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1 Introduction

The rare decay B̄ → Xsγ is an important probe of physics beyond the standard model.

Both the CP averaged branching ratio and the CP asymmetry are used to constrain many

models of new physics. The latest theoretical prediction for the branching ratio within

the Standard Model (SM) is (3.36± 0.23)× 10−4 [1] where a cut on the photon energy of

Eγ > 1.6 GeV is assumed. This can be compared to the 2019 update of the 2018 PDG

(Particle Data Group) experimental value of (3.49± 0.19)× 10−4 [2]. See also the HFLAV

(Heavy Flavor Averaging Group) values in [3]. For the Belle II experiment the uncertainty

is expected to be reduced [4]. This motivates an effort to reduce the uncertainty on the

theoretical prediction.

The largest source of uncertainty in the theoretical prediction, ∼ 5%, is non-

perturbative effects in the form of resolved photon contributions. These arise when the
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photon couples to light partons instead of coupling directly to the effective weak interac-

tion. These effects were systematically studied in [5]. They first appear at power ΛQCD/mb

and arise from the pairs of the weak hamiltonian operators Qq1 − Q7γ (where q = u, c) ,

Q8g − Q8g, and Q7γ − Q8g [5]. While not identified as resolved photon contributions,

non-perturbative effects from Q8g−Q8g [6] and Qq1−Q7γ [7–10] were considered in the lit-

erature in the 1990’s. Resolved photon contributions from Q7γ−Q8g were only considered1

in 2006 [11].

Resolved photon contributions have a more dramatic effect for the B̄ → Xsγ CP

asymmetry due to the suppression of direct photon contributions in the SM [13]. In the

SM the CP asymmetry is dominated by the resolved photon contributions from Qq1−Q7γ .

Including both direct and resolved photon effects the SM prediction of [13] is −0.6% <

ASM
Xsγ

< 2.8%. This can be compared to the 2019 update of the 2018 PDG experimental

value of 1.5%± 1.1% [2]. See also the HFLAV values in [3].

In extensions of the SM in which there is a relative phase between the Wilson coeffi-

cients C7γ and C1 or C7γ and C8g, resolved photon contributions lead to new CP-violating

effects [13]. In particular, effects from of Q7γ − Q8g depends on the flavor of the specta-

tor quark inside the B meson. Such effects can be isolated by considering the difference

between the CP asymmetries of charged and neutral B mesons: ∆AXsγ ≡ AX−s γ −AX0
sγ

.

In [13] it was shown that ∆AXsγ can reach the level of 10% in magnitude for such models.

This quantity was first measured by BaBar to be ∆AXsγ = (5.0 ± 3.9 ± 1.5)% [14] . Re-

cently it was also measured by Belle to be ∆AXsγ = (3.69± 2.65± 0.76)% [15]. The PDG

average of these results is ∆AXsγ = (4.1 ± 2.3)% [2]. The measurements are dominated

by the statistical uncertainty. Therefore, the upcoming Belle II experiment is expected to

reduce the uncertainty [15].

The analysis of [5] for the total rate gives the following contributions to the uncertainty

from resolved photon contributions. For Qc1 −Q7γ it was [−1.7,+4.0] %. For Q8g −Q8g it

was [−0.3,+1.9] %. For Q7γ −Q8g two values were given. One based on vacuum insertion

approximation (VIA) [−2.8,−0.3] % and the other based on experimental data available at

the time [−4.4,+5.6] %. In particular the latter is related to ∆0−, the isospin asymmetry

of inclusive neutral and charged B decay to Xsγ. In 2010 only values from BaBar were

available in [16, 17].

Recently Belle has also published a value for ∆0− [15]. They obtain ∆0− = [−0.48 ±
1.49(stat) ± 0.97(syst) ± 1.15(f+−/f00)] %, where the last uncertainty is due to the un-

certainty on the production ratio of B+B− to B0B̄0 in Υ(4S) decays. The PDG average

of [15–17] is ∆0− = (−0.6 ± 2.0)%. If we take the 95% confidence level experimental

range of this average, as was done in [5], and translate it to the relative uncertainty via

−(1± 0.3)∆0−/3 [5, 18] we obtain that the Q7γ −Q8g uncertainty is [−1.4,+2] %. This is

more than a factor of two reduction compared to the 2010 analysis [5].

Can we better constrain other resolved photon contributions? For Q8g − Q8g this

seems difficult as little is known about the soft function it depends on. For Qq1 − Q7γ ,

the contribution depends on a soft function whose moments are related to Heavy Quark

1See also [12] for a model-dependent treatment.
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Effective Theory (HQET) parameters. These HQET parameters appear also for inclusive

semileptonic B decays. The contributions to inclusive semileptonic B decays of HQET

parameters corresponding to dimension 7 and 8 HQET operators with tree level coefficients2

were classified in [21]. In 2016 the authors of [22] used moments of semileptonic B decay

spectra and information based on the lowest-lying state saturation approximation in [21, 23]

to perform a global fit of these HQET parameters. Using the results of [19] one can relate

higher moments of the soft function to these HQET parameters. The goal of this paper is

to use this new information to better constrain the Qq1−Q7γ resolved photon contribution

to B̄ → Xsγ total rate and CP asymmetry.

The paper is structured as follows. In section 2 we derive general expressions for

the moments of soft function in terms of HQET matrix elements. We relate such matrix

elements of dimension 7 and 8 HQET operators to the HQET parameters of [21]. In

section 3 we apply these relations to construct a systematic and improvable model of the

soft function. We use the existing information about the HQET parameters to estimate

the Qq1 − Q7γ resolved photon contribution to B̄ → Xsγ total rate and CP asymmetry.

We present our conclusions and outlook in section 4. In the appendix we derive a useful

identity that is used in section 2.

2 Moments of g17

The resolved photon contribution of Qq1 − Q7γ to the B̄ → Xsγ spectrum depends on a

non-perturbative soft function g17(ω, ω1, µ), see [5]. It is defined as

g17(ω,ω1,µ) =

∫
dr

2π
e−iω1r

∫
dt

2π
e−iωt (2.1)

×
〈B̄|
(
h̄Sn

)
(tn) /̄n(1+γ5)

(
S†nSn̄

)
(0) iγ⊥α n̄β

(
S†n̄ gG

αβ
s Sn̄

)
(rn̄)

(
S†n̄h

)
(0)|B̄〉

2MB
,

where Sn and Sn̄ are Wilson line defined in [5] and in the appendix. Intuitively we can

think of ω as the momentum carried by the heavy quark and ω1 as the momentum carried

by the soft gluon. Moments of g17 can be expressed in terms of HQET matrix elements and

related to HQET parameters extracted from inclusive semileptonic B decays. We consider

three types of moments: moments in ω1 alone, moments in ω alone, and moments in both

ω1 and ω. We derive general expressions for each type of moments. We then relate matrix

elements of HQET operators up to and including dimension 8 to known HQET parameters.

