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Abstract: We study reflected entropy as a mixed state correlation measure in black hole
evaporation. As a measure for bipartite mixed states, reflected entropy can be computed
between black hole and radiation, radiation and radiation, and even black hole and black
hole. We compute reflected entropy curves in three different models: 3-side wormhole
model, End-of-the-World (EOW) brane model in three dimensions and two-dimensional
eternal black hole plus CFT model. For 3-side wormhole model, we find that reflected
entropy is dual to island cross section. The reflected entropy between radiation and black
hole increases at early time and then decreases to zero, similar to Page curve, but with a
later transition time. The reflected entropy between radiation and radiation first increases
and then saturates. For the EOW brane model, similar behaviors of reflected entropy
are found.

We propose a quantum extremal surface for reflected entropy, which we call quantum
extremal cross section. In the eternal black hole plus CFT model, we find a generalized
formula for reflected entropy with island cross section as its area term by considering the
right half as the canonical purification of the left. Interestingly, the reflected entropy curve
between the left black hole and the left radiation is nothing but the Page curve. We also
find that reflected entropy between the left black hole and the right black hole decreases and
goes to zero at late time. The reflected entropy between radiation and radiation increases
at early time and saturates at late time.
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1 Introduction

The black hole evaporation process is expected to be unitary, therefore the Von Neumann
entropy of the outgoing radiation should follow Page curve [1–3], in which the entropy first
increases and then decreases at so-called Page time. The change happens because, treated
as entanglement entropy between the radiation and the black hole microstates, the entropy
of the radiation can not exceed the remaining black hole entropy. In recent breakthrough
works, a Page curve was computed in asymptotically AdS black hole plus conformal field
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theory reservoir [4, 5]. In particular Page curve has been reproduced explicitly in Jackiw-
Teitelboim (JT) gravity in AdS2 without assuming unitarity [6]. The key step to reproduce
Page curve is to employ the island formula for the Von Neumann entropy of radiation,
which was inspired from the quantum extremal surface (QES) formula for holographic
entanglement entropy [7–10]. Further justifications [11, 12] and generalizations have been
explored [13–46].

On the other hand, a Page curve was also obtained in a simple wormhole model [44] as
well as a End-of-the-World (EOW) brane model [45] in three dimensions, where no quantum
fields are involved. This indicates that a Page curve could be seen in holographic models
of black hole evaporation even in the classical level. In particular, the applications of Ryu-
Takayanagi (RT) or Hubeny-Rangamani-Takayanagi (HRT) formula to (multi-boundary)
wormholes are enough to give a Page curve in these models.

While most of the above studies concern the entanglement entropy, which is a unique
quantity characterizing quantum entanglement between two subsystems A and B for a
pure state ψAB, in this paper we want to measure the correlation in mixed states during
black hole evaporation, for the following reasons: First, the global state of black hole plus
radiation is not always pure. For instance, they could be entangled with other disjoint ob-
jects. In this case, it is not clear whether Von Neumann entropy can measure faithfully the
information transferred between black hole and radiation during the evaporation process.
Second, it would be interesting to extract more information about the island by comput-
ing the correlations between subsystems of radiation. And those subsystems together are
generally mixed states. Third, it is worth to search for other independent information
theoretical quantities which can have similar island formula as Von Neumann entropy.

Recently a new quantity independent of entanglement entropy, called reflected entropy
has been introduced [50](also see [51–56] for further development). The reflected entropy
quantifies an amount of total correlation, including quantum entanglement, for bipartite
mixed states ρAB acting on HAB = HA ⊗ HB. On the other hand, the entanglement
entropy truly measures quantum entanglement only for pure states ψAB [48, 49]. Indeed,
it is not even a correlation measure if a given total state is mixed.

Reflected entropy SR was defined [50] based on canonical purification. For a given
density matrix ρAB, there is a simple and canonical purification for a given ρAB by doubling
the Hilbert space:

|√ρAB〉 ∈ (HA ⊗HA∗)⊗ (HB ⊗HB∗) ≡ HAA∗BB∗ . (1.1)

This can be obtained by flipping Bras to Kets for basis of a given density matrix ρAB. It
can be shown that

ρAB = TrHA∗B∗ |
√
ρAB〉〈

√
ρAB| . (1.2)

The reflected entropy is defined as

SR(A : B) := S(AA∗)√ρAB . (1.3)
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The reflected entropy turns out to be a good measure of correlations between A and B for
state ρAB [50]:

pure state : SR(A : B) = 2S(A) , (1.4)
factorized state : SR(A : B) = 0 , (1.5)

bounded from below : SR(A : B) ≥ I(A : B) , (1.6)
bounded from above : SR(A : B) ≤ 2min{S(A), S(B)} , (1.7)

for states saturating Araki-Lieb inequality : SR(A : B) = 2min{S(A), S(B)} . (1.8)

Let us now consider a general model of black hole evaporation, which could include
several-side black holes (such as eternal black hole) and more than one reservoirs of radia-
tion. Assuming the Hilbert space of the whole system is factorized, we want to measure the
reflected entropy between any two of the subsystems. This basically includes the reflected
entropy between black hole and radiation, the reflected entropy between black hole and
black hole and the one between radiation and radiation. In the rest of this paper, we will
use the abbreviation R-R for radiation and radiation, R-B for radiation and black hole and
B-B for black hole and black hole.

Below we summarize the main results of this paper.
We start from the analysis of a simple 3-side wormhole model, where we find that the

holographic dual of reflected entropies are actually island cross sections. We plot the curve
of reflected entropy as a function of time and find that: the B-R reflected entropy basically
follows the behavior of Page curve but with a later transition time (compared with Page
time), and the R-R reflected entropy increases at early time and then saturates. We then
move to the EOW brane model, similar behaviors of reflected entropy are found.

We revisit the holographic reflected entropy in AdS/CFT, aiming to find a similar
formula as quantum extremal surface (QES) formula, for the reflected entropy. We con-
jecture a quantum extremal cross section (QECS) formula for exact reflected entropy and
argue that it is a direct consequence of QES formula due to a Z2 symmetry of canoni-
cal purification.

Similar to the QES formula of Von Neumann entropy, the QECS formula of reflected
entropy is expected to work for more general gravitational systems. Having this in mind,
we move to the eternal black hole+CFT model. There we find a generalized formula for
reflected entropy between left radiation and left black hole, provided that the right side can
be treated as the canonical purification of the left. This formula can be further generalized
to the B-B reflected entropy and the R-R reflected entropy. We plot the numerical results by
employing these formulas and particularly find that the reflected entropy between the left
black hole and the right black hole decreases to zero during the evaporation process. The
behaviors of entropy curves as functions of time agree with the earlier wormhole models.

This paper is organized as follows. In section 2, we analyze 3-side wormhole model and
compute reflected entropy using the Ryu-Takayanagi formula for multi-boundary states
and gluing procedure. In particular we establish the computation of cross sections in
covering space. In section 3, we compute reflected entropies in the 3d EOW brane model by
extending the covering space method in previous section. We revisit holographic reflected
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(a) m1 +m2 < m3 (b) m1 +m2 > m3

Figure 1. The 3-side wormhole has three asymptotic boundaries R1, R2 and B. The entanglement
wedge of B is the blue shaded region in the figure. We have m1 + m2 < m3 at early time of the
evaporation and m1 +m2 > m3 at late time.

entropy with quantum corrections in section 4 and propose a quantum extremal surface for
reflected entropy. In section 5 we analyze 2d eternal black hole plus CFT model and find
generalized formula for reflected entropies between black hole and radiation, black hole
and black hole, and radiation and radiation. We conclude and discuss future questions
in section 6.

While this paper is in preparation we got to know an independent work by Venkatesa
Chandrasekaran, Masamichi Miyaji and Pratik Rath [57], which will appear together with
this paper.

