a mode of the form, as r → −∞,

z = z(G±
2 ) + (b− i)ζer(1+

√
6)/L̃ + . . . (3.15)

that is parametrised by the real constant ζ and with b real given by

b = ±

√
3 + 12

√
6−

√
30
(
7
√

3− 12
)

+ 9

2
√

3
(
−19
√

3 +
√

310
√

3− 525 + 95
)1/2 . (3.16)

This mode is associated with the irrelevant operator O∆=1+
√

6 acquiring an expectation
value in the G±2 theory. More precisely, for this side of the interface at r → −∞, which is
y2 < 0 in the flat space boundary, using (3.15) we can define

〈O∆=1+
√

6〉 ∝
(

`

−y2

)1+
√

6
ζ . (3.17)

The operator O∆=2+
√

6 also acquires an expectation value proportional to ζ.

3.3.2 The solutions

We have numerically constructed two families of RG interface solutions by starting at
either the G+

2 or the G−2 fixed point at r = −∞, shooting out with the mode in (3.15),
parametrised by ζ and giving rise to the expectation value (3.17), and then seeing where
one ends up at r = ∞. The main results are presented in figures 4 and 5. We note that
we have set ` = 1 in (3.8).

The family of solutions starting at the G+
2 fixed point at r → −∞ are rather similar

to those discussed in the previous section, so we discuss them first. Figure 4, top panel,
provides a parametric plot of the real and imaginary parts of the scalar field z for this
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Figure 4. The first family of BPS solutions in D = 4 is summarised by parametrically plotting
the real and imaginary parts of the scalar field z in the top panel. The blue dot is the ABJM AdS4
solution and the two red dots are the two G±2 AdS4 solutions. The blue curves are dual to dual to
ABJM/G+

2 RG interfaces. For these solutions, the bottom panels plot ζ and X(1), which fix the
expectation values on the G+

2 and ABJM side, respectively, as a function of Y(s) which fixes the
sources on the ABJM side. The dashed blue line in the top panel is the RG interface solution for
which all sources vanish on the ABJM side of the interface. As Y(s) → −∞ one approaches the
G+

2 /G
−
2 Janus solution (red curve). The black curves become singular at |z| = 1.

class of solutions. The blue dot at the origin is the N = 8 AdS4 solution while the two red
dots are the two G±2 AdS4 solutions. The blue curves are a one parameter family of RG
interface solutions with ABJM theory on one side (y2 > 0) and G+

2 on the other (y2 < 0).
The RG interface solutions exist in the range −∞ < Y(s) < ∞, where we recall Y(s) fixes
all of the sources, and 0 < ζ < ζcrit with ζcrit ≈ 0.01421. When Y(s) → −∞ (and ζ → ζcrit)
the solutions approach the red curve and when Y(s) → +∞ (and ζ → 0) they approach
a straight line connecting the N = 8 AdS4 solution with the G+

2 AdS4 solution. In the
bottom panels of figure 4, for the blue curves we have plotted ζ and X(1), which give the
expectation values on the G+

2 and ABJM side of the interface, respectively, as a function of
Y(s). The general behaviour of the radial functions for all of the ABJM/G+

2 RG interface
solutions (blue curves in figure 4) have a similar form; since they are somewhat analogous
to figure 2 we don’t explicitly display them.

For this family of solutions we see in the bottom left panel of figure 4 that there is
an RG interface solution for which Y(s) = 0. This means that all sources on the ABJM
side vanish, and since the sources always vanish on the G+

2 side, remarkably this is an
RG interface solution that has vanishing sources away from the interface. For this special
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solution, marked by the dashed blue line in the top panel of figure 4, we can determine
the expectation values of the operators in the two SCFTS. On the G+

2 side we find ζ ≈
0.003184. For the ABJM side, recalling from (3.14) that the expectation values of the
scalar operators are all determined by X(1), we find that X(1) ≈ 0.1244.