2.1 Moments in ω1 alone

We look at moments of the form

〈ω0ωk1 g17〉≡
∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1ω
k
1 g17(ω,ω1,µ) = (2.2)

= (−1)k
1

2MB
〈B̄|
(
h̄Sn̄

)
(0) /̄n(1+γ5) iγ⊥α n̄β (in̄ ·∂)k

(
S†n̄ gG

αβ
s Sn̄

)
(rn̄)

(
S†n̄h

)
(0)|B̄〉

∣∣
r=0

.

2When considering O(αs) coefficients, more operators appear [19, 20].
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Using the identity, proven in the appendix, in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
= S†n̄(x)

[
in̄ ·

D,O(x)
]
Sn̄(x), we can express the moments as matrix elements of the local operators

〈ω0 ωk1 g17〉 ≡
∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω
k
1 g17(ω, ω1, µ) = (2.3)

= (−1)k
1

2MB
〈B̄|h̄ /̄n(1 + γ5) iγ⊥α n̄β

[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

, gGαβs
]
· · ·
]]
h|B̄〉 =

= (−1)k
1

2MB
〈B̄|h̄ /̄n(1 + γ5) γ⊥α

[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

,
[
iDα, in̄ ·D

]
· · ·
]]
h|B̄〉.

In the last line we have used the identity
[
iDµ, iDν

]
= igGµν .

The Dirac structure of HQET matrix elements is simplified by using that P+h = h,

where P+ ≡ (1 + /v)/2. As was shown in [24], between two P+’s the Dirac basis reduces to

four matrices: P+ and sλ = P+γ
λγ5P+. The matrices sλ are a generalization of the Pauli

spin matrices that satisfy v · s = 0. This allows to simplify the Dirac structure.

Consider /̄nγ⊥α first. Since n̄ and α are orthogonal, /̄nγ⊥α = −iσµα⊥ n̄µ. The matrix

(−iσµν) is related to sλ via [24]

(−iσµν)→ 1 + /v

2
(−iσµν)

1 + /v

2
= ivρερµνλs

λ. (2.4)

Note that this equation uses the convention ε0123 = −1. Thus /̄nγ⊥α → ivρερµα⊥λs
λn̄µ. The

Dirac structure /̄nγ5γ⊥α can be simplified using the identity [24]

P+ΓP+ =
1

2
P+Tr [P+Γ]− 1

2
sλTr [P+sλP+Γ] , (2.5)

which gives P+ /̄nγ
5γ⊥α P+ → −sα⊥ . We thus have

〈ω0ωk1g17〉≡
∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1ω
k
1 g17(ω,ω1,µ) = (2.6)

= (ivρερµα⊥λn̄
µ−gα⊥λ)(−1)k

1

2MB
〈B̄|h̄

[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

,
[
iDα, in̄ ·D

]
· · ·
]]
sλh|B̄〉.

The tensors in the last line can be related to the gµν⊥ and εµν⊥ defined in [25], although we

will not need such relations.

The nested commutator structure implies that odd moments vanish. The covariant

derivative is a Hermitian operator. Odd number of commutators of Hermitian operators

is a Hermitian operator whose forward matrix element is real. Since the spin-dependent

matrix elements are imaginary, see [19], such matrix elements are zero. As was shown

in [5], the integral over ω of g17(ω, ω1, µ) is symmetric in ω1 which also implies that odd

moments in ω1 must vanish.

We use the general decomposition of HQET matrix elements presented in [19] to find

the moments in ω1 up to the third moment. We find no contribution from the structure
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/̄nγ5γ⊥α , as expected from [5], and that odd moments in ω1 vanish. We have

〈ω0ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 g17(ω,ω1,µ) = 4ã(5) = 2λ2 = 2µ2
G/3

〈ω0ω1
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1ω1 g17(ω,ω1,µ) = 0

〈ω0ω2
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1ω
2
1 g17(ω,ω1,µ) = 4

(
−4ã

(7)
12 +2ã

(7)
13 +3ã

(7)
14 − ã

(7)
23 + b̃(7)

)
=

=
2

15
(5m5 +3m6−2m9)

〈ω0ω3
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1ω
3
1 g17(ω,ω1,µ) = 0. (2.7)

The zeroth moment is a known result. The result for the second moment is new.

Here and in the following we are expressing the matrix elements in terms of the param-

eters ã
(k)
ij , b̃

(k)
ij , c̃

(k)
ij of [19], λ2, ρ2 of [24], and µ2

G, ρ
3
LS ,mi, ri of [21]. See [19] for definitions

and relations between these parameters. Since ã
(k)
ij , b̃

(k)
ij , c̃

(k)
ij and λ2, ρ2 are defined in the

heavy quark limit while µ2
G, ρ

3
LS ,mi, ri are not, there are 1/mb differences between, e.g.,

λ2 and µ2
G/3. We discuss these differences in section 3.1.

2.2 Moments in ω alone

We look at moments of the form

〈ωkω0
1 g17〉≡

∫ Λ̄

−∞
dωωk

∫ ∞
−∞

dω1 g17(ω,ω1,µ) = (2.8)

=

∫ Λ̄

−∞
dωωk

∫
dt

2π
e−iωt

1

2MB
〈B̄|
(
h̄Sn

)
(tn) /̄n(1+γ5)S†n(0) iγ⊥α n̄β gG

αβ
s (0)h(0)|B̄〉=

=

∫ Λ̄

−∞
dωωk

∫
dt

2π
eiωt

1

2MB
〈B̄|
(
h̄Sn

)
(0) /̄n(1+γ5)S†n(tn) iγ⊥α n̄β gG

αβ
s (tn)h(tn)|B̄〉=

=

∫
dtδ(t)

1

2MB
〈B̄|h̄(0)Sn(0)(in ·∂)kS†n(tn) /̄n(1+γ5) iγ⊥α n̄β gG

αβ
s (tn)h(tn)|B̄〉.

where we have used the translation invariance of forward matrix elements of non-local

operators. The identity S†n(x) in · DSn(x) = in · ∂ which follows from in · DSn(x) = 0

implies that S†n(tn) in ·D = in · ∂ S†n(tn). This allows us to express the moments as

〈ωk ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ωk

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = (2.9)

= (ivρερµα⊥λn̄
µ − gα⊥λ)

1

2MB
〈B̄|h̄ (in ·D)k

[
iDα, in̄ ·D

]
sλh|B̄〉.

Notice that the location of (in ·D)k is determined by the Wilson lines in the n direction.