2 Reflected entropy in simple wormhole model

We follow [44] to model the black hole evaporation using a multi-boundary wormhole
(figure 1). We can imagine splitting the Hawking radiation into n different parts. The
state of the total system containing the black hole and the radiation can be written as

|Ψ〉 =
∑
i1···in

ci1···in |i1〉R1
⊗ · · · |in〉Rn · · · |Ψi1···in〉B (2.1)

where |i〉 is the Hawking radiation and |Ψi1···in〉 is the black hole state. For convenience, let
us consider the simplest case in which the radiation is split into two parts. Holographically,
we can view the CFT states on the boundary R1 and R2 (figure 1) as two parts of the
Hawking radiation, which are entangled with the CFT states of the black hole on the
boundary B. The two parts of emitted radiation and the original black hole are connected
through a three-side wormhole. While [44] increases the number of legs of the radiation to
simulate the black hole evaporation, here we choose to keep the number of the legs fixed
but increase the size of the horizons corresponding to the radiation states.

For simplicity, we take the two horizonsM1 andM2 to have the same sizem1 = m2. M1
and M2 are actually RT surfaces of R1 and R2 respectively. Let the length of the horizon
M3 of the original black hole be L0 and m1 = m2 = 0 as the initial condition. Since the
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Figure 2. The purified geometry is a 4-side wormhole which is symmetric with respect to the
horizon M3. The brown geodesic L1 ∪L′

1 intersects M3 at two points s1 and s2. The minimal cross
section can be obtained by minimizing the length of L1 ∪ L′

1 or equivalently, L1, over s1 and s2.

ADM energy is conserved during the evaporation process, as m1 and m2 increases, m3 will
decrease. The energy-entropy relation of black hole excitation in AdS3 is

S = 2π

√
cE

3 , (2.2)

and therefore at any moment during evaporation, the horizon length of the black hole B
is determined by

m3 =
√
L2

0 − 2m2
1. (2.3)

As shown in figure 1, the entanglement wedge of radiation covers the shared interior after
the transition between different RT surfaces, therefore the shared interior is considered as
the island in this model.

2.1 Reflected entropy between R1 and R2

In order to compute the reflected entropy between R1 and R2, we need to trace out B.
Holographically, this means we have to remove the entanglement wedge of B, take two
copies of the remaining geometry and glue them together. The RT surface of B is the
smaller one of M1 ∪M2 and M3 (figure 1). At early time when the radiation horizon is
small, the RT surface of B is M1 ∪M2. As time goes by, M3 will dominate. Therefore,
when m1 +m2 < m3, the entanglement wedge of B is the blue shaded region in figure 1(a).
In this case R1 and R2 are disconnected after removing the entanglement wedge. Thus, the
reflected entropy between R1 and R2 is simply zero. Whenm1+m2 > m3, the entanglement
wedge of B is the shaded region in figure 1(b). After removing it, we glue two copies of
the remaining geometry through M3 (figure 2). The reflected entropy between R1 and R2
now corresponds to the minimal cross section which separates R1∪R′1 and R2∪R′2. As we
can see from figure 2, we have two options, namely the brown curve L1 ∪ L′1 or the union

– 5 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
5

Figure 3. We set 4GN = 1 and plot the half of the reflected entropy as a function of the horizon
length m1. The solid curves are half the reflected entropy between R1 and R2. The purple vertical
dashed line characterizes the Page transition when 2m1 = m3.

M1 ∪M ′1. To summarize, when m1 <
m3
2 , the reflected entropy between R1 and R2 is 0.

When m1 >
m3
2 , the reflected entropy is given by

SR(R1 : R2) = min
{ 2m1

4GN
,

2L1
4GN

}
. (2.4)

Our next step is to compute geodesics in (2.4) in a dynamical evaporation process. This
calculation, which is based on a quotient space construction of multiboundary wormholes,
is given in appendix A.

When we set L0 = 10 and 4GN = 1, the reflected entropy between R1 and R2 as a
function of m1 during the whole evaporation process is plotted in figure 3. The red curve
is the length of M1 and the black curve is the length of L1. The reflected entropy picks up
the smaller one of the two competing curves, i.e. the lower solid curve in figure 3. We can
see that the R-R reflected entropy jumps from zero to a positive value at m1 ≈ 4 when the
island appears (i.e. 2m1 > m3), and then it keeps increasing as the growth of the amount
of radiation. It goes through a phase transition from the black curve L1 to the red curve
m1 near m1 = 6.65. At the end of the evaporation, with m3 ≈ 0, the 3-side wormhole
becomes a cylinder which has only two asymptotic boundaries R1 and R2, so the reflected
entropy between them saturates at the final value, m1 ≈ 7.

2.2 Reflected entropy between R2 and B

Now we compute the reflected entropy between the radiation R2 and the black hole B.
We remove the entanglement wedge of R1 and glue the two copies of remaining geometry
through M1 (figure 4). We have three options of geodesics which separates R2 ∪ R′2 and
B ∪B′ in figure 4, namely M2 ∪M ′2, M3 ∪M ′3 or LI ∪ L′I . The reflected entropy between
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Figure 4. The purification is similar to figure 2. The only different point is that here we remove
the entanglement wedge of R1 and purify R2 and B. Note that the reflected entropy between R2
and B corresponds to twice the length of the minimal geodesic of M2, LI and M3.

Figure 5. This is a covering space depiction of the left half side of figure 4. Since we remove the
entanglement wedge of R1 in the original 3-side wormhole, the region surrounded by M1 and dashed
lines is thrown away in this fundamental region. The depiction of LI in figure 4 in this covering
space consists of two brown arcs with intersection points on M1. The left arc can be transformed
by γ1 (A.3) to the outside of the fundamental region and smoothly connected to the right end of
the right arc. The locations of the two intersection points on M1 uniquely determine this type of
geodesic arcs.

R2 and B is given by

SR(R2 : B) = 1
4GN

min
{

2m2, 2m3, 2LI
}
. (2.5)

Similar to the calculation in appendix A, LI can be computed by the brown curve in figure 5,
which has two endpoints on M1. We give the explicit formula of LI in appendix C. Under
the same parameter setting in computing the reflected entropy between R1 and R2, we plot
the reflected entropy between R2 and B as a function of m1 in figure 6.

The R-B reflected entropy picks up the lowest curve among the three at any moment
of time in the evaporation process. Note that the reflected entropy goes through a phase
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Figure 6. The reflected entropy between R2 and B is the minimum of these curves, i.e. the solid
curve here. We can see that the transition point of reflected entropy between R2 and B (marked
by the blue dot) is later than the Page time.

transition at the intersection point of the black curve and the red curve in figure 6. It
increases first and then goes down to zero at the end of the evaporation. The purple
dashed vertical line characterizes the Page transition where 2m1 = m3. Note that the
transition time for reflected entropy is later than the Page time.

3 Reflected entropy in 3d EOW brane model

3.1 Review of the model

In [45], a different model including an End-of-the-World (EOW) brane for black hole evap-
oration has been proposed, inspired from two-dimensional JT gravity+EOW model [12].
The EOW brane truncates the interior of an eternal black hole in AdS3 and describes the
interior partners of the Hawking radiation. The authors in [45] introduce a brane CFT
and then replace it with its holographic dual, which fills in the EOW brane and gives a
complete 3D geometry. Consider a situation where the brane CFT states are maximally
entangled with the radiation quanta outside the black hole. In this case, the brane CFT
will be thermal and its holographic dual will contain a black hole (figure 7). So there will
be two horizons in the whole geometry. One is the original black hole horizon and the other
is in the so called Inception Geometry, i.e. the holographic dual of the brane CFT.

