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1 Introduction

Mass deformations of N = 4 d = 4 SYM theory that preserve some supersymmetry have
been extensively studied and are associated with rich dynamical features under RG flow
(see e.g. [1–11]). In this paper we will explore mass deformations of N = 4 SYM theory that
are spatially modulated in one of the three spatial dimensions and yet still preserve some
supersymmetry. A particularly interesting sub-class of such deformations also preserve
conformal symmetry with respect to the remaining three spacetime dimensions and describe
co-dimension one, superconformal interfaces.

The investigations of this paper are somewhat analogous to those that have been car-
ried out in the context of ABJM theory. It is known that the homogeneous (i.e. spatially
independent) mass deformations of ABJM theory [12, 13] can be generalised to mass de-
formations that depend on one of the two spatial coordinates and preserve 1/2 of the
supersymmetry [14]. Further generalisations, preserving less supersymmetry, were subse-
quently analysed in [15]. Holographic descriptions of such deformations, preserving 1/4 of
the supersymmetry of D = 11 supergravity, were first constructed in [16] using a Q-lattice
construction [17]. The results of [16] included novel solutions that are holographically dual
to boomerang RG flows which flow from ABJM theory in the UV back to ABJM theory
in the IR. The Q-lattice construction of [16] was substantially generalised in [18], where
it was shown that there is a novel class of D = 11 supergravity solutions, again preserv-
ing 1/4 of the supersymmetry, which can be obtained by simply solving the Helmholtz
equation on the complex plane. In addition to presenting a new set of solutions describing
boomerang RG flows, the construction of [18] also included the Janus solutions of [19].
Finite temperature generalisations, using the Q-lattice construction, have been discussed
in [20, 21].

Before continuing, we pause to note that there are various usages of “Janus” in the
literature. In this paper it will refer to a co-dimension one, planar, conformal interface
that has the same CFT on either side of the interface (or the same up to a discrete parity
symmetry). This includes the rich set of examples associated with N = 4 SYM theory that
are obtained by varying the coupling constant and theta angle as in, for example, [22–31].
For these Janus configurations the CFT is being deformed by exactly marginal operators
away from the interface, and in some cases there are also additional sources for relevant
operators located on the interface itself. For the Janus solutions of D = 11 supergravity
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in [19] the ABJM theory is deformed by relevant operators located on the interface, while
for those in [18, 32] the ABJM theory is also deformed by relevant scalar operators that,
generically, have spatial dependence away from the interface (see also [33]).

In this paper we will show that there are interesting new supersymmetric Janus con-
figurations of N = 4 SYM theory that arise from spatially modulated fermion and boson
mass deformations but with the same coupling constant and theta angle on either side of
the interface. In addition to these Janus solutions, we will also construct novel holographic
solutions dual to conformally invariant, co-dimension one interfaces, separating two differ-
ent CFTs. In these configurations the two CFTs are related by Poincaré invariant RG flow,
so we refer to these as “RG interfaces” (see [34, 35]) and they are further discussed in [36].

To determine which spatially modulated mass deformations of N = 4 SYM theory
preserve supersymmetry, we deploy the technology developed in [37] (for theories with
less supersymmetry, one can use the simpler approach of [38]). As in [39] we couple the
theory to off-shell conformal supergravity and then take the Planck mass to infinity so
that the supergravity fields become non-dynamical. In this limit one is left with an N = 4
supersymmetric field theory coupled to the supergravity fields, which are now viewed as
background couplings. The background couplings which preserve supersymmetry can then
be determined by analysing the supersymmetry transformations of the field theory coupled
to the supergravity theory.

We will focus our investigations on generalising the class of homogeneous mass defor-
mations known as the N = 1∗ theories. Recall that the field content of N = 4 SYM, in
terms of anN = 1 language, consists of a vector multiplet coupled to three chiral superfields
Φa. Deforming the theory by adding a superpotential of the form δW ∼

∑3
a=1matrΦaΦa,

where ma are constant, complex mass parameters, defines the N = 1∗ class of theories.
Three cases of particular interest are (i) the “one mass model” with (say) m1 = m2 = 0,
(ii) the “equal mass model”, with m1 = m2 = m3, and (iii) the N = 2∗ theory with (say)
m1 = m2 and m3 = 0.

We will show that all of these N = 1∗ theories can be generalised so that the mass
parameters depend on one of the three spatial coordinates while generically preserving N =
1 Poincaré supersymmetry with respect to the remaining d = 3 spacetime dimensions. For
the case of theN = 2∗ theory there is an enhancement toN = 2 Poincaré supersymmetry in
d = 3. Furthermore, it is possible to suitably choose the mass parameters so that the N = 1
Poincaré supersymmetry is enhanced to anN = 1 orN = 2 superconformal supersymmetry
in d = 3, respectively. This latter class of deformations thus defines a class of Janus
configurations of N = 4 SYM theory, which have the novel feature that the coupling
constant and the theta angle take the same value on either side of the interface, in contrast
to previously constructed Janus configurations of N = 4 SYM. At this point it is worth
emphasising that our field theory results concerning supersymmetric Janus configurations
of N = 4 SYM with constant coupling across the interface are complementary to the
classification carried out in [26], for which it was assumed that the coupling constant varies
across the interface and that any additional deformations are proportional to the spatial
derivative of the coupling constant.

The deformations we consider can also be studied holographically by constructing
solutions of type IIB supergravity. A convenient way to construct such solutions is to first
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construct them within the context of D = 5 maximal gauged supergravity [40–42] and
then uplift them to D = 10 using [43, 44]. In fact, for the deformations we consider, we
can utilise the consistent truncations of D = 5 maximal gauged supergravity discussed
in [45, 46], that couple the metric to a number of scalar fields. In particular, there is a
consistent truncation model that is suitable for studying the mass deformations for each
of the three N = 1∗ theories mentioned above.

We will first derive the BPS equations that are relevant for spatially modulated mass
deformations of N = 4 SYM theory that preserve ISO(1, 2) symmetry. In this case the
BPS equations are partial differential equations in two variables. For this class of solutions
we will also carry out a detailed analysis of holographic renormalisation which is rather
involved. There is a set of finite counterterms that one needs to consider in order to have
a supersymmetric renormalisation scheme. By demanding that the energy density of these
BPS configurations is a total spatial derivative, thus leading to vanishing total energy,
imposes some constraints on the counterterms (this is a complementary approach to the
“Bogomol’nyi trick” of [45–47]). However, determining the full set of conditions required
for a supersymmetric scheme is left to future work.

We will then focus on the BPS equations for the special subclass of solutions associated
with Janus configurations. By writing the D = 5 metric ansatz using a foliation by AdS4
slices, the BPS equations become a set of ODEs that we then numerically solve for each
of the three consistent truncations. For each of the three models we find Janus solutions
that approach the N = 4 SYM AdS5 vacuum on either side of the interface. We also find
solutions that approach the AdS5 vacuum on one side and are singular on the other, as
well as solutions that are singular on both sides, whose physical interpretation is unclear.

Additionally, for the one mass model we find new types of solutions that are further
explored in [36]. Recall that homogeneous mass deformations in the one mass model induce
an RG flow to the Leigh-Strassler (LS) fixed point [3]. From the gravity side, within the
truncation we consider, in addition to the N = 4 SYM AdS5 vacuum solution, there are
two additional AdS5 solutions, related by a Z2 symmetry, which we will denote LS±, and
each dual to the LS fixed point. Here we will construct novel solutions that are dual to
superconformal RG interfaces, approaching the N = 4 SYM AdS5 solution on one side
and one of the two LS AdS5 solutions on the other. We will also construct solutions that
approach LS+ AdS5 on one side of the interface and LS− AdS5 on the other, giving rise to
Janus solutions of the Leigh-Strassler SCFT.

Some of the new explicit solutions that we construct here, including both the Janus
and the RG interface solutions, are analogous to the supergravity solutions found in [32]
associated with ABJM theory. Here we will also obtain more detailed information on the
sources and expectation values of various operators by using our holographic renormalisa-
tion results.

We also find a particularly interesting new feature for the equal mass model. This
model is the most complicated to analyse since it has four real scalar fields instead of
three. Furthermore, one of the scalar fields is the dilaton dual to the coupling constant of
N = 4 SYM. While there are certainly rich Janus solutions for which the coupling constant
is different on either side of the interface, we focus our attention on solutions where it has
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the same value. We find a novel class of Janus solutions that, surprisingly, approach a
solution that is periodic in a bulk coordinate. By compactifying this coordinate one then
obtains a supersymmetric AdS4 × S1 solution. After uplifting to type IIB this is a new
supersymmetric AdS4 × S1 × S5 solution that will be further explored in [48].

The plan of the rest of the paper is as follows. In section 2 we determine the conditions
for spatially dependent mass deformations of N = 4 SYM theory to preserve supersym-
metry, focussing on the three classes of N = 1∗ theories. In section 3 we introduce the
supergravity truncation of D = 5 maximal gauged supergravity [45, 46] that couples the
metric to ten scalars, as well as three further truncations that are relevant for studying the
three classes of N = 1∗ theories. In sections 4 and 5 we will present the BPS equations
relevant for spatially dependent mass deformations that preserve d = 3 superPoincaré and
superconformal invariance, respectively. In section 6 we present and discus various new
supergravity solutions, including the new Janus solutions as well as the solutions dual to
superconformal RG interfaces involving the LS fixed point for the one mass model and the
novel AdS4 × S1 solution for the equal mass model. In section 6 we conclude the paper
with some discussion. We have also included three appendices. Appendix A contains some
details on the derivation of the BPS equations. Appendix B discusses in some detail the
holographic renormalisation scheme that we use and appendix C develops this further for
the class of Janus solutions.

2 Supersymmetric mass deformations of N = 4 SYM

The coupling of N = 4 SYM to off-shell conformal supergravity [49] was carried out in [50–
52]. In [39] it was highlighted that this setup can be utilised to study supersymmetric
deformations of N = 4 SYM. Furthermore, some supersymmetric deformations of N = 4
SYM, including some known Janus configurations involving non-trivial profiles for the
coupling constant and theta angle, were recovered in this language in [39]. Here we will
use this formalism1 to study a new class of spatially dependent mass deformations that
generalize the homogeneous N = 1∗ mass deformations.

We emphasise that in this section we use a “mostly plus” (−,+,+,+) convention for
the metric. This should be contrasted with our later usage of a “mostly minus” convention
when we discuss supergravity solutions.

The possible bosonic deformations of N = 4 SYM are parametrised by the bosonic
auxiliary fields of the off shell conformal supergravity theory, which transform in particular
representations of SU(4)R, the global R-symmetry of the undeformed theory. The deforma-
tions transforming in the 1 of SU(4)R are associated with placing N = 4 SYM on a curved
manifold as well as spatially modulating the gauge coupling and theta angle, encapsulated
in the complex parameter τ ≡ θ

2π + i4π
g2 . In addition there are deformations Eij in the

10 of the SU(4)R, Dij
kl in the 20′, both Lorentz scalars, as well as a one-form V i

µ j and
a two-form T ijµν transforming in the 15 and 6, respectively. In this paper, our primary fo-
cus will concern spatially dependent mass deformations of the bosonic and fermionic fields
involving Eij and Dij

kl and so in the following we set

V i
µ j = 0, T ijµν = 0, τ = constant . (2.1)

1An alternative approach, presumably equivalent to [39], was given in [53, 54].
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We note that the components Eij and Dij
kl are both complex and satisfy

Eij = Eji ,

Dij
kl = −Dji

kl = −Dij
lk ,

(Dkl
ij)∗ = Dij

kl = 1
4ε

ijmnεklpqD
pq
mn ,

Dij
kj = 0 , (2.2)

with i, j, · · · = 1, . . . , 4.
To see how these background fields couple to N = 4 SYM we recall that the field

content of the latter is given by gauge fields Aµ, fermions ψi, transforming in the 4 of the
SU(4)R and bosons φij , satisfying (φij)∗ = φij = 1

2εijklφ
kl, transforming in the 6. The

deformed action, in flat spacetime, is given by2

S =
∫
d4y tr

(
− 1

4g2FµνF
µν − θ

32π2Fµν ∗ F
µν − 1

2Dµφ
ijDµφij − ψ̄iγµDµψi

− gφij [ψ̄i, ψj ]− gφij [ψ̄i, ψj ] + 1
2g

2[φij , φjk][φkl, φli]

+ 1
2φij (Mφ)ij klφkl + 1

2 ψ̄
i (Mψ)ij ψ

j + 1
2 ψ̄i

(
M̄ψ

)ij
ψj

− 2
3g
(
M̄ψ

)kl
φij [φik, φjl]−

2
3g (Mψ)kl φij [φ

ik, φjl]
)
. (2.3)

Here the first two lines are essentially the undeformed action with Fµν = ∂µAν − ∂νAµ +
[Aµ, Aν ], Dµφij = ∂µφ

ij + [Aµ, φij ] and Dµψi = ∂µψ
i + [Aµ, ψi]. In the third and fourth

lines we have used the following mass matrices for the bosons and fermions:

(Mφ)ij kl = 1
2D

ij
kl −

1
12δ

[i
kδ
j]
l

(
ĒmnEmn

)
,

(Mψ)ij = −1
2Eij ,

(
M̄ψ

)ij
= −1

2Ē
ij , (2.4)

and Ēij ≡ (Eij)∗.
At this stage Eij and Dij

kl can have arbitrary dependence on the spacetime coordi-
nates. The supersymmetry transformations of the matter fields for this deformed theory
are given by3

δAµ = g
(
ε̄iγµψi + ε̄iγµψ

i
)
,

δψi = − 1
2gFµνγ

µνεi − 2Dµφijγµεj + Ēijφjkε
k − 2g[φij , φjk]εk − 2φijηj ,

δφij = 2ε̄[iψj] − εijklε̄kψl . (2.5)
2Note that we largely follow the conventions and notation of [50, 51]. Thus, ψi is a chiral spinor satisfying

γ5ψ
i = +ψi transforming in the 4̄ of SU(4). The conjugate spinor, ψi, defined by ψi ≡ B(ψi)∗ (in contrast

to the notation used in [39]) where B−1γaB = γ∗
a , has the opposite chirality, γ5ψi = −ψi, and transforms

in the 4 of SU(4). Note that we have changed the sign of (Mψ)ij in (2.4) compared with [39], in agreement
with eq. (10) of [50]. In addition, the dependence on τ in (2.3) is obtained from [50, 51] by writing φa,
which can be used to parametrise SU(1, 1)/U(1), as φ1 = 1

2
√

Imτ/4π
(1− i τ4π ) and φ2 = 1

2
√

Imτ/4π
(1 + i τ4π ),

again in contrast to [39].
3Note that εi, ηi both transform in the 4̄ of SU(4) and satisfy the chirality conditions γ5ε

i = +εi,
γ5η

i = −ηi. The conjugate spinors εi, ηi transform in the 4 of SU(4) with γ5εi = −εi, γ5ηi = +ηi. We
note that (2.5) can be obtained from eq. (5) of [50].
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Here εi, ηi parametrise possible Poincaré and superconformal supersymmetries, respec-
tively. Such supersymmetries will only be present provided that there are solutions to the
following equations

0 =Eijε
j ,

0 = − 1
2ε

ijlm∂µEklγ
µεm +Dij

klε
l + 1

2EklĒ
l[iεj] − 1

6EmlĒ
mlδ

[i
k ε
j] − 1

6EmlĒ
m[iδ

j]
k ε

l

− 1
2ε

ijlmEklηm ,

0 = 2∂µεi − γµηi , (2.6)

which can be obtained from eq. (4.9), (4.10) of [49].
Notice that a complete basis of solutions to the last line of (2.6) is given by

εi = constant, ηi = 0 ,

εi = 1
2y

µγµη
i, ηi = constant. (2.7)

In the following, when we refer to solutions to the background equations (2.6) with a
given εi we will always mean solutions as in the first line of (2.7), which are the Poincaré
supersymmetries. When referring to a solution with a given ηi, we will mean a solution as
in the second line with an associated εi(y), which are the super conformal supersymmetries.

Here we will not attempt to find the most general solution to (2.6). Instead we will focus
on generalising some known homogeneous (i.e. spatially independent) mass deformations
that, moreover, can be studied holographically within the context of known truncations of
N = 8, SO(6) gauged supergravity in D = 5. Specifically, we will consider the homogeneous
N = 1∗ deformations and then allow for an additional dependence on just one of the three
spatial coordinates.

To cast the N = 1∗ deformations in the present formalism we first recall that in
terms of N = 1 language the field content of N = 4 SYM consists of a vector multiplet,
which includes the gauge-field and the gaugino, coupled to three chiral superfields Φa

which transform in the 3 of SU(3) in the decomposition SU(3) × U(1) ⊂ SU(4)R. The
homogeneous N = 1∗ deformations are obtained by adding to the superpotential the term
δW ∼

∑3
a=1matrΦaΦa, with ma complex. This deformation gives rise to masses for the

bosons and fermions in the chiral multiplets, but there is no mass deformation for the
gaugino, consistent with preserving N = 1 supersymmetry. In the present formalism these
N = 1∗ deformations are associated with fermion mass deformations of the form

Eij = diag(m1,m2,m3, 0), (2.8)

as well as associated bosonic mass deformations, parametrised by both Eij and certain
components of Dij

kl that are needed to preserve supersymmetry, as we shortly recall below.
Here we will generalise the N = 1∗ deformations by allowing ma to depend on one of

the spatial coordinates: ma = ma(y). Let us first analyse the generic case with distinct
ma 6= 0, before discussing some special subcases. From the first line of (2.6) we see that
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we can, generically, preserve N = 1 Poincaré supersymmetry of the form

ε = (0, 0, 0, ε4) . (2.9)

In the homogeneous case, with ma constant, it is not difficult to see that the middle
equation of (2.6) can be satisfied by choosing

D14
14 = D23

23 = 1
12
(
|m2|2 + |m3|2 − 2|m1|2

)
,

D24
24 = D13

13 = 1
12
(
|m3|2 + |m1|2 − 2|m2|2

)
,

D34
34 = D12

12 = 1
12
(
|m1|2 + |m2|2 − 2|m3|2

)
. (2.10)

If we now allow ma = ma(y), taking i = 1, j = 2 and k = 3 in (2.6), for example, we also
need to satisfy

D12
34ε

4 − 1
2∂ym3γ

yε4 = 0 , (2.11)

and we recall here that ε4 is the spinor conjugate to ε4: ε4 = B(ε4)∗. This can be solved
after imposing the following projection on the Poincaré supersymmetry parameters

γyε4 = eiσε4 , (2.12)

where σ is a constant. Indeed, we find that these and in fact all components of (2.6) are
satisfied by choosing

D12
34 = (D34

12)∗ = 1
2e

iσ∂ym3,

D23
14 = (D14

23)∗ = 1
2e

iσ∂ym1,

D31
24 = (D24

31)∗ = 1
2e

iσ∂ym2 , (2.13)

as well as (2.10), with all other components zero.
The projection condition (2.12) breaks half of the supersymmetry of the N = 1∗ theo-

ries leaving two supercharges. As the deformation only depends on one of the three spatial
dimensions, we have preserved Poincaré invariance in the remaining d = 3 spacetime dimen-
sions. Thus, generically, the above deformation preserves N = 1 Poincaré supersymmetry
in d = 3. For special choices of ma(y) we can preserve N = 1 conformal supersymmetry
in d = 3. To see this, we take

ηi = (0, 0, 0, η4) . (2.14)

Then again considering, for example, i = 1, j = 2 and k = 3 in (2.6), as well as recalling
the second line of (2.7), we are led to the condition

[2m3 +m′3γ
y(yµγµ)]η4 = m′3e

iσ(yµγµ)η4 (2.15)

This can be solved, as well as all other conditions, by imposing the projection condition

γyη4 = −eiση4 . (2.16)
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and choosing

ma = λa
y
, (2.17)

for arbitrary complex constants λa.
Obviously these mass sources are singular at y = 0, which is the location of the

interface. It is interesting to point out that we can choose different mass sources on either
side of the interface and still preserve the same supersymmetry. In particular, for the
conformally invariant case we can take

ma =


λa
y
, y > 0,

λ̃a
y
, y < 0,

(2.18)

with λa and λ̃a independent constants. We will see such sources arise in the supergravity
solutions that we construct later in the paper.4

Let us now further consider three special cases that we will focus on in the sequel.