We use the general decomposition of HQET matrix elements presented in [19] to find

the moments in ω up to the third moment. As before there is no contribution from the

– 5 –



J
H
E
P
1
1
(
2
0
1
9
)
1
4
1

structure /̄nγ5γ⊥α . We have

〈ω0 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = 4ã(5) = 2λ2 = 2µ2
G/3

〈ω1 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ω

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = −2ã(6) = −ρ2 = −ρ3
LS/3

〈ω2 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ω2

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = −2
(

2ã
(7)
12 − ã

(7)
14 + ã

(7)
23 + b̃(7)

)
=

= − 1

60
(20m5 + 2m7 +m8)

〈ω3 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ω3

∫ ∞
−∞

dω1 g17(ω, ω1, µ) =

= −2
(

2ã
(8)
12 − ã

(8)
15 + ã

(8)
24 + 2b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 − 2b̃

(8)
35 − b̃

(8)
45 + c̃(8)

)
=

= − 1

15
(5r8 − r9 + 2r10 + r11 − 2r12 − r13 + 2r15 − r16 + r17) (2.10)

The first moment was derived in [5]. The results for the second and third moments are

new.

2.3 Moments in both ω1 and ω

Combining the derivations in the previous subsections, the expression for the mixed mo-

ments in ω1 and ω is

〈ωl ωk1 g17〉 ≡
∫ Λ̄

−∞
dω ωl

∫ ∞
−∞

dω1 ω
k g17(ω, ω1, µ) = (ivρερµα⊥λn̄

µ − gα⊥λ) (−1)k × (2.11)

× 1

2MB
〈B̄|h̄ (in ·D)l

[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

,
[
iDα, in̄ ·D

]
· · ·
]]
sλh|B̄〉.

We use the general decomposition of HQET matrix elements presented in [19] to find the

mixed moments in ω up to operators of dimension 8. These are

〈ω1ω1
1 g17〉 ≡

∫ Λ̄

−∞
dωω

∫ ∞
−∞

dω1ω1 g17(ω,ω1,µ) = 2
(
−4ã

(7)
12 +2ã

(7)
13 +3ã

(7)
14 − ã

(7)
23 + b̃(7)

)
=

=
1

15
(5m5 +3m6−2m9)

〈ω2ω1
1 g17〉 ≡

∫ Λ̄

−∞
dωω2

∫ ∞
−∞

dω1ω1 g17(ω,ω1,µ) =

= 2
(

3ã
(8)
12 − ã

(8)
14 −2ã

(8)
15 + ã

(8)
24 −3b̃

(8)
13 + b̃

(8)
14 +4b̃

(8)
15 +3b̃

(8)
35 − b̃

(8)
45 + c̃(8)

)
=

=
1

15
(5r8−r9−3r10 +r11 +3r12 +4r13 +3r15−2r16 +r17−r18)

〈ω1ω2
1 g17〉 ≡

∫ Λ̄

−∞
dωω1

∫ ∞
−∞

dω1ω
2
1 g17(ω,ω1,µ) =

= 2
(

3ã
(8)
12 − ã

(8)
14 −2ã

(8)
15 + ã

(8)
24 +3b̃

(8)
13 + b̃

(8)
14 −2b̃

(8)
15 +2b̃

(8)
34 − b̃

(8)
35 + b̃

(8)
45 − c̃

(8)
)

=

=
1

15
(−5r8 +r9 +3r10 +r11−r12−2r13 +2r14 +3r15−2r16 +r17−r18) (2.12)

– 6 –
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As before, there is no contribution from the structure /̄nγ5γ⊥α . All the results for these

moments are new.

3 Applications

3.1 Current numerical values of moments

The HQET parameters arising from matrix elements of HQET operators up to dimension

8 were extracted from experimental data in 2016 [22]. The authors of [22] used moments

of semileptonic B decay spectra and information based on the lowest-lying state saturation

approximation in [21, 23] to perform a global fit of these HQET parameters. Based on the

values and standard deviations given in table 2 of [22] the non-zero moments of g17 are

〈ω0 ω0
1 g17〉 = 0.237± 0.040 GeV2

〈ω0 ω2
1 g17〉 = 0.15± 0.12 GeV4

〈ω1 ω0
1 g17〉 = 0.056± 0.032 GeV3

〈ω2 ω0
1 g17〉 = 0.015± 0.021 GeV4

〈ω3 ω0
1 g17〉 = 0.008± 0.011 GeV5

〈ω1 ω1
1 g17〉 = 0.073± 0.059 GeV4

〈ω2 ω1
1 g17〉 = −0.034± 0.016 GeV5

〈ω1 ω2
1 g17〉 = 0.027± 0.014 GeV5, (3.1)

where we have added the error bars of individual HQET parameters in quadrature. We do

not include correlations as none were given in table 2 of [22].

While the relative errors are large, the moments do give useful information. For ex-

ample, the two extremal models used in [5] for h17, defined in (3.2), have 〈ω0 ω2
1 g17〉 =

−0.31 GeV4 and 〈ω0 ω2
1 g17〉 = 0.49 GeV4. Using the value above of 0.15± 0.12 GeV4 this

corresponds to roughly a three standard deviations range, as opposed to the one standard

deviation range in (3.1). Similarly, in figure 1 we compare the models of [5] for h17 that

used a sum of two Hermite polynomials to the sum of two Hermite polynomial model for

h17 (defined below) with the current extremal values of 〈ω0 ω2
1 g17〉.

As was alluded to in the previous section, the parameters defined in [21] and listed

in [22] use the full QCD b fields, while the matrix elements we need are defined in the heavy

quark limit. This implies that there are 1/mb differences between, e.g., λ2 and µ2
G/3, see [26,

27]. Since the error bars in table 2 of [22] are rather large, one might question if this issue is

numerically important. To test this, we compare the value of µ2
G/3 from [22] to extractions

of λ2 (which is defined in the heavy quark limit) from B and D meson spectroscopy.

We define ∆mH = m∗H−mH , where mH (m∗H) is a pseudo-scalar (vector) heavy meson

containing a heavy quark of mass mQ. The expression for ∆mH up to order 1/m2
Q can

be found3 in [26]. To extract λ2 we use isospin-averaged meson mass data from the 2019

update of the 2018 PDG review [2]. At order 1/mQ, λ2 = ∆mHmH/2. Thus λ2 = 0.119±
3For consistency with the rest of our paper, we do not include the scale dependance of λ2 which is an

O (αs) effect.
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Figure 1. A comparison of the extremal models for h17 as a sum of two lowest even Hermite

polynomials times a Gaussian of width 0.5 GeV used in [5] (dashed blue) to the same models

allowed by current (2019) data (solid black). Left hand side: the model with 2010 smallest possible

second moment of −0.31 GeV4 compared to 2019 smallest possible second moment of 0.03 GeV4.

