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1 Introduction and summary of results

The methods of effective field theory (EFT) have seen a resurgence lately in particle physics,
due in part to the lack of new physics discovery at the weak scale. If new physics is indeed
decoupled to heavier scales, as observations seem to be indicating, then the Standard Model
(SM) should be properly considered as an EFT supplemented by higher-dimensional oper-
ators. The coefficients of these higher-dimensional operators encapsulate the new physics
integrated out at some higher energy scale. Calculating these coefficients from ultraviolet
(UV) theories has traditionally been performed using Feynman diagrams, where amplitudes
involving the heavy degrees of freedom are explicitly “matched” to the EFT amplitudes.
However, a more elegant approach is to “integrate out” the heavy particles by evaluating the
path integral directly [1–12]. While the adoption of this approach for practical phenomeno-
logical calculations has been limited in the past by cumbersome expansion techniques and
the misconception that it could not account for matching with both heavy and light parti-
cles in the loop, these technical issues have been addressed in the last few years [6–9]. New
methods were developed to evaluate the path integral at one loop more efficiently using
improved expansion techniques (as for example the covariant diagram method [9]), that
could also include mixed heavy-light matching.

Compared to the traditional approach of matching Feynman diagrams, these path inte-
gral methods have several advantages: they can be calculated more generally, directly and
systematically when computing a set of operator coefficients. Ultimately, it was pointed
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out in refs. [4, 5] that the one-loop effective action has a universal structure which makes
repeated evaluation of the path integral redundant. It is this set of universal terms and co-
efficients, evaluated once and for all, that forms the so-called Universal One-Loop Effective
Action (UOLEA). Starting from the UOLEA, a one-loop matching calculation is reduced
to an algebraic manipulation of matrix traces.

The piece of the UOLEA that was first worked out, for the simplified case of degenerate
masses in ref. [4] and generalised to the non-degenerate case in ref. [5], contains terms arising
from integrating out heavy bosonic fields Φ which couple to light fields φ via a Lagrangian
of the form

LUV[Φ, φ] = L0[φ] + Φ†
(
P 2 −M2 − U [φ]

)
Φ +O(Φ3) , (1.1)

where Pµ ≡ iDµ is the Hermitian covariant derivative, M is a diagonal mass matrix for
the heavy fields Φ, and the model-dependent couplings of Φ to φ are encapsulated in the
matrix U [φ]. By virtue of keeping the covariant derivatives intact, the UOLEA can thus
be written as an expansion in covariant derivatives, i.e. a covariant derivative expansion
(CDE) [1–3]. In the end, to obtain the low-energy EFT Lagrangian up to dimension-six
operators, one simply needs to insert the matrix U [φ] into the UOLEA:

Lbosonic,heavy
UOLEA = −ics tr

{
f i2 Uii + f i3G

′µν
i G′µν,i + f ij4 UijUji

+ f i5 [Pµ, G′µν,i][Pρ, G
′ρν
i ] + f i6G

′µ
ν,iG

′ν
ρ,iG

′ρ
µ,i

+ f ij7 [Pµ, Uij ][Pµ, Uji] + f ijk8 UijUjkUki + f i9 UiiG
′µν
i G′µν,i

+ f ijkl10 UijUjkUklUli + f ijk11 Uij [Pµ, Ujk][Pµ, Uki]

+ f ij12
[
Pµ, [Pµ, Uij ]

][
P ν , [Pν , Uji]

]
+ f ij13 UijUjiG

′µν
i G′µν,i

+ f ij14 [Pµ, Uij ][P ν , Uji]G′νµ,i
+ f ij15

(
Uij [Pµ, Uji]− [Pµ, Uij ]Uji

)
[P ν , G′νµ,i]

+ f ijklm16 UijUjkUklUlmUmi

+ f ijkl17 UijUjk[Pµ, Ukl][Pµ, Uli] + f ijkl18 Uij [Pµ, Ujk]Ukl[Pµ, Uli]

+ f ijklmn19 UijUjkUklUlmUmnUni
}

(1.2)

=
∑
N

f
(P )
N O(P )

N + f
(U)
N O(U)

N + f
(PU)
N O(PU)

N . (1.3)

The prefactor cs = 1
2 for each real degree of freedom (e.g. real scalar, vector) and can be

taken as cs = ±1 in some other cases [4]. The universal coefficients f ij...N are functions of
heavy particle masses mi,mj , . . . , and are expressed in terms of a set of master integrals.
The field strength matrix is defined as G′µν = −[Pµ, Pν ] = −igGµν , and the subscripts
i, j, . . . on G and U instruct us to take the corresponding block for particles i, j, . . . . In
eq. (1.3), we have schematically summarised the entire expression by three UOLEA oper-
ator classes: those involving only covariant derivatives (O(P )

N ), only interaction matrices
(O(U)

N ), and both (O(PU)
N ). We refer the reader to refs. [4, 5, 9] for the derivation of this

bosonic UOLEA, though we stress that it is no longer necessary to re-do the path integral
calculation for each specific model given the availability of these universal results. The
UOLEA operator structures, written in terms of the matrices P and U , become EFT oper-
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ators when substituting in the specific forms of these matrices, in terms of the light fields
and for a given UV model, which can then be rearranged into the desired non-redundant
EFT basis.1

There are, however, additional structures that arise in some UV Lagrangians which lead
to new terms in the UOLEA beyond those in eq. (1.2). In particular, for UV Lagrangians
containing heavy fermion fields, further terms in the UOLEA arise from fermionic loops.
While some of them can be obtained from the bosonic UOLEA (1.2) by “squaring” the
functional determinant (see, e.g., appendix A1 of ref. [4], appendix E of ref. [5] and eq. (3.19)
or ref. [9]) to put the UV Lagrangian into the form of eq. (1.1), this only yields partial
results when the interactions involve γ matrices.2 It is therefore necessary to extend the
UOLEA to properly include fermionic loops.

In this work, we present this fermionic UOLEA. It can be applied straightforwardly to
the case of fermions in an analogous manner to the bosonic case described above. Specif-
ically, we consider a UV Lagrangian capable of parametrising all possible renormalisable
UV theories for a heavy multiplet of fermions Ψ interacting with a light multiplet of bosons
or fermions φ of the following form:3

LUV[φ,Ψ] = L0[φ] + Ψ̄
(
/P −M −X[φ]

)
Ψ , (1.4)

where we decompose the interaction matrix X[φ] into scalar, pseudo-scalar, vector and
axial-vector couplings matrices as

X[φ] = W0[φ] +W1[φ] iγ5 + Vµ[φ]γµ +Aµ[φ]γµγ5 . (1.5)

The low-energy EFT at one loop is then obtained by substituting these matrices into our
fermionic UOLEA, which reads schematically

Lfermionic,heavy
UOLEA =

∑
N

f
(P )
N O(P )

N +f (W0)
N O(W0)

N +f (W1)
N O(W1)

N +f (W0W1)
N O(W0W1)

N (1.6)

+f (PW0)
N O(PW0)

N +f (PW1)
N O(PW1)

N +f (PW0W1)
N O(PW0W1)

N

+f (V )
N O(V )

N +f (A)
N O(A)

N +f (V A)
N O(V A)

N

+f (PV )
N O(PV )

N +f (PA)
N O(PA)

N +f (PV A)
N O(PV A)

N

+f (W0V )
N O(W0V )

N +f (W1V )
N O(W1V )

N +f (W0W1V )
N O(W0W1V )

N

+f (PW0V )
N O(PW0V )

N +f (PW1V )
N O(PW1V )

N +f (PW0W1V )
N O(PW0W1V )

N

+f (W0A)
N O(W0A)

N +f (W1A)
N O(W1A)

N +f (W0W1A)
N O(W0W1A)

N

+f (PW0A)
N O(PW0A)

N +f (PW1A)
N O(PW1A)

N +f (PW0W1A)
N O(PW0W1A)

N

+f (W0V A)
N O(W0V A)

N +f (W1V A)
N O(W1V A)

N +f (W0W1V A)
N O(W0W1V A)

N

+f (PW0V A)
N O(PW0V A)

N +f (PW1V A)
N O(PW1V A)

N +f (PW0W1V A)
N O(PW0W1V A)

N .

1Note that the UOLEA can be expanded indefinitely in the CDE; in eq. (1.2) and, later, the fermionic
UOLEA we terminate the CDE to keep only all UOLEA operator structures necessary for obtaining EFT
operators up to dimension six.

2Squaring the functional determinant with the coupling matrix in eq. (1.5) would yield “open” derivative
couplings. Besides, an “open” covariant derivative will get shifted, Pµ → Pµ − qµ, and lead to non-trivial
structures that were not encapsulated with the existing bosonic UOLEA.

3The parametrization in eq. (1.4) works for the case with pure heavy Dirac (Majorana) fermions in the
loop. See appendix A for more details about integrating out Majorana fermions.
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There are a large combinatorial number of possibilities for the fermionic UOLEA operator
structures when including all coupling matrices in eq. (1.5). We will see, however, that when
calculating specific cases one can employ power counting to pick out the UOLEA operator
structures that are relevant for matching to a set of desired EFT operators. Moreover, if the
low-energy EFT does not contain massive vector bosons (e.g. arising from a broken gauge
symmetry), then only the first two lines of eq. (1.6) are needed, comprising a relatively
compact set of UOLEA operators. These UOLEA operator structures, along with their
universal coefficients for the degenerate mass case, are tabulated below in tables 4, 5, 6
and 7. Explicit results for the non-degenerate case and for the rest of eq. (1.6) are available
in a Mathematica notebook on GitHub �, [13], as explained in section 2.4.