We follow (2.1) to split the Hawking radiation into n parts and make them entangled
with the brane CFT states. To do so, one can purify the black hole in the inception
geometry with an auxiliary system which is naturally identified with the Hawking radiation
in (2.1). The purified inception geometry can be viewed as a multi-boundary wormhole
connecting n asymptotic boundaries. The inception geometry and the real geometry are
glued through the EOW brane (figure 8). In order to keep the gluing surface real and
non-singular, m3 ≤ m0 all the time. The entanglement between the union of radiations

– 8 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
5

Figure 7. The left side of the eternal BTZ black hole is truncated and replaced by an EOW brane
(the red dashed circle) with an internal structure which matches that of a 2d CFT representing the
interior partner of Hawking radiation. When the CFT is maximally entangled with the radiation,
it is in a thermal state and its holographic dual is a black hole (the black region within the disk).
Then we replace the EOW brane with this black hole and glue it to the original geometry at the
location of the brane. Note that the entropy of the brane is proportional to the area of the black
hole horizon.

Figure 8. We purify the black hole in the inception geometry with a two-boundary wormhole. The
two asymptotic boundaries R1 and R2 are two parts of Hawking radiation.

and the black hole increases as the black hole evaporates, so one can tune m3 from zero to
m0 to model this process. Note that the mass of the original black hole is fixed, which is
different from the energy conservation condition in the simple wormhole model in section 2.
It means M0 is fixed during evaporation. We will focus on the case of n = 2 and compute
the reflected entropy (figure 8). Following [45], we set m1 = m2 = m3, and only one free
evaporation parameter is left.

Note that the physical parameters of the original and the brane CFT can be different,
so their holographic duals can have different AdS radius l and Newton Constants GN .
We denote quantities of the inception geometry by a prime. Following [45] the central
charges of the two CFTs c and c′ can be fixed, i.e. 3l/2GN and 3l′/2G′N are fixed during
the evaporation process. We take the following gluing condition [45]

rt =
√
l2G2

Nr
′2
h − l′2G′2Nr2

h

l2G2
N − l′2G′2N

, (3.1)

where rt is the position of the EOW brane in the original geometry and rh and r′h are the
radius of the real and inceptional horizon respectively. We also set rt = rh + α(rh − r′h)
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Figure 9. A covering space depiction of the inception geometry (the blue shaded region). The
red dashed line here is the EOW brane which must match the red dashed circle in figure 8. This
covering space can be easily obtained by introducing an EOW brane that truncates the left side of
figure 25.

with α > 0 following [45]. After these settings, now all the quantities scale as functions of
the inception horizon radius r′h or equivalently, m3.1

Using the method in appendix A, one can construct the inception geometry to the
left of the EOW brane in figure 8 in a covering space (figure 9). This covering space is
similar to that of the 3-side wormhole in figure 25. However, we introduce a red dashed
line which truncates the geometry. This line is the EOW brane in figure 8. We now have
m1 = m2 = m3, so we can equate the eigenvalues of three group generators γ1, γ2 and
γ1 ◦ γ−1

2 and get the following constraints

Xa = µXb, Xb =
√
DaDb(1 + µ2)
µ(µ− 1) . (3.2)

Then we remove the redundancy of the remaining circle data by expressing them in terms
of µ, the only free parameter [45],

D1 = 1
µ
, (3.3)

D2 = µ, (3.4)

Da = µ− 1
µ

, (3.5)

Db = µ− 1
4µ . (3.6)

Again, we emphasize that the fixing of the remaining circle data is not unique, and a
good fixing is to maintain D1 < Xb −Db < Xb +Db < Xa −Da < Xa +Da < D2 for any
µ > 1, similar to the case in 3-side wormhole. Under this setting of parameters, all the
three horizons have the same length m1 = m2 = m3 = 2 log µ and the evaporation process
can be described by increasing µ from µ = 1 until m3 = m0.

1This setting of parameters also ensures the non-singular brane trajectories in the evaporation process,
for further detail discussions we refer to [45].
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Figure 10. The purification of R1 and R2 when removing the right hand side of M3. The cross
section L1 ∪L′

1 is the same type as in figure 2. We use a blue shadow to emphasize that this part is
in the inception geometry with a different Newton’s constant and a different AdS radius (compared
with the original geometry).

Figure 11. The purification geometry glued through M0. The geodesic L2 or L′
2 consists of two

parts, one in the inception geometry and the other in the original geometry.

3.2 Reflected entropy between R1 and R2

We first compute the reflected entropy between the two parts of radiation R1 and R2.
Following the method in the previous section, we have to remove the entanglement wedge
of the asymptotic boundary B, replicate the remaining geometry and glue them together.
Note that the RT surface homologous to B is either M3 or M0 (figure 8), so we have two
different phases. When m3/4G′N < m0/4GN , M3 is chosen as the RT surface. The purified
geometry in this case is shown in figure 10. The competing cross sections which split R1,
R′1 and R2, R′2 are the curves L1 ∪ L′1, M1 ∪M ′1 and M2 ∪M ′2. This phase is the same as
that in section 2.1 so we can employ the same formula to compute L1.

When m3/4G′N > m0/4GN , we have to remove the part to the right of M0 in figure 8
and glue together two copies of the remaining part through M0. The purified geometry in
this case is shown in figure 11. It is worth noting that the RT surface of M1 goes through
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Figure 12. The minimum of these curves is the reflected entropy between R1 and R2. We can see
that the reflected entropy goes through a jump at the Page transition point.

a phase transition at late time [45], when the purple curve LM1 which crosses the EOW
brane replaces M1 as the minimal RT surface. The same is true for M2. In this phase, the
reflected entropy between R1 and R2 corresponds to the minimal entropy associated with
geodesics of M1 ∪M ′1, LM1 ∪L′M1

and L2 ∪L′2. The explicit formula of the entropy of LM1

can be found in [45] and we give that of L2 in appendix B.
We take rh = 10, l = 1, GN = 1, and c′ = 5c. The R-R reflected entropy as a function

of r′h is plotted in figure 12. As we can see from the figure, the reflected entropy is non-
vanishing as soon as the evaporation begins, which is different from the 3-side wormhole
model. It picks up the lowest curve at any moment of time. Notice that it goes through a
jump right after the Page time (m3/4G′N = m0/4GN , estimated in [45]) and then turns to
the red curve.

3.3 Reflected entropy between R2 and B

Now we consider the reflected entropy between one part of the radiation R2 and the black
hole B. We need to remove the entanglement wedge of R1 and replicate the remaining
geometry to get the purified geometry. As mentioned earlier, in early time of the evapora-
tion, the RT surface homologous to R1 is M1 (figure 13). But at late time after the Page
time, the purple curve LM1 in figure 13 will dominate. These two phases correspond to
two different glued geometry. We will discuss the reflected entropy between R2 and B in
these two phases separately.

When M1 is the dominant RT surface, we remove the entanglement wedge of R1 and
glue the two copies of the remaining geometry through M1 (figure 14). The competing
minimal cross sections which split R2 ∪R′2 and B ∪B′ are M2 ∪M ′2, L1 ∪L′1, M3 ∪M ′3 and
M0 ∪M ′0. The horizon length m1 is equal to m3 and the length of L1 ∪ L′1 can be worked
out using the same formula in the previous section.

– 12 –
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Figure 13. In late time of the evaporation process, the purple curve LM1 which crosses the EOW
brane becomes the minimal RT surface homologous to R1. After removing the entanglement wedge
of R1, the brown geodesic Lp which has two intersection points on the purple curve is one possible
cross section that separates R2 and B.

Figure 14. The purification geometry after tracing out R1.

When LM1 becomes the dominant RT surface of R1, things get a bit more complicated.
We need to cut the wormhole along LM1 in figure 13, throw away the upper part which is
connected to R1, and imagine gluing two copies of the remaining lower part through LM1 .
It is hard to depict the glued geometry, but we only need to focus on one half of it, say,
the lower part in figure 13. We need to find the minimal cross section that separate R2
and B in that part and the reflected entropy is just twice of it. There are three competing
geodesics, Lp, M2, and M0 (figure 3.7). The formula of length Lp is given in appendix D.