Right hand side: the model with 2010 largest possible second moment of 0.49 GeV4 compared to

2019 largest possible second moment of 0.27 GeV4.

0.001 GeV2 fromB-meson data, and λ2 = 0.13193±0.00002 GeV2 fromD-meson data. The

errors are only from the meson masses. At order 1/m2
Q, λ2 = (∆mBm

2
B−∆mDm

2
D)/(2mB−

2mD) [26]. Thus λ2 = 0.112±0.001 GeV2. Comparing to µ2
G/3 = 0.118±0.020 GeV2 [22],

we see that it is equal to all of these values of λ2 within errors. Thus currently we cannot

distinguish the two. To be conservative, we will use µ2
G/3 from [22]. We assume that a

similar situation applies to other HQET parameters.

One would expect that in the future data from Belle II or Lattice QCD will allow to

further constrain the HQET parameters and hence the moments of g17.

3.2 Resolved photon contributions for Qq1 −Q7γ

The information about the moments presented above can be used to better constrain the

resolved photon contribution of Qq1−Q7γ . The observables we consider are the CP averaged

rate and the CP asymmetry, both integrated over the photon energy E0 ≤ Eγ ≤ MB/2

where MB is the B meson mass. As was discussed in [5], provided that ∆ ≡ mb − 2E0

is much larger than ΛQCD, the contribution of Qq1 − Q7γ is expressed in terms of the soft

function

h17(ω1, µ) =

∫
dr

2π
e−iω1r

〈B̄|
(
h̄Sn̄

)
(0) /̄n iγ⊥α n̄β

(
S†n̄ gG

αβ
s Sn̄

)
(rn̄)

(
S†n̄h

)
(0)|B̄〉

2MB
. (3.2)

obtained from g17(ω, ω1, µ) by integrating over ω and omitting γ5 [5].

For the CP averaged rate the quantity we are interested in is FE(∆) corresponding

to the relative theoretical uncertainty from the resolved photon contributions. As shown

in [5] its Qu1 −Q7γ part vanishes. Its Qc1 −Q7γ part is

F17
E =

C1(µ)

C7γ(µ)

Λ17(m2
c/mb, µ)

mb
, (3.3)
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where

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ ∞
−∞

dω1

ω1

[
1− F

(
m2
c − iε
mb ω1

)
+
mb ω1

12m2
c

]
h17(ω1, µ) , (3.4)

and F (x) = 4x arctan2
(
1/
√

4x− 1
)
. Assuming ∆ � ΛQCD allows to replace g17(ω, ω1, µ)

by h17(ω1, µ) and ignore the ∆ dependence in F17
E (∆). In [5] Λ17 was estimated to be in

the range −60 MeV < Λ17 < 25 MeV. We would like to use the information about the

moments to revisit this estimate.

For the CP asymmetry the quantity we are interested in is the Qq1 − Q7γ part of the

resolved photon contribution to the CP asymmetry Ares,17
Xsγ

, defined as [13]

Ares,17
Xsγ

=
π

mb

{
Im

[
(1 + εs)

C1

C7γ

]
Λ̃c17 − Im

[
εs

C1

C7γ

]
Λ̃u17

}
, (3.5)

where

Λ̃u17 =
2

3
h17(0) , Λ̃c17 =

2

3

∫ ∞
4m2

c/mb

dω

ω
f

(
m2
c

mb ω

)
h17(ω) , (3.6)

with

f(x) = 2x ln
1 +
√

1− 4x

1−
√

1− 4x
. (3.7)

In [13] Λ̃u17 and Λ̃c17 were estimated to be in the range −330 MeV < Λ̃u17 < +525 MeV and

−9 MeV < Λ̃c17 < +11 MeV. We would like to use the information about the moments to

revisit these estimates.

To do that, we will consider various approaches to estimate the hadronic uncertainty

arising from the soft function h17 and its moments. We also take into account the un-

certainty from the values of the charm and bottom quark masses. They appear in the

functions F (x) and f(x) above.

As discussed in [5], the charm-quark mass enters as a running mass in charm-penguin

diagrams with a soft gluon emission, which are characterized by a hard-collinear virtuality.

As in [5] we use mc = mc(µ) defined in the MS scheme with µ = 1.5 GeV for the CP

averaged rate. As in [13] we use mc = mc(µ) defined in the MS scheme with µ = 2.0 GeV

for the CP asymmetry. We will comment on the choice of scales in the conclusions.

The 2019 update of the 2018 PDG listing has mc(mc) = 1.27 ± 0.02 GeV [2]. This

is an average of masses in other schemes converted to the MS scheme using two-loop

QCD perturbation theory with αs(µ = mc) = 0.38 ± 0.03 [2]. We use the same two-loop

QCD perturbation theory [28] to find mc(1.5 GeV) = 1.20± 0.03 GeV and mc(2.0 GeV) =

1.10±0.03 GeV. This should be compared, for example, to the value used in [5] of 1.131 GeV

derived based on a smaller value of mc(mc) from [29] that was also used in [30, 31]. The

change in the value of the charm quark mass tends to slightly change the size of Λ17 and Λ̃c17.

Following [5] we will use the value of the bottom quark in the shape function

scheme [32]. The latest HFLAV [3] value is mb = 4.58±0.03 GeV. This should be compared

to the value of 4.65 GeV used in [5].
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3.3 Λ17 estimates based on expanded penguin function

The soft function h17 appears in Λ17 convoluted with a penguin function F that depends

on the ratio m2
c to the anti-hard-collinear scale mb ω1. For x > 1/4, 1 − F (x) has the

expansion

1− F (x) = − 1

12x
− 1

90x2
− 1

560x3
+O

(
1

x4

)
(3.8)

Assuming that h17 has support for values of ω1 � 4m2
c/mb ≈ 1.2 − 1.3 GeV we can

expand the penguin function and express Λ17 in terms of the moments of h17. From the

definition of h17 it is clear that 〈ω0 ωk1 g17〉 = 〈ωk1 h17〉. Thus

Λexpanded
17 = −

ecm
3
b

560m6
c

〈ω0 ω2
1 g17〉+ · · · = −6± 5 MeV + · · · , (3.9)

where · · · denotes the contribution of higher moments in ω1. Odd moments in ω1 vanish.

