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1 Introduction

In the AdS/CFT correspondence, quantum information concepts such as entanglement

entropy have simple geometrical descriptions, e.g. the area of a minimal surface in the bulk

gravity dual [1–3]. These results put on a more general picture the idea that the area of

the event horizon is proportional to the black hole entropy [4]. It is then reasonable that

more sophisticated quantum information physical quantities computed on the boundary

theory may give us further insights on how other geometrical properties of the bulk dual

may be reconstructed from the boundary.

Recently, a new quantum information concept has been introduced in order to describe

the growth of the Einstein-Rosen Bridge (ERB) inside the horizon of a black hole, which

continues for a much longer time than the thermalization time. Entanglement entropy is

not enough to describe the dynamics behind the event horizon and the late-time evolution

of the wormhole interior, because it approaches the equilibrium on a time scale which is of
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the same order as the thermalization time scale. It has been suggested that the relevant

quantity in the dual field theory is quantum computational complexity [5–7]. This is heuris-

tically defined as the minimal number of elementary unitary operations that are required in

order to prepare a given state from a reference one. In quantum mechanics, a geometrical

approach to complexity was developed by Nielsen and collaborators [8, 9]. In Quantum

Field Theory (QFT), a rigorous definition of complexity involves several subtleties, see

e.g. [10–15] for attempts to define it more rigorously.

Two holographic quantities have been conjectured to be the gravity dual of complexity:

• Complexity=Volume (CV) conjecture: complexity is proportional to the volume of

extremal space-like slices [5–7];

• Complexity=Action (CA) conjecture: complexity is proportional to the action eval-

uated on the Wheeler-deWitt (WdW) patch [16, 17]. It is interesting that a proper

action calculation involves null boundaries and joint terms that have been recently

studied in [18].

Both conjectures have been recently investigated by several groups in many physical set-

tings, e.g. [19–29]. One interesting situation is the global quench, which can be repre-

sented in AdS/CFT by the Vaidya geometry, see e.g. [30]. Holographic complexity in these

geometries was previously studied in [31–34]. Another interesting situation is the local

quench [35], whose complexity was studied in [36, 37].

Quantum states localised on a subregion on the boundary should be dual to the entan-

glement wedge [38, 39]. Consequently, it is natural to conjecture that the complexity of a

mixed state (which should be properly defined) is dual to some version of the holographic

CV or CA conjecture, adapted to the corresponding subregion [40, 41].

For the CV proposal, it is natural to conjecture [40] that such mixed state complexity is

dual to the extremal volume of the region γ delimited by the boundary subregion on which

the mixed state is localised and its Hubeny-Rangamani-Takayanagi (HRT) [42] surface,

whose area corresponds to the holographic entanglement entropy, i.e.

CV = max
γ

V (γ)

GLAdS
, (1.1)

where G is the Newton constant and LAdS the AdS length scale. Concerning the CA

conjecture, a proposal involving the action defined on a region Σ which is the intersection

of the entanglement wedge and of the WdW patch has been introduced in [41],

CA =
IΣ

π~
. (1.2)

In both cases, the precise nature of the conjectured notion of mixed state complexity is still

unknown and several proposals have been put forward, see e.g. [40, 43, 44]. Other studies

on subregion complexity include [45–53].

In order to get insights on the possible field theory dual quantities, it is necessary

to explicitly compute subregion complexity in several physical settings. The purpose of

this paper is to study holographic subregion volume complexity, using the CV conjecture,

– 2 –



J
H
E
P
1
1
(
2
0
1
9
)
0
9
8

for a line segment in the AdS3 Vaidya spacetime. The study of subregion complexity

in this physical situation was initiated in [54]. Moreover, the issue was studied also in

modified gravity [55, 56]. In all these previous works, an ansatz in which the extremal

volume is taken independent of the spatial coordinate x is used. This is correct in the

case of time-independent geometries; however we find that this ansatz is not consistent

with the boundary condition given by the HRT surface for the Vaidya geometry. In this

paper we determine the extremal surface numerically and we find that the x-independent

ansatz is in general a good approximation only at early and late times. In the case of small

subregion size l � 1/T , where T is the temperature, the x-independent ansatz provides a

good approximation also at intermediate times.

The paper is organised as follows: in section 2 we review the analytic solution for the

HRT surfaces in case of zero thickness shell. In section 3 we show that the x-independent

ansatz is not consistent for the extremal volume in the time-dependent case and we compute

the x-dependent solution and its volume numerically. We conclude in section 4. Some

technical details are collected in appendices.

Note added: after this work was finished and the present paper was in the writing stage,

ref. [57] was submitted on arXiv. Our approximate analytical results agree with them in

the early time regime. At intermediate times, we expect that the x-independent ansatz

used in [57] is not accurate.

2 Space-like geodesics

We study the Complexity=Volume conjecture for subregions in AdS3 Vaidya spacetime.

In three dimensions, the HRT surface attached to a segment coincides with a space-like

geodesic. Here we review some basic aspects of these geodesics following [30], which studies

the thermalization of the entanglement entropy in detail. We use interchangeably r or

z = 1/r as a radial AdS coordinate. The spacetime metric is

ds2 = −r2f(v, r) dv2 + 2 dv dr + r2 dx2

=
1

z2

[
−f (v, z) dv2 − 2 dv dz + dx2

]
, (2.1)

where we have fixed the AdS radius LAdS = 1 and

f = 1− m(v)

r2
= 1−m(v) z2 . (2.2)

The v coordinate is constant along infalling null rays and it coincides with the time

coordinate t on the spacetime boundary, located at r → ∞ (or, equivalently, at z → 0).