The bosonic UOLEA presented in ref. [5] (summarised above in eq. (1.3)) and fermionic
UOLEA presented in this paper (summarised above in eq. (1.6)) complete the one-loop
matching master formula that includes loops involving heavy bosonic fields and heavy
fermionic fields, respectively, for UV theories whose Lagrangians take the form of eq. (1.1)
or eq. (1.4), and for up to dimension-6 operators in the EFT. Other UV theories ex-
hibit additional coupling structures which are not captured by these UOLEAs, such as
tensor current coupling (involving σµν), derivative couplings (which give rise to “open
covariant derivatives” in the quadratic Lagrangian) and mixed bosonic-fermionic loops.
If the UV Lagrangian includes terms coupling heavy fields linearly to the light fields,
LUV ⊃ Φ†F [φ] + h.c., then mixed heavy-light loops also contribute.4 For the bosonic case,
the mixed heavy-light terms, Lbosonic,mixed

UOLEA , were computed in ref. [10], where it was found
that the operator structures in Lbosonic,mixed

UOLEA mirror those in Lbosonic,heavy
UOLEA with a much

larger number of terms due to the heavy-light combinatorics. We expect the same for the
fermionic UOLEA, though given the proliferation of terms already in the heavy-only case
we find it less compelling to also tabulate the mixed heavy-light terms explicitly.

In table 1 we summarise the progress of the UOLEA program. Fermionic results
are also available in ref. [11], though not in the same form as our expressions since the
various matrix substructures are not expanded as in eq. (1.5) — they can be computed,
together with additional structures such as mixed fermion-boson and heavy-light loops,
after plugging in these substructures and further evaluating the resulting Dirac matrix
traces. Finally, UV theories involving derivative couplings generate additional terms in
the UOLEA which have not yet been computed, though for the fermionic case they only
arise when matching to non-renormalisable UV Lagrangians. The UOLEA has, so far,
also been limited to those terms necessary for obtaining EFT operators up to dimension
six only. Nevertheless, it is worth emphasising that, following the technical development
of evaluating one-loop functional determinants with general structures [6, 8, 9, 12], one-
loop functional matching is a fully solved problem, independently of the availability of the
UOLEA that captures those additional structures. The usefulness of the UOLEA lies in its
packaging of certain universal steps of the calculation into the form of a master formula.

4Linear couplings also generate tree-level contributions, but loop-level mixed heavy-light contributions
can in certain cases be the leading terms for certain operators [14].

– 4 –

https://github.com/HoaVuong-lpsc/The-Fermionic-UOLEA-Mathematica-notebook


J
H
E
P
1
1
(
2
0
2
0
)
0
7
8

Universal terms available in the UOLEA

Heavy-only Mixed heavy-light + derivative couplings

Bosonic X [5] X [10] −

Fermionic X [this work] � (X) −(∗)

Mixed statistics (X) (X) −(∗)

(∗) do not arise in renormalizable UV theories.

Table 1. Status of the UOLEA. Entries marked by “X” are available in the form of operator
structures built from the various types of couplings that appear in the quadratic Lagrangian. Entries
marked by “(X)” are not available in the same form, but can be computed by plugging fermion
couplings into the results of ref. [11] and evaluating Dirac matrix traces. Entries marked by “−”
have not been computed in the literature, though the techniques for computing them are available.
See text for details.

The paper is organised as follows. In section 2, we describe our calculation of the
fermionic UOLEA and present the final results for the universal coefficients of the UOLEA
operators. We then present examples illustrating the use of the fermionic UOLEA for
efficient one-loop matching calculations in section 3, before concluding in section 4.

2 The fermionic UOLEA

Fermions, by virtue of their symmetry properties, necessitate additional care as compared
with spin-0 bosons, which have been the primary focus of CDE developments thus far.
Some previous work on using the CDE to integrate out heavy fermions had employed the
approach of squaring the argument of the functional trace in the effective action so as to
bring it into the same form as bosonic loops, for subsequent insertion into the bosonic
UOLEA as written in eq. (1.2) [4, 15]. However, this approach cannot be straightforwardly
applied to the case where fermion coupling structures contain gamma matrices beyond that
accompanying the covariant derivative /P .

As was pointed out for example in refs. [6, 9], the argument of the functional trace
need not be squared, in which case a CDE and universal one-loop action may be still be
formulated, with a somewhat different structure from the bosonic UOLEA of the previous
section but one that simplifies the UOLEA as applied to fermions. This procedure was
employed in ref. [11] to obtain contributions to the UOLEA from integrating out heavy
fermions, though they do not decompose the general coupling matrix X into its Hermitian
matrix substructure constituents so that their final result still requires taking the trace
over γ matrices.

Here we provide a master formula in terms of these matrix substructures. In this
case, as will be expanded upon in detail in the rest of this section, it is straightforward
to account for all possible Lorentz structures of fermionic coupling matrices to light fields,
thereby allowing for the completion of a fermionic UOLEA.
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2.1 One-loop matching from the path integral

Let us begin by reviewing the basic idea of one-loop functional matching, focusing on the
case of integrating out heavy fermions. Consider a UV Lagrangian containing a multiplet
of heavy Dirac fermion fields Ψ and light fields φ. Assuming the heavy fermions Ψ couple
to the light fields only via bilinears, the UV Lagrangian can be written in the form

LUV[φ,Ψ] = L0[φ] + Ψ̄
(
/P −M −X[φ]

)
Ψ , (2.1)

where Pµ ≡ iDµ and M is the diagonal mass matrix for the multiplet Ψ. In order to
maximise the analytical and physical utility of the universal structures obtained by using
the CDE method to obtain the fermionic UOLEA, it is useful to decompose the interaction
matrix X[φ] into scalar, pseudoscalar, vector, axial-vector and tensor parts. As we restrict
our scope to renormalizable UV theories here, we exclude the tensor coupling, and write

X[φ] = W0[φ] + iW1[φ]γ5 + Vµ[φ]γµ +Aµ[φ]γµγ5 , (2.2)

where theW0, W1, Vµ, Aµ coupling matrices are Hermitian. Obtaining the effective action
for the UV lagrangian above is performed in the standard way, by integrating out the heavy
fermion Ψ:

eiSeff [φ] =
∫
DΨDΨ eiSUV[φ,Ψ]

' eiSUV[φ,Ψc]
∫
Dη̄Dη ei

∫
ddx η̄(/P−M−X[φ] )η

= eiSUV[φ,Ψc] det
(
/P −M −X[φ]

)
= eiSUV[φ,Ψc]+Tr ln(/P−M−X[φ]) . (2.3)

In going from the first to the second line, we have expanded the heavy fields around
their classical background values, Ψ = Ψc + η, so that the integration is performed over
the quantum fluctuations η, around the UV action evaluated at this classical solution. We
therefore arrive at the one-loop effective action arising from integrating out heavy fermions:

S1-loop
eff = −iTr ln

(
/P −M −X[φ]

)
, (2.4)

where “Tr” denotes a trace over both internal indices and over the functional space of the
operator

(
/P −M −X[φ]

)
. We then evaluate the functional trace by making use of the

momentum eigenstate basis, and employing the standard trick of inserting the identity,

S1-loop
eff = −i

∫
ddq

(2π)d 〈q| tr ln
(
/P −M −X[φ]

)
|q〉

= −i
∫
ddx

∫
ddq

(2π)d 〈q| x〉 〈x| tr ln
(
/P −M −X[φ]

)
|q〉

= −i
∫
ddx

∫
ddq

(2π)d tr ln
(
/P − /q −M −X[φ]

)
, (2.5)

where now “tr” denotes a trace over internal indices only. In the last line of (2.5), we have
used 〈x| q〉 = e−iq·x and made a conventional change in the integration variable q → −q.
Further details of these functional manipulations are reviewed in refs. [4, 9].
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The one-loop effective action of eq. (2.5) must then be expanded in the hard region,
where the loop momenta q2 ∼M2, to obtain the low-energy effective Lagrangian consisting
of local operators, as explained, for example, in refs. [8, 9]. This method of regions en-
sures that both heavy-only and mixed heavy-light loops are correctly accounted for in the
matching calculation. In the present case of heavy-only terms, the hard region contribution
coincides with the full integral, so we obtain

L1-loop
eff = −i

∫
ddq

(2π)d tr ln
(
/P − /q −M −X[φ]

)
= i tr

∞∑
n=1

1
n

∫
ddq

(2π)d

[
−1

/q +M

(
−/P +W0[φ] + iW1[φ]γ5 + Vµ[φ]γµ +Aµ[φ]γµγ5

)]n
.

(2.6)

The second equality makes explicit the universal operator structures that appear in the one-
loop effective action, and hints at the universality of the corresponding operator coefficients.
After expansion and computation of the integrals over the loop momenta, this expression is
clearly the fermionic analog of the familiar expression for the bosonic UOLEA of eq. (1.2).
We can also see that by virtue of separating X into the sum over the W0, W1, Vµ and Aµ
components, we can apply our physical intuition for what types of combinations of struc-
tures can appear both in the UOLEA itself, and when considering specific models. This
will become more clear in the rest of this section, where we discuss the universal structures
in more depth, and in section 3 when we apply the fermionic UOLEA to several examples.