We next consider how the solutions behave as Y(s) → +∞, with ζ → 0, when they
approach a straight line between the ABJM AdS4 solution and the G+

2 AdS4 solution in
figure 4. Much as we saw in the D = 5 case, in this limit the solutions closely approximate
two solutions joined together: there is one region, on the ABJM side, that closely approach
the Poincaré invariant RG flow solution from the ABJM AdS4 solution to the G+

2 fixed
point and this is joined together to another region which closely approximates the G+

2 fixed
point solution itself, analogous to figure 3. From the G+

2 side, as Y(s) → +∞ we have ζ → 0
and this gives rise to the following critical exponent

ζ ∼ Y −γ(s) , γ ≈ 1.449 . (3.18)

Recalling that ζ is giving the expectation value of an operator with conformal dimension
1 +
√

6 as in (3.17), it seems highly likely that the exact critical exponent is −1 +
√

6 and
it would be interesting to prove this.

We now examine what happens to this family of RG interface solutions as Y(s) → −∞,
when we have ζ → ζcrit ≈ 0.01421, as in the bottom left panel of figure 4. In this limit the
blue curves in figure 4 approach the red curve which describes a G+

2 /G
−
2 Janus solution

with G+
2 on one side of the interface and G−2 on the other. Interestingly, on both sides of

the interface of the Janus solution we have vanishing sources. We can also show that this
solution is invariant under the Z2 symmetry (3.9).

The way in which the RG interface solutions approach this G+
2 /G

−
2 Janus is also

interesting. As one might expect from figure 4, the solutions closely approximate two
solutions joined together: there is one region, on the ABJM side of the interface (r →∞),
that closely approaches the Poincaré invariant RG flow solution from ABJM to the G−2
fixed point and this is joined together to another region which closely approximates the
G+

2 /G
−
2 Janus solution, analogous to figure 3. Focussing on the G+

2 side of these limiting
RG interface solutions we obtain another critical exponent:

ζcrit − ζ ∼ |Y(s)|−γ , γ ≈ 1.450 , (3.19)

and again we believe this to be exactly −1 +
√

6.
Figure 4 also shows that there is a one parameter family of solutions, the black curves,

which approach G+
2 as r → −∞, and then approach a singular behaviour, with |z| → 1,

at some finite value of r. These solutions can be characterised by the expectation value
of the operator in the G+

2 SCFT and have ζ > ζcrit, seemingly existing for arbitrary large
values of ζ. Although not plotted in figure 4 there are also singular solutions starting at
G+

2 SCFT with ζ < 0 and hitting a singularity at |z| = 1, which were also seen in [5]. Here
we have shown that these all describe configurations of the G+

2 SCFT when placed on a
half space without sources and with non-vanishing expectation values fixed by ζ.

We now consider the second family of D = 4 solutions, which are constructed by
starting at the G−2 fixed point at r → −∞, as summarised in figure 5. In the top panel,
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Figure 5. The second family of BPS solutions in D = 4 presented analogously to the first family
in figure 4. The blue curves in the top panel are dual to ABJM/G−2 RG interfaces and the dashed
blue line is the solution for which Y(s) = 0. For the blue curves, the bottom panels plots the
behaviour of ζ and X(1) which fix the expectation values on the G−2 side and ABJM side of the RG
interface, respectively, as a function of Y(s), which fixes the sources on the ABJM side. In the limit
Y(s) → 0.1428 one approaches the blue curve which hits |z| = 1, the boundary of field space. In
this family of solutions there is no G+

2 /G
−
2 Janus solution.

the blue curves are a one parameter family of RG interface solutions with ABJM theory on
one side (y2 > 0) and G−2 on the other (y2 < 0). In the bottom panel of figure 5 we have
plotted ζ and X(s) which gives the expectation values on the G−2 and ABJM side of the
interface, respectively, as a function of Y(s). The RG interface solutions exist in the range
−∞ < Y(s) < 0.1428 with 0 < ζ < ζcrit ≈ 0.02688. When Y(s) → 0.1428 (and ζ → ζcrit) the
solutions approach the blue curve and horizontal line that hits the singularity at |z| = 1.
When Y(s) → −∞ (and ζ → 0) they approach a straight line connecting the ABJM AdS4
solution with the G−2 AdS4 solution. The general behaviour of the radial functions for all
of the ABJM/G−2 RG interface solutions (blue curves in figure 1) all have a similar form,
somewhat analogous to figure 2.