For constant m(v), changing variables to t, with dv = dt− dz
f , the solution is the Banados-

Teitelboim-Zanelli (BTZ) [58, 59] black hole in Schwarzschild coordinates:

ds2 =
1

z2

(
−fdt2 +

dz2

f
+ dx2

)
. (2.3)

We will be interested in the case in which the function m(v) models a field theory quench,

i.e. it interpolates between m = 0 and m = M .
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For concreteness, in the numerical calculations we will consider the choice

m(v) =
M

2

(
1 + tanh

v

ṽ

)
, (2.4)

where M is proportional to the final BH mass and ṽ parameterizes the thickness of the

shell. The ṽ → 0 limit corresponds to zero thickness; in this case m(v) can be written in

terms of the Heaviside step function ϑ:

m(v) = M ϑ(v) . (2.5)

In the zero thickness limit, analytical expressions for the geodesics are available. With

the choice (2.5), the geometry described by eq. (2.1) is the AdS3 one for v < 0 and the

BTZ black hole [58, 59] one for v > 0. The BTZ black hole is formed by the gravitational

collapse of a shell of null dust (here described by v = 0) with infinitesimal thickness falling

from the spacetime boundary.

Our purpose is to evaluate the subregion complexity of a boundary subregion. Accord-

ing to the CV conjecture for subregions, we have to compute the volume of an extremal

codimension-one bulk surface delimited by the boundary subregion and the corresponding

codimension-two HRT [42] surface. In the 2 + 1 dimensional case, the 1-dimensional HRT

surface is a space-like geodesic anchored at the edges of the boundary subregion.

We consider as a subregion a segment of length l lying on a constant time slice t on

the boundary, described by x ∈
[
− l

2 ,
l
2

]
. The HRT surface can be parameterized as v(x)

and r(x). The boundary conditions at r =∞ are

x(r =∞) = ± l
2
, v(r =∞) = t . (2.6)

By symmetry, the turning point is at x = 0, i.e.

x(r = r∗) = 0 , v(r = r∗) = v∗ , (2.7)

where r∗ denotes the value of r at the turning point. Note that both r∗ and v∗ are functions

of the geodesic boundary condition t.

Since the spacetime is described by an AdS3 part and a BTZ black hole portion glued

at v = 0, the HRT surface is given by the junction at v = 0 of the HRT surface for a BTZ

spacetime and the one for AdS3 spacetime.1 In the following we denote with r = rs the

position of this junction on the v = 0 infalling null ray.

2.1 AdS3 geodesics

For v < 0, the Vaidya spacetime is AdS3:

ds2 = −r2dv2 + 2 dv dr + r2 dx2 . (2.8)

The corresponding portion of the HRT surface is given by the equal-time space-like geodesic

in the AdS geometry:

x±(r) = ±
√
r2 − r2

∗
r∗r

, v±(r) =
1

rs
− 1

r
, (2.9)

1We consider the general case in which the HRT surface crosses the infalling shell of matter.
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where (r∗, rs) are functions of the boundary time t and of the length l. We will denote

(x+(r), v+(r)) and (x−(r), v−(r)) as branches 1 and 2 of the geodesic, respectively. At

initial time t = 0, the geodesic is entirely in AdS and

r∗(t = 0) =
2

l
. (2.10)

2.2 BTZ geodesics

For v > 0, the Vaidya spacetime is a BTZ black hole:

ds2 = −r2

(
1−

r2
h

r2

)
dv2 + 2 dv dr + r2 dx2 . (2.11)

The event horizon of the black hole is located at r = rh and the Hawking temperature

is T = rh
2π .

The part of the HRT surface in the Vaidya spacetime for v > 0 is given by the space-like

geodesic in the BTZ geometry [30]:

x±(r) =
1

4rh

2 ln

∣∣∣∣∣∣
r2 − J r2

h ±
√
r4 + (E2−J2−1) r2

h r
2 + J2 r4

h

r2 + J r2
h ±

√
r4 + (E2−J2−1) r2

h r
2 + J2 r4

h

∣∣∣∣∣∣+ ln

∣∣∣∣(J + 1)2−E2

(J − 1)2−E2

∣∣∣∣
 ,

(2.12)

v±(r) = t+
1

2rh
ln

∣∣∣∣∣∣r − rhr + rh

r2 − (E + 1) r2
h ±

√
r4 + (E2−J2−1) r2

h r
2 + J2 r4

h

r2 + (E − 1) r2
h ±

√
r4 + (E2−J2−1) r2

h r
2 + J2 r4

h

∣∣∣∣∣∣ , (2.13)

with E and J being two integration constants arising from the equations of motion (see

appendix A). Depending on the values of E, J in (2.12), (2.13), the structure of the

geodesic changes; it is useful to distinguish four regions [30], see figure 1. In our nota-

tion, we have translated the solutions in x in such a way that they are symmetric under

the exchange x→ −x.

Let us start for simplicity with E = 0, which corresponds to geodesics lying on t-

constant slices. By symmetry, it is not restrictive to choose J > 0 and then there are only

two kinds of such geodesics (see figure 1): the ones with J > 1 (region I) and the ones

with J < 1 (region III).2 In figure 2 we show the plot of the geodesic (2.12) for both the

cases J > 1 and J < 1. By direct calculation, we find that the minimal value of r along

the geodesic is:

r0 =

{
J rh , J > 1

rh , J < 1 .
(2.14)

The geodesics relevant as HRT surfaces for the static BTZ black hole are the ones in region

I, because they have minimal length compared to the ones in region III. Note that a

space-like geodesic with E = 0 in a static BTZ spacetime never penetrates inside the black

2In the special case E = 0 and J = 1, the geodesic is singular. We shall see that this value will be never

attained in our context.
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Figure 1. Kinds of space-like geodesics as function of (J,E).
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0.4

x

J = 2

Figure 2. Plots of the space-like geodesic (2.12) in BTZ spacetime with E = 0 and different

values of the parameter J , with rh = 1. The blue curve represents x+(r), while the yellow one

represents x−(r).