2.1 N = 1∗ one mass model

For this case we assume that only one of the ma is non-zero, say m3. We therefore consider
a fermion mass matrix Eij of the form

E = diag(0, 0,m, 0). (2.19)

In the homogeneous case, with m independent of y, we can preserve N = 1 supersymmetry
in d = 4 of the form (2.9) by also turning on

Dα4
α4 = Dα3

α3 = 1
12 |m|

2, no sum on α ∈ {1, 2} ,

D12
12 = D34

34 = −1
6 |m|

2 . (2.20)

These homogeneous deformations preserve a global SU(2)× U(1)R symmetry. To see this
we first decompose SU(3)× U(1)1 ⊂ SU(4)R with the SU(3) acting on each of the indices
i, j ∈ {1, 2, 3} in Eij . We then further decompose SU(2) × U(1)2 ⊂ SU(3) to find that
the global symmetry preserving (2.19) consists of this SU(2) factor as well as a diagonal
subgroup U(1)R ⊂ U(1)1 × U(1)2. Notice that the spinor (2.9) parametrising the N = 1
Poincaré supersymmetry is charged under this U(1)R so it is in fact an R-symmetry of the
N = 1∗ theory.

4By suitable analytic continuation of the deformations that preserves conformal invariance, one can make
contact with the mass deformations of the N = 1∗, N = 2∗ theories when placed on the round four-sphere
as studied in [45, 46]. Also note that the deformations we consider which are not conformally invariant
do not involve any additional components of Eij and Dij

kl, which is a useful observation in constructing
supergravity solutions, as we discuss in the next section.
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When m = m(y), we can preserve N = 1 Poincaré supersymmetry in d = 3 satisfy-
ing (2.12) with

D12
34 = (D34

12)∗ = 1
2e

iσ∂ym. (2.21)

Notice that when m = m(y) the U(1)R R-symmetry of the N = 1∗ theory is broken and
we are left only with an SU(2) global symmetry. If we choose m = λ

y then, in addition, we
preserve N = 1 superconformal supersymmetry.

2.2 N = 1∗ equal-mass model

For this case, we assume m1 = m2 = m3 so that the fermion mass matrix Eij takes the
form

Eij = diag(m,m,m, 0) . (2.22)

In the homogeneous case, with m independent of y, taking Dij
kl = 0 we preserve N =

1 supersymmetry in d = 4 of the form (2.9). By again considering the decomposition
SU(3) × U(1) ⊂ SU(4)R with the SU(3) acting on each of the indices i, j ∈ {1, 2, 3} in
Eij , we see that these homogeneous mass deformations maintain an SO(3) ⊂ SU(3) global
symmetry of the parent N = 4 SYM theory.

When m = m(y), we can preserve N = 1 Poincaré supersymmetry in d = 3 satisfy-
ing (2.12) with

Dα4
β4 = Dαβ

γδ = 0,

Dαβ
γ4 = (Dγ4

αβ)∗ = 1
4ε

αβδεγεφD
εφ
δ4 = 1

2ε
αβγeiσ∂ym, (2.23)

where, in this subsection, we have used the indices α, β, γ, · · · ∈ {1, 2, 3}. We observe that
the spatially dependent deformations maintain the SO(3) global symmetry of the homo-
geneous case. If we choose m = λ

y then, in addition, we preserve N = 1 superconformal
supersymmetry.

2.3 N = 2∗ model

For this case we assume that one of the masses is zero, say m3 = 0, and the remaining two
are equal m1 = m2. Thus, we consider a fermion mass matrix Eij of the form

Eij = diag(m,m, 0, 0). (2.24)

We again first consider the homogeneous case with m independent of y. By choosing

D12
12 = D34

34 = 1
6 |m|

2 ,

Dαp
αp = − 1

12 |m|
2, no sum on α ∈ {1, 2} or p ∈ {3, 4} , (2.25)

we find that there is now an enhancement to N = 2 supersymmetry of the form

ε = (0, 0, ε3, ε4) . (2.26)
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These deformations preserve an SU(2)R×U(1) ⊂ SU(4)R global symmetry with SU(2)R the
R-symmetry. To see this we can decompose SU(2)1×SU(2)2×U(1) ⊂ SU(4)R with SU(2)1
and SU(2)2 acting on the indices i, j ∈ {1, 2} and i, j ∈ {3, 4}, respectively. Then SU(2)R
is SU(2)2, and clearly rotates the N = 2 supersymmetry parameters in (2.26). The U(1) ⊂
SU(2)1 symmetry acts as an SO(2) rotation of the 1, 2 directions and leaves (2.26) inert.

There can also be an enhancement of supersymmetry when m = m(y) compared with
the previous cases. From (2.6) with (i, j) = (1, p), with p ∈ {3, 4}, and k = 2, we find
the condition

1
2ε

pq∂ymγ
yεq +D1p

2qε
q = 0 , (2.27)

and q ∈ {3, 4}. To solve this we can consider a general projection condition of the form

γyεp = Mpqε
q, (2.28)

where Mpq is some constant 2× 2 matrix. The consistency with the complex conjugate of
this condition requires that M satisfies M̄pqMqr = δpr . If we define

M̃p
r = εpqMqr , (2.29)

then (2.27) implies
D1p

2q = −1
2∂ymM̃

p
q . (2.30)

The tracelessness condition for D, in (2.2), now requires that M̃ is traceless (and therefore
M is symmetric). M̃ is therefore a traceless matrix in U(2). The remaining components
of D can then be inferred from (2.2).

Note that the choice of the matrix M breaks the SU(2)R R-symmetry of the homoge-
neous deformations down to a U(1)R. This is expected since the spatially deformed solution
preserves N = 2 Poincaré supersymmetry in d = 3 and so we expect an SO(2) = U(1)
R-symmetry. The overall global symmetry is U(1)R × U(1). If we choose m = λ

y then we
preserve N = 2 superconformal symmetry in d = 3 with

ηi = (0, 0, η3, η4) , (2.31)

and
γyηp = −Mpqη

q . (2.32)

3 Supergravity truncations

To study the spatially dependent mass deformations holographically we would like to con-
struct suitable solutions of type IIB supergravity [55, 56]. A convenient way to do this is
to construct solutions of maximally supersymmetric SO(6) gauged supergravity in D = 5
and then uplift the solutions to D = 10 using the results of [43, 44]. The D = 5 theory has
42 scalar fields, parametrising the coset E6(6)/USp(8), which transform as 1+1, 10+10
and 20′ with respect to SO(6). It is thus still rather unwieldy and so one seeks suitable
consistent truncations of the D = 5 theory.
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In fact, for general constant, complex mass parameters ma, associated with the N = 1∗

theories, there is an additional truncation that can be utilised, as discussed in [46], which
can also be used5 when ma = ma(y). Specifically, one keeps the fields of SO(6) gauged
supergravity that are invariant under a (Z2)3 symmetry of the SO(6)×SL(2,R) symmetry
of the theory. This leads to an N = 2 D = 5 gauged supergravity theory coupled to
two vector multiplets and four hypermultiplets. This theory contains eighteen scalar fields
which parametrise the coset

M18 = SO(1, 1)× SO(1, 1)× SO(4, 4)
SO(4)× SO(4) . (3.1)

Schematically, these 18 scalar fields are dual to the following operators in N = 4
SYM theory:

∆ = 4 : ϕ, ϕ̃ ↔ trFµνFµν , trFµν ∗ Fµν ,
∆ = 3 : φi ↔ tr(χiχi + cubic in Zi) , i = 1, 2, 3 ,

φ4 ↔ tr(λλ+ cubic in Zi) ,
∆ = 2 : αi ↔ tr(Z2

i ) , i = 1, 2, 3 ,
β1 ↔ tr(|Z1|2 + |Z2|2 − 2|Z3|2) ,
β2 ↔ tr(|Z1|2 − |Z2|2) . (3.2)

Here ϕ, ϕ̃ are real and are the 1+1 irreps of SO(6) mentioned above. The fields φi, φ4
are complex and arise from the 10+10 irreps. The three complex scalar fields αi and
the two real scalars β1, β2, which parametrise the SO(1, 1)× SO(1, 1) factors in the scalar
manifoldM18, arise from the 20′ irrep.6 For the N = 4 SYM operators appearing on the
right hand side of (3.2), written in an N = 1 language, we note that Zi and χi are the
bosonic and fermionic components of the chiral superfields Φi while λ is the gaugino of the
vector multiplet. We also recall that the supergravity modes do not capture the Konishi
operator tr(|Z1|2 + |Z2|2 + |Z3|2). Having source terms for the three complex scalars φi with
i = 1, 2, 3 is dual to deforming N = 4 SYM by the three fermion masses ma given in (2.8)
(up to normalisation). Thus, allowing for spatially dependent sources for these φi as well as
suitable source terms for αi, β1 and β2, dual to bosonic masses we can holographically study
spatially dependent mass deformations with arbitrary complex ma(y) that we discussed in

5A Euclidean version of the same truncated theory was used in [46] to study mass deformations of
N = 1∗, N = 2∗ theories on a four-sphere. Thus, by analytic continuation one can expect that the same
truncation can be used to study the conformally invariant mass deformations that we study here. From
footnote 4 we can also expect that this truncation can be used for more general mass deformations.

6For reference, we note that β1, β2 are the two real scalars that appear in the N = 2 gauged supergravity
model coupled to two vector multiplets [57], often called the STU model. If we supplement the STU model
with complex φi, φ4 we can obtain the charged cloud truncation considered in [58]; the scalars in this

truncation parametrise the coset SO(1, 1)×SO(1, 1)×
[

SU(1,1)
U(1)

]4
, but it is a different set of scalars of SO(6)

gauge supergravity than those kept in (3.3). It is also different to the truncation of [59, 60], which has
scalars parametrising the same coset, but does not contain any scalars in the 10 of SO(6), dual to fermion
mass deformations.
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the last section. As far as we are aware, however, this N = 2 D = 5 gauged supergravity
theory has not been explicitly constructed.

If we restrict to deformations for which the mass parameters ma(y) are all real, we can
make further progress. Indeed, as discussed in [46], we can then utilise a further truncation
that just keeps the metric and ten scalar fields which parametrise the coset

M10 = SO(1, 1)× SO(1, 1)×
[SU(1, 1)

U(1)

]4
. (3.3)

This is achieved by truncating the N = 2 D = 5 gauged supergravity theory using an
additional Z2 symmetry, which lies in a certain [O(6)× SL±(2,R)] /Z2 subgroup, which is
the actual symmetry group of N = 8 gauged supergravity [61]. Although not a supergravity
theory, this truncation can be used to obtain supersymmetric solutions of SO(6) gauged
supergravity and hence type IIB supergravity. The 10 real scalars consist of ϕ, φi, φ4, αi
and β1, β2 all of which are now real and dual to the obvious Hermitian generalisations of
the operators given in (3.2). We will refer to ϕ as the “dilaton”.

As already noted, the two scalars β1, β2 parametrize the SO(1, 1) × SO(1, 1) factor
in M10. The remaining eight scalars of this truncation, parametrising

[
SU(1,1)

U(1)

]4
, can be

packaged into four complex scalar fields zA via

z1 = tanh
[1

2
(
α1 + α2 + α3 + ϕ− iφ1 − iφ2 − iφ3 + iφ4

)]
,

z2 = tanh
[1

2
(
α1 − α2 + α3 − ϕ− iφ1 + iφ2 − iφ3 − iφ4

)]
,

z3 = tanh
[1

2
(
α1 + α2 − α3 − ϕ− iφ1 − iφ2 + iφ3 − iφ4

)]
,

z4 = tanh
[1

2
(
α1 − α2 − α3 + ϕ− iφ1 + iφ2 + iφ3 + iφ4

)]
. (3.4)

The gravity-scalar part of the Lagrangian can be written as

L = −1
4R+ 3(∂β1)2 + (∂β2)2 + 1

2KAB̄∂µz
A∂µz̄B̄ − P , (3.5)

where P is the scalar potential and K is the Kähler potential given by

K = −
4∑

A=1
log(1− zAz̄A) . (3.6)

The scalar potential can be conveniently derived from a superpotential-like quantity

W ≡ 1
L
e2β1+2β2

(
1 + z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 + z1z2z3z4

)
+ 1
L
e2β1−2β2

(
1− z1z2 + z1z3 − z1z4 − z2z3 + z2z4 − z3z4 + z1z2z3z4

)
+ 1
L
e−4β1

(
1 + z1z2 − z1z3 − z1z4 − z2z3 − z2z4 + z3z4 + z1z2z3z4

)
, (3.7)

via

P = 1
8e
K
[1

6∂β1W∂β1W + 1
2∂β2W∂β2W +KB̄A∇AW∇B̄W −

8
3WW

]
, (3.8)

where KB̄A is the inverse of KAB̄ and ∇AW ≡ ∂AW + ∂AKW .
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The ten scalar model is invariant under Z2 × S4 discrete symmetries acting on the
bosonic fields, which also leave W invariant (we will not make precise the discrete action
on the fermions). First, it is invariant under the Z2 symmetry

zA → −zA , ⇔ {φi, φ4, αi, ϕ} → −{φi, φ4, αi, ϕ} . (3.9)

Second, it is also invariant under an S3 permutation symmetry which acts on (z2, z3, z4)
as well as β1, β2 and is generated by two elements. The first generator acts via

z2 → −z4, z4 → −z2 , ⇔ φ1 ↔ φ2 , α1 ↔ α2 ,

β2 → −β2 , (3.10)

and the second generator acts via

z3 → −z4, z4 → −z3 , ⇔ φ1 ↔ φ3 , α1 ↔ α3 ,

β1 → −
1
2(β1 + β2) , β2 →

1
2(β2 − 3β1) . (3.11)

The action on φi, αi makes it clear that these generates S3. In addition, there is also an
invariance under the interchange of pairs of the zA:

z1 ↔ z4, z2 ↔ z3 , ⇐⇒ (φ2, φ3)→ −(φ2, φ3) , (α2, α3)→ −(α2, α3) ,

z1 ↔ z2, z3 ↔ z4 ,
Z2⇐=⇒ (φ1, φ3)→ −(φ1, φ3) , (α1, α3)→ −(α1, α3) ,

z1 ↔ z3, z2 ↔ z4 ,
Z2⇐=⇒ (φ1, φ2)→ −(φ1, φ2) , (α1, α2)→ −(α1, α2) , (3.12)

where the equivalence in the last two uses (3.9). Together with (3.9)–(3.11) these generate
Z2 × S4 as observed in [62]. The S4 acts by permuting (z1,−z2,−z3, z4) as well as trans-
forming β1, β2 and we also point out that φ4 is left inert by the S4 action. We also point
out that the D = 5 theory is invariant under shifts of the dilaton

ϕ→ ϕ+ c , (3.13)

where c is a real constant.7

Using the conventions of [46] (also see appendix A) a solution to the equations of
motion of this model is supersymmetric provided that one can find a pair of symplectic
Majorana spinors (ε1, ε2), with ε2 = −iγ4ε∗1, that obey

∇µε1 +Aµε1 −
1
6e
K/2Wγµε2 = 0 ,

γµ∂µz
Aε1 + 1

2e
K/2KB̄A

(
∇B̄W

)
ε2 = 0 ,

3γµ∂µβ1ε1 + 1
4e
K/2

(
∂β1W

)
ε2 = 0 ,

γµ∂µβ2ε1 + 1
4e
K/2

(
∂β2W

)
ε2 = 0 , (3.14)

7The transformation acts via fractional linear transformations on the zA and changes K → K + f + f̄

and W → e−fW with f = f(zA). One can check that this leaves P and hence the Lagrangian (3.5)
invariant. One can also check that the BPS conditions (3.14) are covariant provided that ε1 → ef/4−f̄/4ε1

and ε2 → e−f/4+f̄/4ε2.
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where we have defined

Aµ ≡ −
1
4
[
∂AK∂µzA − ∂B̄K∂µz̄

B̄] . (3.15)

We observe that the equations for preservation of supersymmetry given in (3.14) preserve
the discrete symmetries (3.9)–(3.13).

The AdS5 vacuum solution dual to N = 4 SYM theory, is obtained when all of the
scalars vanish. For this solution, the discrete symmetries (3.9)–(3.12) are associated with
discrete R-symmetries of N = 4 SYM theory.

Following [46], we now identify additional truncations of the ten scalar model that can
be used for real, spatially dependent mass deformations associated with each of the three
cases considered in the last section.

3.1 N = 1∗ one mass model

This model is obtained by taking the limit where two of the masses vanish, which we take
to be m1 = m2 = 0 as in section 2.1 and now with m3 real. Starting with the ten scalar
model (3.3), we must have source terms for φ3 and α3. It turns out to be consistent to set
φ1 = φ2 = 0, α1 = α2 = 0 as well as ϕ = φ4 = 0 and β2 = 0:

z1 = z2 = −z3 = −z4 and β2 = 0 , (3.16)

with

z1 = tanh
[1

2
(
α3 − iφ3

)]
. (3.17)

This results in a three-scalar model with fields z1, and β1, which we will use to construct
supersymmetric Janus solutions later. The discrete symmetries (3.9)–(3.12) reduce to just
the Z2 symmetry generated by z1 → −z1.

An important feature of this model is that in addition to the AdS5 vacuum solution
with vanishing scalars, and dual to N = 4 SYM theory, there are also two other AdS5
solutions, labelled LS±. These two solutions are related by the Z2 symmetry (3.9) and
given by

z1 = ±i(2−
√

3) , β1 = −1
6 log(2) , L̃ = 3

25/3L, (3.18)

where L̃ the radius of the AdS5 space for both LS± solutions. When uplifted to type
IIB these fixed point solutions preserve SU(2) × U(1)R global symmetry and are each
holographically dual to the N = 1 SCFT found by Leigh and Strassler in [3]. By examining
the linearised fluctuations of the scalar fields about the LS± vacua, we find that α3 is dual
to an irrelevant operator O∆=2+

√
7

α3 with conformal dimension ∆ = 2 +
√

7. The linearised
modes involving φ3 and β2 mix, and after diagonalisation we find modes that are dual to
one relevant and one irrelevant operator in the LS SCFT, which we label O∆=1+

√
7

φ3,β2
and

O∆=3+
√

7
φ3,β2

with dimensions ∆ = 1 +
√

7 ∼ 3.6 and ∆ = 3 +
√

7, respectively.
Note that if we set α3 = 0, in this D = 5 model we obtain a model with two real scalars

which is the same as that used to construct the homogeneous RG flows associated with the
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N = 1∗ one mass model. These RG flows, which preserve SU(2)×U(1)R global symmetry,
flow to the Leigh-Strassler fixed point [3] in the IR and were constructed in [4] and uplifted
to type IIB in [61]. This gravitational model, with α3 = 0, preserves the SU(2) × U(1)R
global symmetry8 and since the U(1)R is broken when the mass deformations are spatially
modulated, as discussed in section 2.1, it cannot be used in this context.

3.2 N = 1∗ equal-mass model

For this model we have m1 = m2 = m3 ≡ m, as in section 2.2, and here we are considering
m to be real. We must have φ1 = φ2 = φ3 as well as α1 = α2 = α3 and both non-zero,
associated with the sources for the fermion and boson mass deformations. It turns out to
be inconsistent to further set the gaugino condensate φ4 or the scalar ϕ to zero. However,
it is consistent to set β1 = β2 = 0. Thus, setting

z4 = −z3 = −z2 , and β1 = β2 = 0 , (3.19)

in the ten scalar model (3.3) leads to a model with four scalars, parametrised by (z1, z2)
with

z1 = tanh
[1

2
(
3α1 + ϕ− i3φ1 + iφ4

)]
,

z2 = tanh
[1

2
(
α1 − ϕ− iφ1 − iφ4

)]
. (3.20)

The discrete symmetries (3.9)–(3.12) reduce to the symmetry generated by (z1, z2) →
−(z1, z2). This truncation is invariant under shifts of the dilaton (3.13). The Kähler
potential (3.6) is now

K = − log(1− z1z̄1)− 3 log(1− z2z̄2) , (3.21)

and an explicit expression for the potential P can be found in (3.8) of [11]. We use this
four scalar model to construct supersymmetric Janus solutions later.