For this family of solutions, from the bottom panels of figure 5 we again find a source
free RG interface solution for which Y(s) = 0, marked by the dashed blue curve in the top
panel of figure 5. For this solution, we find the following results for the expectation values
of the operators in the two SCFTS. On the G−2 side we find ζ ≈ 0.006953, while for the
ABJM side we find that X(1) = −0.14312.
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We next consider how the solutions behave as Y(s) → −∞ and ζ → 0, when they
approach a straight line between the ABJM AdS4 solution and the G−2 AdS4 solution
in figure 5. Once again, in this limit the solutions closely approximate two solutions
joined together: there is one region, on the ABJM side, that closely approach the Poincaré
invariant RG flow solution from the ABJM AdS4 solution to the G−2 fixed point and this is
joined together to another region which closely approximates the G−2 fixed point solution
itself, analogous to figure 3. Furthermore, from the G−2 side, as Y(s) → −∞ we have ζ → 0
and this gives rise to the following critical exponent

ζ ∼ |Y(s)|−γ , γ ≈ 1.450 , (3.20)

which we believe to be exactly −1 +
√

6.
We now consider what happens to this second family of RG interface solutions as

Y(s) → 0.1428, when we have ζ → ζcrit ≈ 0.02688, as in the bottom left panel of figure 5. In
this limit the blue curves approach a singular solution that touches the boundary of field
space at |z| = 1. As we approach the limiting solution, the solutions consist of two parts.
One part is the curved line from the G−2 fixed point out to |z| → 1, associated with the G−2
SCFT when placed on AdS3 with radius ` = 1, without sources and with non-vanishing
expectation values fixed by ζ. The second part is the horizontal blue line that goes to
|z| → 1. From the lower right plot in figure 5 we have X(1) → −∞ as Y(s) → 0.1428. We
think that this part is approaching a Coulomb branch solution of ABJM theory on flat
space with, after a suitable rescaling of `, X(1) finite and Y(s) → 0.

Figure 5 also shows that there is again a one parameter family of solutions which
approach G−2 as r → −∞, and then approach a singular behaviour, with |z| → 1, at some
finite value of r. These solutions can be characterised by the expectation value of the
operator in the G−2 SCFT and have ζ > ζcrit, again seemingly existing for arbitrary large
values of ζ. Although not plotted in figure 5 there are also singular solutions starting at G−2
SCFT with ζ < 0 and hitting a singularity at |z| = 1 at finite r, which were also seen in [5].
Here we have shown that these all describe configurations of the G−2 SCFT when placed
on a half space without sources and with non-vanishing expectation values fixed by ζ.

4 Discussion

In this paper we have constructed gravitational solutions that are dual to RG interface
solutions and examined some of their properties. In D = 5 supergravity we found solutions
dual to RG interface solutions with N = 4 SYM on one side and the N = 1 LS SCFT
on the other. Generically, the solutions are supported by spatially dependent mass terms
on the N = 4 SYM side of the interface, but there is one solution for which these vanish.
As the source terms of the N = 4 SYM side diverge, we obtain a novel D = 5 solution
describing a LS+/LS− Janus solution. From the dual field theory point of view the Janus
interface has the same LS SCFT on either side of the interface, but they are related by the
action of a discrete R-parity transformation, which is a novel feature. The LS theory has
a CP symmetry and while the RG interface is not left invariant by the action of R or CP
individually, it is left invariant under their combined action.
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In D = 4 supergravity we extended and further studied the RG interface solutions
found in [5]. These RG interfaces have ABJM theory on one side of the interface and one
of the two G2 invariant N = 1 d = 3 SCFTs on the other, which we argued are related by
the action of a discrete CP transformation. We showed that the solutions are generically
supported by spatially dependent mass terms on the ABJM side of the interface, but there
is again one solution for which these vanish. As the source terms of the ABJM side diverge,
we obtain a novel D = 4 solution describing a G+

2 /G
−
2 Janus solution. From the dual field

theory point of view this RG interface has the two different G2 invariant SCFTs on either
side of the interface.

From the results of this paper it seems likely that if a holographic Poincaré invariant
RG flow solution from CFTUV to CFTIR exists then, generically, there will always be
a corresponding RG interface solution. Indeed it is difficult to see why, generically, the
existence of such a gravitational solution would be obstructed. Furthermore, it seems
likely that these RG interface solutions will be supported by spatially dependent sources
on the CFTUV side of the RG interface and vanishing sources on the CFTIR side, but
there could be classes where there are additional sources activated on the latter. It is
natural to conjecture that there will always be a special solution for which the sources
away from the interface all vanish, as we have seen in the examples of this paper. It is also
natural to expect that there will also be limiting Janus solutions when the CFTIR has a
discrete automorphism, as in the LS case, or is related to another CFT by a discrete parity
transformation, as in the G±2 case.