hole. For J > 1, the relation between the parameter J and the spatial separation l between

the anchoring points of the geodesic is given by:

l

2
=

1

4rh
ln

(
J + 1

J − 1

)2

, or J = coth

(
rh l

2

)
. (2.15)

This allows to express r0 as a function of the boundary separation l in the J > 1 case:

r0 = rh coth

(
rh l

2

)
. (2.16)

For generic E, there are in principle four different kinds of geodesics, one kind for each

region of the (E, J) plane in figure 1. In figure 3 we show a plot of (2.12) for each kind of

geodesic. For E 6= 0, these geodesics connect points on the boundary with different values

of t. Note that the geodesic on the bottom left of figure 3 penetrates inside the black hole,

while this never happens for geodesics at constant t.
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1 2 3 4 5
r

-0.10

-0.05

0.00

0.05

0.10

x

E = -0.5 J = 0.1

1 2 3 4 5
r

-0.4

-0.2

0.0

0.2

0.4

x

E = -1.5 J = 0.1

(III) (IV)

Figure 3. Plots of the space-like geodesic (2.12) in BTZ spacetime with different values of the

parameters (E, J), with rh = 1. The blue curve represents x+(r), while the yellow one repre-

sents x−(r).

2.3 Joining the geodesics

The HRT surface in the full Vaidya spacetime can be obtained by gluing together the AdS3

geodesic (2.9) and the BTZ one (2.12), (2.13) at r = rs. Using the “refraction-like” law

in [30], we can fix the two constants of motion of the BTZ portion of the geodesic:

E = −
rh
√
r2
s − r2

∗
2r2
s

, J =
r∗
rh
. (2.17)

It is important to note that E, J all depend on the boundary time t and on the length l. Let

us denote by rm the minimal value of the r-coordinate of the BTZ portion. If rs ≥ rh/
√

2

we have to consider only branch 1, while if rs ≤ rh/
√

2 also branch 2 comes into play. In

the latter case, a part of branch 2 (with rm ≤ r ≤ rs) connects the AdS3 geodesic and the

full branch 1, which is anchored at the spacetime boundary.

It is useful to define:

ν±(r) = t+
1

2rh
ln

∣∣∣∣∣∣r − rhr + rh

r2 − (E + 1) r2
h ±

√
r4 + (E2 − J2 − 1) r2

h r
2 + J2 r4

h

r2 + (E − 1) r2
h ±

√
r4 + (E2 − J2 − 1) r2

h r
2 + J2 r4

h

∣∣∣∣∣∣ ,
χ±(r) =

 1

2rh
ln

∣∣∣∣∣∣
r2 − J r2

h ±
√
r4 + (−1 + E2 − J2) r2

h r
2 + J2 r4

h

r2 + J r2
h ±

√
r4 + (−1 + E2 − J2) r2

h r
2 + J2 r4

h

∣∣∣∣∣∣+
l

2

 , (2.18)
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in which the values of E and J are given by eq. (2.17); for fixed length l, we must obey

the following constraint for the quantities (rs, r∗):

0 = 2

√
r2
s − r2

∗
rs r∗

+
1

rh
ln

2rs
(
r2
s + r∗ rh

)
+
(
2r2
s − r2

h

)√
r2
s − r2

∗

2rs (r2
s − r∗ rh) +

(
2r2
s − r2

h

)√
r2
s − r2

∗
− l = fl(rs, r∗) . (2.19)

We can now build the total Vaidya geodesic by suitably glueing BTZ and AdS portions.

In the case rs ≥ rh√
2
, the total geodesic is given by:

x̂±(r) =

±
√
r2−r2∗
r∗ r

if r ≤ rs, v ≤ 0

±χ+(r) if r > rs, v > 0 ,

v̂±(r) =


1
rs
− 1

r if r ≤ rs, v ≤ 0

ν+(r) if r > rs, v > 0 .
(2.20)

Instead, in the case rs ≤ rh√
2
, the full geodesic is:

x̂±(r) =


±
√
r2−r2∗
r∗ r

if r ≤ rs, v ≤ 0

±χ+(r) if r ≥ rm, v > 0

±χ−(r) if rm ≤ r < rs, v > 0 ,

v̂±(r) =


1
rs
− 1

r if r ≤ rs, v ≤ 0

ν+(r) if r ≥ rm, v > 0

ν−(r) if rm ≤ r < rs, v > 0 .

(2.21)

The minimal value rm of the r-coordinate on the BTZ geodesic is

r2
m =

r2
h

2

(
1− E2 + J2 +

√
(1− E2 + J2)2 − 4J2

)
, (2.22)

where E, J are given by eq. (2.17).

Since the shell of null dust is at v = 0, the time dependence of the junction point rs
can be determined by imposing that v(rs) = 0 in eq. (2.13):

rs
rh

=
1

2

coth(rht) +

√√√√√coth2(rht)−
2
√

1− r2∗
r2s

1 +
√

1− r2∗
r2s

 . (2.23)

The system of eqs. (2.23) and (2.19) determine the time dependence of rs and r∗; unfor-

tunately they cannot be solved in closed form.

In figure 4 we show numerical results for particular values of the boundary subregion

size. At t = 0 the HRT surface entirely lies in the AdS part of the full spacetime, and so
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0.5 1.0 1.5 2.0 2.5
t

1

2

3

4

rs,r*

1 2 3 4 5 6
t

0.5

1.0

1.5

rs,r*

Figure 4. The plots show rs (solid line) and r∗ (dashed line) as a function of the boundary time

t. Here rh = 1, and we set l = 5 on the left and l = 12 on the right.

rs →∞ and r∗(0) = 2/l. The thermalization time t∗ is given by the value of the boundary

time at which rs and r∗ intersect. For t > t∗ the HRT surface entirely lies in the BTZ part

of the dynamical spacetime; from this time the subregion complexity drops to the constant

thermal value. Eqs. (2.23) and (2.19) give

t∗ = l/2 , r∗(t∗) = rs(t∗) = r0 , (2.24)

see (2.16). For l� 1/rh, we have r0 → rh.