The contribution of the zeroth moment in ω1 is subtracted in (3.4) since it is traditionally

not included in the resolved photon contributions. Its size is −ecmb2λ2/(12m2
c) = −42 ±

7 MeV. The uncertainty in (3.9) arises from 〈ω0 ω2
1 g17〉, mb, and mc added in quadrature.

The size of the contribution of higher dimensional operators was a concern for the

authors of [7–10]. They have noticed the numerical suppression arising from the expansion

of the penguin function, see (3.8), but the lack of knowledge of the matrix elements pre-

vented them from making conclusive statements. The new numerical information about

the higher dimensional matrix elements allows us to address this issue for the first time.

The expansion of the penguin function generates a numerical suppression factor of ∼ 50

between the first and third term4 in (3.8). Despite that, when combined with the second

moment, the central value of the total contribution in (3.9), −6 MeV, is only suppressed

by a factor of seven compared to the central value of the contribution proportional to the

zeroth moment, −42 MeV. The smaller suppression is consistent with the power counting

of m2
c ∼ mbΛQCD which disfavors the expansion of the penguin function.

As in [5], it is instructive to look at ΛQCD/mb corrections to Λexpanded
17 . In [5] only

the moment 〈ω ω0
1 g17〉 was considered. We are at the position now to consider other

moments too. The starting point is the expression for Λ17 that includes the photon energy

dependance beyond leading power in ΛQCD/mb [5]

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1

ω1
(3.10)

×

{(
mb + ω

mb

)3 [
1− F

(
m2
c − iε

(mb + ω)ω1

)]
+
mb ω1

12m2
c

}
g17(ω, ω1, µ) .

We expand F (x) as above and in ω/mb and consider 1/mn
b corrections to Λexpanded

17 denoted

by δΛ
(n)
17 . By definition, Λexpanded

17 = δΛ
(0)
17 . For δΛ

(1)
17 we have

δΛ
(1)
17 = − ec

3m2
c

〈ω1 ω0
1 g17〉 −

ecmb

18m4
c

〈ω1 ω1
1 g17〉 −

3ecm
2
b

280m6
c

〈ω1 ω2
1 g17〉+ · · · (3.11)

= (−9± 5 MeV) + (−6± 5 MeV) + (−1± 1 MeV) + · · · = −16± 7 MeV + · · · .
4Recall that the second term combines with 〈ω0 ω1 g17〉 which is zero.
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We notice again a slow convergence in the series generated from the expansion of F (x).

Only in the third term can we see a suppression compared to the pervious terms. Although

nominally a ΛQCD/mb correction, δΛ
(1)
17 is comparable in size to Λexpanded

17 . Even if we add

the contribution of 〈ω0 ω0
1 g17〉 to Λexpanded

17 , δΛ
(1)
17 is only suppressed by a factor of three.

The Λ2
QCD/m

2
b correction for Λexpanded

17 is

δΛ
(2)
17 = − ec

2mbm2
c

〈ω2 ω0
1 g17〉 −

ec
9m4

c

〈ω2 ω1
1 g17〉+ · · · (3.12)

= (−0.8± 1.1 MeV) + (1.2± 0.6 GeV) + · · · = 0.4± 1.3 MeV + · · · .

Again we observe a slow convergence in the series generated from the expansion of F (x).

The overall magnitude in this case is consistent with a simple ΛQCD/mb ∼ 0.1 expectation.

Finally, the Λ3
QCD/m

3
b correction for Λexpanded

17 is

δΛ
(3)
17 = − ec

3m2
b m

2
c

〈ω3 ω0
1 g17〉 = −0.06± 0.08 MeV + · · · . (3.13)

As for δΛ
(2)
17 , we observe the expected order of magnitude reduction in going to the next

term in ΛQCD/mb.

We see that numerically the ΛQCD/mb expansion for δΛ17 works well with the exception

of the first term. One can speculate that the vanishing of 〈ω0 ω1
1 g17〉 makes the zeroth

term in the expansion Λ17 of (3.10) smaller than it “should” be. Since in general for

l > 0 the moments 〈ωl ωk1 g17〉 do not vanish, there is no such suppression beyond the

zeroth term. Adding the terms above linearly and their uncertainties in quadrature gives

Λexpanded
17 + δΛ

(1)
17 + δΛ

(2)
17 + δΛ

(3)
17 = −22± 9 MeV.

As was discussed in [5], the assumptions about the support of h17 and the resulting

expansion of the penguin function are too restrictive. We turn to estimates that do not

relay on this expansion.

3.4 Modeling of h17

As was shown in [5], h17(ω1, µ) is an even function. It also has a dimension of mass and in

the heavy quark limit −∞ ≤ ω1 ≤ ∞. In modeling h17 it is beneficial to have a systematic

expansion of h17, e.g. in terms of a complete orthonormal set of basis functions. For the

leading power shape function such an expansion was suggested in [33]. We will use an

expansion in terms of Hermite polynomials multiplied by a Gaussian of width σ:

h17(ω1, µ) =
∑
n

a2nH2n

(
ω1√
2σ

)
e−

ω21
2σ2 . (3.14)

Since h17 is even, only even polynomials are needed. In the following we refer to these mod-

els by the numbers of Hermite polynomials they contain. Since the Hermite polynomials

are orthogonal, the 2k-th moment of h17 only depends on the coefficients a2n with n ≤ k,

for a given value of σ. In other words, the lack of knowledge of higher moments does not

affect models that only use lower moments. For example, the zeroth moment of h17 only

depends on a0 and the second moment of h17 only depends on a0 and a2. Conversely, we
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can use the first 2k-th moments to determine a2n with n ≤ k. Using 〈ω0 ωk1 g17〉 = 〈ωk1 h17〉
we have, for example, for a0 and a2

a0 =
〈ω0

1 h17〉√
2π|σ|

, a2 =
〈ω2

1 h17〉 − σ2〈ω0
1 h17〉

4
√

2π|σ|3
. (3.15)

To further constrain h17(ω1, µ), we use the fact that it is a soft function. We limit its

absolute value to 1 GeV, i.e. |h17(ω1, µ)| ≤ 1 GeV and require, as in [5], that it should not

have any significant structures, such as peaks or zeros, outside the range |ω1| ≤ 1 GeV. This

allows us to restrict the range of σ. For example, assuming a model of a sum of two Hermite

polynomials, for given values of 〈ω0
1 h17〉 and 〈ω2

1 h17〉, the requirement on significant struc-

tures only for |ω1| ≤ 1 GeV gives an upper bound on σ and the condition |h17(ω1, µ)| ≤
1 GeV gives a lower bound on σ. For example, assuming the central values for 〈ω0

1 h17〉 =

0.237 GeV2 and 〈ω2
1 h17〉 = 0.15 GeV4 gives 0.27 GeV < σ < 0.62 GeV. For other values

of 〈ω0
1 h17〉 and 〈ω2

1 h17〉 within their one standard deviation range, the range of σ can be

larger, but we restrict σ to be less than 1 GeV. As we will see below, this does not affect

our estimates in practice since the extremal values we obtain are for σ < 1 GeV anyway.