We plot the B-B reflected entropy in figure 15(b). The reflected entropy chooses the
lowest curve. The intersection of the blue curve and the black curve is precisely the Page
transition point at which m0/4GN = m3/4G′N (we have m1 = m2 = m3). One can
see that the saturation of the reflected entropy happens later than the Page time. It is
natural because the reflected entropy is bounded from above by twice of the entanglement
entropy of the whole radiation, which is the black curve in figure 15(b), therefore will
saturate later.
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(a) (b)

Figure 15. (a) The entropy associated to M1 and LM1 . The RT surface of M1 is one of the two
curves that has smaller entropy. Note that the RT surface becomes LM1 when r′

h > 7.3. (b)We
take rh = 10, l = 1, GN = 1.5 and c′ = 5c. The reflected entropy is the solid curve which saturates
when r′

h ≈ 6.

Figure 16. Double replica of the entanglement wedge as the bulk dual of canonical purification.

4 Quantum extremal cross section

Dutta and Faulkner proposed that the holographic dual of CFT reflected entropy SR(A : B)
is twice the entanglement wedge cross section in the classical gravity limit of AdS/CFT [50].
The authors also conjectured the quantum corrected reflected entropy formula

SR(A : B) = 2〈A[∂a ∩ ∂b]〉ρ̃ab
4GN

+ Sbulk
R (a : b) +O(GN ) (4.1)

where the entanglement wedge of AB is divided into two regions a,b by the cross section
∂a ∩ ∂b, and A is the area operator.2 Sbulk

R (a : b) is the reflected entropy for the density
matrix ρ̃ab of the bulk field theory. m(AA∗) is the minimal surface for AA∗ in the double
replica of the bulk entanglement wedge of ρAB, shown in figure 16.

2Here we focus on the static case and employ quantum extremal surface (instead of RT surface of AB)
to define the entanglement wedge of AB.
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In fact, the quantum corrected reflected entropy formula (4.1) can be derived from the
Faulkner, Lewkowycz and Maldacena (FLM) formula of entanglement entropy [9]. Given
a bipartite density matrix ρAB of a holographic CFT state, a canonical purification of ρAB
demands the double replica of the bulk entanglement wedge of ρAB shown in figure 16. Now
there are two boundaries AA∗ and BB∗ which support a pure state |√ρAB〉 and the entire
geometry looks like a two-side wormhole. Write the FLM formula for the entanglement
entropy of one side AA∗ (SAA∗ = SBB∗), one obtains3

S(AA∗) = 1
4GN

〈A[m(AA∗)]〉+ Sbulk(aa∗) +O(GN ) , (4.2)

where aa∗ is the entanglement wedge for AA∗ and Sbulk(aa∗) is the von Neumann entropy
for the bulk density matrix. The Z2 symmetry ensures

〈A[m(AA∗)]〉 = 2〈A[∂a ∩ ∂b]〉

and the double replica of the bulk tells that

Sbulk
R (a : b) = Sbulk(aa∗) . (4.3)

Therefore FLM of the double replica gives the quantum corrected reflected entropy formula.
Notice that FLM formula only computes the first two orders as an approximation.

Engelhardt and Wall proposed that holographic entanglement entropy can be calculated
exactly [10] in bulk Plank constant using the so called “quantum extremal surface (QES)”
which extremizes the generalized entropy (which coincides with FLM if evaluated on the
classical minimal surface).4 Given that reflected entropy can be realized as the entan-
glement entropy on canonically purified state in the level of exact density matrix, it is
tempting to find a “quantum extremal cross section (QECS)” which can provide exact re-
sult for reflected entropy. Again we first write down the QES formula for the entanglement
entropy of S(AA∗)

S(AA∗) = extQ
{Area(Q)

4GN
+ Sbulk(aa∗)

}
. (4.4)

Reduced to the single replica, this becomes the extremization formula for reflected entropy

SR(A : B) = extQ′
{2Area(Q′ = ∂a ∩ ∂b)

4GN
+ Sbulk

R (a : b)
}
, (4.5)

where the quantum extremal cross section is denoted by Q′. This is our main proposal in
this section.

Recently it has been proposed that QES formula can compute the fine-grained entropy
not only for subregions of holographic CFT states but also for general gravitational systems
including black holes and quantum systems coupled with gravity. See [61] for a recent
discussion on the fine-grained gravitational entropy. Specifically, the fine-grained entropy
of AdS black hole surrounded by matter is given by the generalized entropy of QES,

SB = extQ
{Area(Q)

4GN
+ S(ρ̃B)

}
, (4.6)

3Through this paper we use S to denote von Neumann entropy and SR to denote reflected entropy.
4See [60] for further discussions.
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whereQ is the quantum extremal surface, and B is the region betweenQ and AdS boundary.
For a quantum system coupled to gravity, such as the CFT bath in the recent 2d JT
gravity+CFT model of black hole evaporation, the von Neumann entropy of bath CFT is
given by

S(ρR) = extI
{Area(∂I = Q)

4GN
+ S(ρ̃R∪I)

}
. (4.7)

Importantly, an island contribution has to be included, which can be derived by the grav-
itational path integral calculation of the von Neumann entropy [11, 62]. If there is more
than one extremum, then Q is the surface with minimal entropy. Notice that trivial island
is always an extremal solution for (4.7), where

S(ρR) = S(ρ̃R) , (4.8)

therefore the island solution is preferred only if the entropy with island is less than the one
without island.

The formula (4.6) can be considered as the black hole version of the original QES
and (4.7) can be considered as the radiation version of QES. Since reflected entropy can
always be realized as the entanglement entropy in a canonically purified state, it is tempting
to find similar generalizations of QECS for reflected entropy. In the following section we will
derive some generalizations of QECS by looking into the two-dimensional eternal black hole
+ 2d CFT model of black hole evaporation. The reason is that this model has a left/right
Z2 symmetry and the right half can be considered as the canonical purification of the left.
The eternal black hole + 2d CFT model provides a natural framework to establish the
generalizations of QECS.

5 Reflected entropy in 2d eternal black hole + CFT model

In this section we consider a model where a two-side eternal black hole with Jackiw-
Teitelboim gravity is coupled to a bath CFT. The model was analyzed in great detail
in [11] for the purpose of resolving the black hole information paradox.

5.1 Review of the model

In this model, an AdS2 region with JT gravity and Minkowski spacetime are glued together.
In addition, we have a large central charge CFT living in both the AdS2 and the flat
spacetime and one can impose a transparent boundary condition. The action is given by

Itotal = −S0
4π

[ ∫
Σ
R+

∫
∂Σ

2K
]
−
∫

Σ
(R+ 2) φ4π −

φb
4π

∫
∂Σ

2K + SCFT , (5.1)

where the spacetime is dynamical in Σ but rigid in the exterior region. We will set 4GN = 1
and the area term of the entropies will be given by S0 + φ.

Now we focus on the eternal black hole solution with the dilaton (vacuum solution in
the bulk). As shown in figure 17 in Lorentzian signature, the eternal black hole lives in
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Figure 17. Radiation and black hole on one side and the reflection on the other side. The (σ, t)
coordinates are P : (b,−t+ πi), Q′ : (−a,−t+ πi).

the gravitational region (shaded) while the non-gravitational region (non-shaded) plays the
role of radiation reservoir. Their metrics are

ds2
gravity = 4π2

β2
dydȳ

sinh2 π(y+ȳ)
β

, ds2
non-gravity = dydȳ

ε2
, (5.2)

where the complex coordinates in Euclidean signature are y = σ+iτ and ȳ = σ−iτ and the
inverse temperature is denoted by β, i.e., τ ∼ τ + β, therefore the temperature of the bath
is the same as that of the black hole.5 The boundary of the gravitational region is located
at σ = −ε. Lorentzian time is related by τ = −it. Upon the transformation w = e

2πy
β , the

metrics become

ds2
gravity = 4dwdw̄

(1− ww̄)2 , ds2
non-gravity = β2dwdw̄

4π2ε2ww̄
, (5.3)

from which conformal factors in a general form ds2 = Ω−2dwdw̄ can be read directly,

Ωgravity = 1− ww̄
2 , Ωnon-gravity = 2πε

β

√
ww̄ . (5.4)

The dilaton solution only defined in the gravitational region is given by

φ = −2π
β

φr

tanh 2πσ
β

, (5.5)

with φ = φr/ε at the boundary. A time slice can be considered as a pure quantum state,
made up of black hole B, radiation R and island I. We can compute the fine grained
entropies by (4.6) and (4.7). In those formulas, the area term at point (σ, t) is the value of
the dilaton φ plus the genus-counting parameter S0 of JT gravity.