An example of the time evolution of the geodesics is shown in figure 5.

2.4 Numerical geodesics

In order to solve the partial differential equations for the extremal volume, it is useful to

consider the case of non zero ṽ in eq. (2.4) in order to make the numerical problem more

tractable. For generic ṽ, one has to solve the geodesics equations numerically:

v̈ +
v̇2

z
− ẋ2

z
= 0 ,

ẍ− 2
ẋż

z
= 0 ,

z̈ +

(
z m(v)− 2 + z3m′(v)

2z

)
v̇2 − 2

z
ż2 − 2

z
żv̇ +

(
1

z
− zm(v)

)
ẋ2 = 0 , (2.25)

where the dot denotes a derivative with respect to the affine parameter λ and the ′ rep-

resents a derivative with respect to the coordinate v. The equations are solved with the

boundary conditions shown in (2.6) using a shooting method implemented in Mathematica.

In the ṽ → 0 limit, we recover the analytical solution in section 2.3.

3 Volume

In this section we compute the extremal volume of the region delimited by the segment of

length l and the HRT surface as a function of the boundary time t. This volume has been

proposed to be dual to mixed state complexity in the boundary CFT [40].
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Figure 5. Time evolution of the geodesic for l = 8, rh = 1. The black and red curves respectively

denote branch 1 and 2 in the BTZ part; the blue curves denote the AdS part of the full geodesic.

3.1 Volume for AdS and BTZ

In the initial stage (t ≤ 0) the volume of the region of interest is entirely in AdS3, while at

final time t ≥ l/2 the volume is entirely in the BTZ geometry. So these cases correspond to

the initial and final values of the subregion complexity. Moreover, the volume is ultraviolet

divergent and a natural regularization is given by subtracting the initial AdS volume VAdS.

In this case the boundary geodesic is

x2 + z2 = (l/2)2 , (3.1)

and the extremal volume solution is given by

z = t− v . (3.2)

Introducing an UV cutoff at z = 1/Λ, the AdS volume is

VAdS = 2

∫ l/2

1/Λ

√
(l/2)2 − z2

z2
dz = lΛ− π . (3.3)

The volume at the final equilibrium time turns out to be exactly the same, i.e.

VBTZ = VAdS . (3.4)

This non-trivial property holds only in AdS3 and has topological roots: it can be proved

using the Gauss-Bonnet theorem [46].
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3.2 Inconsistency of the x-independent ansatz

Let us parameterise the volume by a surface v(x, r) in AdS3 Vaidya spacetime. The volume

functional can be written as:

V =

∫
dr dxV , V =

√
r2(2− r2f∂rv)∂rv − (∂xv)2 , (3.5)

where f is a function only of r, v, and let us denote

vx = ∂xv , vr = ∂rv . (3.6)

The Euler-Lagrange equation gives

∂x

(
∂V
∂vx

)
+ ∂r

(
∂V
∂vr

)
− ∂V
∂v

= 0 . (3.7)

Since the functional (3.5) is invariant by translations in x, it is reasonable to look for

solutions of eq. (3.7) which are x-independent, i.e.

vx = 0 , ∂xvr = 0 . (3.8)

With the ansatz (3.8), and with the choice f = f(r) = fBTZ, the equation of motion (3.7)

reduces to an ordinary differential equation:(
3r2
h − 6r2

)
v′(r)2 +

(
−3r2r2

h + r4
h + 2r4

)
v′(r)3 − rv′′(r) + 2v′(r) = 0 , (3.9)

where the ′ denotes a derivative with respect to the coordinate r.

The extremal surface used to compute the subregion complexity of a segment must be

attached to the HRT surface, which in our case is a geodesic. Consequently, in order for

the x-independent ansatz to be consistent, eq. (3.9) should be satisfied by the geodesic in

eq. (2.13). This is correct only for the E = 0 case, which corresponds to the geodesic used to

compute subregion complexity in the static BTZ solution. So, in the time-dependent case,

the x-independent ansatz [54] obtained from the HRT surface does not give a solution of

the extremal volume equation of motion. The x-independent ansatz gives an approximate

solution in some limits, because it is exact both at initial time t = 0 and at final time t = l/2.

We will refer to the x-independent volume configuration v(r) which is attached to the

HRT surface in eq. (2.20)–(2.21) as the pseudosolution. Strictly speaking, this configuration

will satisfy the equations of motion (3.7) only at initial time t ≤ 0 and after thermalization

t ≥ l/2. We will give numerical evidence that nearby these two regimes it is a good

approximation to the solution of (3.7).

Since the real solution is expected to be a local maximum of the volume functional,

we expect that the volume of the pseudosolution is lower than the volume of the solution.

We will check this expectation later in some numerical examples.

3.3 Volume of the pseudosolution

The total volume of the pseudosolution V̂ is the sum of two contributions:

V̂ = V̂AdS + V̂BTZ . (3.10)
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The AdS3 part gives

V̂AdS = −π + 2

√
r2
s − r2

∗
r∗

+ 2 arcsin
r∗
rs
. (3.11)

In the case v > 0, the surface is given by eq. (2.13), in which we must consider the +

sign if we are dealing with branch 1 and the − one if we are dealing with branch 2; anyway,

the choice of the sign does not modify the result for the induced metric determinant h

√
h = r

√
(r − Jrh) (r + Jrh)

r4 + (−1 + E2 − J2) r2
h r

2 + J2 r4
h

, (3.12)

where the values of E and J are given by eq. (2.17). Therefore, considering the previous

discussion about the BTZ portion of the full geodesic, the BTZ part of the volume is

given by:

V̂BTZ = 2 θ

(
rs −

rh√
2

)∫ Λ

rs

dr
√
h

∫ χ+(r)

0
dx

+2 θ

(
rh√

2
− rs

){∫ Λ

rm

dr
√
h

∫ χ+(r)

0
dx+

∫ rs

rm

dr
√
h

∫ χ−(r)

0
dx

}
, (3.13)

in which Λ is the UV cutoff in the r coordinate.