We consider models with one, and two Hermite polynomials whose coefficients are

determined by the known moments as well as models with more Hermite polynomials

whose coefficients depended on unknown moments.

3.4.1 One Hermite polynomial model

Since σ is not determined by the moments, a model with one Hermite polynomial can in

principle be adjusted to fit both the zero and second moment of h17. Notice from (3.15)

and (3.1) that a0 is never zero, so a one Hermite polynomial model must include H0. The

one Hermite polynomial model is thus

hmodel-1
17 (ω1) =

〈ω0
1 h17〉√
2π|σ|

e−
ω21
2σ2 . (3.16)

The second moment of hmodel-1
17 implies σ =

√
〈ω2

1 h17〉/〈ω0
1 h17〉. This is also the condition

for a2 = 0 in (3.15).

Varying the zero and second moment within their one standard deviation ranges leads

to values of σ that exceed 1 GeV. For example, this happens for 〈ω2
1 h17〉 = 0.27 GeV4

and for almost all values of 〈ω0
1 h17〉 within its one standard deviation range. Based on

the criterion above, we should reject such models. But even if we include them, the

values of Λ17, Λ̃
u
17, and Λ̃c17 we obtain are included in the ranges for the two Hermite

polynomials model below. Thus we find Λ17 ∈ [−8,−1] MeV, Λ̃c17 ∈ [0, 7.5] MeV, and

Λ̃u17 ∈ [45, 220] MeV.

3.4.2 Sum of two Hermite polynomials model

A model that contains a sum of two Hermite polynomials for a given value of σ is determined

by (3.15), i.e. by the zeroth and second moment of h17. The values of a0 and a2 depend on

σ, but for σ of the order of a few hundred MeVs they are typically of the order of 1 GeV

and often smaller.

– 12 –



J
H
E
P
1
1
(
2
0
1
9
)
1
4
1

Numerically scanning over the one standard deviation range of the moments and the

possible values of σ in increments of δσ = 0.01 GeV, and based on the restrictions above

on h17 gives Λ17 ∈ [−21,−1] MeV. The lower value is obtained for 〈ω0
1 h17〉 = 0.197 GeV2,

〈ω2
1 h17〉 = 0.27 GeV4, σ = 0.44 GeV, mc = 1.17 GeV, and mb = 4.61 GeV. The upper

value is obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, σ = 0.14 GeV, mc =

1.23 GeV, and mb = 4.55 GeV. Thus the extremal values are obtained for extremal values

of the two moments, anti-correlated, and the extremal values of mc and mb, anti-correlated.

It is instructive to check the dependance on mb and mc. For example, consider the

set 〈ω0
1 h17〉 = 0.197 GeV2, 〈ω2

1 h17〉 = 0.27 GeV4, σ = 0.44 GeV that leads to Λ17 =

−21 MeV. Changing mb = 4.61 to mb = 4.55 GeV while keeping mc = 1.17 GeV changes

Λ17 by +1 MeV. Thus the dependance on the value of mb is rather mild. Changing mc =

1.17 GeV to mc = 1.23 GeV while keeping mb = 4.61 GeV changes Λ17 by +6 MeV. Thus

the dependance on the value of mc is more pronounced. We will further comment on this

in the conclusions.

Using the same method we can find the range of allowed values for Λ̃c17. We have

Λ̃c17 ∈ [0, 10] MeV. The lower value is obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 =

0.03 GeV4, σ = 0.14 GeV, mc = 1.13 GeV, and mb = 4.55 GeV. The upper value is obtained

for 〈ω0
1 h17〉 = 0.197 GeV2, 〈ω2

1 h17〉 = 0.27 GeV4, σ = 0.58 GeV, mc = 1.07 GeV, and

mb = 4.61 GeV. Again the extremal values are obtained for extremal values of the two

moments, anti-correlated, and the extremal values of mc and mb, anti-correlated.

Lastly, we consider Λ̃u17. Using the parameterization above we have the expression

Λ̃u17 =
2

3
h17(0) =

3σ2〈ω0
1 h17〉 − 〈ω2

1 h17〉
3
√

2π|σ|3
. (3.17)

Since both moments are positive within their one standard deviation range, we can easily

make h17(0) negative by choosing a small value of σ. Thus the smallest value of h17(0)

based on |h17(ω1, µ)| ≤ 1 GeV is −1 GeV. For example, for the central values of 〈ω0
1 h17〉

and 〈ω2
1 h17〉, the value of σ = 0.27 GeV gives h17(0) = −1 GeV. To make h17(0) reach

its highest possible value, we can choose the smallest value of 〈ω2
1 h17〉, 0.03 GeV4 and the

largest value of 〈ω0
1 h17〉, 0.277 GeV2. The extremal value of h17(0) = 0.33 GeV is obtained

for σ =
√
〈ω2

1 h17〉/〈ω0
1 h17〉 = 0.33 GeV. Based on this we find that Λ̃u17 ∈ [−660, 220] MeV.

3.4.3 Sum of three Hermite polynomials model

A model that contains a sum of three Hermite polynomials for a given value of σ requires

the knowledge of the fourth moment of h17:

a4 =
〈ω4

1 h17〉 − 6σ2〈ω2
1 h17〉+ 3σ4〈ω0

1 h17〉
96
√

2π|σ|5
. (3.18)

The fourth moment is currently unknown since it is a matrix element of a dimension 9

operator. To asses the impact of such a moment if it were known, we assume the very

conservative estimate of [−0.3, 0.3] GeV6 for 〈ω4
1 h17〉. This covers all the numerical ranges

in (3.1) but with a different dimension of course. We still maintain the restrictions of the

values, zeros, and extremal points of h17 to be below 1 GeV.
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Numerically scanning over the one standard deviation range of the known zero and

second moments, the range [−0.3, 0.3] GeV6 for the unknown fourth moment in increments

of 0.05 GeV and the possible values of σ based on the restrictions above gives Λ17 ∈
[−24, 3] MeV. The lower value is obtained for 〈ω0

1 h17〉 = 0.277 GeV2, 〈ω2
1 h17〉 = 0.27 GeV4,

〈ω4
1 h17〉 = 0.3 GeV6, σ = 0.32 GeV, mc = 1.17 GeV, and mb = 4.61 GeV. The upper value

is obtained for 〈ω0
1 h17〉 = 0.237 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, 〈ω4
1 h17〉 = −0.1 GeV6,

σ = 0.34 GeV, mc = 1.17 GeV, and mb = 4.61 GeV. The obtained range is only slightly

different from the two Hermite polynomial model and reflects our generous range for the

unknown fourth moment.