We note that this four scalar model can be further truncated to give a theory with
two real scalars, by setting α1 = ϕ = 0. This theory keeps φ1, associated with real
SO(3) ⊂ SU(3)R invariant fermion masses, and the gaugino condensate field φ4. This
model is in fact the same model as that used by GPPZ [5] to construct RG flows associated
with homogeneous SO(3) invariant mass deformations (and uplifted to type IIB in [9, 10]
extending [61]); see (3.12) of [11] for the explicit field redefinition. It cannot be used for
spatially dependent masses, however.

For the equal mass model, with spatially dependent complex masses, there is in fact an
alternative consistent truncation that can be used. By keeping an SO(3) ⊂ SU(3) ⊂ SO(6)

8For orientation, note that if one keeps an SU(2) × U(1) ⊂ SU(3) ⊂ SO(6) invariant sector of SO(6)
gauged supergravity, one obtains an N = 2 supergravity coupled to one vector multiplet and one hypermul-
tiplet [61]. The five scalars parametrise the coset SO(1, 1)× SU(2, 1)/[SU(2)×U(1)]. With β2 the SO(1, 1)
factor, the remaining coset is obtained by supplementing φ3 with a complex partner, associated with a
complex fermion mass, and two more scalars ϕ, ϕ̃ dual to operators as in (3.2).
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invariant sector of SO(6) gauge supergravity, one can obtain an N = 2 supergravity coupled
to two hypermultiplets [61, 63]. The 8 scalars of this theory parametrise the quaternionic-
Kähler manifold

MSO(3) =
G2(2)

SU(2)× SU(2) . (3.22)

The scalar fields of this model consist of adding a complex partner to the four real scalars
α1, ϕ, φ1, φ4 of the four-scalar model (3.20). Although we will not utilise this truncation in
this paper, it is a natural arena for additional investigations of spatially dependent masses
for the equal mass model.

3.3 N = 2∗ model

This model is obtained by setting two of the masses to be equal and one to be zero and
specifically we consider m1 = m2 6= 0 and m3 = 0, as in section 2.3, now with m1 real.
To study this case we can consistently set φ1 = φ2, α1 = α2 and β1 6= 0, while imposing
α3 = φ3 = φ4 = ϕ = β2 = 0 in the ten scalar model (3.3). Equivalently, we set

z1 = z3 , z2 = z4 = β2 = 0 . (3.23)

with

z1 = tanh
[
α1 − iφ1

]
, (3.24)

leading to a three-scalar model, parametrised by z1 and β1, discussed in [45], which we will
use to construct supersymmetric Janus solutions later. This model is invariant under the
discrete symmetry generated by z1 → −z1.

Note that if we set α1 = 0, we obtain a gravitational model with two real scalars which
is the same9 as that used to construct the RG flows associated with the homogeneous N =
2∗ deformations in [64]. These RG flows preserve SU(2)R × U(1) global symmetry. Thus,
this gravitational model cannot be used10 to study spatially dependent mass deformations
for the N = 2∗ model since, as discussed in section 2.3, the spatial dependence breaks
SU(2)R ×U(1) down to U(1)R ×U(1).

4 Supersymmetric mass deformations with ISO(1, 2) symmetry

In this section we will discuss the BPS equations that are associated with supersymmetric
mass deformations with ISO(1, 2) symmetry. Furthermore, in appendix B we will analyse
holographic renormalisation for this class of solutions, which will be useful in future studies
of these solutions as well as when we discuss physical properties of the supersymmetric

9One should make the identification between scalar fields here and in [64] via cos 2φ1 = 1/ cosh 2χ.
10Similarly, the N = 4 gauge supergravity theory discussed in [4] with 11 scalars parametrising the coset

SO(1, 1)×SO(5, 2)/[SO(5)×SO(2)] cannot be used to study spatially dependent N = 2∗ mass deformations.
Note that this truncation is obtained by considering an SU(2) invariant sector of SO(6) gauged supergravity.
If one further restricts to an SU(2)×U(1) invariant sector then one should get theN = 2 gauged supergravity
mentioned in footnote 8.
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Janus solutions, as a special sub-class. We leave the details in the appendix B, but we
highlight here that there are a number of interesting issues, including a large number
of possible finite counterterms, subtleties in obtaining a supersymmetric renormalisation
scheme and interesting source terms which appear in the conformal anomaly.

In the context of the ten scalar truncation discussed in section 3, we consider the ansatz

ds2 = e2A(dt2 − dy2
1 − dy2

2)− e2V dx2 −N2dr2 , (4.1)

with A, V,N and the scalars zA, β1, β2, functions of (x, r) only. This ansatz preserves
ISO(1, 2) symmetry associated with the coordinates t, y1, y2. The coordinates r, x, together,
parametrise both the remaining field theory direction, upon which the mass deformations
depend, as well as the holographic radial coordinate. There is some residual gauge free-
dom in this ansatz, associated with reparametrising (r, x) and in practise we will find it
convenient to fix this in different ways in the sequel.

In appendix A we derive a set of BPS equations associated with the preservation, in
general, of 1/4 of the supersymmetry. We use the orthonormal frame (e0, e1, e2, e3, e4) =
(eAdt, eAdy1, e

Ady2, e
V dx,Ndr) and note that the supersymmetry transformations are

parametrised by pair of symplectic Majorana spinors ε1 and ε2. We find that the Killing
spinors are independent of t, y1, y2 and satisfy the following projection condition

γ012ε1 = −iκε1 , (4.2)

with κ = ±1, which implies γ012ε2 = iκε2 as a result of the Majorana condition ε2 = −iγ4ε∗1,
as well as

γ4ε1 = eiξε2 , (4.3)

where ξ is a function of (x, r). It is also worth noting that we then have ε∗1 = ie−iξε1. The
associated system of BPS equations are then given by

e−V ∂xA+ iκN−1∂rA−
iκ

3 e
K/2e−iξW̄ = 0 ,

−e−V ∂xξ − κN−1∂rV + 2ie−VAx + κ

3 e
K/2Re(e−iξW̄) = 0 ,

−N−1∂rξ + κN−1e−V ∂xN + 2iN−1Ar + 1
3e
K/2Im(e−iξW̄) = 0 , (4.4)

where we recall the definition of Aµ given in (3.15), as well as

iκeiξ
(
e−V ∂x + iκN−1∂r

)
zA = 1

2e
K/2KB̄A∇B̄W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β1 = 1

12e
K/2∂β1W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β2 = 1

4e
K/2∂β2W̄ . (4.5)

The dependence of the Killing spinor on (x, r) can be determined and we find that they
are given by ε1 = eA/2eiξ/2η0 where η0 is a constant spinor satisfying the projection given
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in (4.2). We note that these BPS equations are not all independent, and there is also an
issue of consistency, given the reality of various functions entering these equations, a point
we return to below. Observe that these BPS equations are invariant under

r → −r, x→ −x, ξ → ξ + π . (4.6)

It is interesting to point out that if we choose the gauge N = eV , then the equations
can be written in a simplified form, analogous to what was seen in [18]. We introduce the
complex coordinate w = r − iκx and the (1, 0) form B defined by

B ≡ 1
6e

iξ+V+K/2Wdw . (4.7)

The equations (4.4) can then be cast in the form

∂A = B ,

∂̄B = −FB ∧ B̄ , (4.8)

where F is a real quantity just depending on W, K given by

F ≡ 1− 3
2

1
|W|2

∇AWKAB̄∇B̄W̄ −
1
4 |∂β1 logW|2 − 3

4 |∂β2 logW|2 , (4.9)

and ∂, ∂̄ are the holomorphic and anti-holomorphic exterior derivatives. Similarly, (4.5)
become

∂̄zA = −3
2(W̄)−1KB̄A∇B̄W̄B̄ ,

∂̄β1 = −1
4(W̄)−1∂β1W̄B̄ ,

∂̄β2 = −3
4(W̄)−1∂β2W̄B̄ . (4.10)

Interestingly, as we show in appendix A, we can use this formulation of the BPS
equations to show that the consistency of the BPS equations requires a non-trivial condition
onW, which we give in (A.21). Furthermore, we can show that the specificW that appears
in the ten scalar truncation, given in (3.7), does in fact satisfy this condition. We expect
the underlying reason for this is that we are working with a theory that comes from a
truncation of a supersymmetric theory.

5 BPS equations for Janus solutions

We now consider a particular sub-class of the BPS configurations that we considered in
the last subsection. The ansatz for the D = 5 metric is given by

ds2
5 = e2AJds2(AdS4)−N2dr2 , (5.1)

where AJ = AJ(r), N = N(r) and we take the scalar fields β1, β2, z
A to be functions of r

only. Here ds2(AdS4) is the metric on AdS4 of radius `, given, for example, in Poincaré
coordinates by

ds2(AdS4) = `2
[
−dx

2

x2 + 1
x2

(
dt2 − dy2

1 − dy2
2

)]
. (5.2)
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The factor of ` can be absorbed after redefining AJ , but it is convenient11 to keep it explicit.
Notice that we recover the metric on AdS5 with radius L if N = 1 and

eAJ = L

`
cosh r

L
. (5.3)

We can obtain the BPS equations for the Janus solutions as a special sub-class of those
considered in the last section. Specifically, if we take

eV = eA = `eAJx−1 , (5.4)

then the metric ansatz (4.1) precisely gives (5.1). From the first and third BPS equations
in (4.4) we then get

N−1∂rAJ + iκ

`
e−AJ − e−iξ

3 eK/2W = 0 ,

i∂rξ + 2Ar −
i

3 Im
(
Ne−iξeK/2W

)
= 0 , (5.5)

respectively, with the second equation in (4.4) implied by the first of these. Furthermore,
from (4.5) we get the remaining BPS equations

N−1∂rz
A + e−iξ

2 eK/2KAB̄∇B̄W = 0,

N−1∂rβ1 + e−iξ

12 eK/2∂β1W = 0,

N−1∂rβ2 + e−iξ

4 eK/2∂β2W = 0 . (5.6)

We can also obtain the Poincaré type Killing spinors for the Janus solutions directly
from those given in the last section and we find

ε1 = eiξ/2+AJ/2`1/2
1√
x
η0, γ012η0 = −iκη0 , (5.7)

where η0 is a constant spinor, and ε2 = e−iξγ4ε1. In addition there are also superconformal
type Killing spinors of the form

ε1 = 1√
`

[√
x+ 1√

x
(tγ0 + y1γ1 + y2γ2) γ3

]
eiξ/2+AJ/2η0 , (5.8)

where η0 is a constant spinor satisfying

γ012η0 = −iκη0 , (5.9)

and again ε2 = e−iξγ4ε1. Observe that the BPS equation (5.5), (5.6) are invariant under
the transformation

r → −r, ξ → ξ + π, κ→ −κ , (5.10)
11Specifically, in the resulting BPS equations that we write down below, if we take ` → ∞ we obtain

the BPS equations for ordinary Lorentz invariant RG flows with metric ds2
5 = e2A(r)ds2(R1,3) − dr2. One

can also make contact with the BPS flow equations in Euclidean signature of [46], for an ansatz ds2
5 =

e2A(r)ds2(S4)− dr2, after taking `2 → −`2.
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but note that the latter changes the projection on the Killing spinor. They are also invari-
ant under

r → −r, zA → z̄A, ξ → −ξ + π . (5.11)

Further insight into these BPS equations can be obtained by choosing the gauge N =
eAJ and then recasting them in a manner similar to what we did in the last section.
Specifically, if we define

Br ≡
1
6e

iξ+AJ+K/2W , (5.12)

then we obtain12 the following BPS equations:

∂rAJ −
iκ

l
= 2Br, (5.13)

∂rBr = 2FBrB̄r , (5.14)

where F is the real quantity just depending on W, K given in (4.9), as well as

∂rz
A = −3KAB̄∇B̄W

W
B̄r ,

∂rβ1 = −1
2∂β1 logWB̄r ,

∂rβ2 = −3
2∂β2 logWB̄r . (5.15)

Now the right hand side of (5.14) is real, which implies that Im(B) is constant, in
agreement with (5.13). To further examine the consistency of the equations, given the
reality of β1 and β2, we first note that for any function G(z̄A, β1, β2) which depends only on
the scalar fields and is anti-holomorphic in the four complex scalars zA, using (5.13)–(5.15)
we can deduce

∂r(GB̄r) = 2(ÔG)BrB̄r , (5.16)

where Ô is a differential operator on the scalar manifold defined as

ÔG ≡ FG − 3
2K

ĀB∇BW
W

∂ĀG −
1
4∂β1 logW∂β1G −

3
4∂β2 logW∂β2G. (5.17)

Then, taking the r derivative of the last two equations in (5.15), we obtain the following
necessary conditions for these set of equations to be consistent with βi being real:

Im
(
Ô∂βi logW

)
= 0 , (i = 1, 2). (5.18)

Notice that these conditions do not involve B, just the scalar fields, and hence they are
necessary conditions on K and W. One can explicitly check that these conditions are
satisfied for (3.6) and (3.7) in the ten scalar model.

12The equations below can be immediately obtained from those in (A.14)–(A.21) if we choose eV = N =
eAJ and eA = `eAJ −x/`, which also gives rise to the metric ansatz (5.1) with N = eAJ , but, in contrast
to (5.4) and (5.2), the metric for the AdS4 sections are in horospherical coordinates rather than Poincaré
type coordinates.
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It is also not difficult to see that if (5.18) is satisfied, then it is sufficient for a solution
to exist, given a set of starting values for zA, βi, B satisfying the condition

Im
(
∂βi logWB̄r

)
= 0 (i = 1, 2). (5.19)

Indeed, by taking the taking the r derivative of the expression on the left hand side,
using (5.16) and given that (5.18) holds, we see that (5.19) is guaranteed to be satisfied
along the flow. Furthermore, for any starting values of zA, βi, one can always choose a
starting value of Br that satisfies (5.19), and then solve the equations.

From the above arguments, given (5.18) is satisfied one can also conclude the following:

• If the starting values of zA, βi are such that ∂βi logW = 0 or Im(∂βi logW) 6= 0 (for
i = 1, 2), then given a chosen value of κl one can always find a starting value for Re(Br)
such that (5.19) is satisfied and solve the equations. It is then guaranteed from (5.19)
that along each point in the flow, either ∂βi logW = 0 or Im(∂βi logW) 6= 0.

• Conversely, a choice of starting values with ∂βi logW 6= 0 and real, for either β1 or β2,
is consistent with equations (5.15) and (5.14) but is incompatible with equation (5.13)
since it requires Im(Br) = 0.

• From the last two equations in (5.15) it is clear that the turning point for βi corre-
sponds to a point in which ∂βi logW = 0.

• For a turning point of AJ , from (5.13) we have Re(Br) = 0 and therefore (5.19)
implies that at this point we must have Re(∂βi logW) = 0. Thus, at this turning
point we are just free to specify initial conditions for the zA which implies that the
family of solutions is of dimension twice the number of zA that are active.

Note that we have proved these results for the flows using the gauge N = eAJ . however,
they are gauge invariant results for the flows and hence, are also valid for the gauge N = 1
that we use to numerically construct the solutions in the next section.

6 Supersymmetric Janus solutions

In this section we present various solutions to the BPS equations (5.5), (5.6) that we
derived in the previous section, including families of Janus solutions. More precisely, we
will do this for each of three different consistent truncations of the ten scalar model that
we discussed in section 3. Before doing that we make some general comments concerning
how we obtain the field theory sources and expectation values, both with AdS4 boundary
metric and with flat boundary metric, using the holographic renormalisation scheme that
we outline in detail in appendices B and C.

6.1 Preliminaries

Let us focus on the Janus solutions which describe a planar co-dimension one interface in
N = 4 SYM that is supported by spatially dependent mass sources. These solutions have
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a metric of the form given in (5.1):

ds2 = e2AJds2(AdS4)− dr2 , (6.1)

where we have now set N = 1 for convenience, with

ds2(AdS4) = `2

x2

(
−dx2 + dt2 − dy2

1 − dy2
2

)
. (6.2)

Notice that in the gauge N = 1, the BPS equations are invariant under shifts of the radial
coordinate

r → r + constant . (6.3)

It is illuminating to first recall that the N = 4 SYM AdS5 vacuum solution with this
AdS4 slicing is given by

eAJ = L

`
cosh r

L
, (6.4)

with vanishing scalar fields. If we now employ the coordinate transformation

x =
√
y2

3 + L2e−2ρ/L, er/L = eρ/L
y3 +

√
y2

3 + L2e−2ρ/L

L
, (6.5)

we obtain the AdS5 metric, with flat-slicing, given by

ds2
5 = e2ρ/L(dt2 − dy2

1 − dy2
2 − dy2

3)− dρ2 . (6.6)

In the (ρ, y3) coordinates the conformal boundary is reached at ρ → ∞ and has a flat
boundary metric with coordinates (t, yi). On the other hand in the (r, x) coordinates the
conformal boundary has three components: two half spaces r → ±∞ at x 6= 0, associated
with y3 > 0 and y3 < 0, respectively, joined together at the planar interface at x = 0
and finite r, associated with y3 = 0. As r → ±∞ we naturally obtain the AdS4 metric
on the two half spaces. A few more details are provided in appendix C and we have also
illustrated the set-up there in figure 6.

6.1.1 Janus solutions: field theory on AdS4

The Janus solutions of N = 4 SYM that we construct approach the N = 4 SYM AdS5
vacuum as r → ±∞ but with additional mass sources. Analogous to the discussion for the
AdS5 vacuum solution itself, the conformal boundary of these Janus solutions consists of
three components: two half spaces, with AdS4 metrics, joined together at a planar interface
along the boundary of the AdS4. Note that the boundary at x = 0 is not a standard
asymptotically locally AdS5 region, as the scalars are not approaching an extremum of the
potential, but only at r = ±∞.
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Let us first consider the r →∞ end of the interface, returning to the r → −∞ end in
section 6.1.3. As r →∞ we demand that we have the schematic expansion

AJ = r

L
+A0 + · · ·+A(v)e

−4r/L + · · · ,

φi = φi,(s)e
−r/L + · · ·+ φi,(v)e

−3r/L + · · · , i = 1, . . . , 4 ,

αi = αi,(s)
r

L
e−2r/L + αi,(v)e

−2r/L + · · · , , i = 1, . . . , 3 ,

βi = βi,(s)
r

L
e−2r/L + βi,(v)e

−2r/L + · · · , i = 1, . . . , 2 ,

ϕ = ϕ(s) + · · ·+ ϕ(v)e
−4r/L + · · · . (6.7)

Recall that in the N = 1 gauge the BPS equations have the residual shift symmetry in
r (6.3). By shifting the radial coordinate via r → r − A0L we can always remove the
constant A0 term and we shall do so in the following. In particular all the expressions for
the expectation values and sources given below are obtained with

A0 = 0 . (6.8)

The various other coefficients in this expansion, which are all constant, are constrained
by the BPS equations, as we detail below. The constants φi,(s), αi,(s), βi,(s), ϕ(s) are
associated with constant sources for the mass deformations of N = 4 SYM when placed
on AdS4. Recalling from (3.2) that these are sources for operators of conformal dimension
∆ = 3, 2, 2, 4, respectively, it is useful to note that the field theory sources on AdS4 that are
invariant under a Weyl rescaling of the AdS4 radius ` are given by `φi,(s), `2αi,(s), `2βi,(s),
ϕ(s). In this paper we will not discuss deformations that involve the coupling constant of
N = 4 SYM, and so we will always set

ϕ(s) = 0 . (6.9)

The BPS equations then imply that these sources satisfy

αi,(s) = −κL
`
φi,(s) , i = 1, . . . , 3 ,

β1,(s) = 1
3
(
φ2

1,(s) + φ2
2,(s) − 2φ2

3,(s)

)
,

β2,(s) = φ2
1,(s) − φ

2
2,(s) ,

φ4,(s) = 0 . (6.10)

Notice that these relations respect the field theory scaling dimensions of the sources on
AdS4 that we just mentioned above.