From eq. (3.10) we find the following closed form for the volume of the pseudosolution:

V̂ = −π + 2

√
r2
s − r2

∗
r∗

+ 2 arcsin
r∗
rs

+

∫ Λ

rs

dr ψ(r)

 1

rh
ln

r2 − r∗ rh +

√
r4 +

[
−1 +

r2h(r2s−r2∗)

4r4s
− r2∗

r2h

]
r2
h r

2 + r2
∗ r

2
h

r2 + r∗ rh +

√
r4 +

[
−1 +

r2h(r2s−r2∗)

4r4s
− r2∗

r2h

]
r2
h r

2 + r2
∗ r

2
h

+ l



+ θ

(
rh√

2
− rs

) 1

rh
ln

1− r2h(r2s−r2∗)
4r4s

+ r2∗
r2h
− 2 r∗rh

1− r2h(r2s−r2∗)

4r4s
+ r2∗

r2h
+ 2 r∗rh

+ 2 l

∫ rs

rm

dr ψ(r) , (3.14)

where

ψ(r) = r

√√√√ (r − r∗) (r + r∗)

r4 +
[
−1 +

r2h(r2s−r2∗)

4r4s
− r2∗

r2h

]
r2
h r

2 + r2
∗ r

2
h

. (3.15)

3.4 Numerical solution

We would now like to compute the volume of the extremal surface stretching inside the

region delimited by the HRT surface. For convenience, we parameterize3 the extremal

surface through z(x, v), since we expect this function to be be single-valued. The volume

functional is

V =

∫
dv dxV , V =

√
−(2∂vz + f(v, z))− (∂xz)2

z2
, (3.16)

3Indeed, the solution expressed as v(z, x) is not a single-valued function nearby the regions where branch

1 is attached to branch 2. This is not convenient for numerical calculations.
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Figure 6. Solutions for the extremal volume, for l = 6, rh = 1 and t = 1.75. On the left we plot

the solution; on the right we plot the difference ∆z between the solution and the pseudosolution.

and denoting

zx = ∂xz , zv = ∂vz (3.17)

the Euler-Lagrange equations are

∂x

(
∂V
∂zx

)
+ ∂v

(
∂V
∂zv

)
− ∂V
∂z

= 0 . (3.18)

More explicitly, the equation for the extremal solution is

−zvv + zxx(2zv + f)− 2zvxzx + (zx)2 (2f − z∂zf + 2zv)

z
+ 4

(zv)
2

z

+3zv
(4f − z∂zf)

2z
+ 2

f2

z
− 1

2
f∂zf −

1

2
∂vf = 0 , (3.19)

with the boundary condition specified by the HRT surface.

We solved this equation numerically using both the analytical and numerical geodesics

found in section 2, checking that all results match when ṽ is small enough that the nu-

merical solution of eqs. (2.25) gives a good approximation to the analytical solution in the

ṽ → 0 limit.

We used the finite-element method implemented in Mathematica, to solve the equations

in an adaptive triangulation of the HRT surface, the discretization consisting of cells with

maximum size O(10−4) in units of rh = 1. We checked that our results are robust by

reproducing them independently with a linearized iterative solver working on a regular

rectangular grid meshing the HRT surface.

We solved the volume equations numerically up to rhl = 6; higher values of l are

numerically challenging, because the geodesics develop sharp kinks requiring very fine-

grained discretizations in order to obtain reliable results. An example solution is shown

in figure 6. The geodesics forming the boundary of the HRT surface are not smooth, this

is expected from the solutions shown in figure 5. As can be seen, there are significant

differences between the numerical solution and the pseudosolution.

3.5 Time dependence of volume

We are then interested in the volume functional (3.16) evaluated on the equation of motion,

which we denote by V . We regularize UV divergences by subtracting the AdS volume (3.3).

– 13 –
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Figure 7. Time dependence of the volume V of the solution (black), compared to the volume V̂

of the pseudosolution (blue) for l = 2 (up, left), l = 4 (up, right), l = 5 (left, bottom), l = 6 (right,

bottom). We set rh = 1.

The volume of the solution as a function of the time t is shown in figure 7; for comparison,

also the volume of the pseudosolution is displayed. The solution has indeed as expected a

bigger volume. Figure 7 confirms that the volume of the pseudosolution is indeed a good

approximation both for early t ≈ 0 and late t ≈ l/2 times. For intermediate times, the

discrepancy tends to increase with l. As can be seen, the plot of the volume of the numerical

solution seems to be smoother than the one of the pseudosolution. In particular, the

variation of the slope of the solution is less pronounced than the one of the pseudosolution.

3.6 Analytical results

Both at early times and at late times, the volume of the pseudosolution is a good approx-

imation of the volume of the solution. It should be remarked that the pseudosolution in

any case provides a lower bound of the volume of the solution.

When l is large enough, typically larger than 1/rh, there are three stages in the evolu-

tion of the volume of the pseudosolution:

• Early times. If we replace the early time results eq. (B.1) in the volume expression

eq. (3.14), we find, at the leading order in l:

V̂

l
= Λ + rh tanh

rht

2
+O(1/l) . (3.20)
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This is true in both the regimes rs > rh/
√

2 and rs < rh/
√

2; the only assumption is

that time is so early that eq. (B.1) can be trusted. From numerical evidence, it turns

out that this part of the evolution continues for a time that scales as O(log(rhl)).

At early times, the pseudosolution is a good approximation to the full solution. In

particular, one can safely trust the first order Taylor expansion of eq. (3.20), i.e.