Similarly we find the range for Λ̃c17. The positive values are included in the range

obtained for a sum of two Hermite polynomials. We also get negative values in the

range [−5.6, 0] MeV. The smallest value is obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 =

0.03 GeV4, 〈ω4
1 h17〉 = −0.11 GeV6, σ = 0.34 GeV, mc = 1.07 GeV, and mb = 4.61 GeV.

Unlike the two Hermite polynomial model we can make h17(0) reach a value of 1 GeV.

For example, taking the central values of the zeroth and second moment 〈ω0
1 h17〉 =

0.237 GeV2, 〈ω2
1 h17〉 = 0.15 GeV4 we find that for 〈ω4

1 h17〉 = 0.1 GeV6 and σ = 0.25 GeV

h17(0) = 1 GeV. This result is not surprising. The moments are global properties of the

function and it is hard to restrict using them values of the function at a single point. We

conclude that for this model Λ̃u17 can be as large as 660 MeV, which is the largest value

possible under the condition |h17(ω1, µ)| ≤ 1 GeV.

3.4.4 Sum of four Hermite polynomials model

To test how typical is the change from a model with two Hermite polynomials to a model

with three Hermite polynomials, we consider a model with four Hermite polynomial. We as-

sume again the very conservative estimate of [−0.3, 0.3] GeV8 for the sixth moment 〈ω6
1 h17〉

that determines the coefficient of H6 in (3.14). As in the three Hermite polynomials model

we assume the range of [−0.3, 0.3] GeV6 for 〈ω4
1 h17〉.

Scanning over the values of the fourth and sixth moment we find that the smallest

value of Λ17 is −22 MeV, i.e. in the range we obtained for three Hermite polynomials.

The highest value we obtain is 5 MeV for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4,

〈ω4
1 h17〉 = −0.1 GeV6, 〈ω6

1 h17〉 = −0.2 GeV8, σ = 0.29 GeV, mc = 1.17 GeV, and mb =

4.61 GeV. This should be compared to the maximum value of −1 MeV and 3 MeV for the

two and three Hermite polynomial models, respectively.

For Λ̃c17 we find positive values that are already included in the ranges of the two

and three Hermite polynomial models above. The smallest negative value we find for

Λ̃c17 is −7 MeV for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, 〈ω4
1 h17〉 = −0.1 GeV6,

〈ω6
1 h17〉 = −0.2 GeV8, σ = 0.29 GeV, mc = 1.07 GeV, and mb = 4.61 GeV.

Since Λ̃u17 obtains its smallest and largest possible values for the two and three Hermite

polynomial models, there is no need to check the effect of the four Hermite polynomials

model.
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3.4.5 Sum of five and six Hermite polynomials model

One can consider continuing in this way and check models with five and even six Hermite

polynomials, based on similar assumptions for the unknown moments. Namely, we assume

that the unknown k-th moment is in the range [−0.3, 0.3] GeV k+2. Scanning over the

ranges in increments of 0.1 GeV k+2 we find that there are no solutions that satisfy our

requirements on h17(0). One reason is the fast growth of the value of Hn(0). To maintain

a value of |h17(0)| ≤ 1 GeV requires that the coefficient of Hn(0) be increasingly smaller.

3.4.6 Summary

Using a two Hermite polynomial model we find Λ17 ∈ [−21,−1] MeV, Λ̃c17 ∈ [0, 10] MeV,

and Λ̃u17 ∈ [−660, 220] MeV. Using a three Hermite polynomial model and assuming the

range [−0.3, 0.3] GeV6 for 〈ω4
1 h17〉 we find Λ17 ∈ [−24, 3] MeV. The range for Λ̃c17 can

include values ∈ [−5.6, 0] MeV. Also, Λ̃u17 can be as large 660 MeV, which is it the largest

possible value based on our assumptions for h17. Using the four Hermite polynomial model

with similar assumptions on the fourth and sixth moments changes the highest value of

Λ17 to 5 MeV and the lowest value of Λ̃c17 to −7 MeV.

Combining the results above and rounding to the closest integer we have Λ17 ∈
[−24, 5] MeV, Λ̃c17 ∈ [−7, 10] MeV, and Λ̃u17 ∈ [−660, 660] MeV.

3.5 Phenomenological estimates

Based on the analysis above we can update the results of [5] and [13]. To highlight the

changes in the uncertainties, we follow the same methodology in these papers to obtain the

uncertainties on the total rate and the CP asymmetry.

For the total rate we use Λ17 ∈ [−24, 5] MeV, equation (3.3), and the values C1(µ) =

1.257, C7γ(µ) = −0.407 (calculated at µ = 1.5 GeV), and mb = 4.58 GeV to obtain

FE
∣∣
17
∈ [−0.3,+1.6] %. (3.19)

This should be compared to the range [−1.7,+4.0] % in [5].

To obtain the total uncertainty we use FE
∣∣
88
∈ [−0.3,+1.9] % from [5]. For FE

∣∣
78

, we

can use either the VIA value from [5] FE
∣∣VIA

78
∈ [−2.8,−0.3] % or the new experimental

value discussed in the introduction FE
∣∣exp

78
∈ [−1.4,+2] %. Scanning over the various

contributions gives

− 3.4% < FE(∆) < +3.2% (using VIA) , (3.20)

using the theoretical estimate for FE
∣∣VIA

78
. Compared to −4.8% < FE(∆) <

+5.6% (using VIA) in [5], the new estimate reduces the total error by about a third. Using

the experimental estimate instead, the range is

− 2.0% < FE(∆) < +5.5% (using ∆0−) . (3.21)

Compared to −6.4% < FE(∆) < +11.5% (using ∆0−) in [5], the new estimate reduces the

total error by about a half.
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For the CP asymmetry we use Λ̃c17 ∈ [−7, 10] MeV and Λ̃u17 ∈ [−660, 660] MeV. The

expressions in [13] can be used to find the resulting CP asymmetry. For example, the sum

of the direct and resolved contributions to the CP asymmetry in the SM is [13]

ASM
Xsγ =

(
1.15× Λ̃u17 − Λ̃c17

300 MeV
+ 0.71

)
% , (3.22)

where we use the same5 parameters as in [13]. Because of the increase in the allowed range

for Λ̃u17, the allowed range for ASM
Xsγ

increases to −1.9% < ASM
Xsγ

< 3.3% . This should be

compared to the range −0.6% < ASM
Xsγ

< 2.8% in [13]. Similar updates can be applied to

the resolved Qq1 −Q7γ contributions to the CP asymmetry in extensions of the SM.