2.2 Universal operator structures in the fermionic UOLEA

In the previous subsection we have described how to obtain a general expression for the
fermionic UOLEA. However, as written in eq. (2.6), the utility of the UOLEA is not yet
apparent.

It is important to recall that an attractive feature of the bosonic UOLEA is that once
the analog of eq. (2.6) is expanded out to obtain e.g. eq. (1.2) (for heavy-only loop con-
tributions to EFT operators up to dimension 6), all necessary structures in the one-loop
effective Lagrangian are known and enumerated, and their universal coefficients are calcu-
lated once-and-for-all. Having all the possible structures enumerated makes for intuitive
application to integrating out particles in specific UV models. Knowing the specific form
of the interaction matrix U of eq. (1.2) for the UV model being studied allows for dramatic
simplification of computation of the one-loop effective action, since not all the bosonic
UOLEA operators would contribute to the specific EFT operators of interest. As a trivial
example, let us consider a quartic |Φ|2|φ|2 interaction in the UV, such that U ∼ |φ|2. If one
is interested in the bosonic UOLEA at dimension 6, it is evident that the term f19 U

6 in
eq. (1.2) is of higher dimension so it will not contribute, and therefore U6 can be discarded
without being computed.

Turning to the Fermionic UOLEA, from the form of eq. (2.6), we can see that ultimately
there will be a proliferation of universal structures in the final one-loop effective Lagrangian,

– 7 –
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Operator class Non-vanishing structures

O(P ) P 4, P 6

O(W0) W0,W
2
0 ,W

3
0 ,W

4
0 ,W

5
0 ,W

6
0

O(W1) W 2
1 ,W

4
1 ,W

6
1

O(W0W1) W0W
2
1 ,W

2
0W

2
1 ,W

3
0W

2
1 ,W0W

4
1 ,W

4
0W

2
1 ,W

2
0W

4
1

O(PW0) P 2W 2
0 , P

2W 3
0 , P

4W0, P
2W 4

0 , P
4W 2

0

O(PW1) P 2W 2
1 , P

4W1, P
2W 4

1 , P
4W 2

1

O(PW0W1) P 2W0W
2
1 , P

4W0W1, P
2W 2

0W
2
1

O(V ) V 2, V 4, V 6

O(A) A2, A4, A6

O(V A) V A3, V 2A2, V 3A, V A5, V 2A4, V 3A3, V 4A2, V 5A

O(PV ) PV 3, P 2V 2, P 3V, PV 5, P 2V 4, P 3V 3, P 4V 2, P 5V

O(PA) PA3, P 2A2, P 3A,PA5, P 2A4, P 3A3, P 4A2, P 5A

O(PAV )
PAV 2, PA2V, P 2AV,PAV 4, PA2V 3, PA3V 2, PA4V ,

P 2AV 3, P 2A2V 2, P 2A3V, P 3AV 2, P 3A2V, P 4AV

Table 2. Non-vanishing operator structures in the fermionic UOLEA that involve covariant deriva-
tives (P ) plus either scalar and pseudo-scalar structures (W0,W1), or vector and axial-vector struc-
tures (V,A).

which can be written compactly as

Lfermionic
UOLEA =

∑
N

fN O{P,W0,W1,A,V }
N . (2.7)

Due to the variety of matrix coupling structures denoted in the superscript set, the fermionic
heavy-only UOLEA has a large number of operators in the sum arising from all the (non-
vanishing) combinatorial possibilities, in contrast to the bosonic heavy-only UOLEA’s 19
operator structures. An expanded sum of the UOLEA operator classes is presented in
eq. (1.6) and tables 2–3, where we enumerated all the different classes of possible UOLEA
operator structures.

The advantage of separatingX intoW0,W1, V, A is now apparent: all possible universal
fermionic UOLEA operators are obtained and their coefficients computed and tabulated
once and for all, analogously to the bosonic UOLEA. When inserting a UV model into the
fermionic UOLEA, computation of the W0,W1, V, A structures then allows for transparent
power counting, as well as enabling simple symmetry cross-checks. We now describe this
in more detail for each of these (non-vanishing) structures and their combinations listed in
tables 2 and 3.

– 8 –



J
H
E
P
1
1
(
2
0
2
0
)
0
7
8

Operator class Non-vanishing structures

O(VW0) V 2W 2
0 , V

2W 3
0 , V

4W0, V
2W 4

0 , V
4W 2

0

O(VW1) V 2W 2
1 , V

4W1, V
2W 4

1 , V
4W 2

1

O(VW0W1) V 2W0W
2
1 , V

4W1W0, V
2W 2

0W
2
1

O(PVW0)
PVW0, PV W

2
0 , PV W

3
0 , PV W

4
0 , PV

3W0, P
3VW0, P

2V 2W0,

P 3VW 2
0 , PV

3W 2
0 , P

2V 2W 2
0

O(PVW1) PVW 2
1 , PV W

4
1 , PV

3W1, P
3VW1, P

2V 2W1, PV
3W 2

1 , P
3VW 2

1 , P
2V 2W 2

1

O(PVW0W1) PVW0W
2
1 , PV W

2
0W

2
1 , P

3VW0W1, P
2V 2W0W1, PV

3W0W1

O(AW0) A2W 2
0 , A

2W 3
0 , A

4W0, A
2W 4

0 , A
4W 2

0

O(AW1) A2W 2
1 , A

4W1, A
2W 4

1 , A
4W 2

1

O(AW0W1) A2W0W
2
1 , A

4W1W0, A
2W 2

0W
2
1

O(PAW0) PA3W0, P
3AW0, P

2A2W0, P
3AW 2

0 , PA
3W 2

0 , P
2A2W 2

0

O(PAW1) PAW1, PAW
3
1 , PA

3W1, P
3AW1, P

2A2W1, PA
3W 2

1 , P
3AW 2

1 , P
2A2W 2

1

O(PAW0W1) PAW0W1, PAW
2
0W1, PAW0W

3
1 , PAW

3
0W1, P

3AW0W1, P
2A2W0W1, PA

3W0W1

O(AVW0) V A3W0, V
3AW0, V

2A2W0, V
3AW 2

0 , V A
3W 2

0 , V
2A2W 2

0

O(AVW1) V AW1, V AW
3
1 , V A

3W1, V
3AW1, V

2A2W1, V A
3W 2

1 , V
3AW 2

1 , V
2A2W 2

1

O(AVW0W1) V AW0W1, V AW
2
0W1, V AW0W

3
1 , V AW

3
0W1, V

3AW0W1, V A
3W0W1, V

2A2W0W1

O(PAVW0) PAV 2W0, PAV
2W 2

0 , PA
2VW0, PA

2VW 2
0 , P

2AVW0, P
2AVW 2

0

O(PAVW1) PAV 2W1, PAV
2W 2

1 , PA
2VW1, PA

2VW 2
1 , P

2AVW1, P
2AVW 2

1

O(PAVW0W1) PAV 2W0W1, PA
2VW0W1, P

2AVW0W1

Table 3. Non-vanishing operator structures in the fermionic UOLEA that involve both
(pseudo-)scalar and (axial-)vector couplings.

Scalar and pseudo-scalar structures (W0, W1). From the Lagrangian as written
in eq. (2.1) and the expansion of X in eq. (2.2), it is clear that if the heavy fermion
that is integrated out has couplings to scalar operators, these will be captured by the W0
matrix structure. Likewise, in the case of couplings to pseudoscalar operators, these will
be captured by the W1 matrix. The W0 (W1) matrix is therefore even (odd) under parity,
which will allow us to easily intuit what UOLEA operators might be formed and therefore
contribute to the final result of eq. (1.6). All such structures are listed in table 2. Indeed, the
parity properties of the matrices and their impact on the operator structures is clear. As a
scalar structure,W0 can appear in both even and odd powers. In contrast, W1, as a pseudo-
scalar structure, must always appear in even powers, or accompanied by P 4. That the latter
is permitted follows from tr(γµγνγργσγ5) 6= 0, so that one can already see that the only
EFT operators arising from such a structure will involve pseudo-scalars coupling to FF̃ .
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Vector and axial-vector structures (V , A). These structures will appear if the UV
Lagrangian contains fermionic couplings to vector bosons that do not appear in the co-
variant derivative operator P . This would occur, for example, if the heavy fermion current
is coupled to a light gauge boson such as the Zµ of the SM (in this case the low-energy
effective theory with Zµ not in a covariant derivative would not be the SMEFT), or an A′µ
associated with a broken U(1)′ whose mass was sufficiently small compared with that of
the fermion being integrated out. These results are particularly useful if one is interested
in matching to low-energy EFTs containing massive vector bosons. In this case, it should
be noted that the covariant derivative operator P only contains the gauge fields associated
with the remaining unbroken symmetries.

Even if the gauge boson content of the low-energy theory is purely that of the SM,
these structures must be included in a complete fermionic UOLEA if one wishes to apply
it to matching with general EFTs. We will see examples in section 3 where the V and A
structures appear.