Additionally, it would be interesting to investigate setups for which there are Poincaré
invariant RG flows from CFTUV to two IR CFTs, CFTIR and CFT′IR, which are not
related by any parity trasnformation. For example, it may be possible to have situations
for which there is no Poincaré invariant RG flow between CFTIR and CFT′IR, yet a
conformal interface between the two still exists. In situations for which there is a Poincaré
invariant RG flow between CFTIR and CFT′IR then one can envisage RG interfaces with
multiple interfaces.

It would be interesting to explore these ideas further by explicitly constructing addi-
tional examples of type IIB and D = 11 supergravity. For example, we think it would
be worthwhile to construct RG interface solutions separating the ABJM SCFT with the
N = 2 d = 3 SCFT with SU(3)×U(1) global symmetry, for which the associated Poincaré
invariant RG flows have been constructed [43, 45]. It should be possible to construct
various interface solutions, similar to those in this paper, using the consistent truncation
discussed in [46].

In this paper we have elucidated what is happening to the sources and expectation
values of various operators on either side of the interface, both for the RG interface solutions
and the Janus solutions. It would be interesting to further understand what is happening on
the interface itself. While this is somewhat delicate, we note that the distributional sources
for a class of holographic supersymmetric Janus solutions were explicitly determined in [19].
Although, the derivation of [19] utilised the fact that the BPS equations boiled down to
solving the Helmholtz equation on the complex plane, we expect it should be possible to
suitably generalise the analysis to the present setting. It would be interesting to explore
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transport across the interface, analogous to what was recently done in the context of d = 2
CFTs using holography in [47].

Finally, we have also discussed D = 5 and D = 4 solutions which are non-singular on
one side of the interface, approaching the LS± AdS5 or the G±2 AdS4 solutions, respectively,
and singular on the other. Similar solutions were argued to be dual to BCFTs in [21]. We
have shown that the singular solutions have vanishing source terms on the non-singular side
of the interface. It would be worthwhile to further investigate the nature of the singularity
in D = 10 and D = 11 supergravity in order to determine the precise dual interpretation
of these solutions.
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A Holographic renormalisation for the D = 4 gravity model

We consider the class of D = 4 bulk metrics of the form

ds2
4 = γabdx

adxb + dr2 , (A.1)

where γab = γab(r, x) and the conformal boundary is located at r →∞. The renormalised
action can be written as the sum of four terms

S = Sbulk + SGH + Sct + Su=0 . (A.2)

The first two terms are the bulk action and the standard Gibbons-Hawking term

Sbulk + SGH = 1
8πG

∫
drd3x

√
|g|L+ 1

8πG

∫
d3x

√
|γ|K , (A.3)

where the bulk Lagrangian L is given in (3.1). The term Sct is a boundary counterterm
action that contains terms to cancel divergences as well as finite counterterms that are
required for a supersymmetric renormalisation scheme. By using the Bogomol’nyi trick
of [38] we deduce that we should have

Sct = 1
16πG

∫
d3x

√
|γ|
{
− 4eK/2|V| − LR

}
, (A.4)

where here R is the Ricci scalar of the metric γab as r → ∞. The final boundary term
Su=0 is also needed for supersymmetry. Indeed writing the complex scalar as z = X + iY

it ensures that X is dual to an operator with ∆ = 1 (alternative quantisation) and Y is
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dual to an operator with ∆ = 2 (standard quantisation). Following the procedure of [48]
we need to carry out a suitable Legendre transformation and we find

Su=0 = 1
16πG

∫
d3x

√
|γ|
{

28X∂rX + 28
L
X2 + 84

L
X3 − 84

L
XY 2

}
, (A.5)

evaluated at r →∞.
For a general class of solutions preserving ISO(1, 1) symmetry, with γabdx

adxb =
e2A(r,x)(−dt2 +dy2)+e2V (r,x)dx2 and the scalar fields functions of (r, x), we have calculated
the stress tensor and shown that the Ward identities are explicitly satisfied. Furthermore,
we have also shown that for this class of solutions, the energy density is a total spatial
derivative as in the D = 4 models in [19, 25] and the D = 5 models discussed in [8].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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