Similarly, the constants φi,(v), αi,(v), βi,(v), ϕ(v) in (6.7), with suitable contributions
from the sources, give rise to the expectation values of the scalar operators. We will give
explicit expressions for these in each of the specific truncations below. Here, to illustrate, we
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just highlight a simple example: using the renormalisation scheme discussed in appendix B,
we find that for N = 4 SYM on AdS4 we have

〈Oαi〉 = 1
4πGL

(
αi,(v) − 2δααi,(s)

)
. (6.11)

Here δα is an undetermined constant that parametrises a finite counterterm, which we
haven’t fixed. As we will see below it is intimately connected with a novel feature of the
expectation values of the operators in flat spacetime. We also note that due to the structure
of the conformal anomaly `2〈Oαi〉 is not invariant under rescalings of `, as one might have
expected, a point we return to below.

6.1.2 Janus solutions: field theory on flat spacetime

We are primarily interested in obtaining the sources and expectation values for operators of
N = 4 SYM in flat spacetime, as in section 2. Now the metric on AdS4 in (6.2) is conformal
to flat spacetime. Thus, we can obtain the relevant quantities in flat spacetime from those
on AdS4 by simply performing a Weyl transformation with Weyl factor x2/`2. However,
while the sources transform covariantly under Weyl transformations, the expectation values
do not due to the presence of source terms appearing in the conformal anomaly A (similar
to [65, 66]), schematically given by

8πGLA = − L4

8

(
RabR

ab − 1
3R

2
)
− L2

4∑
i=1

[
(∇φi,(s))2 + 1

6Rφ
2
i,(s)

]

−
3∑
i=1

α2
i,(s) − 6β2

1,(s) − 2β2
2,(s) + 8

3

4∑
i=1

φ4
i,(s) −

8
3

4∑
1≤i<j≤4

φ2
i,(s)φ

2
j,(s) + · · · (6.12)

where the dots refer to extra terms involving finite counterterms (see (B.14), (B.15)).
In fact we can obtain the relevant results within holography by carrying out a bulk

coordinate transformation so that as we approach the r →∞ component of the conformal
boundary (say) it has a flat metric. Indeed for this component of the conformal boundary
we can use the coordinate transformation of the form

er/L = y3
`
eρ/L + L2

4`y3
e−ρ/L +O(e−3ρ/L/y3

3) ,

x = y3 + L2

2y3
e−2ρ/L +O(e−4ρ/L/y3

3) , (6.13)

with y3 > 0. Substituting this into (6.7) then leads to an expansion of the bulk fields
as ρ → ∞, which one can find in appendix C. Having done this, we can then employ13

the holographic renormalisation scheme for ISO(1, 2) invariant configurations discussed in
appendix B, in order to read off the sources and the expectation values with the field theory
now on flat spacetime.

13To be clear, to do this one should use the results of appendix B by replacing the coordinates (r, x) there
with (ρ, y3).
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The non-trivial sources for the dual scalar operators in N = 4 SYM theory now have
the expected dependence on the spatial coordinate y3 (still with y3 > 0) that we saw in
section 2:

`φi,(s)
y3

,
`2αi,(s)
y2

3
, i = 1, . . . , 3

`2βi,(s)
y2

3
, i = 1, , 2 , (6.14)

with φ4,(s) = ϕ(s) = 0. Recalling that the numerators in these expressions are the scale
invariant field theory sources on AdS4, we see that in flat spacetime these field theory
sources have scaling dimensions 1, 2, 2 associated with operators that have dimensions
∆ = 3, 2, 2, respectively. Furthermore, when combined with the BPS relations (6.10),
these expressions are in alignment with those that we derived in section 2 for each of the
three different N = 1∗ truncations.

Due to the structure of the conformal anomaly, the expressions for the expectation
values are more involved. To illustrate, here we just note that we have

〈Oαi〉 = 1
4πGL

`2

y2
3

(
αi,(v) + αi,(s) log

(
y3
`e2δα

))
, (6.15)

and give explicit expressions for the other expectation values for the three subtruncations
below. We highlight the appearance of the novel log(y3) term that appears in this expecta-
tion value. Notice that performing a scaling of the y3 coordinate is associated with a shift
in δα, which parametrises a finite counterterm. We can certainly choose a renormalisation
scheme in which we set δα = 0. However, there are additional similar finite counterterms
that appear in expectation values of other operators, as we will see in each of the specific
truncations below, and we have not been able to find a simple argument that would fix all
of them in a way that is consistent with supersymmetry. Given the log terms appearing
in the expectation values we expect that there will be at least one set of supersymmetric
finite counterterms that one is free to add. We leave further investigation on this issue to
future work.

From the above results we can conclude that under a Weyl transformation of the
AdS4 boundary metric of the form hab → Λ2hab, with Λ = x/l, the sources transform
covariantly with φi(s) → Λ−1φi(s), αi(s) → Λ−2αi(s) and βi(s) → Λ−2βi(s). However, the
expectation values do not transform covariantly due to the anomaly and, for example,
we have 〈Oαi〉 → Λ−2〈Oαi〉 + αi(s)

4πGLΛ−2 log Λ. The transformation properties for all the
expectation values can be obtained from (B.19)–(B.21). It is worth emphasising that these
results imply that some care is required in comparing expectation values of operators on
AdS4 for solutions with different values of the AdS4 radius ` due to this non-covariant
rescaling. In practice, in all of our numerics we have set ` = 1 (as well as L = 1).

6.1.3 The r → −∞ end of the conformal boundary

The analysis above concerned the component of the conformal boundary for the Janus
solutions with AdS4 slicing at r → ∞. There is a similar analysis for the component at
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r → −∞, which by assumption, is again approaching the N = 4 SYM AdS5 vacuum.
Firstly, we can consider the expansion given in (6.7) after replacing r → −r:

AJ = − r
L

+ Ã0 + · · ·+ Ã(v)e
4r/L + · · · ,

φi = φ̃i,(s)e
r/L + · · ·+ φ̃i,(v)e

3r/L + · · · , i = 1, . . . , 4 ,

αi = −α̃i,(s)
r

L
e2r/L + α̃i,(v)e

2r/L + · · · , , i = 1, . . . , 3 ,

βi = −β̃i,(s)
r

L
e2r/L + β̃i,(v)e

2r/L + · · · , i = 1, . . . , 2 ,

ϕ = ϕ̃(s) + · · ·+ ϕ̃(v)e
4r/L + · · · , (6.16)

and we can and will set

Ã0 = 0 , (6.17)

by shifting the radial coordinate.14 As we show in appendix C.2, the BPS equations then
imply that the coefficients are related as in the r → ∞ case, but after taking κ → −κ.
We emphasise that we are not changing the projections on the preserved Killing spinors in
doing this. So, for example, with this expansion at the r → −∞ end we now have

α̃i,(s) = +κL
`
φ̃i,(s) , i = 1, . . . , 3 ,

β̃1,(s) = 1
3
(
φ̃2

1,(s) + φ̃2
2,(s) − 2φ̃2

3,(s)

)
,

β̃2,(s) = φ̃2
1,(s) − φ̃

2
2,(s) , (6.18)

with φ̃4,(s) = ϕ̃(s) = 0.
Furthermore, to carry out the coordinate transformation back to flat space we can

use (6.13) with r → −r and y3 → −y3. This will then give the relevant quantities on the
y3 < 0 part of the conformal boundary, with flat boundary metric. Thus, to obtain the
flat boundary results for y3 < 0 from those for y3 > 0, we need to make the replacements
y3 → −y3 and κ→ −κ.

As an illustration, we can consider the sub-class of explicit N = 4 SYM Janus solutions
that are symmetric under the Z2 symmetry given below in (6.20). For this class we have, for
example, that φi(r) = −φi(−r), while αi(r) = +αi(−r). We then find for AdS4 boundary
metric if we have a source `φi(s) at the r →∞ end, we will have a source `φ̃i(s) = −`φi(s)
at the r → −∞ end. Transforming to flat boundary coordinates we then find that for both
y3 > 0 and y3 < 0 we have a source of the form `φi(s)/y3, i.e. antisymmetric in y3. Similarly
we would have source `2αi(s) at both r → ±∞ ends and transforming to flat space source
`2αi(s)/(y3)2, i.e. symmetric in y3. Similar comments apply to expectation values.

We can similarly consider the sub-class of explicit Janus solutions that are symmetric
under the Z2 symmetry given below in (6.21). For this class we have, for example, that

14When one numerically constructs a solution, one generically finds that A0 and Ã0 in (6.7) and (6.16)
are non-zero and not equal. In order to utilise our holographic renormalisation results with A0 = Ã0 = 0,
one needs to shift the radial coordinate by different constants at r = ±∞.
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φi(r) = +φi(−r), while αi(r) = −αi(−r). We then find in AdS4 slicing we will have source
`φi(s) at both r → ±∞ ends and transforming to flat boundary coordinates we would have
a source of the form `φi(s)/|y3|, i.e. symmetric in y3. Similarly, we would have a source
`2αi(s) at the r → +∞ end and `2α̃i(s) = −`2αi(s) at the r → −∞ end, and transforming
to flat space we get a source `2αi(s)/(y3)2 for y3 > 0 and a source −`2αi(s)/(y3)2 for y3 < 0
i.e. antisymmetric in y3. Similar results apply to the expectation values.

6.1.4 Constructing solutions

Having made some general comments on how we determine the sources and expectation
values for the Janus solutions, in the next subsections we turn to summarising the solutions
that we have found for the three different truncations. At this point it is worth recalling
the various general constraints on the space of solutions that are itemised at the end of the
last section, below (5.19).

It is also helpful to recall that the ten scalar model, and the three further truncations,
are all invariant under the Z2 symmetry that takes

zA → −zA . (6.19)

Furthermore, the BPS equations for the Janus solutions in (5.5), (5.6) are also invariant
under the Z2 symmetry that acts as

r → −r, zA → z̄A, ξ → −ξ + π . (6.20)

Combining these two, we conclude that the BPS equations are also invariant under

r → −r, zA → −z̄A, ξ → −ξ + π . (6.21)

We have utilised various approaches to solving the BPS equations numerically. One
approach is to start at, say, r →∞, and then use the expansion (6.7) to set initial conditions
to integrate in to smaller values of r and see where one ends up. As we will see, while some
solutions end up at a similar asymptotic region at r → −∞, and hence are Janus solutions
of N = 4 SYM, there are also solutions that run off to singular behaviour. Furthermore,
there are also solutions which do not have an asymptotic region of the form (6.7) or (6.16).
Another approach, and a more general one, is to start at a point in the bulk, for example
a turning point of the function AJ(r) at say r = 0 and then integrate out to smaller and
larger values of r, and again see where one ends up. In the following we will summarise
the main results of these constructions.

To simplify the discussion it will be helpful to first discuss the N = 2∗ model, which
is the simplest, before discussing the two N = 1∗ models.

6.2 N = 2∗ model

This model was summarised in section 3.3. There is one complex scalar field z1, which we
write as z1 = tanh[α1 − iφ1] and one real scalar field β1.

Consider solutions that approach N = 4 SYM with mass sources at, say r → ∞.
Following the discussion in the last subsection and using the results of appendices B, C we
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can summarise the source and expectation values for the relevant operators that are active.
All of the source terms are specified by φ1,(s) with

α1,(s) = −κL
`
φ1,(s) , β1,(s) = 2

3φ
2
1,(s) . (6.22)

The field theory sources on AdS4 are given by φ1,(s), α1,(s), β1,(s), with `φ1,(s), `2α1,(s),
`2β1,(s), invariant under Weyl scalings of `, while those on flat spacetime are given by (6.14):

`φ1,(s)
y3

,
`2α1,(s)
y2

3
,

`2β1,(s)
y2

3
, (6.23)

and have scaling dimensions 1, 2, 2, respectively.
For the associated expectation values of the operators in flat spacetime, we have

〈Oα1〉 = 〈Oα2〉 = 1
4πGL

`2

y2
3

(
α1,(v) + α1,(s) log

(
y3
`e2δα

))
, (6.24)

which then, along with φ1,(s), determines the remaining expectation values

〈Oβ1〉 = −4κ`
L
〈Oα1〉φ1,(s) + (1 + 4δα − 4δβ)

2πGL
`2

y2
3
φ2

1,(s) ,

〈Oφ1〉 = 〈Oφ2〉 = −2
3
`

y3
〈Oβ1〉φ1,(s) − 2κL 1

y3
〈Oα1〉 −

L

4πG
`

y3
3
φ1,(s) . (6.25)

where δα, δβ are unspecified finite counterterms.
An important aspect of the above summary, is that for a specific choice of finite

counterterms, all of the scalar sources and expectation values of the dual field theory can
be obtained by giving `φ1,(s) as well as `2α1,(v). We now set ` = 1 (as well as L = 1) and
also fix the sign arising in the BPS equations: κ = +1.

Following the discussion given at the end of section 5, we know that there is a two
parameter family of solutions for this model. A useful way to parametrise them is to take
one parameter to be the phase of the complex scalar z1 at the turning point of the function
AJ(r). Due to the symmetries given in (6.19), (6.20) we can restrict to solutions for which
this phase lies in the domain [0, π/2]. Then, fixing this phase we can construct a one
parameter family of solutions that we can represent by parametric plots of the real and
imaginary parts of the complex scalar field z1, as displayed in figure 1. In these plots the
black squares correspond to turning points of the function AJ(r) and, from left to right,
the phase is equal to 0, π/4, π/2, respectively. The blue dot at the origin in each of the
plots corresponds to the N = 4 SYM AdS5 vacuum solution.

For each fixed value of the phase, there is a one parameter family of N = 4 SYM
Janus solutions (blue curves) that approach the N = 4 SYM AdS5 vacuum solution at
r → ±∞ with, generically, spatially modulated mass terms that are parametrised by
φ1,(s). Furthermore, focussing on the r → +∞ end we find 0 < φ1,(s) < φ1,(s)|crit and
φ1,(s)|crit 6= ∞. The exception to this occurs for the class of solutions in which the phase
at the turning point is exactly π/2 (right plot in figure 1): for this class, remarkably, we
find that it is source free, φ1,(s) = 0, on both sides of the interface, a point we return to
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Figure 1. The family of BPS solutions for the N = 2∗ model is summarised by parametrically
plotting the real and imaginary parts of the scalar field z1. The black squares correspond to turning
points of the function AJ(r) and the three plots, from left to right, correspond to solutions where
the phase of the complex scalar field at the turning point is 0, π/4 and π/2, respectively. The blue
dot at the origin is the N = 4 SYM AdS5 vacuum solution and the blue lines are Janus solutions.
The boundary of field space is |z1| = 1, marked with the grey circle. As one moves from r = −∞
to r = +∞ one moves clockwise on the curves.

below. We also note that, somewhat surprisingly, for the generic solutions as the phase
approaches π/2, the critical value of the source, φ1,(s)|crit does not approach zero.

Another interesting feature of this model is that for each Janus solution, with phase
not equal to π/2, on either side of the interface at r → ±∞, we always find15 that φ̃1,(s) =
−φ1,(s). If we convert to sources in flat space, recalling that we have set ` = 1, this means
we have a source of the form φ1,(s)/y3, for all y3 and where here φ1,(s) is the expansion
coefficient at r = +∞ (which we noted above is in the range 0 < φ1,(s) < φ1,(s)|crit).

We can also determine the expectation values of various operators for the Janus solu-
tions on each side of the interface at r = ±∞. With ` = 1, we just explain the behaviour
of α1,(v) which can be used to get all expectation values of scalar operators. For the special
case when the phase is equal to zero (left plot in figure 1), the solutions are invariant under
the symmetry (6.20) and as explained in section 6.1.3, we find α1,(v) is the same on each side
of the interface. For this case we also find for the r = +∞ end with 0 < φ1,(s) < φ1,(s)|crit,
that as φ1,(s) goes from 0 to φ1,(s)|crit, then α1,(v) increases from 0, hits a maximum and
then decreases to a finite negative value at φ1,(s)|crit.

By contrast, for the class of Janus solutions when the phase is in the domain (0, π/2)
we find that α1,(v) and α̃1,(v) do not have the same value at r = ±∞, respectively.

When the phase is exactly equal to π/2, there is a different picture. As we noted above
there are no sources on either side of the interface. We also find for the two sides of the

15This suggests that there is some kind of conserved quantity for the BPS equations which we have yet
to identify. In seeking such quantity it is important to note, as we state below, that the expectation values
are not simply related on either side of the interface.
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interface α1,(v) = −α̃1,(v) and the energy density (B.24) is zero off of the interface. The
absence of sources on either side of the interface is noteworthy. It seems most likely that
there is a distributional source that is located on the interface itself, otherwise we would
have a configuration that spontaneously breaks translations, and it would be interesting to
verify this in detail.

The plots given in figure 1 also reveal that there are other non-Janus solutions for this
model. When the phase is in the open domain (0, π/2), there is also a one parameter family
of solutions that approach N = 4 SYM as r → −∞, with −∞ < φ̃1,(s) < −φ1,(s)|crit. As
one moves along the radial direction, at some finite value of the radial coordinate, past
the turning point, one hits a singularity, with |z1| → 1. Such solutions, corresponding
to the black curves in figure 1 are one-sided interfaces (of a type for which it has been
suggested they describe BCFTs [67]). Finally, there are also solutions which approach
singular behaviour at both ends of the radial domain, denoted by black dashed lines in
figure 1. When the phase is equal to π/2, all solutions are regular Janus solutions except
for the one solution in the right plot of figure 1 which would have a turning point with
Im(z1) = 1, a singular point in field space.

6.3 N = 1∗ one-mass model

This model was summarised in section 3.1. There is again one complex scalar field z1, which
we write as z1 = tanh[ 1

2
(
α3 − iφ3

)
] and one real scalar field β1. A particularly interesting

feature of this model, that plays an important role in the solutions, is the presence of the
two LS± AdS5 fixed point solutions given in (3.18).

Consider solutions that approach N = 4 SYM with mass sources at, say, r → ∞.
Following the discussion in section 6.1 and using the results of appendices B, C we can
summarise the source and expectation values for the relevant operators that are active. All
of the source terms are specified by φ3,(s) with

α3,(s) = −κL
`
φ3,(s) , β1,(s) = −2

3φ
2
3,(s) . (6.26)

The field theory sources on AdS4 are given by φ3,(s), α3,(s), β1,(s), with `φ3,(s), `2α3,(s),
`2β1,(s), invariant under Weyl scalings of `, while for those on flat spacetime the dimen-
sionful quantities are given by (6.14):

`φ3,(s)
y3

,
`2α3,(s)
y2

3
,

`2β1,(s)
y2

3
, (6.27)

and have scaling dimensions 1, 2, 2, respectively.
For the associated expectation values of the operators in flat spacetime, we have

〈Oα3〉 = 1
4πGL

`2

y2
3

(
α3,(v) + α3,(s) log

(
y3
`e2δα

))
, (6.28)

which then, with along with φ3,(s) determines the remaining expectation values

〈Oφ3〉 = 4
3
`

y3
〈Oβ1〉φ3,(s) − 2κL 1

y3
〈Oα3〉 −

L

4πG
`

y3
3
φ3,(s) ,

〈Oβ1〉 = 4κ`
L
〈Oα3〉φ3,(s) −

(1 + 4δα − 4δβ)
2πGL

`2

y2
3
φ2

3,(s) . (6.29)
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An important aspect of the above summary, is that for a specific choice of finite
counterterms, all of the scalar sources and expectation values of the dual field theory can
be obtained by giving `φ3,(s) as well as `2α3,(v). We now set ` = κ = 1.

We next turn to the solutions which we have summarised in figure 2. As before each
plot corresponds to a fixed phase of the scalar field z1 at the turning point of AJ(r). From
left to right we again have the phase is 0, π/4 and π/2, respectively. The blue dot at the
origin is the N = 4 SYM AdS5 vacuum solution, while the two red dots correspond to the
two LS± AdS5 fixed points given in (3.18), each dual to the N = 1 LS SCFT.