As in the case above of W0, W1 operator structures, the power counting and enumera-
tion of non-vanishing V and A combinations is straightforwardly obtained from symmetry
arguments. All structures that contribute to EFT operators up to dimension 6 are listed
in table 2. We can see that by virtue of the symmetry properties of both V and A, they
must always appear in the combinations P kV lAm with k + l +m even.

General case (W0, W1, V , A all present). The above discussion can be extended
further to the situation when all possible structures in eq. (2.1) are present. In this most
general case, one gets a proliferation of possible combinations and operator classes, all of
which are listed in table 3.

Once again, the power counting is straightforward, and follows from trace identities
of gamma matrices. As before, scalar structures W0 can appear without restriction, while
pseudo-scalar structures W1 can only appear in combination with operators such that the
overall number of γ5 matrices is even, or in combination with four γµ matrices.

2.3 Computing UOLEA operators with covariant diagrams

To evaluate the expansion in (2.6), we use the covariant diagrams technique of ref. [9] to
keep track of the expansion and directly compute the Wilson coefficient for each EFT op-
erator. Each term in the CDE expansion (2.6) can be represented by a covariant diagram,
which can be written down directly by a systematic set of rules. We then straightforwardly
obtain the prefactor coefficient and the one-loop master integral associated with the dia-
gram we are considering. The details of the covariant diagram technique are described in
ref. [9]. Here we summarise the essential ingredients relevant for the present case of heavy
fermion loops.

• Fermion propagator. Each fermion propagator can be decomposed into two terms,

−1
/q +M

= M

q2 −M2 + −qµγµ

q2 −M2 , (2.8)
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where the first term is the heavy bosonic propagator multiplied by the mass. The second
term involves the loop momentum qµ in the numerator, which will contribute to the loop
integral. The loop integrals have the general form∫

ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
= gµ1···µ2ncI[q2nc ]ninj ···nLij···0 , (2.9)

where gµ1···µ2nc is the completely symmetric tensor, e.g. gµνρσ=gµνgρσ+gµρgνσ+gµσgνρ,
and I are master integrals, a useful set of which can be found in ref. [9]. The symmet-
ric tensor in (2.9) will contract the Lorentz indices of Dirac matrices in the fermionic
propagator, then we must sum over all possibilities of the contractions. In the covariant
diagram, we shall use dotted lines to indicate the contractions among the fermionic part
of the propagator in eq. (2.8), following the conventions of ref. [9].

• Vertex insertions. From eq. (2.6), all vertex insertions, γµPµ,W0, iγ
5W1, γ

µVµ and
γµγ5Aµ are independent of the loop momentum qµ and thus do not change the loop
integrals. We note that the vertex insertions will not be contracted with each other or
with the propagators.

• Dirac trace evaluations. By construction, Pµ,W0,W1, Vµ and Aµ do not involve addi-
tional Dirac matrices. Therefore, after reading off the value of each covariant diagram,
the trace over Dirac matrices is factorized out and evaluated once-and-for-all. The trace
in the final results, still denoted by “tr” is over the remaining internal indices, e.g. SU(2)
and color indices.

• Renormalisation and divergences. For the one-loop divergent integrals, we use dimen-
sional regularisation and the MS-scheme for renormalisation. The important point in
the case with divergent integrals is that the trace over all Dirac matrices have to be
evaluated in D = 4− ε dimensions, and the ε-term resulting from the contractions of the
metric tensor, gµνgµν = D, must be kept in the computations. This term can hit the
1/ε pole resulting from a divergent integral and yield a finite contribution to the Wilson
coefficient. It is well-known that in D = 4− ε dimensions, the relations {γµ, γ5} = 0 and
tr(γµγνγργσγ5) 6= 0 cannot be satisfied simultaneously [16, 17]. In our calculations, we
use the Breitenlohner-Maison-’t Hooft-Veltman (BMHV) scheme [18, 19].

• Covariant derivatives in commutators. By expanding the one-loop effective action in
eq. (2.6), we will obtain operator structures that carry “open” covariant derivatives, Pµ.
We emphasise that the Pµ in the CDE expansion is a functional operator, i.e. Pµ will act
on everything to the right. To construct an effective operator we need a “closed” covariant
derivative where Pµ will only act on its immediate nearest neighbour in the operator; we
thus need to organise the final results such that Pµ’s only appear in commutators (see
e.g. refs. [4, 9, 12]). To be concrete, let us consider for example a functional operator
PµW0 acting on a generic functional φ:

PµW0 φ = (PµW0)local φ+W0 (Pµφ) , (2.10)
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we then combine all operator structures with Pµ into commutators,

(PµW0)local φ = (PµW0 −W0Pµ)φ = [Pµ,W0]φ . (2.11)

In practice, we first write down a basis set of independent operators where Pµ’s only
appear in the commutators, and then expand the commutators and match the results
from the functional trace expansion to solve the system of equations and determine the
coefficient of the elements in the “commutator” basis that we chose. We note that the
operator structures with adjacent covariant derivatives, tr

(
· · ·P 2 · · ·

)
, can be dropped

to simplify this computation, since the non-P 2 terms are sufficient for reconstructing the
universal operators written in the commutator basis when matching to the expanded
form (see ref. [9] for details).

• Hermiticity of the operator structures. Since covariant diagrams that are mirror images
of each other are related by hermitian conjugation, only one in each such pair needs
to be computed. We will also use the hermiticity of the Lagrangian to identify the
number of irreducible operator structures. In particular, when the vector and axial-
vector structures are included in the matrix X[φ], the hermitian conjugate relations can
drastically reduce the number of operator structures we need to evaluate.

Let us consider a simple example to illustrate concretely some of these points, taking a
coupling matrix X[φ] that only contains pseudo-scalar structures. We would then compute
the universal coefficient of the operator structure P 2W 2

1 as follows:

OP 2W 2
1 =

+ + + +

+ +

iW1γ
5

iW1γ
5

γµPµ γµPµ

= i

2m
4I4
i tr

(
/P iW1γ

5 /P iW1γ
5
)

+ im2I[q2]4i
[
tr
(
γµ /PγµiW1γ

5 /P iW1γ
5
)

+ tr
(
/PγµiW1γ

5γµ /P iW1γ
5
)

+1
2tr

(
/PγµiW1γ

5 /PγµiW1γ
5
)

+ 1
2tr

(
/P iW1γ

5γµ /P iW1γ
5γµ

)]
+ iI[q4]4i

[1
2tr

(
γµ /PγµiW1γ

5γν /PγνiW1γ
5
)

+ 1
2tr

(
/PγµiW1γ

5γµ /Pγ
νiW1γ

5γν
)

+1
2tr

(
/PγµiW1γ

5γν /PγµiW1γ
5γν
)]

= i
(
2m4I4

i − 16m2I[q2]4i + [48− 4ε] I[q4]4i
)
tr (PµW1PµW1) , (2.12)

where the loop integral I[q4]4i is divergent and thus we evaluated the Dirac trace in D = 4−ε
dimensions and kept the O(ε) terms. Note that we have omitted diagrams where the two
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/P insertions are adjacent, because they lead to terms proportional to tr(. . . P 2 . . . ), which
provide redundant information for constructing independent operators as discussed above.
Finally, we re-write the operator structures in eq. (2.12) in terms of commutators, using

2f (P 2W 2
1 )

N tr (PµW1PµW1) ⊃ f (P 2W 2
1 )

N tr ([Pµ,W1] [Pµ,W1]) , (2.13)

and therefore obtain the final result

L1-loop
EFT [φ] ⊃ i

(
m4I4

i − 8m2I[q2]4i + [24− 2ε] I[q4]4i
)
tr ([Pµ,W1] [Pµ,W1])

⊃ i2

(4π)2

(
− log m

2

µ2 + 2
3

)
tr ([Pµ,W1] [Pµ,W1]) , (2.14)

making use of the master integrals listed in ref. [9].

2.4 Results for the universal coefficients

We now present the results of the calculation outlined above, listing here only the UOLEA
operators with P , W0 and W1 terms where all fermions in the loop are degenerate in mass.
In this case, there are 52 distinct operator structures in the UOLEA, and we tabulate their
coefficients in tables 4, 5, 6 and 7. The coefficients and operators containing only P ’s can be
found in table 4. The operators contain the coupling with scalar structures O(W0), O(PW0)

are tabulated in table 5, while the coupling with pseudo-scalar structures O(W1), O(PW1)

are in table 6. Finally, the coefficients of the operators containing a mixture of scalar
and pseudo-scalar structures O(PW0W1) are listed in table 7. Note that each universal
coefficient in the tables 4, 5, 6 and 7 has to be multiplied by the factor i, and that repeated
Lorentz indices are implied to be contracted (though they are all written as subscripts for
typographical convenience).

Results for the more general non-degenerate mass spectrum and including the vector
(V ) and axial-vector (A) structures in the degenerate case are lengthy, so we include them in
a Mathematica notebook made available on GitHub � [13]. Some of the UOLEA operators
involving V and A that will be used in the examples in section 3 are shown in table 8.