V

l
= Λ +

r2
ht

2
+O(1/l) . (3.21)

This is further supported by the fact that tanh x ≤ x and that the volume of the

pseudosolution is a lower bound of the one of the solution. This agrees with the result

in eq. (3.77) of [33] for the growth rate Ṽ of the volume in a one-sided Vaidya black

hole, which in our notation and for d = 2 reads:

dṼ

dt
= Ωk

r2
h

2
, (3.22)

where Ωk is divergent and it corresponds to our boundary subregion size l in the

limit l→∞.

• Intermediate times, O(log rhl) < t < l
2 −

0.53
rh

. An explicit analytical formula for the

volume of the pseudosolution at large l is derived in appendix C:

V̂

l
≈ Λ +

I1

l
+ (Υ− 1)η(rs)−Υη(rm) . (3.23)

where I1, Υ, η are defined in appendix C. Unfortunately, at large l we expect signif-

icant deviations between the solution and pseudosolution volumes. Nonetheless, this

estimate is still useful because it provides a lower bound to the volume of the solution.

• Late times, l
2−

0.53
rh

< t < l
2 . We can approximate the volume of the pseudosolution as

V̂

l
= Λ +

r2
hl

4

√
rsrh(rh − rs)(2rs − rh)

(rs − rh)2 + r2
s

+O(l0) , (3.24)

see appendix C for a derivation. The maximum of V̂ is at rs = rh/
√

2 and scales as:

max

(
V̂

l

)
= Λ +

lr2
h

8
. (3.25)

Using the approximation eq. (B.7), we find the following behaviour nearby t ≈ l/2:

rs ≈ rh

(
1−

√
rh
2

(
l

2
− t
))

,
V̂

l
≈ Λ + l

(rh
2

)9/4
(
l

2
− t
)1/4

. (3.26)

Also in this regime we expect that this is a good approximation of the volume of

the solution.
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Figure 8. Wλ as a function of τ for some values of λ.

3.7 Discussion

The central charge of the boundary theory c, the final temperature T , entropy S and

complexity CV can be expressed in terms of bulk quantities as follows

c =
3

2G
, T =

rh
2π

, S =
rhl

4G
, CV =

V

G
, (3.27)

where we set the AdS radius LAdS = 1 by a choice of units. The regularized complexity,

defined as ∆CV = CV − CAdS
V , can be expressed as

∆CV
l

=
4π

3
c T Wλ(τ) , (3.28)

where

τ = 2πT t , λ = 2πT l , Wλ(τ) =
Vsol − VAdS

λ
. (3.29)

The function Wλ(τ) is plotted in figure 8 for a few values of λ. For small τ , from eq. (3.21)

we find Wλ ≈ τ/2.

It is interesting to compare the time behaviour of complexity with the one of entangle-

ment entropy, which can be computed using eq. (109) of [30]. A plot is shown in figure 9.

While the behaviour of entanglement entropy interpolates between the value in AdS and

the thermal one in a monotonic way during the quench, the behaviour of subregion com-

plexity grows to a maximum which scales as l2 and then goes back to the original value of

empty AdS.

It is remarkable that, after thermalization, ∆CV = 0, eq. (3.4). From the geometrical

point of view, this property follows from the Gauss-Bonnet theorem. From the point of

view of the boundary field theory this behaviour looks rather counterintuitive. Indeed, for

asymptotically AdSd black branes, with d > 3, this property does not hold [45]. On the

other hand, in the small l T regime, the calculations for d > 3 in [54] should be correct.

Then we expect that, also in this case, subregion complexity, after the initial growth stage,

decreases at large times going back to a value which is much closer to the original one

compared to its maximum.
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Figure 9. Entropy of the solution as a function of time for some values of l, with the diverging

entropy of the vacuum AdS subtracted. Here we set G = 1, rh = 1 for illustrative purposes.

We can qualitatively interpret this behaviour as follows. One of the most promising

candidates for the field theory dual of subregion complexity is purification complexity,

which is defined as the minimal pure state complexity among all possible purifications of

the given mixed state [43]. At equilibrium, there is a maximal amount of possible pure

microstates which corresponds to the given mixed macrostate. In this big community

of states, it should not be surprising that the minimal complexity is small, due to the

large number of samples. Instead, far away from equilibrium, the number of microstates

which describe our density matrix is much smaller, and so we can expect that the minimal

complexity is bigger.

We expect that the Lloyd’s bound [63] should apply only when subregion complexity

coincides with the pure state one. This should be true only at early times, because the

boundary effects are negligible. Indeed in this regime Wλ ≈ τ/2 and then we recover the

result (3.22):
dC
dt

= 8πM , M =
l r2
h

16πG
, (3.30)

where M is the black hole mass. This is the same as the asymptotic complexity rate in time-

independent black holes, and as such saturates the conjectured Lloyd’s bound. Moreover

from figure 8 we see that, nearby t = 0, the rate dC
dt is a decreasing function of time, and

so the Lloyd bound is not violated also by subregion complexity at small time.

4 Conclusions

In this paper we studied the holographic subregion volume complexity for a line segment

of length l in the AdS3 Vaidya geometry, in the limit of zero shell thickness eq. (2.5). We

computed the extremal volume as a function of time numerically, and we found that both

at early times t ≈ 0 and at late times, nearby equilibrium t ≈ l/2, the x-independent

ansatz is a good approximation of the solution for the extremal volume. We give analytical

expressions for the extremal volume in both the early and late time regimes, see eqs. (3.20)
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and (3.24), (3.26). In particular, the maximum of the volume of the pseudosolution scales

as l2, see eq. (3.25). Since the pseudosolution is a lower bound of the solution, we expect

that the maximum of the volume of the solution scales at least as l2.

We were able to numerically study the full dependence of holographic subregion volume

complexity (see figure 8) just for rhl ≤ 6. Figure 7 shows that the corrections from the

x-independent pseudosolution become increasingly important as l grows.