5Note that all of the models with finite-temperature baths may also involve a black hole that lives
forever [47].
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5.2 A formula of reflected entropy

As shown in figure 17, the left quantum system is divided into two, RL and BL. The von
Neumann entropy of BL and RL are given by the QES formula (4.6) and (4.7)

S(BL) = min extQ
{
A(Q)
4GN

+ S(ρ̃BL)
}
, (5.6)

S(RL) = min extQ
{
A(Q = ∂IL)

4GN
+ S(ρ̃RL∪IL)

}
. (5.7)

The reflected entropy of RL and BL can be measured as the entanglement entropy between
R = RL ∪RR and B = BL ∪BR by treating the right part as the canonical purification of
the left part.6 Therefore

SR(RL : BL) = S(R) = min extI
{
A(∂I)
4GN

+ S(ρ̃R∪I)
}
, (5.8)

which is the formula reproducing the Page curve of the total radiation, respecting the uni-
tarity, during black hole evaporation. Notice that (5.8) preserves a left/right Z2 symmetry.
Reduced to the left side, the formula becomes

SR(RL : BL) = min extQ′
{2A(Q′ = ∂ĨL ∩ ∂B̃L)

4GN
+ SR(ρ̃RL∪ĨL : ρ̃B̃L)

}
, (5.9)

where Q′ is the cross section. Notice that ĨL ∪ B̃L is the whole left bulk,7 but in general
ĨL and B̃L are not IL and BL in (5.6) (5.7). Eq. (5.9) is our main result in this section. It
can be considered as a general formula to compute the reflected entropy between (part of)
radiation and black hole. Notice that generally some part of radiation together with the
black hole is not a pure state.

(5.9) can also be considered as the generalized quantum extremal cross section formula.
The interesting thing is that, in the generalized QECS, the cross section is associated to
the island. When RL = 0 or BL = 0, it vanishes because both the area term and the
second term vanish. Now we give another test of this formula by computing the reflected
entropy for a pure state, SR(RL ∪RR : BL ∪BR). Following the formula of (5.9)

SR(R : B) = min extQ′
{2A(Q′ = ∂Ĩ ∩ ∂B̃)

4GN
+ SR(ρ̃R∪Ĩ : ρ̃B̃)

}
. (5.10)

Since the state on the whole slice is pure we have SR(ρ̃R∪Ĩ : ρ̃B̃) = 2S(ρ̃R∪Ĩ). Also
∂Ĩ ∩ ∂B̃ = ∂Ĩ because the two boundaries are identical. Therefore we get twice of the
island formula of radiation in the right hand side, which is consistent with the information
theoretical relation SR(R : B) = 2S(R) for pure state of RB.

In the rest of this section, we illustrate several examples of computing reflected entropy.
6It is noted in [50] that the two-side eternal black hole can be treated as a canonical purification of the

single side CFT state.
7It is verified by QES calculation in appendix E that the whole left quantum system corresponds to the

whole left bulk precisely.
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5.3 Radiation and black hole

We follow (5.9) to compute the reflected entropy of the left radiation and the left black
hole. From now on we set the inverse temperature β = 2π.

As shown in figure 17, RL joins with BL at the point P : (b,−t + πi). When ĨL is
finite, B̃L joins with ĨL at the point Q′ : (−a,−t+πi). So the cross section term in (5.9) is

2
(
S0 + φr

tanh a

)
. (5.11)

The second term in (5.9) is just the von Neumann entropy of B̃L ∪ B̃R, whose formula is
given in free fermion theory by [11]

S(ρ̃B̃L∪B̃R) = c

3 ln 2 cosh2 t(cosh(a+ b)− 1)
sinh a cosh(a+b−2t

2 ) cosh(a+b+2t
2 )

− c

3 ln εUV . (5.12)

Extremizing two terms together gives the QES equation for a, namely

c

3

( sinh(a+b)
cosh(a+b)−1−cotha− 1

2 tanh a+b−2t
2 − 1

2 tanh a+b+2t
2

)
= 2 φr

sinh2 a
. (5.13)

When ĨL = ∅, we will have Q′ = B̃L∩ ĨL = ∅, which means that the cross section term
vanishes. Therefore,

SR(RL : BL) = S(ρ̃B̃L∪B̃R) = c

3 ln(2 cosh t)− c

3 ln εUV . (5.14)

The final result of SR(RL : BL) is given by the minimum of the above two.
In figure 18 we plot SR(RL : BL) with the upper bound 2S(BL) and the lower bound

I(RL : BL) which are independent of time (see appendix E for the calculation of the
bounds). Notice that SR(RL : BL) is just the Page curve shown in [11], which increases at
early time and saturates at late time.

5.4 Black hole and black hole

It is easy to generalize (5.9) to the reflected entropy between the left black hole and the
right black hole

SR(BL : BR) = min extQ′
{2A(Q′ = ∂B̃L ∩ ∂B̃R)

4GN
+ SR(ρ̃B̃L : ρ̃B̃R)

}
. (5.15)

Notice that B̃L ∪ B̃R is the bulk region of two side black holes, but in general they are not
BL and BR.

At early time, the radiation region R has no island. Therefore B̃L intersects with B̃R
at the middle point w0 = 0. We can compute SR(ρ̃B̃L : ρ̃B̃R) by three-point correlation
functions of twist operators σi,

SR
(
ρ̃B̃L : ρ̃B̃R

)
= lim

nnn→1

1
1−nnn ln

∏
i Ω2hi

i 〈σgA
(
−eb−t

)
σg−1

B

(
eb+t

)
σg−1

A gB
(0)〉CFT⊗mnnn(∏

i Ω2hi(nnn=1)
i 〈σgA (−eb−t)σg−1

B
(eb+t)σg−1

A gB
(0)〉CFT⊗m

)nnn ,
(5.16)
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Figure 18. Reflected entropy SR(RL : BL) as a function of time t. We pick b = 0.01, φr =
100, S0 = c = 20000 and εUV = 0.01. It is calculated that the upper bound 2S(BL) = 57146.50 and
the lower bound I(RL : BL) = 21479.99.

where hi is the conformal dimension of σi and Ωi is the associated conformal factor. The
twist operator approach to compute reflected entropy can be found in [50]. The conformal
dimensions are given by

hgA = hg−1
B

= cnnn

24

(
m− 1

m

)
, hg−1

A gB
= c

12

(
nnn− 1

nnn

)
, (5.17)

and we employ eq. (C.9) in [50]

〈σgA(−eb−t)σg−1
B

(eb+t)σg−1
A gB

(0)〉CFT⊗mnnn = (2m|eb+t||eb−t|)−4hnnn |eb−t + eb+t|−4nnnhm+4hnnn ,

(5.18)
where hnnn = c

24(nnn − 1
nnn), hm = c

24(m − 1
m). By inserting (5.17) and (5.18) into (5.16), plus

the area term we get the total reflected entropy

SR(BL : BR) = 2S0 + 2φr + c

3(b− ln cosh t+ ln 2) . (5.19)

At late time, the radiation R has an island. The black hole B is then divided into
two disjoint intervals B̃L and B̃R. As shown in figure 19, the cross section term vanishes.
Therefore

SR(BL : BR) = SR(ρ̃B̃L : ρ̃B̃R) . (5.20)

Since the cross ratio η ≡ (eb−e−a)2

(e−a+t+eb−t)(eb+t+e−a−t) goes to 0 when t is large, we can use the
approximate formula of reflected entropy in free fermion theory [56]

SR(ρ̃B̃L : ρ̃B̃R) ∼ c(−0.15η ln η + 0.67η) . (5.21)
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Figure 19. B̃L and B̃R are two disjoint intervals in the presence of an island.