For the user’s convenience, we organised the Mathematica notebook as follows:

• We remind the user that the effective Lagrangian will be a summation of all universal
operators we have tabulated in the Mathematica notebook. The coefficient of each
operator has to be multiplied by a factor of i. Afterward, we have to read off the
value of the master integrals, as tabulated in ref. [9]. We note that the coefficients
include the O(ε) terms that can cancel the 1

ε pole from the loop integrals and yield
finite contributions.

• In the first section of the Mathematica notebook, we summarise all universal struc-
tures as presented in the tables 2 and 3 where each entry is hyperlinked such that a
click takes the user directly to the table of operator structures and their corresponding
coefficients.
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O(P ) terms

−1
2I

4
im

4
i + 4m2

i I[q2]4i + (5ε− 8)I[q4]4i [Pµ, Pν ][Pµ, Pν ]

24m2
i I[q4]6i − 2m4

i I[q2]6i − 64I[q6]6i [Pµ, [Pµ, Pν ]][Pρ, [Pρ, Pν ]]

−2
3I

6
im

6
i + 4m4

i I[q2]6i − 128
3 I[q6]6i [Pµ, Pν ][Pν , Pρ][Pρ, Pµ]

Table 4. Pure gauge operator structures in the fermionic UOLEA.

O(W0) terms

4miIi W0

2I2
im

2
i + (8− 2ε)I[q2]2i W 2

0

4
3I

3
im

3
i + ( 16mi − 4εmi )I[q2]3i W 3

0

I4
im

4
i + 24m2

i I[q2]4i + (24− 10ε)I[q4]4i W 4
0

4
5I

5
im

5
i + 96miI[q4]5i + 32m3

i I[q2]5i W 5
0

2
3I

6
im

6
i + 240m2

i I[q4]6i + 40m4
i I[q2]6i + 128I[q6]6i W 6

0

O(PW0) terms

I4
im

4
i + (24− 10ε)I[q4]4i [Pµ,W0][Pµ,W0]

4I5
im

5
i + 192miI[q4]5i + 16m3

i I[q2]5i W0[Pµ,W0][Pµ,W0]

−2I5
im

5
i − 16miI[q4]5i + 16m3

i I[q2]5i W0[Pµ, Pν ][Pµ, Pν ]

4I6
im

6
i + 432m2

i I[q4]6i + 36m4
i I[q2]6i + 192I[q6]6i W0[Pµ,W0]W0[Pµ,W0]

6I6
im

6
i + 576m2

i I[q4]6i + 60m4
i I[q2]6i + 576I[q6]6i W 2

0 [Pµ,W0][Pµ,W0]

2I6
im

6
i − 16m2

i I[q4]6i − 16m4
i I[q2]6i [Pµ,W0][Pν ,W0][Pµ, Pν ]

−5I6
im

6
i + 72m2

i I[q4]6i + 36m4
i I[q2]6i − 64I[q6]6i W 2

0 [Pµ, Pν ][Pµ, Pν ]

−2I6
im

6
i − 8m2

i I[q4]6i + 18m4
i I[q2]6i + 96I[q6]6i (W0[Pµ,W0]− [Pµ,W0]W0) [Pν , [Pµ, Pν ]]

8m2
i I[q4]6i + 2m4

i I[q2]6i + 96I[q6]6i [Pµ, [Pµ,W0]][Pν , [Pν ,W0]]

Table 5. Operator structures in the degenerate fermionic UOLEA involving the scalar coupling W0.

• In the following sections, we present the full results in both degenerate and non-
degenerate cases where the coupling matrix X[φ] contains only scalar and pseudo-
scalar structures.

• Finally, we present the full results in the degenerate case including the V and A

structures. Due to a large number of combinations, we divide this section into sub-
categories: vector only, axial-vector only, and mixed vector/axial-vector. We also
note that the results for mixed structures are written in functional space with open
covariant derivatives. Depending on the effective operators one needs to construct, a
subset of operators in the UOLEA will need to be selected and reorganized into the
form of commutators. The non-denegerate results are available upon request.
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O(W1) terms

2(ε+ 4)I[q2]2i − 2I2
im

2
i W 2

1

I4
im

4
i − 8m2

i I[q2]4i + 2(11ε+ 12)I[q4]4i W 4
1

−2
3I

6
im

6
i − 48m2

i I[q4]6i + 8m4
i I[q2]6i + 128I[q6]6i W 6

1

O(PW1) terms

I4
im

4
i − 8m2

i I[q2]4i − 2(ε− 12)I[q4]4i [Pµ,W1][Pµ,W1]

24miI[q4]5i − 8m3
i I[q2]5i + I5

im
5
i εµνρσW1[Pµ, Pν ][Pρ, Pσ]

−48m2
i I[q4]6i + 4m4

i I[q2]6i + 192I[q6]6i W1[Pµ,W1]W1[Pµ,W1]

−2I6
im

6
i − 192m2

i I[q4]6i + 28m4
i I[q2]6i + 576I[q6]6i W 2

1 [Pµ,W1][Pµ,W1]

−2I6
im

6
i − 48m2

i I[q4]6i + 16m4
i I[q2]6i [Pµ,W1][Pν ,W1][Pµ, Pν ]

I6
im

6
i + 56m2

i I[q4]6i − 12m4
i I[q2]6i − 64I[q6]6i W 2

1 [Pµ, Pν ][Pµ, Pν ]

−24m2
i I[q4]6i + 2m4

i I[q2]6i + 96I[q6]6i [Pµ, [Pµ,W1]][Pν , [Pν ,W1]]

−24m2
i I[q4]6i + 2m4

i I[q2]6i + 96I[q6]6i (W1[Pµ,W1]− [Pµ,W1]W1) [Pν , [Pµ, Pν ]]

Table 6. Operator structures in the degenerate fermionic UOLEA involving the pseudoscalar
coupling W1.

O(W0W1) terms

4(3ε+4)miI[q2]3i−4I3
im

3
i W0W

2
1

8(ε+12)I[q4]4i−4I4
im

4
i W 2

0W
2
1

−2I4
im

4
i +16m2

i I[q2]4i +4(5ε−12)I[q4]4i W0W1W0W1

−4I5
im

5
i +288miI[q4]5i−32m3

i I[q2]5i W 3
0W

2
1

−4I5
im

5
i−96miI[q4]5i +32m3

i I[q2]5i W 2
0W1W0W1

4I5
im

5
i +96miI[q4]5i−32m3

i I[q2]5i W0W
4
1

−4I6
im

6
i +96m2

i I[q4]6i +16m4
i I[q2]6i−768I[q6]6i W 3

0W1W0W1

−2I6
im

6
i−144m2

i I[q4]6i +24m4
i I[q2]6i +384I[q6]6i W 2

0W1W
2
0W1

−4I6
im

6
i +480m2

i I[q4]6i−80m4
i I[q2]6i +768I[q6]6i W 4

0W
2
1

4I6
im

6
i +288m2

i I[q4]6i−48m4
i I[q2]6i−768I[q6]6i W0W1W0W

3
1

2I6
im

6
i−48m2

i I[q4]6i−8m4
i I[q2]6i +384I[q6]6i W0W

2
1W0W

2
1

4I6
im

6
i−96m2

i I[q4]6i−16m4
i I[q2]6i +768I[q6]6i W 2

0W
4
1

O(PW0W1) terms

48miI[q4]5i−8m3
i I[q2]5i W1[Pµ,W0][Pµ,W1]+h.c.

4I5
im

5
i +96miI[q4]5i−32m3

i I[q2]5i W0[Pµ,W1][Pµ,W1]

24m2
i I[q4]6i−8m4

i I[q2]6i +I6
im

6
i εµνρσW0W1[Pµ,Pν ][Pρ,Pσ]+h.c.

24m2
i I[q4]6i−8m4

i I[q2]6i +I6
im

6
i εµνρσW0[Pµ,Pν ]W1[Pρ,Pσ]

2I6
im

6
i +192m2

i I[q4]6i−28m4
i I[q2]6i−576I[q6]6i W1W0[Pµ,W1][Pµ,W0]+h.c.

48m2
i I[q4]6i−4m4

i I[q2]6i−192I[q6]6i W1[Pµ,W0]W1[Pµ,W0]

4I6
im

6
i +144m2

i I[q4]6i−36m4
i I[q2]6i−192I[q6]6i W0[Pµ,W1]W0[Pµ,W1]

96m2
i I[q4]6i−24m4

i I[q2]6i +384I[q6]6i W1[Pµ,W1]W0[Pµ,W0]+h.c.

6I6
im

6
i−36m4

i I[q2]6i +576I[q6]6i W 2
0 [Pµ,W1][Pµ,W1]

−2I6
im

6
i−4m4

i I[q2]6i +576I[q6]6i W0W1[Pµ,W1][Pµ,W0]+h.c.

−2I6
im

6
i−4m4

i I[q2]6i +576I[q6]6i W 2
1 [Pµ,W0][Pµ,W0]

Table 7. Operator structures in the degenerate fermionic UOLEA involving both the scalar cou-
pling W0 and the pseudoscalar coupling W1.
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O(P 2A2W1) terms

4m5
i I5
i −16m3

i I[q2]5i εµνρσPµAνPρAσW1+h.c.

−4m5
i I5
i +16m3

i I[q2]5i εµνρσPµPνAρAσW1+h.c.