4 Conclusions and outlook

Resolved photon contributions limit the theoretical uncertainty achievable in B̄ → Xsγ

decay. They give the dominant uncertainty (∼ 5%) on the SM prediction of the total rate

and give the dominant effect within the SM for the CP asymmetry. In this paper we have

used recent progress in the knowledge of HQET parameters to reevaluate resolved photon

contribution from the interference of Qq1 (q = u, c) and Q7γ .

This contribution depends on a soft function g17(ω, ω1, µ), defined in (2.1), whose

moments are related to HQET parameters. In section 2 we presented such relations for

general moments in ω alone, see (2.3), in ω1 alone, see (2.8), and general mixed moments

in ω and ω1, see (2.11). The general decomposition of HQET matrix elements presented

in [19] allows to relate these matrix elements to the basis [21] of HQET parameters arising

from operators of up to (and including) dimension 8 used inclusive semileptonic B decays.

In section 3 we presented several phenomenological applications for the moment rela-

tions. First, numerical values of HQET parameters arising from operators of up to (and

including) dimension 8 were obtained in [22] from a global fit to semileptonic B decay spec-

tra and information based on the lowest-lying state saturation approximation in [21, 23].

These allow to find numerical ranges for eight non-zero lowest moments of g17(ω, ω1, µ).

Second, assuming a limited support for h17(ω1), defined in (3.2), we have used the values

of the moments to estimate the Qc1 − Q7γ contribution to the total rate. We have also

investigated the convergence of the expansion of the penguin function in mb ω1/m
2
c and the

resolved photon contribution in ΛQCD/mb. The former converges slowly, consistent with

the power counting of m2
c ∼ mbΛQCD. The latter exhibits the expected power suppres-

sion with the exception of the first term which is accidentally small due to h17 being an

even function. Third, since the assumption about the support of h17 is known to be too

restrictive [5], we considered a systematic improvable model for h17.

To construct the model we use properties of h17(ω1). It is an even function of ω1. While

its argument formally takes values for −∞ ≤ ω1 ≤ ∞, it is a soft function, so one expects

5Using the values C1(µ) = 1.204, C7γ(µ) = −0.378, mc = 1.1 GeV (calculated at µ = 2.0 GeV), and

mb = 4.58 GeV changes 1.15 to 1.18 and 0.71 to 0.70 in (3.22). Because of rounding there is not change to

the allowed range for ASM
Xsγ .
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it not to have significant structures beyond |ω1| ≤ 1 GeV. Similarly we limit its values to

|h17(ω1)| ≤ 1 GeV. The model we use is to express h17(ω1) as sum of even Hermite polyno-

mials multiplied by a Gaussian of width σ, see (3.14). The coefficients of the polynomials

are determined by the moments of h17(ω1). A benefit of such an approach is that the lack

of knowledge of higher moments does not affect models that only use lower moments. The

value of σ can be constrained by the requirement on the support and values of h17(ω1).

The current numerical knowledge of the moments allows us to determine the coefficients

of a sum of the first two even Hermite polynomials. Using the requirements above, we

numerically scan over the values of σ to determine the extremal possible values for the

parameters Λ17, Λ̃
c
17, Λ̃

u
17, defined in section 3.2. We also consider models with higher

number of even Hermite polynomials by assuming a conservative range for the unknown

moments. Taking the envelopes of our results, we find the estimates for the parameters

in section 3.4.6. For Λ17 and Λ̃c17 the new analysis finds a reduction in the allowed range

compared to [5, 13]. For Λ̃u17 we find an increase in the allowed range compared to [13]

since it depends on the value of h17(0) which is not well constrained by global properties

like moments. In section 3.5 we give estimates for the total rate uncertainty and the SM

prediction for the CP asymmetry from resolved photon effects from Qq1−Q7γ . For the total

rate the uncertainty is reduced, but for the CP asymmetry the uncertainty is increased.

We conclude with a discussion of possible future improvements. With the new moment

information we get a better handle on hadronic effects. As a result, uncertainties from

perturbative effects become more conspicuous. For example, following [5, 13] the scale µ

for the Wilson coefficients and the charm quark mass was taken to be 1.5 GeV for the

total rate and 2 GeV for the CP asymmetry. Because the resolved photon contribution are

currently treated at leading order in αs, the scale dependance is not controlled. In order to

improve on that, one needs to calculate αs corrections to the resolved Qc1−Q7γ contribution.

Controlling the scale dependance can also help to better estimate the uncertainty from the

value of the charm quark mass. See section 3.4.2 for an example of the numerical effect of

the charm quark mass.

The modeling can improve considerably if the numerical value of matrix elements of

dimension 9 HQET operators were known. The first step of classifying the possible spin-

dependent dimension 9 operators can be easily carried out using the methods of [19]. With

the expected Belle II data, it is conceivable that the work of [21] can be extended to this

level and a similar analysis to [22] can be applied to the data.

Finally, we have considered quantities that are integrated over the photon energy.

One can consider also the photon energy spectrum itself, or its moments. The moment

information above can be used to model the Qq1−Q7γ resolved photon contribution in this

case. This is left for a future work.
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A A useful identity

The Wilson line

Sn̄(x) = P exp

(
ig

∫ 0

−∞
du n̄ ·As(x+ un̄)

)
, (A.1)

obeys the equation in̄ ·DSn̄(x) = 0, where iDµ = i∂µ+gAµ, see, e.g., [34] for a derivation.

Thus in̄ · ∂Sn̄(x) = −gn̄ ·A(x)Sn̄(x). Taking the Hermitian conjugate of this identity gives

in̄ · ∂S†n̄(x) = S†n̄(x)gn̄ · A(x). Consider now in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
, where O(x) is an

operator. Using the identities above we have

in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
= (A.2)

=
(
in̄ · ∂S†n̄(x)

)
O(x)Sn̄(x) + S†n̄(x)

(
in̄ · ∂ O(x)

)
Sn̄(x) + S†n̄(x)O(x)

(
in̄ · ∂Sn̄(x)

)
= S†n̄(x)gn̄ ·A(x)O(x)Sn̄(x) + S†n̄(x)

(
in̄ · ∂ O(x)

)
Sn̄(x)− S†n̄(x)O(x)gn̄ ·A(x)Sn̄(x) =

= S†n̄(x)[gn̄ ·A(x), O(x)]Sn̄(x) + S†n̄(x)
[
in̄ · ∂,O(x)

]
Sn̄(x) = S†n̄(x)

[
in̄ ·D,O(x)

]
Sn̄(x).

In the last line we have used the identity
[
in̄ · ∂,O(x)

]
f(x) =

(
in̄ · ∂ O(x)

)
f(x) for an

arbitrary function f(x). Thus we have the identity

in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
= S†n̄(x)

[
in̄ ·D,O(x)

]
Sn̄(x). (A.3)
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