Figure 20. SR(BL : BR) with the upper bound 2S(BL) and the lower bound I(RL : BL), with
respect to t. We pick b = 1, φr = 100, S0 = c = 1000 and εUV = 0.01. Notice that the numerical
data shows that at late time SR(BL : BR) is very closed (but still greater) to I(BL : BL).

Notice that in this case the conformal factors Ωi are cancelled upon normalization as hgA
and hg−1

B
in (5.16) because for these operators we have hi = nnnhi(nnn = 1) (see (5.17)).

The upper bound 2S(BL) = 2S(BR) has been calculated in (E.1). And S(BL ∪ BR)
is equal to SR(RL : BL) as calculated in section 5.3, since they share the same formula
according to the definition of reflected entropy. Therefore, the lower bound I(BL : BR) =
2S(BL)− S(BL ∪BR) is also known.

We plot SR(BL : BR) as well as its bounds in figure 20. It shows that the correlation
between the left black hole and the right black hole decreases and goes to zero at late time.

5.5 Radiation and radiation

It is easy to generalize (5.9) to the R-R reflected entropy,

SR(R1 : R2) = min extQ′
{2A(Q′ = ∂Ĩ1 ∩ ∂Ĩ2)

4GN
+ SR(ρ̃R1∪Ĩ1

: ρ̃R2∪Ĩ2
)
}
. (5.22)
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Figure 21. Two subsystems R1 and R2 in the radiation. The island I of R = R1 ∪ R2 is divided
into two parts Ĩ1 and Ĩ2.

Figure 22. Two subsystems R1 and R2 in the radiation. The coordinates (from left to right)
are P ′

1 : (b2,−t + πi), P ′
2 : (b1,−t + πi), P ′

3 : (−a1,−t + πi), P ′
4 : (−a2,−t + πi), P ′

5 : (−a2, t), P ′
6 :

(−a1, t), P ′
7 : (b1, t) and P ′

8 : (b2, t). Here the island of R2 is made up of two disjoint intervals.

Notice that Ĩ1 ∪ Ĩ2 (see figure 21) is the whole island of R1 ∪ R2 but in general they are
not I1 and I2.

Now we consider two radiation subsystems as shown in figure 22. Due to the technical
difficulty to compute the second term in (5.22), we instead only give the bounds of SR(R1 :
R2). The calculations of S(R1 ∪R2) and S(R1) are similar to that of SR(RL : BL) shown
in section 5.3. As for the entropy S(R2), we employ the formula for multi-interval cases in
free fermion theory [63]

Sno island(R2) = c

3 ln
8 sinh2( b1−b2

2 ) cosh2 t

cosh(b1 − b2) + cosh(2t) −
2c
3 ln εUV , (5.23)

Sisland(R2) = 4S0 + 2 φr
tanh a1

+ 2 φr
tanh a2

(5.24)

+ c

6 ln
∏
i∈{1,3,5,7},j∈{2,4,6,8} |w′i − w′j |2∏

i,j∈{1,3,5,7},i<j |w′i − w′j |2
∏
i,j∈{2,4,6,8},i<j |w′i − w′j |2

∏
i Ω′i

,

where w′i denotes the coordinate of the point P ′i and Ω′i denotes its conformal factors. Note
that (5.24) should be extremized with respect to P ′3, P ′4, P ′5, P ′6, which gives two equations
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Figure 23. The upper bound 2 min{S(R1), S(R2)} and the lower bound I(R1 : R2) of reflected
entropy between R1 and R2. We pick b1 = 0.01, b2 = 5, φr = 10, S0 = c = 2000 and εUV = 0.001.
Typical time scales are denoted in the figure: tR1 , tR denote the Page time for R1 and R1 ∪ R2
while R2 does not have an island for these parameters.

for a1 and a2. Finally,

S(R2) = min{Sisland(R2), Sno island(R2)} . (5.25)

We plot the bounds of SR(R1 : R2) in figure 23. The shaded region in figure 23 implies
that reflected entropy between radiation and radiation increases at early time and saturates
at late time.

6 Conclusion and discussion

In this paper, we computed a correlation measure called reflected entropy for an evaporating
black hole. This allows us to extract more information of the island (namely minimal
cross sections) by computing correlations in the radiation. Our results provide another
information theoretical quantity which can have island formula in gravitational system. In
particular, we have examined the reflected entropy curves in three different models: 3-side
wormhole model, EOW brane model and JT gravity+CFT model.

For 3-side wormhole model, we calculated reflected entropy holographically with the
wedge cross section and found that reflected entropy is dual to island cross section, Re-
flected entropy ∼ Island cross section. This provides a holographic dual of reflected entropy
for quantum states living on multi-boundaries. On the other side, it implies that reflected
entropy is associated to island cross section if an island can potentially appear in a grav-
itational system. By plotting the time dependence of reflected entropy, we found that
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correlation between (part of) radiation and black hole increases at early time and then de-
creases to zero, similar to the Page curve for entanglement entropy. It is actually bounded
by the Page curve and encounters a transition after Page time. We also found that R-R
reflected entropy jumps from zero to a finite value at Page time and increases until the
very late time.

For the EOW brane model, we found similar behaviors of reflected entropy curves
as in 3-side wormhole model. Particularly, R-R reflected entropy increases at early time,
jumps up at Page time and saturates at late time. R-B reflected entropy also encounters
a transition after Page time.

We proposed a quantum extremal cross section (QECS) formula for the exact reflected
entropy in AdS/CFT, as an analog of QES formula. To compute reflected entropy in more
general gravitational systems, we employ the island formula of Von Neumann entropy in
eternal black hole plus CFT model and obtain a generalized formula for reflected entropy
with island cross section as its area term. Interestingly, the reflected entropy curve between
the left-side black hole and the left-side radiation is nothing but Page curve. We also found
that the reflected entropy between the left-side black hole and the right-side black hole
decreases during evaporation until vanishing. And similar to the EOW-brane case, the
R-R reflected entropy increases at early time and saturates at late time, though we drew
this result from the bounds of reflected entropy instead of calculating it explicitly.

Several future questions are in order: First, a pure CFT justification of our results in
3-side wormhole model, which will confirm our holographic computation and also help to
reconstruct island cross section from CFT. Second, generalize our results to multipartite
case using similar ideas in [49, 52]. This will involve a generalized correlation measure for
the multi-boundary wormhole states and also a multipartite generalization of the QECS
formula and its island version. Third, extent our results to other asymptotic flat models
and higher-dimensions where we expect to find similar reflected entropy curves for an
evaporating black hole. We hope to report the progress in future publications.
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A The quotient space construction of wormholes

First we will give a brief review of the construction of multi-boundary wormholes. For
a more detailed discussion on this topic, we refer to [58, 59]. Multi-boundary wormholes
can be viewed as a geometry where boundary CFTs are connected by a wormhole. All
the boundaries have independent Hilbert spaces. We can construct the multi-boundary
wormhole geometries by quotienting the hyperbolic upper half space H2 by an isometry
subgroup Γ ⊂ PSL(2,R). The action of Γ identifies a pair of geodesics on H2 and the quo-
tient space H2/Γ is just the multi-boundary wormhole geometry, which can be interpreted
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Figure 24. The covering space construction of a 2-side wormhole. The geodesics g1 and g2 are
identified. The blue dashed circleM is the causal horizon and R1 and R2 are two asymptotic bound-
aries.

as a time-reflection-symmetric slice of a 2+1d geometry with the metric

ds2 = −dt2 + l2 cos2 t

l
dΣ, (A.1)

where dΣ is the metric inherited from H2. As an example, we can create a two-side
wormhole by identifying two geodesics g1 and g2 in figure 24

g1(λ) = D1e
iλ, g2(λ) = D2e

iλ, (A.2)

where λ ∈ [0, π] is the curve parameter. The isometry group is made up of one single
element γ1, which can be written in SL(2,R) form as

γ1 =

√D2
D1 0

0
√

D1
D2

 . (A.3)

This transformation can also be written in a simple form as γ1(z) = D2
D1
z, where z is

complex coordinate. It sends points on the smaller semicircle g1 to the larger semicircle g2.
Note that the blue dashed vertical line (geodesic) is invariant under this transformation. It
is taken as the defining feature of the horizons in multi-boundary wormhole, i.e. they are
geodesics invariant under a combination of the generators in the isometry group SL(2,R).
The geodesics in covering space are either vertical lines or semicircles with centers on
the horizontal axis. The region surrounded by g1 and g2 is one fundamental region of the
quotient space. Intuitively, it can be viewed as an unfolded diagram of the 2-side wormhole
in the right of figure 24.