4m5
i I5
i −96miI[q4]5i εµνρσPµW1PνAρAσ

4m5
i I5
i −32m3

i I[q2]5i +96miI[q4]5i εµνρσPµPνAρW1Aσ

O(P 2V 2W1) terms

−4m5
i I5
i +32m3

i I[q2]5i−96miI[q4]5i εµνρσPµW1PνVρVσ

−4m5
i I5
i +32m3

i I[q2]5i−96miI[q4]5i εµνρσPµPνVρW1Vσ

4m5
i I5
i −32m3

i I[q2]5i +96miI[q4]5i εµνρσPµPνVρVσW1+h.c.

4m5
i I5
i −32m3

i I[q2]5i +96miI[q4]5i εµνρσPµVνPρVσW1+h.c.

O(P 3VW1) terms

−4m5
i I5
i +32m3

i I[q2]5i−96miI[q4]5i εµνρσPµPνPρVσW1+h.c.

−4m5
i I5
i +32m3

i I[q2]5i−96miI[q4]5i εµνρσPµPνVρPσW1+h.c.

Table 8. Subset operator structures in the degenerate fermionic UOLEA involving the pseu-
doscalar, vector and axial-vector structures. This subset will be used in the various examples we
present in section 3.

• We use the same notation in the Mathematica notebook as in the eq. (2.6) where
P,W0, W1 stand for the covariant derivative, scalar, and pseudo-scalar structures, re-
spectively. To avoid conflict with other Mathematica packages, we denote v̄b, āb for
vector and axial-vector structures. We follow the conventions of ref. [20] for γ5 and
the total anti-symmetric tensor εµνρσ, ε0123 = +1. The trace of Dirac matrices is eval-
uated using the FeynCalc package [21–23] and thus the output operator structures
are also written in the language of this package.

• Regarding the hermiticity of the operator structures, the operators which are not
self-hermitian need to be accompanied with their hermitian conjugates. The non-
self-hermitian operators appear with “+ h.c.” in the table of operators. We also
checked that the operator and its hermitian conjugate have the same coefficients that
result from the process of functional matching computations.

3 Examples

In this section we present a few examples involving the top quark, as a cross-check of
our results and to illustrate concretely how to use the fermionic UOLEA for practical
calculations.

3.1 Integrating out the top quark in the Standard Model

In the broken phase of the electroweak symmetry, the terms quadratic in the top quark
field interacting with the SM Higgs via a Yukawa interaction are

LSM ⊃ t̄
(
i∂µ − gsGaµT a − eQtFµ

)
γµ t−mtt̄t−

yt√
2
ht̄t , (3.1)

where Gaµ is the gluon field, T a is the SU(3)c generator, and Fµ is the notation chosen for
the photon field so as to avoid confusion with the axial-vector matrix Aµ.

The above Lagrangian can be written in the canonical form that provides the starting
point for a UOLEA analysis as

L(UOLEA form)
SM ⊃ t̄ (γµPµ −mt −W0) t , (3.2)
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where, for this example, the covariant derivative Pµ and the coupling matrix W0 are

Pµ = iDµ = i∂µ − gsGaµT a − eQtFµ , W0 = yt√
2
h. (3.3)

We focus on the following operators in the EFT Lagrangian: h, h2, (∂µh)2, hFµνFµν and
hGaµνG

a,µν . This selects the following relevant terms in the UOLEA:

LEFT ⊃ −
1

(4π)2

[
4m3

t

(
1− log m

2
t

µ2

)
trW0 + 2m2

t

(
1− 3 log m

2
t

µ2

)
trW 2

0

−
(

2
3 + log m

2
t

µ2

)
tr[Pµ,W0][Pµ,W0] +

( 2
3mt

)
tr
(
[Pµ, Pν ][Pµ, Pν ]W0

) ]
,

(3.4)

where the coefficient of each operator in eqs. (3.4) can be found in table 5, and note that we
must multiply those coefficients by i. To obtain the pre-computed coefficients in eqs. (3.4),
we must retain the 1/ε poles in the master integrals. These poles can be multiplied by the
ε terms appearing in the prefactor multiplying the master integral coming from the trace
over gamma matrices in the operator. For example,

(8− 2ε)I[q2]2i = (8− 2ε)m
2
t

2

(
1− log m

2
t

µ2 + 2
ε
− γE + log 4π

)

= 4m2
t

(
1− log m

2
t

µ2

)
− 2m2

t , (3.5)

where in going from the first to the second line, we take the limit ε→ 0 and drop the terms
2/ε− γE + log 4π, since we use the MS-scheme for renormalisation.

Next, we evaluate the trace over all internal indices, which in this case corresponds
to the colour and SU(3)c indices carried by the top quark and gluon fields respectively,
obtaining

trW0 = tr yt√
2
hδab =Nc

yt√
2
h, trW 2

0 = tr y
2
t

2 h
2 δabδba =Nc

y2
t

2 h
2 ,

tr[Pµ,W0][Pµ,W0] = tr
[
i∂µ−gsGaµT a−eQtFµ,

yt√
2
hδab

][
i∂µ−gsGaµT a−eQtFµ,

yt√
2
hδba

]
=−Nc

y2
t

2 (∂µh)2 . (3.6)

The field strength tensors can be obtained by using
[
Pµ, Pν

]
= i

(
−gsGaµνT a

)
+i (−eQtFµν),

tr
(
[Pµ, Pν ][Pµ, Pν ]W0

)
= tr

[(
(−igs)2GaµνG

b
µνT

aT b + (−ieQt)2FµνFµν

− 2(gs eQt)GaµνT aFµν
)(

yt√
2
h δcd

)]
= −

(
Nc g

2
s

yt

2
√

2

)
hGaµνG

a
µν −

(
Nc (eQt)2 yt√

2

)
hFµνFµν , (3.7)
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where tr
(
T aT b

)
= δab/2 for generators of the fundamental representation of an SU(N)

gauge group. Inserting (3.6), (3.7) into (3.4), we obtain

LEFT ⊃
−1

(4π)2

[
y2
t Nc

(
1
3 + 1

2 log m
2
t

µ2

)
(∂µh)2

+ 4 yt√
2
Ncm

3
t

(
1− log m

2
t

µ2

)
h+ y2

t Ncm
2
t

(
1− 3 log m

2
t

µ2

)
h2
]

+
(
yt√

2

)[
g2
s

48π2mt
Nc hG

a
µνG

a
µν + e2Q2

t

24π2mt
Nc hFµνFµν

]
, (3.8)

whereNc = 3, Qt = 2/3. The kinetic term for the Higgs may then be canonically normalised
by a suitable field redefinition. The results of the first two lines of eq. (3.8) agree with
those of ref. [11]. The third line agrees with the results of refs. [24, 25].

3.2 Integrating out the top quark coupling to a light pseudo-scalar Higgs A0

3.2.1 The effective coupling A0γγ

In this example, we consider the top quark with a coupling to a light pseudo-scalar, denoted
A0. We assume this field is lighter than the top quark, so that we may integrate the latter
out in order to obtain the Wilson coefficient for the dimension−5 operator coupling between
A0 and two photons. We assume a coupling structure of the pseudo-scalar to the top quark
taking the same form as in the type II Two Higgs Doublet Model (2HDM) or the MSSM.
Note, however, that our result may be generalised to any model involving a pseudo-scalar
coupling to the top quark, by a simple rescaling.

The terms in the UV Lagrangian relevant for computing the effective A0γγ coupling
can be written in the form

LUV ⊃ t̄
[
(i∂µ − eQtFµ) γµ −mt + i

mt

v
cotβA0γ5

]
t, (3.9)

where g/2MW = 1/v and we use the notation of the 2HDM of type II, tan β = v1/v2 with
v =

√
v2

1 + v2
2.5

Upon integrating out the top-quark, we know that the effective interaction A0γγ should
be of the form

LEFT ⊃ CA0γγ A
0FµνF̃

µν , (3.10)

where our convention for the dual field strength tensor is F̃µν≡
1
2εµνρσF

ρσ, with ε0123 =+1.
The aim of this example is therefore to compute CA0γγ arising from the heavy top
quark loop.

UV Lagrangian in the UOLEA form. Before using the pre-computed coefficients
from the tables above, we need to write the UV Lagrangian in eq. (3.9) in the UOLEA

5Note also the use of Fµ for the photon field, to avoid confusion with the axial-vector coupling matrix Aµ.
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form in terms of the relevant structures, which in this case comprises of only W1 in addition
to the covariant derivative,

L(UOLEA form)
UV ⊃ t̄

[
Pµγ

µ −mt − iγ5W1
]
t, (3.11)

where the covariant derivative Pµ (omitting the gluon piece which does not contribute) and
the coupling W1 are

Pµ ⊃ i∂µ − eQtFµ , W1 = −mt

v
cotβA0 . (3.12)

Clearly, the existence of only these two structures means we will only need operators and
coefficients from table 6 above in order to compute CA0γγ . Furthermore, we know that since
both Pµ and W1 are dimension 1, we will need only operators from the table of dimension
5 to form the EFT Lagrangian operator. While in this example the power counting may
seem superfluous since we are only interested in one operator with a transparent structure,
in more complicated examples this counting can be extremely helpful.