First consider the left panel in figure 2. There is a one parameter family of N = 4
SYM Janus solutions (blue curves) that approach the N = 4 SYM AdS5 vacuum solution
with spatially modulated mass terms. Since the phase is zero, these solutions are invariant
under the symmetry (6.20) and, as discussed in section 6.1.3, we find that we have source
φ3,(s) on the r → +∞ side of the interface and source φ̃3,(s) = −φ3,(s) on the r → −∞
side. From the flat space perspective we therefore have (with ` = 1) a source of the form
φ3,(s)/y3, for all y3. Similarly, we find that α̃3,(v) = α3,(v) on either side of the interface.
These Janus solutions exist for 0 < φ3,(s) <∞.

As φ3,(s) → ∞, we have α3,(v) → ∞ and the Janus solutions approach a new type of
solution (red curve): namely, a novel Janus solution with the LS+ AdS5 vacuum on one
side of the interface and the LS− AdS5 vacuum on the other. These solutions are discussed
in more detail in [36]. Note that there are no source terms that are active on either side of
this LS+/LS− interface; this actually follows from the fact that once we demand that there
are no sources for the irrelevant scalar operators with ∆ = 2+

√
7 and ∆ = 3+

√
7, it is not

possible to source the relevant scalar operator of the LS SCFT with dimension ∆ = 1+
√

7
whilst preserving supersymmetry [36]. We also note that the irrational scaling dimensions
for these operators seem to exclude the possibility of having distributional sources for these
scalar operators on this interface while still preserving conformal symmetry. As explained
in [36] the two sides of the LS+/LS− interface are related by a discrete automorphism.
Beyond this novel LS Janus solution there is also a one parameter family of solutions that
approach singular behaviour, with |z1| → 1 at finite values of r.

The middle panel of figure 2 shows the set of solutions when the phase is π/4 and
this provides the generic picture for phases in the open domain (0, π/2). There is again a
one parameter family of N = 4 SYM Janus solutions (blue curves) with, for the r = ∞
end, 0 < φ3,(s) < φ3,(s)|crit, with finite φ3,(s)|crit. As φ3,(s) → φ3,(s)|crit, we have α3,(v)
approaching a finite value and the Janus solutions approach another new type of solution
(red curve). Before discussing that, we note that φ3,(s) at r =∞ and φ̃3,(s) at r = −∞ are
not simply related in general and hence we have flat space sources as in (2.18). Returning
to the new solution (red curve), we see that it approaches the N = 4 SYM AdS5 vacuum at
r →∞ and the LS+ AdS5 solution at r → −∞. This describes a conformal RG interface,
with N = 4 SYM on one side of the interface, with spatially dependent sources with
φ3,(s) = φ3,(s)|crit, and the LS SCFT on the other. Once again there are no sources on the
LS+ side of the interface. This solution is also discussed in more detail in [36]. Beyond
this solution, for φ3,(s)|crit < φ3,(s) < ∞ we obtain solutions which start off at the mass
deformed N = 4 SYM AdS5 vacuum at r → ∞ and then become singular at some finite
value of r, as marked with the black lines in the middle panel of figure 2. There are also
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Figure 2. The family of BPS solutions for the N = 1∗ one mass model is summarised by paramet-
rically plotting the real and imaginary parts of the scalar field z1. The black squares correspond to
turning points of the function AJ(r) and the three plots, from left to right, correspond to solutions
where the phase of the complex scalar field at the turning point is 0, π/4 and π/2, respectively.
The blue dot at the origin is the N = 4 SYM AdS5 vacuum and the blue lines are Janus solutions.
The two red dots are the two LS ± AdS5 solutions, each dual to the Leigh-Strassler SCFT. In the
middle plot the red curve is a conformal RG interface with N = 4 SYM on one side of the interface
and the LS SCFT on the other. In the left plot the red curve is a conformal interface with LS on
either side of the interface. The boundary of field space is |z1| = 1 and the black curves are singular
on one or both ends. As one moves from r = −∞ to r = +∞ one moves clockwise on the curves.

solutions that become singular at both r → ±∞ which are marked by black dashed lines
in figure 2.

What we described in the previous paragraph was for the phase at the turning point
equal to π/4 and applies for the phase in the range (0, π/2), with one small difference.
Beyond some value of the phase, we find that φ3,(s) is no longer always positive for the Janus
solutions. In particular, this leads to a limiting red curve solution, with a specific value
of the phase of the turning point, describing an RG interface where the source φ3,(s)|crit
vanishes on the N = 4 SYM side. This solution is also discussed in [36].

Finally, when the phase is π/2 (third plot in figure 2), there is a one parameter family of
N = 4 SYM Janus solutions that exist for −∞ < φ3,(s) < 0. These solutions are invariant
under the symmetry (6.21) and, as discussed in section 6.1.3, we find that the source on
either side of the interface at r = ±∞ takes the same value φ̃3,(s) = φ3,(s). From the flat
space perspective we therefore have (with ` = 1) a source of the form φ3,(s)/|y3|, for all y3.
There is also a one parameter family of solutions that are singular at finite values of the
radial coordinate in each direction and are marked by the dashed black lines in the right
plot in figure 2.

6.4 N = 1∗ equal-mass model

This model was summarised in section 3.2. There are two independent complex fields z1,
z2 which we write

z1 = tanh
[1

2

(
3α1 + ϕ− i3φ1 + iφ4

)]
,

z2 = tanh
[1

2

(
α1 − ϕ− iφ1 − iφ4

)]
. (6.30)
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Consider solutions that approach N = 4 SYM with mass sources at, say r → ∞. As
we have mentioned several times, in this paper we focus on solutions for which the source
terms for the coupling constant and the gaugino mass vanish:

ϕ(s) = φ4,(s) = 0 . (6.31)

All of the source terms for BPS configurations are then specified by φ1,(s) with

α1,(s) = −κL
`
φ1,(s) . (6.32)

The field theory sources on AdS4 are given by φ1,(s), α1,(s), with `φ1,(s), `2α1,(s) invariant
under Weyl scalings of `, while those on flat spacetime are given by (6.14):

`φ1,(s)
y3

,
`2α1,(s)
y2

3
, (6.33)

and have scaling dimensions 1 and 2, respectively.
For the associated expectation values of the operators in flat spacetime, we have

〈Oα1〉 = 〈Oα2〉 = 〈Oα3〉 = 1
4πGL

`2

y2
3

(
α1,(v) + α1,(s) log

(
y3
`e2δα

))
,

〈Oφ4〉 = 1
2πGL

`3

y3
3

(
φ4,(v) −

9− 2δ4(5)
3 φ3

1,(s)

)
. (6.34)

For BPS configurations the remaining expectation values are determined by these expres-
sions, along with φ1,(s), via

〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ3〉 = −2κL 1
y3
〈Oα1〉 −

L

4πG
`

y3
3
φ1,(s) ,

y3〈Oϕ〉 = −3κL
2 〈Oφ4〉 −

κ(3− 2δ4(5))
4πG

`3

y3
3
φ3

1,(s) . (6.35)

Note that δα, δ4(5) parametrise finite counterterms which we have not fixed. We now set
` = κ = 1.

Following the discussion given at the end of section 5, we know that there is a four
parameter family of solutions for this model. Here we will just study a one parameter
family of solutions, leaving a more complete exploration for future work. We also note
the following technical point in solving the numerical equations. If we construct a solution
with, say, the N=4 SYM dilaton source non-vanishing at the r → ∞ end, ϕ(s) 6= 0, then
we can obtain a solution with ϕ(s) = 0 by using the shift symmetry of the dilaton (3.13).

In figure 3 we have summarised a one-parameter family of N = 4 SYM Janus solutions
for this model (with ϕ(s) = 0 on both sides), for which the phase of both scalars is zero at
the turning point and so the solutions are invariant under the symmetry (6.20). In contrast
to previous models it is convenient to label this family of solutions not by the values of zi

at the turning point but instead in terms of the value of α1 at the turning point which we
label as (α1)tp. In particular, we note that this is invariant under the dilaton shift. For
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Figure 3. A family of symmetric BPS solutions for the N = 1∗ equal mass model is summarised by
parametrically plotting the real and imaginary parts of the scalar field z1; the behaviour of the other
scalar field z2 is broadly similar. The black squares correspond to turning points of the function
AJ(r), where the phase of both scalars is zero. The family of solutions can be labelled by (α1)tp, a
function of z1 and z2 at the turning point invariant under shifts of the dilaton. The blue dot at the
origin is the N = 4 SYM AdS5 vacuum and the blue lines are Janus solutions. As (α1)tp increases
monotonically from (a)–(g), we see the appearance of more and more loops, asymptoting to the red
curve, in figure (g), which describes a solution periodic in the radial direction. In figure (h) we have
exactly the same solutions as figure (g) but with the addition of some illustrative solutions (black
dashed lines) that are singular at both ends (and without the red curve for clarity) . As one moves
from r = −∞ to r = +∞ one moves clockwise on the curves.

a fixed value of (α1)tp there is a one-parameter family of solutions for which zitp are real,
all related by shifts of the dilaton and so for regular solutions we can use this symmetry
to fix ϕ(s) = 0 for each value of (α1)tp (and using (6.20) we find it is set to zero on both
sides). We find that regular solutions exist for −αcrit < (α1)tp < αcrit with αcrit ≈ 0.447.
In figure 3 we have displayed a series of Janus solutions as blue curves, for various values in
the range (α1)tp ∈ [0, αcrit). Interestingly, as (α1)tp increases the solutions start to develop
a sequence of more and more loops in the scalar field parameter space and, surprisingly, as
(α1)tp → αcrit we obtain a new solution which is exactly periodic in the radial coordinate
r (the red curve), which we return to below.

Note that in figure 3 we have just plotted z1; the behaviour of z2 is broadly similar. We
also note in addition to the Janus solutions, there are also a host of solutions that are sin-
gular at both ends. The last panel in figure 3 illustrates a few such solutions. In particular
there are solutions that can wind several times around, before hitting the singularity.

We next discuss the expectation values of operators for the N = 4 SYM Janus solutions.
Again, note that because our solutions are invariant under (6.20), φ1,(s) and φ4,(v) are
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Figure 4. The behaviour of α1,(v) determining certain expectation values as a function of φ1,(s),
for the symmetric BPS solutions, for the N = 1∗ equal mass model. The labelled black dots (a)-(g)
correspond to the solutions given in figure 3.

antisymmetric for these solutions while α1,(v) is symmetric. In figure 4 we have plotted
α1,(v) against φ1,(s) for the blue curve solutions depicted in figure 3 (as well as their reflected
versions with (α1)tp < 0) . The figure depicts a curve that spirals out, winding an infinite
number of times while asymptoting to the oval shape. Thus, we see that for each value of
φ1,(s) there are multiple values of α1,(v) all of which are associated with a different BPS
Janus interface of N = 4 SYM for the same φ1,(s). It is more demanding to extract from
our numerics the value of φ4,(v), which fixes the remaining expectation values, but the
results we have make it clear that φ4,(v) behaves in a similar manner to α1,(v), but with
just one limiting value of φ4,(v) for a given φ1,(s) instead of two.

We now return to the limiting periodic solution corresponding to the red curve in
figure 3. As (α1)tp → αcrit all of the functions develop more and more periods in the radial
direction, with the period and shape changing very little as the limit is taken. In figure 5 we
have plotted the metric function AJ as well as the scalar functions z1, z2 as a function of r
for a solution close to αcrit. For any (α1)tp < αcrit we have a Janus solution, so AJ → ±r/L
and all the scalars go to zero as r → ±∞. The region in between, however, approaches a
solution that has periodic behaviour in the entire region r ∈ (−∞,∞). By compactifying
the radial direction for this limiting periodic solution, we obtain a new AdS4×S1 solution
that will be further explored in [48]. Note that we can also approach this critical solution
from above, (α1)tp > αcrit, where solutions develop more and more periods before becoming
singular (see figure 3(h)).

We conclude this section with one further comment regarding a possibly confusing fea-
ture of figure 3. As argued above, there exists a one parameter family of periodic solutions
related by the shift symmetry of the dilaton. When constructing Janus solutions, we fix
this shift symmetry by requiring our solutions have vanishing dilaton on the boundaries,
but for different values of (α1)tp this corresponds to a different average value of the dilaton
in the periodic intermediate region. Thus the enveloping ellipses of the blue curves differ
for the different curves in figure 3 (as is clear in plots (e)–(g)), though they are all related
by a dilaton shift (3.13). Said another way, when ϕ(s) = 0 on the boundaries for each
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Figure 5. For the N = 1∗ equal mass model as (α1)tp → αcrit, approaching the red curve in
figure 3, the N = 4 SYM Janus solutions have a radial region approaching a solution that is
periodic in the radial coordinate. For any −αcrit < (α1)tp < αcrit, the solution is a Janus solution
and so AJ → ±r/L and zA → 0 as r → ±∞. Both the period and shape of the middle region is
essentially unchanged as we approach the critical solution, with just more periods appearing, and
clearly reveals the functional form of the periodic solution. The blue and orange curves are the real
and imaginary components of z1, z2, respectively.

value of (α1)tp, only the fields φ1, α1 and φ4 have a well-defined limit when (α1)tp → αcrit,
whereas ϕ does not.

7 Discussion

In this paper we have analysed mass deformations of N = 4 SYM theory that depend on
one of the three spatial dimensions and preserve some amount of supersymmetry. We have
focussed on configurations with constant coupling constant. We have also explored these
deformations within the context of holography, studying both configurations that preserve
ISO(1, 2) symmetry as well those that in addition preserve conformal symmetry. For the
latter class of deformations we have also constructed a number of interesting new classes
of explicit Janus solutions.

In section 2 we analysed the supersymmetric mass deformations of N = 4 SYM from
a field theory perspective. We achieved this by coupling N = 4 SYM to off shell conformal
supergravity and then taking the Planck mass to infinity as in [39]. For configurations that
have constant τ (i.e. constant coupling constant and theta angle) as well as no deformations
in the 15 and 6, parametrised by V i

µ j and T ijµν , respectively, we reduced the problem to
solving the equations given in (2.6). We then focussed on deformations that generalised
the homogeneous N = 1∗ mass deformations, studying in some detail three particular
examples: the one mass model, the equal mass model and the N = 2∗ model. It would
be interesting to further investigate other possible solutions to (2.6). In the static case,
we anticipate that the examples we have studied cover the most general case of conformal
interfaces after employing suitable SU(4) rotations. However, there are additional classes
of solutions that allow time dependence which involve a null projection condition on the
Killing spinors which can be explored.

It would be interesting to analyse more general deformations that also allow τ to
depend on the spatial coordinates. For the Janus class this will include the classification
of [26], which considered deformations with varying coupling constant combined with other
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deformations all proportional to spatial derivatives of the coupling constant.16 By relaxing
this latter condition, one can anticipate that additional cases are possible, as a sort of
superposition of the those of [26] with the ones of this paper. However, the non-linearity
of the equations (2.6) with respect to Eij indicates that a detailed analysis is warranted.
More generally, one can also explore supersymmetry preserving deformations that also
involve gµν , V i

µ j , which have been utilised in other situations, such as D3-branes wrapping
supersymmetric cycles [68], as well as T ijµν and, additionally, allowing for time dependence.

In the remainder of the paper we analysed the supersymmetric mass deformations, with
constant τ , from a holographic perspective. We utilised a consistent truncation of D = 5
gauged supergravity that involves 10 real scalar fields which allowed us to obtain BPS
equations preserving ISO(1, 2) symmetry for real mass deformations. The natural arena to
analyse complex mass deformations would be to utilise an N = 2 D = 5 gauged supergrav-
ity theory coupled to two vector multiplets and four hypermultiplets, with scalar manifold
as in (3.1). However, this supergravity theory has not yet been explicitly constructed, but
has been explored recently in [62].

For the ISO(1, 2) preserving configurations associated with real mass deformations we
carried out in some detail the holographic renormalisation procedure. We saw that the
model admits a large number of finite counterterms. We managed to reduce this number
a little by demanding that supersymmetric configurations have vanishing energy density.
It would be desirable to identify a fully supersymmetric scheme along the lines of [69],
but this could be a challenging task. Our results indicate that there will not be a unique
supersymmetric scheme due to the possibility of adding finite supersymmetric invariants;
a useful starting point to determine these invariants would be to use the results of [70].
A complementary approach would be to generalise the field theory analysis in section 3
of [46]. For the Janus configurations, our holographic renormalisation allowed us to clearly
identify sources and expectation values of operators viewing the interface as describing
N = 4 SYM on flat spacetime with spatially modulated mass sources or N = 4 SYM on
AdS4 spacetime with constant mass sources.

We showed that the deformed N = 4 SYM theory has a conformal anomaly that
includes terms that are quadratic and quartic in the scalar source terms similar to [65, 66].
For Janus solutions we showed that while the sources for the scalar operators on either side
of the interface transform covariantly with respect to Weyl transformations, the expectation
values for the corresponding operators do not. In particular, the expectation values of the
operators for interfaces of N = 4 SYM on flat spacetime contained novel terms logarithmic
in the coordinate transverse to the interface as well as the usual terms expected from
conformal invariance.

In this paper we have focussed on constructing Janus solutions of supergravity, with
d = 3 conformal invariance. However, it would be interesting to further study the more
general class of solutions that just preserve ISO(1, 2) symmetry. What would be most

16The supersymmetric Janus supergravity solutions corresponding to [26] have recently been discussed
in [31]. From [31] one can check that the there are no source terms for the dimension ∆ = 2, 3 operators
away from the interface, consistent with [26].
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desirable is if the BPS equations can be suitably manipulated to give a simpler system set
of equations, as was seen for the analogous constructions of [18] in D = 4.

In section 6, we discussed various explicit Janus solutions of N = 4 SYM for the
N = 2∗ theory as well as one-mass and equal mass models. For all cases, our constructions
also revealed solutions that approach the N = 4 SYM AdS5 as r →∞ (or r → −∞ in some
cases) and then become singular at some finite value of r. As such, these solutions have a
conformal boundary dual to N = 4 SYM with mass deformations on a half space that ends
at a singularity. It would be interesting to examine these solutions in more detail, including
elucidating the precise nature of the singularities in type IIB supergravity, and see if they
can be interpreted as BCFTs, as suggested in [67]. Perhaps they can also be interpreted
as a kind of RG flow for N = 4 SYM on AdS4. It seems even more challenging to find any
physical interpretation for the singular solutions that do not have any conformal boundary.

For the one mass model we also found some interesting special solutions which involve
the two LS± AdS5 fixed points that this model admits, each dual to the LS SCFT. We
found examples of both RG interface solutions, with N = 4 SYM on one side of the
interface, and the LS SCFT on the other, as well as a novel LS+/LS− Janus solution dual
to a novel conformal interface of the LS SCFT. Both of these are further discussed in [36].

The equal mass model also revealed solutions with interesting new features. In this
model we constructed a class of N = 4 SYM Janus solutions that develop a periodic
structure in the bulk radial coordinate, and in the critical limit we find solutions which
are exactly periodic. After compactifying the radial direction, we obtained a new super-
symmetric AdS4 × S1 solution that uplifts to a new AdS4 × S1 × S5 solution of type IIB
supergravity, which will be further explored in [48]. This solution is somewhat reminiscent
of the interesting AdS4 × S1 solutions in [31]. An important difference, however, is that
while our new solutions are simply periodic in the S1 direction, the solutions of [31] have
non-trivial SL(2,Z) monodromy. One might anticipate that there are many more Janus
solutions that can be constructed in gauged supergravity that have the axion and dilaton
activated as well as the mass sources that we have focussed on. It seems likely that this
will also lead to a host of new AdS4 × S1 solutions for which there is non-trivial SL(2,Z)
monodromy along the S1 direction, as in the solutions of [31]. Indeed we have already
constructed some specific examples that will be reported in [48].
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A Derivation of the BPS equations with ISO(1, 2) symmetry

To discuss the supersymmetry, we will use the conventions of [42, 46]. The D = 5 gamma
matrices obey {γm, γn} = 2ηmn = 2diag {1,−1,−1,−1,−1}, and we take γ0, γ1, γ2, γ3 to
be imaginary and γ4 to be real. We also take γ01234 = −1.