One can introduce more legs in the wormhole by removing more half-disks in the
covering space and identifying the semicircles in an orientation reversing way. For instance,
we remove four semicircles in the covering space (figure 25) to construct the 4-side wormhole
in figure 2. The causal horizons corresponding to different boundaries are blue dashed
curves. We identify the semicircle gb with another semicircle ga in a reverse orientation,
which can be written as

ga(λ) = Xa +Dae
iλ, (A.4)

gb(λ) = Xb −Dbe
−iλ. (A.5)
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Figure 25. A fundamental region of the quotient space of the 4-side wormhole in figure 2. It is
symmetric with respect to the horizon M3. The geodesics ga and gb are identified in an orientation-
reversed way.

The generator which identifies ga(λ) ∼ gb(λ) is

γ2 =

√Da
Xa√
Da

0 1√
Da

( 0 −1
1 0

)( 1√
Db
− Xb√

Db

0
√
Db

)
. (A.6)

.
The identification between ga and gb in the covering space introduces two boundaries

R1 and R2 in figure 2. Due to the apparent Z2 symmetry, we do the same thing in the left
part of the covering space (figure 25), which introduces the other two boundaries R′1 and
R′2. Note that the horizons homologous to the respective boundaries of the wormhole are
the geodesics which are invariant under the combinations of the isometry group generators.
For example,M1,M2 andM3 are geodesics invariant under γ2, γ1◦γ−1

2 and γ1, respectively.
The lengths of these horizons are three independent parameters determining the wormhole’s
size, and they can be expressed in terms of six circle parameters D1, D2, Da, Db, Xa, Xb in
the covering space. For instance, using the metric of the covering space, we can express
m3 in terms of circle parameters

m3 = log D2
D1

. (A.7)

The lengths of the other two horizons can be calculated in terms of circle data too.
The explicit formulas of m1 and m2 can be found in [45]. One can also use the covering
space to compute the cross section L1 ∪ L′1 in figure 2. It is simply the brown curve in
figure 26 which has two intersection points s1, s2 on the horizon M3. Since the two sides
of the geometry are Z2 symmetric with respect to M3, the total length of the cross section
is twice the length of L1. The explicit formula of L1(s1, s2) is given in appendix B. Note
that we need to minimize L1(s1, s2) over s1, s2 in order to obtain the minimal cross section.
Conclusively, geodesics m1 and L1 in equation (2.4) can both be calculated in terms of the
circle data in the covering space.

Since we impose the energy conservation constraint (2.3) in the dynamical evaporation
process and we have taken m1 = m2, there is only one free parameter left in the 3-side
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Figure 26. The brown geodesic in figure 2 with two intersection points s1, s2 on the horizon M3 is
depicted in this covering space. This covering space has a Z2 symmetry with respect to the vertical
dashed blue line M3, so we only have to consider the right half. L1 consists of two arcs. The larger
one is part of a large semicircle which is the image of γ2 (A.6) applied to the smaller semicircle that
includes the smaller arc of L1. The two brown arcs are joint smoothly under the identification of
the green semicircles. This type of geodesic is unique once we fix the intersection points s1 and s2,
so we can move s1, s2 to obtain the minimal one.

wormhole model. In the covering space however, it is worth noting that there is always
a redundancy because there are totally six circle parameters. Therefore, we fix the circle
data in covering space by expressing them in terms of only one free parameter. Since we
set m1 = m2, we can equivalently equate the eigenvalues of γ2 and γ1 ◦ γ−1

2 and we get the
following relation

Xa = µXb, (A.8)

where µ :=
√

D2
D1

. We then fix the remaining circle parameters by the following setting8

D2 = µ2D1, (A.9)

Xa = µ2 + µ

2 D1, (A.10)

Xb = µ+ 1
2 D1, (A.11)

Da = µDb. (A.12)

Here D1 can be an arbitrarily positive constant. Now for a given m3 at any moment, we
can solve all the circle parameters using the relations above together with (2.3), (A.7) and
the formula of m1. Then we can use the formula of L1(s1, s2) (appendix B) to work out
the half cross section L1 and minimize it over s1, s2.

8As explained in [45], there are different choices to fix the circle data. The point is that one should make
such a choice that keeps D1 < Xb − Db < Xb + Db < Xa − Da < Xa + Da < D2 for any µ > 1, which
ensures all the curves are in the fundamental region (figure 26).
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B The length formulas of L1 and L2

The length formula of the geodesic L1 can be worked out in the covering space figure 26.
Since we identify ga ∼ gb, the two brown curves of L1 in figure 26 are joint smoothly. Note
that the complex coordinates of two endpoints of L1 are is1 and is2. To find the formula
of the geodesic that intersects these two points, one can map is2 to the outside of the
fundamental region using the generator which identifys ga and gb (A.6). It can be written
in a simple form as

z → DaDb

Xa − z
+Xb. (B.1)

Therefore, we have to find the geodesic which intersects both is1 and DaDb
Xa−is2

+Xb. Since
any geodesics in covering space are parts of semicircles with a center on the horizontal axis,
we can easily determine the location of the center, which is given by

XC = D2
aD

2
b + 2DaDbXaXb − (s2

1 −X2
b )(s2

2 +X2
a)

2
[
DaDbXa +Xb(s2

2 +X2
a)
] . (B.2)

Its radius is obtained as the distance from the center to one endpoint

DC =
√
X2
C + s2

1. (B.3)

Next we have to compute the angles of the two intersection points. Then with the formula∫ θ2
θ1
dθ/ sin θ to compute the length of a portion of the semicircle, one can get the length

formula of L1

L1(s1, s2) = log tan
[
π

2 −
1
2 arcsin s1

DC

]
− log tan

[1
2 arcsin s2DaDb

DC(s2
2 +X2

a)

]
. (B.4)

It is worth noting that if we use the length formula in a general context which contains
geometries with different AdS radiuses, we must multiply the result by the AdS radius of
the geometry to which the curve belongs.

The geodesic L2 in figure 11 consists of two parts, one part Lin in the inception geom-
etry (blue shaded region) and the other part Lre in the real geometry (white region). They
have two points of intersection on the EOW brane (red dashed circle). Let the intersection
points be s1 and s2, the length of Lin can be worked out using the same method as above,
which is given by [45]

Lin(s1,s2) = logtan
[
π

2−
1
2 arcsin s1 sinΘ

DI

]
−logtan

[1
2 arcsin s2DaDb sinΘ

DI(s2
2−2s2Xa cosΘ+X2

a)

]
,

(B.5)
where Θ is the angle of the EOW brane in figure 9 and DI is the radius of the semicircle.
It is given by

D2
I = (XI − s1 cos Θ)2 + s2

1 sin2 Θ, (B.6)

where XI is the location of the center

XI =
D2
aD

2
b+2s2 cosΘ

(
s2

1Xa−Xb(DaDb+XaXb)
)
+2DaDbXaXb−(s1−Xb)(s1+Xb)

(
s2

2+X2
a

)
2(−cosΘ(DaDbs2+s1 (s2

2+X2
a)+2s2XaXb)+DaDbXa+s1s2Xa cos2Θ+s1s2Xa+Xb (s2

2+X2
a)) .