Relevant structures in the UOLEA. Now, referring to table 6, we can immediately
identify the necessary combinations of Pµ and W1 that will form the effective operator
A0FµνF̃

µν , along with their universal coefficients (recalling that we must multiply the
coefficients from the table by i). This therefore yields the effective Lagrangian as obtained
from the UOLEA

LEFT ⊃ i
(
m5
tI5
i − 8m3

tI[q2]5i + 24mtI[q4]5i
)
trεµνρσW1[Pµ, Pν ][Pρ, Pσ]

= 1
32π2mt

tr (εµνρσW1[Pµ, Pν ][Pρ, Pσ]) . (3.13)

The trace over the internal indices is then evaluated, to obtain

tr (εµνρσW1[Pµ, Pν ][Pρ, Pσ]) = tr
([
−mt

v
cotβA0

]
(−ieQt)2δab ε

µνρσFµνFρσ

)
= 2 mt

v
cotβ(eQt)2NcA

0FµνF̃µν , (3.14)

where we have used that the commutator [Pµ, Pν ]φ = i(−eQt)Fµνφ. Putting the two pieces
together, we thus obtain the EFT operator corresponding to the effective interaction A0γγ,

LEFT ⊃
e2

16π2v
Q2
tNc cotβA0FµνF̃µν . (3.15)

Comparing eqs. (3.10) and (3.15), we conclude that

CA0γγ = e2

16π2v
Q2
tNc cotβ . (3.16)

We have checked that this agrees with the result obtained by the usual Feynman diagram
derivation. Eq. (3.15) also matches the one in refs. [26–28] once the different convention for
the dual field strength used in those references, F̃µν ≡ εµνρσFρσ, is taken into account. In
contrast to the Feynman diagram computation, here the effective operator and its Wilson
coefficient were trivially obtained using the pre-calculated universal results of the UOLEA
and the simple evaluation of a trace over internal indices.
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3.2.2 The effective coupling A0ZZ

We next consider a more complicated matching procedure than in the previous examples.
Indeed, since we wish to obtain the coefficient of the dimension-5 operator coupling the
pseudo-scalar A0 to Z bosons, it is immediately apparent that we will now need to make
use of the vector and axial-vector coupling matrices Vµ and Aµ.

The relevant terms in the Lagrangian are

LUV ⊃ t̄
[
(i∂µ) γµ −mt +

(
i
mt

v
cotβA0

)
γ5

− g

cos θw

(
T3
2 −Qt sin2 θ

)
Zµγ

µ +
(

g

cos θw
T3
2

)
Zµγ

µγ5
]
t , (3.17)

where we used the same conventions as in refs. [28, 29]. Meanwhile, the effective Lagrangian
for the A0ZZ effective coupling is

LEFT ⊃ CA0ZZA
0ZµνZ̃

µν , (3.18)

where Z̃µν = 1
2ε

µνρσ∂[ρZσ], with ε0123 = +1.

UV Lagrangian in the UOLEA form. As in the previous examples, we first re-write
the UV Lagrangian in terms of the UOLEA structures,

L(UOLEA form)
UV ⊃ t̄

[
Pµγ

µ −mt − iγ5W1 − Vµγµ −Aµγµγ5
]
t, (3.19)

where the Pµ, W1, Vµ, Aµ are defined as



Pµ ⊃ i∂µ ,

W1 = −mt

v
cotβA0 ,

Vµ = gV Zµ ; gV = g

cos θw

(
T3
2 −Qt sin2 θw

)
,

Aµ = gAZµ ; gA = −
(

g

cos θw
T3
2

)
.

(3.20)

We have dropped the gluon and photon pieces in the covariant derivative, since they do
not contribute to the matching calculation here.

Relevant structures in the UOLEA. Having identified the UOLEA structures that
will appear in the construction of the EFT operator, we must now decompose the latter to
determine what UOLEA structures will contribute. The EFT Lagrangian is

LEFT ⊃ CA0ZZA
0ZµνZ̃

µν = 1
2CAZZA

0εµνρσ (∂µZν − ∂νZµ) (∂ρZσ − ∂σZρ) (3.21)
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Thus, to reconstruct the EFT operator in terms of UOLEA structures, we need

• One insertion of W1 to account for the pseudo-scalar A0.

• Two Pµ insertions to account for the partial derivatives.

• To account for the two Z bosons, one might expect some combination of the structures
AA, V V or AV to be required. However, due to the structure of the effective operator,
it is clear that the product of the various UOLEA coupling matrices should have an
odd number of γ5 insertions. Since W1 carries a γ5, AV , which also has one γ5, will
not contribute.

The EFT Lagrangian will therefore be given by the following classes of UOLEA operators,

LEFT ⊃
∑
N

fNO
(P 2V 2W1)
N + fNO

(P 2A2W1)
N . (3.22)

Note that since we are integrating out the top-quark coupling to a single type of vector
boson, the W1, Vµ, Aµ terms are proportional to the identity matrix and so commute with
each other, which will simplify the calculation. Owing to the commutativity of W1 with Aµ
and Vµ, the combination of all the O(P 2A2W1) and O(P 2V 2W1) UOLEA operators of table 8
can be written as

LEFT ⊃ f1tr (εµνρσPµPνVρVσW1) + f2tr (εµνρσPµW1PνVρVσ)
+ f3tr (εµνρσPµPνAρAσW1) + f4tr (εµνρσPµW1PνAρAσ) , (3.23)

where the values of the universal coefficients are

f1 = i
(
4m5

i I5
i − 32m3

i I[q2]5i + 96miI[q4]5i
)

= 1
8π2mt

,

f2 = i
(
−4m5

i I5
i + 32m3

i I[q2]5i − 96miI[q4]5i
)

= −1
8π2mt

,

f3 = i
(
−4m5

i I5
i + 96miI[q4]5i

)
= 1

24π2mt
,

f4 = i
(
4m5

i I5
i − 96miI[q4]5i

)
= −1

24π2mt
. (3.24)

These UOLEA operators and their coefficients can be read off from table 8; a complete
tabulation of UOLEA results for the degenerate vector and axial-vector case can be found
in the accompanying Mathematica notebook, as described in section 2.4. Due to the prolif-
eration of UOLEA operators involving V and A, these are not listed in a commutator basis.
Instead, it is preferable to perform the rearrangement into the commutator basis for the
small subset of operators contributing to a specific application. We will now demonstrate
this for the effective A0ZZ coupling.

Constructing the EFT operators. We begin with the vector structure case,

L(vector)
EFT = f1tr εµνρσPµPνVρVσW1 + f2tr εµνρσPµW1 PνVρVσ , (3.25)
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and rearrange it into the following commutator basis (note that e.g. [V, W1] = 0),

L(vector)
EFT ⊃ c1tr εµνρσW1 [Pµ, Vν ] [Pρ, Vσ] + c2tr εµνρσW1 [Pµ, Pν ] [Vρ, Vσ]

= −c1tr εµνρσPµW1PνVρVσ + (4c2 − c1)tr εµνρσPµPνVρVσW1 . (3.26)

In the second line we have expanded the commutators, so that comparing with the non-
commutator basis of eqs. (3.25) then allows us to solve a system of linear equations that
take us from the non-commutator to the commutator basis of operators,

−c1 = f2

4c2 − c1 = f1
⇔


c1 = −f2 = 1

8π2mt

c2 = f1 − f2
4 = 1

16π2mt

(3.27)

Using [Pµ, Vν ] = i(∂µVν), we may rewrite the operator tr εµνρσW1[Pµ, Vν ][Pρ, Vσ] as

c1 tr εµνρσW1[Pµ, Vν ][Pρ, Vσ] = (i2) c1 tr εµνρσW1(∂µVν)(∂ρVσ)

= c1
i2

4 trW1 [εµνρσ(∂µVν)(∂ρVσ) + εµνσρ(∂µVν)(∂σVρ)

+ ενµρσ(∂νVµ)(∂ρVσ) + ενµσρ(∂νVµ)(∂σVρ) ]

= c1
i2

4 tr εµνρσW1[∂µVν − ∂νVµ][∂ρVσ − ∂σVρ]. (3.28)

Putting it all together, we obtain the contributions from the vector terms O(P 2V 2W1),

L(vector)
EFT ⊃ 1

8π2mt

i2

4 tr εµνρσ
(
−mt

v
cotβA0

)
δab g

2
V ZµνZρσ

= 1
16π2v

Nc cotβ g2

cos2 θw

(
T3
2 −Qt sin2 θw

)2
A0ZµνZ̃µν . (3.29)

The computation for the UOLEA operators involving the axial-vector coupling matrix A
proceeds similarly. We find

L(axial-vector)
EFT ⊃ 1

24π2mt

i2

4 tr εµνρσ
(
−mt

v
cotβA0

)
δab g

2
AZµνZρσ

= 1
48π2v

Nc cotβ
(

g

cos θw
T3
2

)2
A0ZµνZ̃µν . (3.30)

Adding (3.29) and (3.30) gives the final result,

LEFT ⊃
1

48π2v
Nc cotβ g2

cos2 θw

(
T 2

3 + 3Qt sin2 θw[Qt sin2 θw − T3]
)
A0ZµνZ̃µν . (3.31)

This result agrees with the one in ref. [26]. However, the calculation here is carried out in
a more streamlined manner using the UOLEA.
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3.2.3 The effective coupling A0Zγ

To construct the effective coupling A0Zγ resulting from integrating out the top quark
coupling to a light pseudo-scalar A0, we split the interaction with the Z boson into vector
and axial-vector currents. The relevant terms in the UV Lagrangian are then

LUV ⊃ t̄
[
(i∂µ − eQtFµ) γµ −mt +

(
i
mt

v
cotβA0

)
γ5

− g

cos θw

(
T3
2 −Qt sin2 θw

)
Zµγ

µ +
(

g

cos θw
T3
2

)
Zµγ

µγ5
]
t , (3.32)

where Fµ denotes the photon field. We now integrate out the top quark to obtain the
following CP-even effective operator,

LEFT ⊃ CA0ZγA
0ZµνF̃

µν . (3.33)

UV Lagrangian in the UOLEA form. We write the UV Lagrangian (3.32) in the
canonical form,

LUV(UOLEA form) = t̄
[
Pµγ

µ −mt − iγ5W1 − Vµγµ −Aµγµγ5
]
t, (3.34)

where the structures Pµ,W1, Vµ, Aµ correspond to



Pµ ⊃ i∂µ − eQtFµ ,

W1 = −mt

v
cotβA0 ,

Vµ = gV Zµ ; gV = g

cos θw

(
T3
2 −Qt sin2 θw

)
,

Aµ = gAZµ ; gA = −
(

g

cos θw
T3
2

)
.