Several problems call for further investigation:

• It would be interesting to study larger values of l, because it is the regime where

bigger deviations from the x-independent pseudosolution are expected. In particular,

in [54, 57] it was conjectured that for large l and intermediate times a linear increase

regime of complexity holds, with a different slope compared to the early times regime.

This conjecture was based on the calculation of the volume of the x-independent

pseudosolution. However, since we showed that at large l one should expect large

deviation between the volumes of the solution and the pseudosolution, this conjecture

should be revisited.

• Another open problem is to study the time evolution of subregion action complexity

during a quench and to compare it to the volume. In many cases the action and

the volume conjectures give qualitatively similar results (there are however some

exceptions, see e.g. [60]), which makes hard to discriminate between them. Due to

the large arbitrariness in several technical aspects of the definition of complexity in

QFT, it could also be that each of the conjectures is dual to a different field theory

definition of quantum computational complexity.

• It would be interesting to study complexity evolution during a quench in QFT. This

was initiated in [61, 62] for free field theories.

• There are several possible definitions of subregion complexity in a quantum theory, for

example purification and basis complexity [43]. It would be interesting to establish ro-

bust properties of these quantum information quantities, in order to eventually match

them with holographic conjectures. Another interesting direction is fidelity [40].

Acknowledgments

G.T is funded by Fondecyt grant 11160010.

A Spacelike geodesics in the BTZ black hole

For completeness, in this appendix we briefly sketch the computation of spacelike geodesics

in the BTZ black hole background, following [30]. Introducing the bulk time t, the metric is:

ds2 = −(r2 − r2
h)dt2 +

dr2

r2 − r2
h

+ r2dx2 . (A.1)
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The relation between t and the Eddington-Finkelstein coordinate v which is used in the

main text is:

t = v − 1

2rh
log
|r − rh|
r + rh

. (A.2)

Parameterizing the geodesic length by σ, the geodesic equations are:

− rhE = −(r2 − r2
h)ṫ , rhJ = r2ẋ , 1 = −(r2 − r2

h)ṫ2 +
ṙ2

r2 − r2
h

+ r2ẋ2 , (A.3)

where dot denotes derivative with respect to σ. The parameters E and J are respectively

the constants of motion associated to t and x translation invariance, i.e. energy and angular

momentum. The equations in (A.3) can be solved analytically (see [30]). The solutions are

expressed as x(r) and v(r) in eqs. (2.12), (2.13). The boundary conditions are chosen in

such a way that the solution is symmetric under x→ −x.

B Analytical approximations for the constraint equations

The constraints in eqs. (2.23) and (2.19) cannot be solved in closed form, and are also

rather tricky to be solved numerically, due to the exponential accuracy which is needed at

large l and t. It is then useful to use some approximations which are valid respectively in

the early and in the late time regime:

• Early time approximation. At early time rs → ∞ and r∗ ≈ 2/l, so we can use the

r∗ � rs approximation in eqs. (2.23) and (2.19). This gives:

r∗ =
2

l
, rs =

rh
2

coth

(
rht

2

)
, (B.1)

which provides a good description of the early evolution of the geodesic.

• Late time approximation. If we formally set t→∞ in eq. (2.23), we find the solution:

r̂∗ = rh
rs(2rs − rh)

(rh − rs)2 + r2
s

. (B.2)

The curve (B.2) is shown in figure 10, with several l-constant curves solving the

constraint in eq. (2.19).

The physical accessible region of parameters in the (rs, r∗) plane is below this curve;

as a consequence, we have that rs > rh/2. In the late time regime we can parameterise

the deviation from the curve (B.2) by

r∗ = r̂∗ − rh ε∗ , (B.3)

with a small parameter ε∗ ≥ 0. We can then solve eq. (2.19) at the leading order

in ε∗:

ε∗ =
8(1− ρs)(2ρs − 1)ρ3

s

(1− 2ρs + 2ρ2
s)

2

1

exp
(
rhl − 4(1−ρs)

2ρs−1

)
− 8ρ5s−20ρ4s+18ρ3s−7ρs+2

(1−ρs)(2ρ2s−2ρs+1)

, (B.4)
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Figure 10. Plot of the t → ∞ limit curve r̂∗(rs) (black line), with rh = 1. The blue lines

correspond to l-constant curves in the (rs, r∗) plane, see eq. (2.19), for l = 4, 5, 8, 10 from top to

bottom.

where we have introduced ρs = rs/rh. Taking the leading large l term we find a

simpler expression:

ε∗ ≈
8(1− ρs)(2ρs − 1)ρ3

s

(1− 2ρs + 2ρ2
s)

2
exp

(
−rhl +

4(1− ρs)
2ρs − 1

)
, (B.5)

which is a good approximation when ρs is not very nearby to 1/2, which is true at

large times.

In order to find an approximate expression for t as a function of ρs, ε∗, we use then

the expansion (B.3) in the time constraint (2.23), which gives:

rht =
1

2
ln

(
8 (1− ρs) ρ3

s

ε∗ (2ρs − 1) (2ρ2
s − 2ρs + 1) 2

)
. (B.6)

Inserting also the value of ε∗ from eq. (B.5), we get

rht =
1

2

(
rhl −

4 (1− ρs)
2ρs − 1

− ln
(
(2ρs − 1) 2

))
. (B.7)

Note that ρs = 1/
√

2 corresponds to:

rht =
rhl

2
−
√

2− ln
(√

2− 1
)
≈ rhl

2
− 0.53 . (B.8)

C The volume of the pseudosolution at late time

The approximation in this appendix refer to the limit l, t � 1/rh and to the regime in

which r∗ ≈ r̂∗. We will extensively use the results of appendix B. Let us write the volume
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of the pseudosolution eq. (3.14) as:

V̂ = I1 + I2 + I3 + I4 , (C.1)

where

I1 = −π + 2

√
r2
s − r2

∗
r∗

+ 2 arcsin
r∗
rs
, I2 = l

∫ Λ

rs

ψ(r)dr , (C.2)