Consider the ansatz

ds2 = e2A(dt2 − dy2
1 − dy2

2)− e2V dx2 −N2dr2 , (A.1)

with A, V,N and the scalars zA, β1, β2, functions of (x, r) only. We use the orthonormal
frame (e0, e1, e2, e3, e4) = (eAdt, eAdy1, e

Ady2, e
V dx,Ndr). We assume that the Killing

spinor is independent of t, y1, y2 and begin by imposing the projection

γ34ε1 = −iκε1 , (A.2)

and hence γ012ε1 = −iκε1. Using the Majorana condition ε2 = −iγ4ε∗1, we also have
γ34ε2 = iκε2 and γ012ε2 = iκε2.

From the t, y1, y2 components of the gravitino equations we get
(
−e−V ∂xA− iκN−1∂rA

)
ε1 = 1

3e
K/2W̄γ3ε2 , (A.3)

while from the x, r components we get, respectively,

e−V ∂xε1 + iκ

2 N
−1∂rV ε1 + e−VAxε1 + 1

6e
K/2W̄γ3ε2 = 0 ,

N−1∂rε1 −
iκ

2 N
−1e−V ∂xNε1 +N−1Arε1 + 1

6e
K/2W̄γ4ε2 = 0 . (A.4)

Taking the complex conjugate of (A.3) and using the Majorana condition we deduce that

∣∣∣∣(1
3e
K/2W̄

)−1
(e−V ∂xA+ iκN−1∂rA)

∣∣∣∣ = 1 . (A.5)

We therefore introduce a phase ξ(x, r) via

e−V ∂xA = −κ3 e
K/2Im(e−iξW̄) ,

N−1∂rA = 1
3e
K/2Re(e−iξW̄) , (A.6)

and solve (A.3) by imposing the projection

γ3ε2 = −iκe−iξε1 . (A.7)

We also note that (A.6) implies the integrability condition

−∂r
[
κeV eK/2Im(e−iξW̄)

]
= ∂x

[
NeK/2Re(e−iξW̄)

]
. (A.8)
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We can now rewrite (A.4) in the form

eiξ/2eA/2∂x
(
e−A/2e−iξ/2ε1

)
= ieV

2

[
−e−V ∂xξ − κN−1∂rV + 2ie−VAx + κ

3 e
K/2Re(e−iξW̄)

]
ε1 ,

eiξ/2eA/2∂r
(
e−A/2e−iξ/2ε1

)
= iN

2

[
−N−1∂rξ + κN−1e−V ∂xN + 2iN−1Ar + 1

3e
K/2Im(e−iξW̄)

]
ε1 , (A.9)

By taking the complex conjugate of these two equations and using ε∗1 = ie−iξε1, we deduce
that in each expression, the left and right hand sides each separately vanish. We thus
conclude that the Killing spinor takes the form

ε1 = eA/2eiξ/2η0, ε2 = iκe−iξγ3ε1 , (A.10)

where η0 is a constant spinor satisfying γ012η0 = −iκη0.
The combined system of BPS equations are thus given by

e−V ∂xA+ iκN−1∂rA−
iκ

3 e
K/2e−iξW̄ = 0 ,

−e−V ∂xξ − κN−1∂rV + 2ie−VAx + κ

3 e
K/2Re(e−iξW̄) = 0 ,

−N−1∂rξ + κN−1e−V ∂xN + 2iN−1Ar + 1
3e
K/2Im(e−iξW̄) = 0 , (A.11)

as well as the following equations from the remaining fermion variations

iκeiξ
(
e−V ∂x + iκN−1∂r

)
zA = 1

2e
K/2KB̄A∇B̄W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β1 = 1

12e
K/2∂β1W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β2 = 1

4e
K/2∂β2W̄ . (A.12)

We note that these equations are not all independent. We also observe that these equations
are invariant under

r → −r , x→ −x , ξ → ξ + π . (A.13)

Next we can rewrite them in a simplified manner if we choose the gauge N = eV . We
can define the complex coordinate w = r − iκx so that ∂̄ = dw̄ 1

2(∂r − iκ∂x) and also the
(1, 0) form B as

B = 1
6e

iξ+V+K/2Wdw . (A.14)

The equations (A.11) can be cast in the form

∂A = B ,

∂̄B = −FB ∧ B̄ , (A.15)
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where
F ≡ 1− 1

|W|2
[3

2∇AWK
AB̄∇B̄W̄ + 1

4 |∂β1W|2 + 3
4 |∂β2W|2

]
, (A.16)

while (A.12) become

∂̄zA = −3
2(W̄)−1KB̄A∇B̄W̄B̄ ,

∂̄β1 = −1
4(W̄)−1∂β1W̄B̄ ,

∂̄β2 = −3
4(W̄)−1∂β2W̄B̄ . (A.17)

After fixing the gauge-freedom, by fixing N , the BPS equations (A.11) and (A.12)
are a set of 16 real equations for 13 real functions, A, V, ξ, zA, β1, β2 with A = 1, . . . , 4, in
the ten scalar truncation, and therefore naively seem to be over constrained. To analyse
the consistency of these equations it is convenient to work in the gauge N = eV , and
analyse (A.15), (A.17). We first observe that F is a manifestly real quantity that depends
only on the scalar fields. The BPS equations are constrained due to the fact that A, β1
and β2 are all real. If one takes the holomorphic exterior derivative ∂̄ of the equations for
these functions in (A.15), (A.17) one obtains necessary conditions for the equations to be
satisfied. For A this condition is given by:

Re(∂̄B) = 0. (A.18)

which is automatically satisfied from (A.15). We are therefore left with two con-
straints to check.

To do so, it is useful to first prove the following result. Consider any function
G(z̄A, β1, β2) which depends only on the scalar fields and is anti-holomorphic in the four
complex scalars zA. Using the BPS equations (A.15), (A.17) we deduce

∂(GB̄) = (ÔG)B ∧ B̄, (A.19)

where Ô is a differential operator on the scalar manifold defined as

ÔG ≡ FG − 3
2K

ĀB∇BW
W

∂ĀG −
1
4∂β1 logW∂β1G −

3
4∂β2 logW∂β2G. (A.20)

Then, taking the ∂ derivative of the last two equations in (A.17), we obtain the following
necessary conditions for these set of equations to be consistent with βi being real:

Im
(
Ô∂βi logW

)
= 0 , (i = 1, 2). (A.21)

Notice that these conditions do not involve B, just the scalar fields, and hence they are
conditions on K andW. One can explicitly check that these conditions are satisfied for (3.6)
and (3.7) in the ten scalar model. We expect that these conditions are sufficient conditions
for consistency; while we have not proven this in general, we did for the sub-class of Janus
solutions as discussed below (5.18). It would be interesting if there is a way to understand
these consistency conditions more directly from the underlying N = 2 supergravity theory.

– 41 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
6

B Holographic renormalisation

In this appendix we provide some details on the holographic renormalisation that we use
and, in particular, give expressions for various one point functions. We will focus on
configurations that preserve ISO(1, 2) symmetry, first considering general configurations
before restricting to BPS configurations. In appendix C we will specialise to those that, in
addition, preserve conformal symmetry.

Holographic renormalisation relevant for mass deformed Euclidean N = 4 SYM theory
was discussed in [46], and there is some overlap with our analysis below. In particular,
finite counterterms that are consistent with the global symmetries of the four-sphere were
analysed in some detail. While the analysis in [46] was sufficient in order to be able to
calculate the universal part of the free energy, the observable of principle objective in that
paper, it is not sufficient to calculate other observables. Our analysis will include other
finite counterterms which appear in observables that we consider for our solutions. We
also note in advance that while we have extended the results of [46] in a manner that is
sufficient for our purposes, additional work is still required in order to have a complete
holographic renormalisation scheme that is consistent with N = 4 supersymmetry.

B.1 General case

We consider the class of solutions that are general enough to describe sources which depend
on one of the spatial directions and preserve ISO(1, 2) symmetry. Specifically, we consider
metrics of the form

ds2 = e2A(r,x)(dt2 − dy2
1 − dy2

2)− e2V (r,x)dx2 − dr2 ,

≡ γab(r, x)dxadxb − dr2 , (B.1)

with all scalar fields functions of (r, x) only. The conformal boundary is located at r →∞
and there we have the expansion

γab = e2r/Lhab(x) + . . . , (B.2)

where hab(x) is the metric for the spacetime where the dual field theory lives, which we
write as

hab(x)dxadxb = e2Ω(x)
(
dt2 − dy2

1 − dy2
2 − e2f(x)dx2

)
, (B.3)

where the function f(x) is included for convenience (it can be useful in utilising different
gauge choices in numerically solving the equations). Two cases of particular interest are
firstly, when Ω(x) is constant, associated with a flat boundary metric. Secondly, when
eΩ = `/x and f(x) = constant, associated with an AdS4 boundary metric, with radius
` (more precisely, this gives a component of the boundary for the Janus solutions as we
elaborate further in appendix C).

The full action can be written as the sum of four terms:

S = SBulk + SGH + Sct + Sfinite . (B.4)
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The first two terms are the bulk action and the boundary Gibbons-Hawking term, given by

SBulk + SGH = 1
4πG

∫
d5x

√
|g|L − 1

8πG

∫
d4x

√
|γ|K , (B.5)

where the bulk Lagrangian L for the ten scalar model is given in (3.5) and the trace of
extrinsic curvature for the outward pointing normal one-form n = dr is given by K =
−1

2γ
ab∂rγab. As in [46] we also have

16πG = 8π2L3

N2 , (B.6)

with the AdS5 vacuum solution, with vanishing scalar fields, dual to SU(N) N = 4 SYM
theory. The boundary action Sct that is required to remove divergences takes the form

Sct = 1
16πG

∫
d4x

√
|γ|
{
− 6
L

+ L

2R− L(∇ϕ)2 − 2
L

4∑
i=1

(φi)2

− 4
L

(
1− L

2r

)(
6(β1)2 + 2(β2)2 +

3∑
k=1

(αk)2
)

− r

L

[
L3

4

(
RabR

ab − 1
3R

2
)

+ L

3R
4∑
i=1

(φi)2

− 16
3L

4∑
i=1

(φi)4 + 16
3L

4∑
1≤i<j≤4

(φi)2(φj)2 + 2L
4∑
i=1

(∇φi)2
]

− r

L

[
L3

3 R(∇ϕ)2 + 2L3

3 (∇ϕ)4 − L3Rab∂aϕ∂bϕ

+ L3

2 (2ϕ)2 + 4L
3

4∑
i=1

(φi)2(∇ϕ)2
]}

, (B.7)

where all quantities are evaluated with respect to γab evaluated in the limit r →∞. Finally,
the finite counterterms that we shall consider are given by

Sfinite = 1
16πG

∫
d4x

√
|γ|
{
− δR2

L3

4

(
RabR

ab − 1
3R

2
)
− δ∆R2

L3

4

(
RabR

ab + 1
3R

2
)

− δRφ2(1)
L

3R
3∑
i=1

(φi)2 − δRφ2(2)
L

3R(φ4)2 + δ4(1)
16
3L

3∑
i=1

(φi)4 + δ4(2)
16
3L(φ4)4

− δ4(3)
16
3L

3∑
1≤i<j≤3

(φi)2(φj)2 − δ4(4)
16
3L

3∑
i=1

(φi)2(φ4)2 + δ4(5)
16
3Lφ1φ2φ3φ4

− δα
4
L

(
L

r

)2 3∑
k=1

(αk)2 − δβ
4
L

(
L

r

)2(
6(β1)2 + 2(β2)2

)

− δ∂φ2(1)2L
3∑
i=1

(∇φi)2 − δ∂φ2(2)2L(∇φ4)2

+ δβ̃

[
24L

(
β1
r
− 1

3L
[
(φ1)2 + (φ2)2 − 2(φ3)2

] )2

+ 8L
(
β2
r
− 1
L

[
(φ1)2 − (φ2)2

] )2]}
(B.8)
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which depends on 14 coefficients {δR2 , δ∆R2 , . . . , }, which we take to be constants, and
again we have utilised the boundary metric γab evaluated in the limit r →∞.

There are a number of comments concerning this choice of finite counterterms, which
defines a renormalisation scheme. We first note that we have not included a Riemann
squared term, RabcdRabcd, since we are only considering conformally flat backgrounds as
in (B.3) and hence they can be expressed in terms of RabRab and R2. We next note Sfinite
respects the discrete symmetries (3.9)–(3.12) of the D = 5 theory. We now recall that the
scalar field ϕ is dual to a marginal operator in N = 4 SYM theory, as in (3.2), and its
boundary value can be identified with changing the coupling constant of the theory. Being
a source for a marginal operator there are many additional finite counterterms that one
might consider, including allowing the δ coefficients appearing in Sfinite to be functions of
ϕ as well as including terms with derivatives of ϕ. These additional counterterms could be
significantly simplified if we impose that they respect the shift symmetry ϕ → ϕ + const.

of the bulk D = 5 gravitational theory, but this is not a natural scheme to consider.
However, for the purpose of this paper, where will assume that there are no sources

active for ϕ, as we make precise below, and the fact that we will only be calculating one
point functions, Sfinite is in fact general enough, with one extra assumption. In particular,
if any of the δ’s did depend on ϕ it would only be the terms linear in ϕ that could
affect the one-point functions, and we exclude such terms using the symmetry (3.9). In
fact this is not quite true: we could still consider terms of the schematic form ϕαφ2.
Taking into account (3.10)–(3.12), we could have terms ϕ(α1φ2φ3 +α2φ3φ1 +α3φ1φ2) and
ϕ(α1φ1 + α2φ2 + α3φ3)φ4 and so we exclude17 these by making the extra assumption that
the finite counterterms respect ϕ → −ϕ. Demanding that this renormalisation scheme
is supersymmetric also places certain restrictions on {δR2 , . . . , } some of which we will
obtain below.

Before continuing, we highlight that ϕ → −ϕ and (3.9) are not symmetries of the
perturbative field theory since they involve a Z2 ⊂ SL(2,Z) duality transformation.18 In
other words we are invoking this non-perturbative symmetry as part of our scheme. It is
clear that, more generally, one might invoke invariance under the full SL(2,Z) as a starting
principle and this will impose restrictions on the various δ’s. In fact this point of view
was considered in section 3 of [46], from a field theory perspective, in the specific case of
N = 4 SYM on the S4; it would be interesting to extend that analysis to the present setup
of spatially modulated masses. We also note that we have included finite counter terms
in (B.8) that were not needed for the holographic analysis of [46]. These include some with
spatial dependence (e.g. δ∂φ2(1)) as well as δα, δβ which were not needed in the calculation
of the universal part of the free energy on the four-sphere (see also footnote 20 below).

Using the bulk equations of motion, we can develop the following, schematic, asymp-
totic expansion as r →∞:

A = r

L
+ Ω + · · ·+A(v)e

−4r/L + · · · ,

17If they were included they would only affect the expectation value of Oϕ for the equal mass model.
18Note that the field theory SL(2,Z) acts in type IIB on the ten-dimensional axion and dilaton. The

transformation on the D = 5 fields is discussed in appendix C of [46] and is rather involved; all we need
here is the fact that near the boundary the Z2 symmetry acts on the sources as ϕ→ −ϕ.
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V = r

L
+ Ω + f + · · ·+ V(v)e

−4r/L + · · · ,

φi = φi,(s)e
−r/L + · · ·+ φi,(v)e

−3r/L + · · · , i = 1, . . . , 4 ,

αi = αi,(s)
r

L
e−2r/L + αi,(v)e

−2r/L + · · · , , i = 1, . . . , 3 ,

βi = βi,(s)
r

L
e−2r/L + βi,(v)e

−2r/L + · · · , i = 1, . . . , 2 ,

ϕ = ϕ(s) + · · ·+ ϕ(v)e
−4r/L + · · · , (B.9)

where all coefficients, except for ϕ(s), can depend on the coordinate x. In this expansion
φi,(s), αi,(s), βi,(s) and ϕ(s) provide sources for the corresponding dual operators in N = 4
SYM given in (3.2). Our interest in this paper is spatially dependent mass deformations
and hence we allow φi,(s), αi,(s), βi,(s) to depend on x but we take

ϕ(s) = 0 . (B.10)

Note however, that in general ϕ(v) does depend on x and is related to the operator dual to
ϕ acquiring a spatially dependent expectation value. We also note that in developing the
asymptotic expansion, there is one algebraic and one differential constraint relating A(v)
and V(v) which ensure the Ward identities in the boundary theory, given below, are satisfied.

The expectation value for the stress tensor is given by

〈T ab〉 = lim
r→∞

{
e6r/L −2√

|γ|
δS

δγab

}
. (B.11)

The expectation value of the operators dual to the scalar fields are given by

〈OΨ〉 = lim
r→∞

{
e∆Ψr/L

1√
|γ|

δS

δΨ

}
or lim

r→∞

{(
r

L

)
e∆Ψr/L

1√
|γ|

δS

δΨ

}
, (B.12)

where the former expression is for ϕ, φi, φ4, dual to operators with ∆ = 4, 3, 3 and the
latter for αi, βi, dual to operators with ∆ = 2. We will not present these expressions for
general finite counterterms as the expressions are lengthy. Instead we just note that we
have checked that the following Ward identity is satisfied

∇a〈T ab〉+
4∑
i=1
〈Oφi〉 ∂bφi,(s) +

3∑
i=1
〈Oαi〉 ∂bαi,(s) +

2∑
i=1
〈Oβi〉 ∂bβi,(s) = 0 , (B.13)

where here the covariant derivative is defined with respect to the field theory metric hab
in (B.2), (B.3) and this metric has been used to raise the index on 〈T ab〉. We also recall
here that we have assumed that the source ϕ(s) vanishes.

Furthermore, the trace of the stress tensor can be expressed as

〈T aa〉+
4∑
i=1
〈Oφi〉φi,(s) + 2

3∑
i=1
〈Oαi〉αi,(s) + 2

2∑
i=1
〈Oβi〉βi,(s) = A (B.14)
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where A is given by

8πGLA = − L4

8

(
RabR

ab − 1
3R

2
)
− δ∆R2L42R

−
3∑
i=1

α2
i,(s) − 6β2

1,(s) − 2β2
2,(s) + 8

3

4∑
i=1

φ4
i,(s) −

8
3

4∑
1≤i<j≤4

φ2
i,(s)φ

2
j,(s)

− L2
4∑
i=1

[
(∇φi,(s))2 + 1

6Rφ
2
i,(s)

]

+ 2L2(δ∂φ2(1) − δRφ2(1))
3∑
i=1
∇(φi,(s)∇φi,(s))

+ 2L2(δ∂φ2(2) − δRφ2(2))
[
∇(φ4,(s)∇φ4,(s))

]
, (B.15)

where, again, the geometric quantities are written here with respect to the field theory
metric hab in (B.2), (B.3). Here A is the conformal anomaly for N = 4 SYM on a curved
ISO(1, 2) invariant boundary in the presence of spatially dependent sources. The first
line of the conformal anomaly is the standard term involving the Ricci tensor along with
a familiar contribution coming from the finite counterterm parametrised by δ∆R2 . The
remaining contributions are terms involving the sources for the scalar operators [65, 66].
The integrated anomaly should be invariant under Weyl transformations and we can see
that this is true after recalling that αi(s), βi(s) have scaling dimension two, φi(s), φ4(s) have
dimension one as well as the expression for a conformally coupled scalar in four spacetime
dimensions appearing in the third line. The presence of these source terms crucially relies
on the fact that they are sourcing operators with integer conformal dimensions and hence
are not be present for generic CFTs.