(B.7)
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Figure 27. The covering space construction of the real geometry part (white region) in figure 11
is depicted here. The length of the blue vertical line matches that of M0 in figure 11.

Lre consists of two geodesics which are depicted as brown curves in the covering space of
real geometry (figure 27). The two endpoints of one of these curve determine the semicircle
it belongs to. Take the lower curve Lr1 for example, the center determined by the endpoints
s1 exp(iΘ′) and it1 is given by

Xr1 = s2
1 − t21

2s1 cos Θ′ , (B.8)

where Θ′ is the angle of the EOW brane (red dashed line) in figure 27, which is related to
the location of the EOW brane in the real geometry rt by

2πrt = m0
sin Θ′ . (B.9)

And the radius is given by
Dr1 =

√
X2
r1 + t21. (B.10)

The length formula of the lower curve can then be worked out as

Lr1 = log tan
[
π

2 −
1
2 arcsin s1 sin Θ′

Dr1

]
− log tan

[1
2 arcsin t1

Dr1

]
. (B.11)

Note that the length formula of the upper curve Lr2 takes the same form as (B.11) with
s1 and t1 replaced by s2 and t2 respectively. Therefore, the entropy of L2 is given by

SL2(s1, s2, t1, t2) = l′Lin
4G′N

+ l(Lr1 + Lr2)
4GN

, (B.12)

where l and l′ are AdS radiuses for the real and inception geometry respectively. The
minimal entropy is obtained by minimize L2 over s1, s2, t1 and t2.

C The length formula of LI

The length of geodesic LI can be computed in the covering space figure 5. Again, the two
brown curves are joint smoothly since we identify g1 and g2 using the generator γ1(z) =
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D2
D1
z = µ2z. The two end points s1, s2 of LI are freely located on the horizon M1 (blue

dashed curve), which equation is given by [45]

M1(λ) = Xa +Xb

2 + 1
2 exp(iλ)

√
(Xa −Xb)2 − 4DaDb. (C.1)

Let the coordinates of s1 and s2 be (x1, y1) and (x2, y2) respectively. One can use γ−1
1 to

map s2 to the point s′2 with coordinate (x2/µ
2, y2/µ

2). Then the geodesic LI , which is a
portion of a semicircle with a center on the horizontal axis again, is determined by the two
points s1 and s′2. The center and radius of the semicircle is given by

XI = Da(Db −Dbµ
4)− x2Xa − x2Xb +XaXb + µ4 [x1(Xa +Xb)−XaXb]

2µ4x1 − 2µ2x2
(C.2)

DI =
√

(XI − x1)2 + y2
1 (C.3)

Next we compute the angles of the two endpoints s1 and s′2 and then use them to get the
length formula of LI

LI (s1, s2) = log tan
[
π

2 −
1
2 arcsin

(
y2

µ2DI

)]
− log tan

[1
2 arcsin

(
y1
DI

)]
. (C.4)

D The length formula of Lp

The geodesic Lp in figure 13 has two end points t1 and t2 on the purple curves LM1 which
is depicted in the covering space figure 28. The brown curves are connected smoothly
through the generator γ1 that identifys g1 and g2. To get the length formula of Lp we first
have to figure out the equation of the purple curves which are parts of two semicircles with
centers on the horizontal axis. Using the method in previous sections we can see that the
lower purple curve is determined by the two points s1 exp(iΘ) and DaDb

Xa−s2 exp(iΘ) +Xb. The
higher purple curve is determined by the two points s2 exp(iΘ) and DaDb

Xb−s2 exp(iΘ) +Xa. The
centers and radiuses can then be easily obtained so we can get the equations of the two
curves.

Let the coordinates of t1 and t2 be (x1, y1) and (x2, y2) respectively. We can use γ−1
1

to map t2 to the point t′2 with coordinate (x2/µ
2, y2/µ

2). This is the same case as in
appendix C, thus the length formula of Lp takes the same form as (C.4).

E Bounds on reflected entropy

We would like to compare SR(RL : BL) with its upper bound 2 min{S(RL), S(BL)} and
the lower bound I(RL : BL). Since we only consider one side of the eternal black hole, the
bounds should be independent of time. With variables shown in figure 29, the entropy of
the left black hole is

S(BL) = S0 + φr
tanh d + c

6 ln
4 sinh2 b+d

2
sinh d − c

6 ln εUV , (E.1)
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Figure 28. LM1 in figure 13 is depicted as two purple arcs in the covering space. The geodesic Lp

is represented by the brown curves with two intersection points on LM1 .

Figure 29. Radiation and black hole on one side. The point (−d,−t+πi) is the quantum extremal
surface of the black hole. The island of radiation is the interval bounded by the points (−c1,−t+πi)
and (−c2,−t+ πi).

where the quantum extremal surface (−d,−t+ πi) is determined by the QES condition

sinh d = 6φr
c

sinh a+d
2

sinh a−d
2

. (E.2)

To evaluate the entropy of RL, we first make such a cut-off that the left boundary of RL
is (Λ,−t+ πi), with Λ sufficiently large. Then S(RL) is given by

Sisland(RL) = 2S0 + φr
tanh c2

+ φr
tanh c1

+ c

6 ln 4(e−c1 − e−c2)2(eb − e−c1)2

(1− e−2c2)eb(eb − e−c2)2(1− e−2c1)
− c

3 ln εUV + c

6Λ , (E.3)

Sno island(RL) = − c6b−
c

3 ln εUV + c

6Λ , (E.4)

S(RL) = min{Sisland(RL), Sno island(RL)} . (E.5)
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Note that |w1| = e−c1 , |w2| = e−c2 . So the QES equations determining c1 and c2 can be
written in terms of |w1| and |w2| as follows:

−|w1|∂|w1|S
island (RL) = −|w1|

(
4φr|w1|

(1− |w1|2)2 + c

3
1

|w1| − |w2|
+ c

3
1

|w1| − eb
− c

3
|w1|

|w1|2 − 1

)
= 0 , (E.6)

−|w2|∂|w2|S
island (RL) = −|w2|

(
4φr|w2|

(1− |w2|2)2 + c

3
1

|w2| − |w1|
− c

3
1

|w2| − eb
− c

3
|w2|

|w2|2 − 1

)
= 0 . (E.7)

Compared with S(BL), S(RL) has an IR divergent term c
6Λ, so we conclude that S(BL) is

less than S(RL). Therefore, 2 min{S(RL), S(BL)} = 2S(BL) which is the upper bound of
SR(RL : BL).

For the lower bound I(RL : BL) = S(BL) + S(RL) − S(RL ∪ BL), we should also
calculate S(RL ∪ BL). The interval of RL ∪ BL could be assumed as (∞L, P0] with P0 =
(−f,−t+ πi) to be extremized. The entropy of this interval is

S(RL ∪BL) = S0 + φr
tanh f + c

6 ln 2
1− e−2f −

c

6 ln εUV + c

6Λ . (E.8)

By extremizing (E.8), we get the condition of f (in terms of |w0| = e−f ):

− |w0|
( 4φr|w0|

(1− |w0|2)2 + c

3
|w0|

1− |w0|2
)

= 0 , (E.9)

which has only one solution |w0| = 0 because |w0| = e−f < 1 which leads to positivity of
the bracket term in (E.9). In other words, RL ∪ BL is just the left half line of the time
slice. So

S(RL ∪BL) = S0 + φr + c

6 ln 2− c

6 ln εUV + c

6Λ . (E.10)
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