(3.35)

Note that after the broken phase, our theory still respects U(1)QED, thus the photon
field still lives in the covariant derivative (together with the gluon field, which does not
contribute in the present case and has been omitted), while the Z boson should be put into
the V and A structures.

Relevant structures in the UOLEA. To obtain the EFT operator (3.33), we need:

• One insertion of W1 to account for the appearance of A0.

• Three insertions of Pµ. Two of them form the photon field strength. The last one
will act on the Zµ. Then combining with the anti-symmetric tensor εµνρσ we can
construct the dual field-strength tensor of the Z boson.

• One insertion of V to account for Zµ. As in the previous example, we can count
γ5 insertions to see that no operator involving A can contribute to the EFT opera-
tor (3.33).
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Putting it all together, the relevant class of UOLEA operators which contribute to the
EFT operator (3.33) is then

L(UOLEA)
EFT ⊃

∑
N

fNO
(P 3VW1)
N . (3.36)

Since in this case [W1, Vµ] = 0, we have only one UOLEA operator to consider,

L(vector)
EFT = i

(
−4m5

i I5
i +32m3

i I[q2]5i−96miI[q4]5i
)[

tr(εµνρσPµPνVρPσW1)+h.c.
]
, (3.37)

we note that the operator structure
[
tr (εµνρσPµPνPρVσW1) + h.c.

]
vanishes due to the

antisymmetry of the εµνρσ tensor and [W1, Vµ] = 0. We then rearrange the operator
structures in (3.37) into the basis where P ’s only appear in the commutators. The operator
structures we expect in the commutator basis are

L(vector)
EFT ⊃ f1

(
tr εµνρσ

[
Pµ, Pν

][
Pρ, Vσ

]
W1 + tr εµνρσW1

[
Pµ, Vν

][
Pρ, Pσ

] )
= 2f1

(
tr εµνρσPµPνVρPσW1 + tr εµνρσPµPνW1PρVσ

)
(3.38)

As in the previous examples, we expand the commutators and, using the fact that
[W1, Vµ] = 0, match with the non-commutator basis of eq. (3.37) and fix the value of
the coefficient f1:

f1 = i
1
2
(
−4m5

i I5
i + 32m3

i I[q2]5i − 96miI[q4]5i
)

= −1
16π2mt

. (3.39)

Plugging Pµ, Vµ and W1 from eq. (3.35) into

L(vector)
EFT ⊃ f1

(
tr εµνρσ

[
Pµ, Pν

][
Pρ, Vσ

]
W1 + tr εµνρσW1

[
Pµ, Vν

][
Pρ, Pσ

] )
, (3.40)

and using [Pµ, Pν ] = i (−eQt)Fµν and [Pµ, Vν ] = igV (∂µZν), we obtain

LEFT ⊃ f1 (gV eQt) tr
[
2εµνρσ (∂µZν)FρσW1

]
= f1 (gV eQt) tr

[
εµνρσ (∂µZν)FρσW1 + ενµρσ (∂νZµ)FρσW1

]
= −1

16π2mt
(gV eQt) tr

[(
−mt

v
cotβA0 δab

)
εµνρσZµνFρσ

]
. (3.41)

Taking the trace over colour degrees of freedom and using gV = g

cos θw

(
T3
2 −Qt sin2 θw

)
from eq. (3.35), we obtain the final result,

LEFT ⊃
1

16π2v
Nc cotβ(eQt)

g

cos θw

(
T3 − 2Qt sin2 θw

)
A0ZµνF̃µν . (3.42)

This result agrees with the ones in refs. [24, 26]. Once again we note the relative ease and
efficiency with which the same result can be derived in the UOLEA.
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4 Conclusion

The universality of the one-loop effective action obtained by integrating out heavy degrees
of freedom has emerged as a byproduct of improved path integral methods for performing
these calculations. This so-called UOLEA makes the repeated evaluation of functional de-
terminants redundant and provides a more efficient way of matching at one loop compared
to Feynman diagrams, especially when systematically obtaining an ensemble of operator
coefficients at once. It also has the advantage of being easier to automate.

Previous work developed the bosonic UOLEA for integrating out heavy bosons, includ-
ing mixed heavy-light loops. While these results could be used for integrating out fermions
as well in some cases, they did not account for γ matrices in the fermion couplings, and
were also not as straightforward to use as in the bosonic case. It was therefore necessary to
extend the UOLEA to the fermionic case, and desirable to do so in a way that maintained
the simplicity of the UOLEA approach.

In this work we presented the fermionic UOLEA, which can be used for one-loop
matching with heavy fermions (Dirac or Majorana) in the loop, coupling with structures
involving γ matrices. The starting point is the UV Lagrangian of eq. (1.4), for which
the UOLEA is given by eq. (1.6). A subset of our results for the new UOLEA operators
and the corresponding universal coefficients are tabulated in tables 4, 5, 6, 7 and 8 for
the degenerate mass case, while the full results, in the non-degenerate case for P,W0,W1
structures and in the degenerate case for V,A structures, are available in the accompanying
Mathematica notebook �, [13].6 These expressions can be readily incorporated into codes
that automate the tracing over the internal indices and the rearranging of the resulting
EFT operators into a non-redundant basis.7

The status of the UOLEA terms available and those that remain to be computed is
summarised in table 1. This is listed for completeness though we note that the majority
of UV Lagrangian structures of interest are now included in the UOLEA for obtaining
EFT operators up to dimension 6. Nevertheless, further efforts to complete the UOLEA,
including all possible structures and extending to higher dimensional operators, would then
enable and be a part of a fully general automated one-loop matching tool. This ambitious
goal is left for future work.
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A Integrating out heavy Majorana fermions

We give here more details if one would like to integrate out heavy Majorana fermions. In
this case, the quadratic operator does not change, and we are still able to use the pre-
computed coefficients in the fermionic UOLEA for 1-loop matching. In practice, we can
put the Majorana fields, and their conjugate into a doublet (using the four-component
spinors for each field), and the quadratic operator will multiply with the factor 1

2 and the
12×2 identity matrix.

For illustration, we present here a mini-example integrating out gluino and wino to
clarify our statement. Suppose

LMSSM ⊃
1
2(g̃)TC

[
i
(
∂µ − ig3t

AGAµ

)
γµ −mg̃

]
g̃

+ 1
2(W̃ )TC

[
i
(
∂µ − ig2t

IW I
µ − ig1Y Bµ

)
γµ −mw̃

]
W̃ , (A.1)

where we used the notations and conventions in ref. [33]

g̃ =
(
λg
λ†g

)
, W̃ =

(
λW
λ†W

)
, g̃ =

(
g̃
)TC, and W̃ =

(
W̃
)TC .

We note that the gluino and wino are denoted as Majorana spinors λg and λW , respectively.
Integrating out the heavy fields, g̃ and W̃ , and computing the contributions from the loop
with only heavy Majorana fermions to the gauge boson kinetic terms, we obtain

Left ⊃
1
2 C

(g̃)
(P 4) tr

[
Pµ, Pν

][
Pµ, Pν

]
δαβ12×2 + 1

2 C
(W̃ )
(P 4) tr

[
Pµ, Pν

][
Pµ, Pν

]
δij12×2

= −1
4

(
−1

16π2 2 log
m2
g̃

µ2

)
GAµνG

A
µν −

1
4

(
−1

16π2
4
3 log

m2
W̃

µ2

)
W I
µνW

I
µν

≡ −1
4 δZ

(g̃)
G GAµνG

A
µν −

1
4 δZ

(W̃ )
W W I

µνW
I
µν , (A.2)

where C(i)
(P 4) = i

(
−1

2m
4
i I4
i + 4m2

i I[q2]4i + (5ε− 8)I[q4]4i
)

is taken from tables 4 (result of
the master integrals are listed in ref. [9]) and we then sum over all internal indices (SU(3)
and SU(2) indices for the loop with gluino and wino respectively). The results of δZ(g̃)

G

and δZ(W̃ )
W agree with eq. (3.66) in ref. [33] .
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