It is illuminating to see how the source and expectations values change under a class
of Weyl transformations of the boundary metric (B.3). Specifically, we consider the trans-
formation

hab → Λ2hab , (B.16)

with Λ = e−Ω, which takes the boundary metric (B.3) (with f(x) = 0) to a flat space
metric. As r →∞, we can achieve this by implementing the following schematic coordinate
transformation:

x→ x− L2

2 (∂xΩ)e−2r/L + · · · ,

er/L → e−Ωer/L + L2

4 e−Ω(∂xΩ)2e−r/L + · · · . (B.17)

We can quickly conclude that the source terms all transform covariantly, as one expects:

αi,(s) → Λ−2αi,(s), βi,(s) → Λ−2βi,(s), φi,(s) → Λ−1φi,(s), ϕ(s) → ϕ(s) , (B.18)

(though we will set ϕ(s) = 0). The transformation on the “(v)” expansion coefficients
in (B.9) is more elaborate and this leads to the following non-covariant transformation
properties for the associated expectation values. For the ∆ = 2 operators we find

〈Oαi〉 →Λ−2〈Oαi〉+ 1
4πGLα1,(s)Λ−2 log Λ ,
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〈Oβ1〉 →Λ−2〈Oβ1〉+ 3
2πGLβ1,(s)Λ−2 log Λ ,

〈Oβ2〉 →Λ−2〈Oβ2〉+ 1
2πGLβ2,(s)Λ−2 log Λ , (B.19)

for the ∆ = 3 operators we have

〈Oφi=1,2,3〉 →Λ−3〈Oφi=1,2,3〉+ L

4πGΛ−2∂xφi,(s)∂xΛ− L

8πGφi,(s)Λ
−3(∂xΛ)2

+ 1
2πGLΛ−3 log Λ

(
− 4φ3

i,(s) + 4
3φi,(s)

4∑
j=1

φ2
j,(s) − L

2Λ ∂xφi,(s)∂xΛ

+ L2φi,(s)(∂xΛ)2 + L2

2 Λ2∂x∂xφi,(s) −
L2

2 Λφi,(s)∂x∂xΛ
)

+ (δRφ2(1) − δ∂φ2(1))
L

4πGφi,(s)
(
2Λ−3(∂xΛ)2 − Λ−2∂x∂xΛ

)
, (B.20)

and 〈Oφi=4〉 transforms as in (B.20), but with the coefficient (δRφ2(1) − δ∂φ2(1)) in the
last line replaced with (δRφ2(2) − δ∂φ2(2)). In particular, if φ4,(s) = 0, as it is for BPS
configurations when ϕ(s) = 0, then 〈Oφi=4〉 transforms covariantly. Finally, the ∆ = 4
operator transforms covariantly when ϕ(s) = 0:

〈Oϕ〉 →Λ−4〈Oϕ〉 . (B.21)

The presence of the log Λ terms appearing in the expressions for ∆ = 2, 3 are a consequence
of the conformal anomaly (B.15).

B.2 BPS configurations

We now restrict to ISO(1, 2) configurations which satisfy the BPS equations in (4.4), (4.5).
Continuing to assume that ϕ(s) = 0 we find the following constraints on the sources

ϕ(s) = 0 ,

φ4,(s) = 0 ,

αi,(s) = κLe−Ω−f
(
∂xφi,(s) + φi,(s)∂xΩ

)
, i = 1, . . . , 3 ,

β1,(s) = 1
3
(
φ2

1,(s) + φ2
2,(s) − 2φ2

3,(s)

)
,

β2,(s) = φ2
1,(s) − φ

2
2,(s) . (B.22)

In particular, we see that the sources αi,(s), βi,(s) are determined by φi,(s) with i = 1, . . . , 3.
We also find an additional set of relations amongst the expansion functions A(v), V(v) and
φi,(v), φ4,(v), αi,(v), βi,(v), ϕ(v) which provide relations between the expectation values of the
various dual scalar operators as well as the stress tensor. As they are rather long, we will
not record them here, but we will below for each of the sub-truncations that we study.
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It is now illuminating to use these results to calculate the energy density for flat field
theory metric, hab = ηab (i.e. Ω = f = 0 in (B.3)). Firstly, we find that stress energy tensor
itself takes the form

πG〈T ab〉 = ηab
[
−

1 + 4δ4(1) − 8δβ
12L

3∑
i=1

φ4
i,(s) −

3− 4δ4(3) + 8δβ
12L

3∑
1≤i<j≤3

φ2
i,(s)φ

2
j,(s)

+
3∑
i=1

{
− κ

16φi,(s)∂xαi,(v) −
κ

8∂xφi,(s)αi,(v)

+
L(δRφ2(1) − δ∂φ2(1) + 4δα)

16 (∂xφi,(s))2 + δRφ2(1)
L

16φi,(s)∂
2
xφi,(s)

}]

+ σab
[ 3∑
i=1

{
− κ

48φi,(s)∂xαi,(v) + κ

24∂xφi,(s)αi,(v)

+
L(δRφ2(1) − 3δ∂φ2(1))

48 (∂xφi,(s))2 + δRφ2(1)
L

48φi,(s)∂
2
xφi,(s)

}]
,

(B.23)

where the matrix σab = diag(1,−1,−1, 3) satisfies ηabσab = 0 and hence does not contribute
to the conformal anomaly. Using this, we obtain the following expression for the local
energy density for BPS configurations in flat space:

8πGL〈T tt〉 =
3∑
i=1

[2
3∂x

(
δRφ2(1)L

2φi,(s)∂xφi,(s) − κLφi,(s)αi,(v)
)

− 2
3(1 + 4δ4(1) − 8δβ)φ4

i,(s) − L
2(δ∂φ2(1) − 2δα)(∂xφi,(s))2

]

− 2
3(3− 4δ4(3) + 8δβ)

3∑
1≤i<j≤3

φ2
i,(s)φ

2
j,(s) . (B.24)

For a supersymmetric renormalisation scheme, we demand that the finite counterterms are
such that the right hand side is a total spatial derivative, in order that the total energy for
spatially modulated supersymmetric sources (with compact support) is exactly zero. This
implies the following conditions must be satisfied

δ4(1) = −1
4 + 2δβ ,

δ4(3) = 3
4 + 2δβ ,

δ∂φ2(1) = 2δα . (B.25)

These conditions are similar those one would get if one used the “Bogomol’nyi trick” used
in [45–47], but we note that the analysis of [46] did not include the possibility of δα and δβ .

Since we would like to work with a scheme that preserves supersymmetry we will
impose (B.25). Notice in the above energy analysis we have set ϕ(s) = 0 which, for super-
symmetric configurations implies φ4,(s) = 0. It seems likely that if we consider zero energy
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BPS configurations when these sources are active that we would be able to constrain19

δ4(2), δ4(4) and δ4(5). In order to fully determine the 14 coefficients appearing in the fi-
nite counterterm action, one would like to implement a fully supersymmetric holographic
renormalisation scheme, along the lines of [69], including imposing SL(2,Z) invariance, but
we leave that for future work (see also e.g. [70])). We will explicitly see that the terms δα,
δβ , in particular, appear20 in novel contributions to the expectation values of operators for
Janus solutions (e.g. see (6.15)).

B.2.1 N = 1∗ one-mass model

This model is obtained from the 10-scalar model by setting φ1 = φ2 = 0, α1 = α2 = 0 as
well as ϕ = φ4 = 0 and β2 = 0. Thus, we have

z1 = z2 = −z3 = −z4 , and β2 = 0 , (B.26)

and we write (as in [46])

z1 = tanh
[1

2
(
α3 − iφ3

)]
. (B.27)

For the general ISO(1, 2) configurations, with boundary field theory metric (B.3), we use
the expansion

A = r

L
+ Ω + · · ·+A(v)e

−4r/L + · · · ,

V = r

L
+ Ω + f + · · ·+ V(v)e

−4r/L + · · · ,

φ3 = φ3,(s)e
−r/L + · · ·+ φ3,(v)e

−3r/L + · · · ,

α3 = α3,(s)
r

L
e−2r/L + α3,(v)e

−2r/L + · · · ,

β1 = β1,(s)
r

L
e−2r/L + β1,(v)e

−2r/L + · · · , (B.28)

where φ3,(s), α3,(s), β1,(s) are the source terms for the scalar operators in (3.2). Using the
renormalisation scheme (B.25) we find that the one-point functions of the scalar operators
are given by

〈Oα3〉 = 1
4πGL

(
α3,(v) − 2δαα3,(s)

)
,

〈Oβ1〉 = 3
2πGL

(
β1,(v) − 2δββ1,(s) + 2δβ̃

(
β1,(s) + 2

3φ
2
3,(s)

))
,

19From the results of [46] we anticipate that we would get δ4(2) = −3/4 + . . . , δ4(4) = 3/2 + . . . ,
δ4(5) = 9/2 + . . . , where the dots refer to terms involving δα and δβ .

20Observe that if we substitute the supersymmetry condition (B.25) as well as the BPS conditions on the
sources (B.22) into the finite counter term action (B.8), then δβ drops out; this is relevant for evaluating
the free energy of a given configuration, but we reiterate that δβ does appear in our one point functions.
Finally, it would be interesting to make a connection with the N = 1 supersymmetric field theory analysis
in section 3 of [46]. Here we simply note that this would appear to involve the invariant I2 in equation
(3.12) of [46] as well as an additional counterterm involving background gauge supermultiplets that was
not considered (nor needed) in [46].
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〈Oφ3〉 = 1
2πGL

(
φ3,(v) + 1

6(7 + 32δβ)φ3
3,(s) + 8δβ̃φ3,(s)

(
β1,(s) + 2

3φ
2
3,(s)

)
+ L2

4 (1 + 4δα)2φ3,(s) −
L2

24 (1 + 2δRφ2(1))Rφ3,(s)

)
, (B.29)

where 2 and R refer to the field theory metric hab in (B.3), along with the expected results

〈Oα1〉 = 〈Oα2〉 = 〈Oβ2〉 = 〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ4〉 = 〈Oϕ〉 = 0 . (B.30)

Focussing now on the ISO(1, 2) configurations that also solve the BPS equa-
tions (4.4), (4.5), the relation between the sources in (B.22) is given by

α3,(s) = κLe−Ω−f
(
∂xφ3,(s) + φ3,(s)∂xΩ

)
,

β1,(s) = −2
3φ

2
3,(s) . (B.31)

The BPS equations also impose relations between the coefficients with “(v)” subscript
in (B.28), which are explicitly given by

φ3,(v) = 4β1,(v)φ3,(s) −
7
6φ

3
3,(s) −

L2

4 2φ3,(s) + L2

24Rφ3,(s)

+ κLe−Ω−f
(1

2∂xα3,(v) + α3,(v)∂xΩ
)
− L2

4 e−2Ω−2fφ3,(s)(∂xΩ)2 ,

−2α3,(v)φ3,(s) = κL

2 e−Ω−f
(
3∂xβ1,(v) + [6β1,(v) + 2φ2

3,(s)]∂xΩ
)
. (B.32)

Under the renormalisation scheme (B.25) these are equivalent to the following set of rela-
tionships between the one point functions of the scalar operators for the BPS configurations

〈Oα3〉φ3,(s) =− κL

8 e−Ω−f
(
∂x〈Oβ1〉+ 2〈Oβ1〉∂xΩ + 1

πGL
φ2

3,(s)∂xΩ
)

+ (δβ − δα) κ

4πGe
−Ω−f [∂x(φ2

3,(s)) + 2φ2
3,(s)∂xΩ] ,

〈Oφ3〉 = 4
3〈Oβ1〉φ3,(s) + κLe−Ω−f

(
∂x〈Oα3〉+ 2〈Oα3〉∂xΩ

)
− L

8πGe
−2Ω−2fφ3,(s)

(
∂xΩ

)2

+ δα
L

2πGe
−Ω−f∂x

[
e−Ω−f (∂xφ3,(s) + φ3,(s)∂xΩ)

]
+ δα

L

2πGe
−Ω−f

[
2e−Ω−f (∂xφ3,(s) + φ3,(s)∂xΩ)∂xΩ

]
+ δα

L

2πG2φ3,(s) − δRφ2(1)
L

24πGRφ3,(s) , (B.33)

where R is again the Ricci scalar for the boundary metric hab given in (B.3).

B.2.2 N = 1∗ equal-mass model

This model is obtained from the 10-scalar model by setting φ1 = φ2 = φ3 as well as
α1 = α2 = α3. In addition we set β1 = β2 = 0. Thus, we have

z4 = −z3 = −z2 , and β1 = β2 = 0 , (B.34)
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and we parametrise (z1, z2) via

z1 = tanh
[1

2
(
3α1 + ϕ− i3φ1 + iφ4

)]
,

z2 = tanh
[1

2
(
α1 − ϕ− iφ1 − iφ4

)]
. (B.35)

For the general ISO(1, 2) configurations, with boundary field theory metric (B.3), we
use the expansion

A = r

L
+ Ω + · · ·+A(v)e

−4r/L + · · · ,

V = r

L
+ Ω + f + · · ·+ V(v)e

−4r/L + · · · ,

φ2 = φ3 = φ1 = φ1,(s)e
−r/L + · · ·+ φ1,(v)e

−3r/L + · · · ,

φ4 = φ4,(s)e
−r/L + · · ·+ φ4,(v)e

−3r/L + · · · ,

α2 = α3 = α1 = α1,(s)
r

L
e−2r/L + α1,(v)e

−2r/L + · · · ,

ϕ = ϕ(s) + · · ·+ ϕ(v)e
−4r/L + · · · , (B.36)

where φ1,(s), φ4,(s), α1,(s), ϕ(s) determine the source terms for the scalar operators in (3.2)
and we again emphasise that we focus on ϕ(s) = 0. Using the renormalisation scheme (B.25)
we find that the one-point functions of the scalar operators are given by

〈Oα1〉 = 〈Oα2〉 = 〈Oα3〉 = 1
4πGL

(
α1,(v) − 2δαα1,(s)

)
,

〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ3〉 = 1
2πGL

(
φ1,(v) + 5

6φ
3
1,(s) −

9− 2δ4(5)
3 φ2

1,(s)φ4,(s)

+
5− 8δ4(4)

6 φ1,(s)φ
2
4,(s) + L2

4 (1 + 4δα)2φ1,(s)

− L2

24 (1 + 2δRφ2(1))Rφ1,(s)

)
,

〈Oφ4〉 = 1
2πGL

(
φ4,(v) −

9− 2δ4(5)
3 φ3

1,(s) −
5− 8δ4(4)

2 φ2
1,(s)φ4,(s) +

11 + 16δ4(2)
6 φ3

4,(s)

+ L2

4 (1 + 2δ∂φ2(2))2φ4,(s) −
L2

24 (1 + 2δRφ2(2))Rφ4,(s)

)
,

〈Oϕ〉 = 1
πGL

(
ϕ(v) −

3
4(α1,(s) − 4α1,(v))(φ2

1,(s) − φ1,(s)φ4,(s))
)
, (B.37)

where 2 and R refer to the field theory metric hab in (B.3), along with the expected results

〈Oβ1〉 = 〈Oβ2〉 = 0 . (B.38)

Focussing now on the ISO(1, 2) configurations that also solve the BPS equa-
tions (4.4), (4.5), the relation between the sources in (B.22) is given by

ϕ4,(s) = 0 ,
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φ4,(s) = 0 ,

α1,(s) = κLe−Ω−f
(
∂xφ1,(s) + φ1,(s)∂xΩ

)
. (B.39)

The BPS equations also impose relations between the coefficients with “(v)” subscript
in (B.36), which are explicitly

ϕ(v) = − 3α1,(v)φ
2
1,(s) −

κL

4 e−Ω−f∂x
(
φ3

1,(s) − φ4,(v)
)
− 3κL

4 e−Ω−f
(
φ3

1,(s) − φ4,(v)
)
∂xΩ ,

φ1,(v) = − 5
6φ

3
1,(s) −

L2

4 2φ1,(s) + L2

24Rφ1,(s) + κLe−Ω−f
(1

2∂xα1,(v) + α1,(v)∂xΩ
)

− L2

4 e−2Ω−2fφ1,(s)(∂xΩ)2 . (B.40)

Under the renormalisation scheme (B.25) these are equivalent to the following set of rela-
tionships between the one point functions of the scalar operators for the BPS configurations

〈Oφ1〉 =κLe−Ω−f
(
∂x〈Oα1〉+ 2〈Oα1〉∂xΩ

)
− L

8πGe
−2Ω−2fφ1,(s)(∂xΩ)2

+ δα
L

2πGe
−Ω−f∂x

[
e−Ω−f (∂xφ1,(s) + φ1,(s)∂xΩ)

]
+ δα

L

2πGe
−Ω−f

[
2e−Ω−f (∂xφ1,(s) + φ1,(s)∂xΩ)∂xΩ

]
+ δα

L

2πG2φ1,(s) − δRφ2(1)
L

24πGRφ1,(s) ,

〈Oϕ〉 = κL

2 e−Ω−f
(
∂x〈Oφ4〉+ 3〈Oφ4〉∂xΩ

)
+
κ(3− 2δ4(5))

12πG e−Ω−f
(
∂x(φ3

1,(s)) + 3φ3
1,(s)∂xΩ

)
, (B.41)

where R is again the Ricci scalar for the boundary metric hab given in (B.3).

B.2.3 N = 2∗ model

This model is obtained from the 10-scalar model by setting φ1 = φ2, α1 = α2 and β1 6= 0,
while imposing α3 = φ3 = φ4 = ϕ = β2 = 0. Thus, we set

z1 = z3, z2 = z4 = β2 = 0 , (B.42)

with

z1 = tanh[α1 − iφ1] . (B.43)

The expansion for the general ISO(1, 2) configurations is given by

A = r

L
+ Ω + · · ·+A(v)e

−4r/L + · · · ,

V = r

L
+ Ω + f + · · ·+ V(v)e

−4r/L + · · · ,

φ2 = φ1 = φ1,(s)e
−r/L + · · ·+ φ1,(v)e

−3r/L + · · · ,

α2 = α1 = α1,(s)
r

L
e−2r/L + α1,(v)e

−2r/L + · · · ,

– 52 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
6

β1 = β1,(s)
r

L
e−2r/L + β1,(v)e

−2r/L + · · · , (B.44)

where φ1,(s), α1,(s) and β1,(s) are the source terms for the scalar operators. The one point
functions are given by

〈Oα1〉 = 〈Oα2〉 = 1
4πGL

(
α1,(v) − 2δαα1,(s)

)
,

〈Oβ1〉 = 3
2πGL

(
β1,(v) − 2δββ1,(s) + 2δβ̃

(
β1,(s) −

2
3φ

2
1,(s)

))
,

〈Oφ1〉 = 〈Oφ2〉 = 1
2πGL

(
φ1,(v) + 3 + 8δβ

3 φ3
1,(s) − 4δβ̃φ1,(s)

(
β1,(s) −

2
3φ

2
1,(s)

)
+ L2

4 (1 + 4δα)2φ1,(s) −
L2

24 (1 + 2δRφ2(1))Rφ1,(s)

)
, (B.45)

where 2 and R refer to the field theory metric hab in (B.3), along with the expected results

〈Oα3〉 = 〈Oβ2〉 = 〈Oφ3〉 = 〈Oφ4〉 = 〈Oϕ〉 = 0 . (B.46)

Turning to the supersymmetric ISO(1, 2) BPS configurations satisfying (4.4), (4.5),
the relation between the sources is given by

α1,(s) = κLe−Ω−f
(
∂xφ1,(s) + φ1,(s)∂xΩ

)
,

β1,(s) = 2
3φ

2
1,(s) . (B.47)

The BPS equations also impose relations between the coefficients with “(v)” subscript
in (B.44) given by

φ1,(v) = − 2β1,(v)φ1,(s) − φ3
1,(s) −

L2

4 2φ1,(s) + L2

24Rφ1,(s)

+ κLe−Ω−f
(1

2∂xα1,(v) + α1,(v)∂xΩ
)
− L2

4 e−2Ω−2fφ1,(s)(∂xΩ)2 ,

2α1,(v)φ1,(s) = κL

2 e−Ω−f
(
3∂xβ1,(v) + [6β1,(v) − 2φ2

1,(s)]∂xΩ
)
. (B.48)

Under the renormalisation scheme (B.25) these are equivalent to the following set of rela-
tionships between the one point functions of the scalar operators for the BPS configurations

〈Oα1〉φ1,(s) = κL

8 e−Ω−f
(
∂x〈Oβ1〉+ 2〈Oβ1〉∂xΩ− 1

πGL
φ2

1,(s)∂xΩ
)

+ (δβ − δα) κ

2πGe
−Ω−fφ1,(s)

(
∂xφ1,(s) + φ1,(s)∂xΩ

)
,

〈Oφ1〉 = − 2
3〈Oβ1〉φ1,(s) + κLe−Ω−f

(
∂x〈Oα1〉+ 2〈Oα1〉∂xΩ

)
− L

8πGe
−2Ω−2fφ1,(s)

(
∂xΩ

)2

+ δα
L

2πGe
−Ω−f∂x

[
e−Ω−f (∂xφ1,(s) + φ1,(s)∂xΩ)

]
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+ δα
L

2πGe
−Ω−f

[
2e−Ω−f (∂xφ1,(s) + φ1,(s)∂xΩ)∂xΩ

]
+ δα

L

2πG2φ1,(s) − δRφ2(1)
L

24πGRφ1,(s) , (B.49)

where again R refer to the field theory metric hab in (B.3).

C One point functions for Janus solutions

For orientation we first recall the metric for AdS5 written in “Janusian” coordinates which
makes manifest the foliation by AdS4 spaces. We then discuss how the results of the
previous appendix can be employed to obtain holographic data for the Janus solutions
discussed in section 6.

C.1 Janusian coordinates for AdS5

Consider writing AdS5, with radius L, in Poincaré coordinates, in mostly minus signature,
singling out a preferred spatial direction y3:

ds2 = L2

Z2

[
−dZ2 − dy2

3 + (dt2 − dy2
1 − dy2

2)
]
, (C.1)

with Z ∈ (0,∞). Notice that (y3, Z) parametrise a half plane as in figure 6. We can switch
to polar coordinates for this half plane via y3 = x sinµ, Z = x cosµ, with x ∈ (0,∞) and
µ ∈ [−π/2, π/2] to get

ds2 = L2

cos2 µ

[
−dµ2 + 1

x2

(
−dx2 + dt2 − dy2

1 − dy2
2

)]
. (C.2)

We can also do a further coordinate change, by setting cosµ = [cosh(r/L)]−1 and keeping
x fixed to get

ds2 = −dr2 + cosh2(r/L)
[
L2

x2

(
−dx2 + dt2 − dy2

1 − dy2
2

)]
, (C.3)

with x ∈ (0,∞), r ∈ (−∞,∞). These (x, r) coordinates are related to the original Poincare
coordinates via x =

√
y2

3 + Z2, er/L = y3+
√
y2
3+Z2

Z and are also illustrated in figure 6. We
also note that r → ±∞ are associated with y3 > 0 and y3 < 0, respectively. Finally, after
writing Z = Le−ρ/L in the original metric (C.1) we have

ds2 = −dρ2 + e2ρ/L
[
dt2 − dy2

1 − dy2
2 − dy2

3

]
, (C.4)

with ρ ∈ (−∞,+∞) and the conformal boundary at ρ→∞. We heavily utilise the (ρ, y3)
coordinates and the (r, x) coordinates in this paper, with the former associated with flat
spacetime boundary metric and the latter associated with AdS4 boundary metric.
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Z = Le−ρ/L

x → ∞x → ∞

y3

r↓+∞
r↓−∞

Figure 6. Coordinates for Janus configurations, with (t, y1, y2) suppressed. We have ρ ∈
(−∞,+∞) and y3 ∈ (−∞,∞), with the conformal boundary located at ρ → ∞, parametrised
by (t, y1, y2, y3), which naturally comes with a flat space metric. We can also use coordinates with
x ∈ (0,∞), r ∈ (−∞,∞), with the straight lines of constant r parametrising AdS4 spacetime.
In these coordinate the conformal boundary consists of three components: the two half spaces at
r = ±∞, parametrised by (t, y1, y2, x) which naturally come with an AdS4 metric, and x→ 0 which
is the interface y3 = 0.

C.2 BPS Janus solutions: field theory on AdS4

The BPS Janus solutions discussed in sections 5 and 6 are special sub-classes of the ISO(1, 2)
BPS solutions discussed in appendix B with

eA(r,x) = eV (r,x) = eAJ (r) `

x
, (C.5)

and all scalar fields taken to be a function of r only. As r → ±∞ the N = 4 SYM Janus
solutions approach the N = 4 SYM AdS5 vacuum but with additional mass sources. Like
the N = 4 SYM AdS5 vacuum solution itself, the conformal boundary again consists of
three components, with two half spaces (with AdS4 metrics) that are joined at a planar
interface. Let us first consider the r → ∞ end, returning to the r → −∞ end in sec-
tion C.2.4. After recalling (B.9), as r → ∞ we have the schematic expansion of the BPS
equations (5.5), (5.6) (with N = 1) given by

AJ = r

L
+A0 + · · ·+A(v)e

−4r/L + · · · ,

φi = φi,(s)e
−r/L + · · ·+ φi,(v)e

−3r/L + · · · , i = 1, . . . , 4 ,

αi = αi,(s)
r

L
e−2r/L + αi,(v)e

−2r/L + · · · , , i = 1, . . . , 3 ,

βi = βi,(s)
r

L
e−2r/L + βi,(v)e

−2r/L + · · · , i = 1, . . . , 2 ,

ϕ = ϕ(s) + · · ·+ ϕ(v)e
−4r/L + · · · . (C.6)

The various constant coefficients in this expansion are constrained by the BPS equations, as
discussed below. We have highlighted a constant term A0 that can appear in the expansion
for AJ . By shifting the radial coordinate via r → r−A0L we can always remove this term
and we shall do so in the following. In particular all the expressions for the expectation
values and sources given below are obtained with

A0 = 0 . (C.7)
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The terms φi,(s), αi,(s), βi,(s), ϕ(s) give rise to source terms for N = 4 SYM on this
component of the conformal boundary with AdS4 metric. Recalling that these are sources
for operators of conformal dimension ∆ = 3, 2, 2, 4 respectively, it is helpful to note that
the field theory sources on AdS4, that are invariant under Weyl scalings of `, are given by
`φi,(s), `2αi,(s), `2βi,(s). We are always assuming that ϕ(s) = 0 and from (B.22), the BPS
conditions relating the sources are given for the ten scalar model by

αi,(s) = −κL
`
φi,(s) , i = 1, . . . , 3 ,

β1,(s) = 1
3
(
φ2

1,(s) + φ2
2,(s) − 2φ2

3,(s)

)
,

β2,(s) = φ2
1,(s) − φ

2
2,(0) ,

φ4,(s) = 0 . (C.8)

In a similar manner φi,(v), αi,(v), βi,(v) and ϕ(v), with suitable contributions from the
sources, give rise to the expectation values of the scalar operators. We can obtain these
results for each of the three truncations considered in appendix B, after using eΩ = `/x

and f(x) = 0, as we summarise below.

C.2.1 N = 1∗ one-mass model: AdS4 boundary

We use the renormalisation scheme (B.25). From (B.29) we have

〈Oα3〉 = 1
4πGL

(
α3,(v) − 2δαα3,(s)

)
. (C.9)

For BPS Janus configurations, from (B.33) we can then express the remaining non-trivial
expectation values in terms of 〈Oα3〉 along with φ3,(s) as follows:

〈Oβ1〉 = 4κ`
L
〈Oα3〉φ3,(s) −

(1 + 4δα − 4δβ)
2πGL φ2

3,(s) ,

〈Oφ3〉 = 4
3〈Oβ1〉φ3,(s) −

2κL
`
〈Oα3〉 −

L

8πG`2 (1− 8δα + 4δRφ2(1))φ3,(s) . (C.10)

Notice that these expressions depend on the δα, δβ , δRφ2(1) which parametrise finite coun-
terterms that we haven’t fixed. We also have

〈Oα1〉 = 〈Oα2〉 = 〈Oβ2〉 = 〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ4〉 = 〈Oϕ〉 = 0 , (C.11)

independent of the counterterms. Notice that for a fixed choice of δα, δβ , δRφ2(1), we can
therefore specify all of the scalar sources and expectation values of the dual field theory by
giving φ3,(s) and α3,(v).

C.2.2 N = 1∗ equal-mass model: AdS4 boundary

We use the renormalisation scheme (B.25). From (B.37) and (C.8) for BPS configurations
we have

〈Oα1〉 = 〈Oα2〉 = 〈Oα3〉 = 1
4πGL

(
α1,(v) − 2δαα1,(s)

)
,
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〈Oφ4〉 = 1
2πGL

(
φ4,(v) −

9− 2δ4(5)
3 φ3

1,(s)

)
. (C.12)

For BPS Janus configurations, from (B.41) we can then express the other expectation
values in terms of 〈Oα1〉, 〈Oφ4〉 along with φ1,(s) as follows

〈Oφ1〉 = −2κL
`
〈Oα1〉 −

L(1 + 4δRφ2(1) − 8δα)
8πG`2 φ1,(s) ,

〈Oϕ〉 = −3κL
2` 〈Oφ4〉 −

κ(3− 2δ4(5))
4πG` φ3

1,(s) . (C.13)

Notice that these expressions depend on the δα, δRφ2(1), δ4(5) which parametrise finite
counterterms which we haven’t fixed. We also have

〈Oβ1〉 = 〈Oβ2〉 = 0 , (C.14)

independent of the counterterms. Notice that for a fixed choice of δα, δRφ2(1), δ4(5) we can
therefore specify all of the scalar sources and expectation values of the dual field theory by
giving φ1,(s), α1,(v) and φ4,(v).

C.2.3 N = 2∗ model: AdS4 boundary

We use the renormalisation scheme (B.25). From (B.45) we have

〈Oα1〉 = 〈Oα2〉 = 1
4πGL(α1,(v) − 2δαα1,(s)) , (C.15)

For BPS Janus configurations, from (B.49) we can then express the other expectation
values in terms of 〈Oα1〉 along with φ1,(s) as follows

〈Oφ1〉 = 〈Oφ2〉 = −2
3〈Oβ1〉φ1,(s) −

2κL
`
〈Oα1〉 −

L

8πG`2 (1− 8δα + 4δRφ2(1))φ1,(s) ,

〈Oβ1〉 = −4κ`
L
〈Oα1〉φ1,(s) + (1 + 4δα − 4δβ)

2πGL φ2
1,(s) . (C.16)

Notice that these expressions depend on the δα, δβ , δRφ2(1) which parametrise finite coun-
terterms which we haven’t fixed. We also have

〈Oα3〉 = 〈Oβ2〉 = 〈Oφ3〉 = 〈Oφ4〉 = 〈Oϕ〉 = 0 , (C.17)

independent of the counterterms. Notice that for a fixed choice of δα, δβ , δRφ2(1), we can
therefore specify all of the scalar sources and expectation values of the dual field theory by
giving φ1,(s) and α1,(v).

C.2.4 Results for the r → −∞ end, AdS4 boundary

We now discuss analogous results, for the sources and expectation values, for the conformal
boundary, with AdS4 metric, at the r → −∞ end. Here we can develop an asymptotic
expansion to the BPS equations (5.5), (5.6) (with N = 1) of the form

AJ = −r
L

+ Ã0 + · · ·+ Ã(v)e
4r/L + · · · ,

– 57 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
6

φi = φ̃i,(s)e
r/L + · · ·+ φ̃i,(v)e

3r/L + · · · , i = 1, . . . , 4 ,

αi = α̃i,(s)
−r
L
e2r/L + α̃i,(v)e

2r/L + · · · , , i = 1, . . . , 3 ,

βi = β̃i,(s)
−r
L
e2r/L + β̃i,(v)e

2r/L + · · · , i = 1, . . . , 2 ,

ϕ = ϕ̃(s) + · · ·+ ϕ̃(v)e
4r/L + · · · , (C.18)

and we will always set Ã0 = 0, which can be achieved by a shift of the radial coordinate.
This has exactly the same form as in (C.6) after the interchange r → −r. The BPS
equations will then relate various coefficients. We can easily deduce these relations using
the following argument. We first recall that the BPS equations (5.5), (5.6) are invariant
under the transformation r → −r, ξ → ξ + π and κ → −κ. Second, we want to use the
result that if a solution has ξ = 0 at r = +∞ then necessarily it will have ξ = π at r = −∞.
This can be seen from (5.13): at r → ±∞ the scalars are approaching zero so the phase of
W is going to zero. Thus, the phase of Br at r → ±∞ is ξ and from (5.13) we see that ξ
must change by π in going from r = +∞ to r = −∞. Taking these two results together, we
can then deduce that all of the results that we obtained for the r → +∞ end can be taken
over to the r → −∞ end provided that wherever κ appears in the former, it is replaced21

with −κ in the latter.
Thus, for example, we can conclude that the BPS equations in (5.5), (5.6) (with N = 1)

imply that in the expansion (C.18) at r → −∞ we now have

α̃i,(s) = +2κL
`
φ̃i,(s) , i = 1, . . . , 3 ,

β̃1,(s) = 1
3
(
φ̃2

1,(s) + φ̃2
2,(s) − 2φ̃2

3,(s)

)
,

β̃2,(s) = φ̃2
1,(s) − φ̃

2
2,(0) ,

φ̃4,(s) = 0 , (C.19)

and we note the sign flip in the first line as compared to (C.8). Similarly, for all the results
for the expectation values at the r →∞ end that we gave in the previous subsections C.2.1–
C.2.3, we can take over to analogous results at the r → −∞ end, after replacing κ with −κ.

C.3 BPS Janus solutions: field theory on flat spacetime

For the Janus solutions, we are primarily interested in obtaining the sources and expec-
tation values for operators of N = 4 SYM in flat spacetime. To do this22 we carry out a
bulk coordinate transformation as we approach the r → ∞ component of the conformal
boundary, that we are focussing on, so that it has a flat metric. For the r →∞ component

21Recall that κ = ±1 enters the Killing spinor projections (5.7). To avoid possible confusion, we emphasise
that we are holding this projection fixed in developing the asymptotic expansion (C.18) at r → −∞; the
argument we have given is just a way of getting at the result.

22Note that the results in this section can also obtained from our results (B.16)–(B.21).
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of the conformal boundary we can use the coordinate transformation of the form

er/L = y3
`
eρ/L + L2

4`y3
e−ρ/L +O(e−3ρ/L/y3

3) ,

x = y3 + L2

2y3
e−2ρ/L +O(e−4ρ/L/y3

3) , (C.20)

with y3 > 0. Substituting this into (6.7) then leads to an expansion as ρ → ∞ with the
metric asymptoting to

ds2 → −dρ2 + e2ρ/L
(
dt2 − dy2

1 − dy2
2 − dy2

3

)
, (C.21)

and recalling the discussion in section C.1, this component of the conformal boundary is for
y3 > 0. As ρ→∞ we find that the expansion for the scalars given in (C.6) then becomes

φi = `

y3
φi,(s)e

−ρ/L + `3

y3
3

{
φi,(v) −

L2

4`2φi,(s)

+
(
L2

`2
φi,(s)−4φ3

i,(s)+ 4
3φi,(s)

4∑
j=1

φ2
j,(s)

)[
ρ

L
+ log

(
y3
`

)]}
e−3ρ/L + · · · , i = 1, 2, 3 ,

αi = `2

y2
3

{
αi,(v) + αi,(s)

[
ρ

L
+ log

(
y3
`

)]}
e−2ρ/L + · · · , i = 1, 2, 3

βi = `2

y2
3

{
βi,(v) + βi,(s)

[
ρ

L
+ log

(
y3
`

)]}
e−2ρ/L + · · · , i = 1, 2

ϕ = `4

y4
3

{
ϕ(v) −

(
α1,(s)φ2,(s)φ3,(s) + α2,(s)φ1,(s)φ3,(s)

+ α3,(s)φ1,(s)φ2,(s)
)[ ρ
L

+ log
(y3
`

)]}
e−4ρ/L + · · · , (C.22)

and we note that we have set φ4,(s) = 0 as implied by the BPS relations (C.8).
To proceed, we now notice that this form of the solution is a special case of the ISO(1, 2)

invariant configurations discussed in appendix B, with Ω(x) = f(x) = 0, provided that we
replace the coordinates (r, x) in that appendix with (ρ, y3). As a consequence we can
immediately read off the sources and the expectation values for the various operators. The
non-zero scalar sources in flat spacetime are of the form

`φi,(s)
y3

,
`2αi,(s)
y2

3
, i = 1, . . . , 3

`2βi,(s)
y2

3
, i = 1, . . . , 2 , (C.23)

with φ4,(s) = ϕ(s) = 0. Recalling that the numerators in these expression are scale invariant
parameters, we see that these quantities have the correct field theory scaling dimensions
of 1, 2, 2, for sources of operators with conformal dimension ∆ = 3, 2, 2, respectively.

We can also use the results in sections B.2.1–B.2.3, to deduce the expectation values
of the operators for the BPS configurations and the results are recorded in the next sub-
sections. A general point we can notice is the presence of the novel terms of the form
∼ log(y3/`).
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C.3.1 N = 1∗ one-mass model: flat boundary

Transforming the results from section C.2.1 to flat space boundary we obtain

〈Oα3〉 = 1
4πGL

`2

y2
3

(
α3,(v) + α3,(s) log

(
y3
`e2δα

))
. (C.24)

The BPS relations between the remaining expectation values are given by

〈Oφ3〉 = 4
3
`

y3
〈Oβ1〉φ3,(s) − 2κL 1

y3
〈Oα3〉 −

L

4πG
`

y3
3
φ3,(s) ,

〈Oβ1〉 = 4κ`
L
〈Oα3〉φ3,(s) −

(1 + 4δα − 4δβ)
2πGL

`2

y2
3
φ2

3,(s) . (C.25)

C.3.2 N = 1∗ equal-mass model: flat boundary

Transforming the results from section C.2.2 to flat space boundary we obtain for the BPS
configurations

〈Oα1〉 = 〈Oα2〉 = 〈Oα3〉 = 1
4πGL

`2

y2
3

(
α1,(v) + α1,(s) log( y3

`e2δα )
)
,

〈Oφ4〉 = 1
2πGL

`3

y3
3

(
φ4,(v) −

9− 2δ4(5)
3 φ3

1,(s)

)
. (C.26)

The BPS relations between the remaining expectation values are given by

〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ3〉 = −2κL 1
y3
〈Oα1〉 −

L

4πG
`

y3
3
φ1,(s) ,

y3〈Oϕ〉 = −3κL
2 〈Oφ4〉 −

κ(3− 2δ4(5))
4πG

`3

y3
3
φ3

1,(s) . (C.27)

C.3.3 N = 2∗ model: flat boundary

Transforming the results from section C.2.3 to flat space boundary we obtain

〈Oα1〉 = 〈Oα2〉 = 1
4πGL

`2

y2
3

(
α1,(v) + α1,(s) log

(
y3
`e2δα

))
. (C.28)

The BPS relations between the remaining expectation values are given by

〈Oβ1〉 = −4κ`
L
〈Oα1〉φ1,(s) + (1 + 4δα − 4δβ)

2πGL
`2

y2
3
φ2

1,(s) ,

〈Oφ1〉 = 〈Oφ2〉 = −2
3
`

y3
〈Oβ1〉φ1,(s) − 2κL 1

y3
〈Oα1〉 −

L

4πG
`

y3
3
φ1,(s) . (C.29)

C.3.4 Results for the r → −∞ end, flat boundary

The above analysis concerning sources and expectation values was for the conformal bound-
ary end located at r → ∞ (AdS4 boundary metric) or y3 > 0 (flat boundary metric). In
section C.2.4 we discussed the asymptotic expansion of the solution, with AdS4 boundary,
for the conformal boundary end located at r → −∞. For this end we can then employ
the coordinate transformation to flat space, as given in (C.20) but switching r → −r and
y3 → −y3. This will then give the relevant quantities on the y3 < 0 part of the conformal
boundary, with flat boundary metric. Recalling the discussion in section C.2.4, we can
therefore obtain the flat boundary results for y3 < 0 from those for y3 > 0, by making the
replacements y3 → −y3 and κ→ −κ.
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