I3 =

∫ Λ

rs

ψ(r)κ(r)dr , I4 = θ

(
rh√

2
− rs

)
lΥ

∫ rs

rm

ψ(r) dr , (C.3)

where

κ(r) =
1

rh
ln

r2 − r∗ rh +

√
r4 +

[
−1 +

r2h(r2s−r2∗)

4r4s
− r2∗

r2h

]
r2
h r

2 + r2
∗ r

2
h

r2 + r∗ rh +

√
r4 +

[
−1 +

r2h(r2s−r2∗)

4r4s
− r2∗

r2h

]
r2
h r

2 + r2
∗ r

2
h

,

Υ =

 1

rhl
ln

1− r2h(r2s−r2∗)
4r4s

+ r2∗
r2h
− 2 r∗rh

1− r2h(r2s−r2∗)

4r4s
+ r2∗

r2h
+ 2 r∗rh

+ 2

 . (C.4)

At late times we can use the following approximation, which can be derived from eq. (B.3):

rm ≈
√
r̂∗rh +

√
ε∗

√
r3
h(r2

h − 2r2
s)

8r3
s

+O(ε∗) , (C.5)

where we have used the property rs > rh/2, which is always valid.

The calculation of the various term proceeds as follows:

• Let us focus on I4. Due to the Heaviside θ, this term is non vanishing just in the

intermediate time window eq. (B.8), i.e.

t <
l

2
− 0.53

rh
. (C.6)

Using the expansion in eq. (B.3), we can approximate

Υ = 2 +
1

rhl
ln
ε∗(r

2
h − 2r2

s)r
2
h

8r̂∗r3
s

+O(ε∗)

≈ 1 +
1

rhl

(
4(1− ρs)
2ρs − 1

+ ln
(1− ρs)(1− 2ρ2

s)

ρs(1− 2ρs + 2ρ2
s)

)
, (C.7)

where we have used the late time approximation in eq. (B.5). We can also use the

approximation:

ψ(r) = r

√
r2 − r̂2

∗√
(r2 − r̂∗rh)2 +O(ε∗)

. (C.8)

This gives:

I4 ≈ θ
(
rh√

2
− rs

)
lΥ

∫ rs

rm

dr r

√
r2 − r̂2

∗
r2 − r̂∗rh

. (C.9)
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This integral has a cutoff at rm ≈
√
rhr̂∗ + O(

√
ε∗), and so it is a good approxi-

mation to drop the order ε∗ term in the denominator. This can now be evaluated

analytically, using:

η(r) =

∫
dr r

√
r2 − r̂2

∗
(r2 − r̂∗rh)

=
√
r2 − r̂2

∗ +
1

2

√
(rh − r̂∗)r̂∗ ln

∣∣∣∣∣
√

(rh − r̂∗)r̂∗ −
√
r2 − r̂2

∗√
(rh − r̂∗)r̂∗ +

√
r2 − r̂2

∗

∣∣∣∣∣ . (C.10)

We finally get:

I4 ≈ θ
(
rh√

2
− rs

)
lΥ (η(rs)− η(rm)) . (C.11)

• Let us consider I2, which at large time can be approximated as:

I2 ≈ l
∫ Λ

rs

dr r

√
r2 − r̂2

∗
(r2 − r̂∗rh)2 + ε∗A(r)

, A(r) =
r̂∗
(
r2
(
4r4
sr

2
h + r6

h

)
− 4r4

sr
4
h

)
2rhr4

s

.

(C.12)

It is useful to use the following properties:
for rs = rh√

2
and rs = rh , rs =

√
r̂∗rh

for rs <
rh√

2
, rs >

√
r̂∗rh

for rh > rs >
rh√

2
, rs <

√
r̂∗rh

(C.13)

For this reason, we should separate two cases:

– For rs <
rh√

2
we have that rs >

√
r̂∗rh and so the ε∗ term at the denominator is

negligible:

I2 ≈ θ
(
rh√

2
− rs

)
l (Λ− η(rs)) . (C.14)

– For rs >
rh√

2
it is convenient to split

I2 = Ia2 + Ib2 , Ia2 = l

∫ √r̂∗rh
rs

dr r

√
r2 − r̂2

∗√
(r2 − r̂∗rh)2 + ε∗A

,

Ib2 = l

∫ Λ

√
r̂∗rh

dr r

√
r2 − r̂2

∗√
(r2 − r̂∗rh)2 + ε∗A(r)

(C.15)

We will not need to evaluate Ia2 , because we will show that it is cancelled by a

term in I3. We can approximate Ib2 by noting that the term proportional to ε∗
at the denominator acts as an effective cutoff of the integral:

Ib2 ≈ l
∫ Λ

r̃
dr r

√
r2 − r̂2

∗
(r2 − r̂∗rh)

, r̃ =

√
r∗rh +

√
ε∗A(

√
r̂∗rh) . (C.16)

Using eqs. (C.10) and (B.4) we find the leading l behaviour:

Ib2 ≈ lΛ +

√
rsrh

(
−2r2

s + 3rsrh − r2
h

)
4
(
2r2
s − 2rsrh + r2

h

) r2
hl

2 +O(l) . (C.17)
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• We now approximate I3. In the limit r∗ → r̂∗, we find that:

κ(r) =
1

rh
ln

(
2ρ2ρ2

s − 2ρ2ρs + ρ2 − 2ρ2
s + ρs +

∣∣ρ2
(
2ρ2

s − 2ρs + 1
)
− 2ρ2

s + ρs
∣∣

2ρ2ρ2
s − 2ρ2ρs + ρ2 + 2ρ2

s − ρs + |(ρ2 (2ρ2
s − 2ρs + 1)− 2ρ2

s + ρs|

)
,

(C.18)

where we introduced ρ = r/rh. It is useful to consider separately the following

two cases:

– If rs < rh/
√

2, then

ρ2
(
2ρ2

s − 2ρs + 1
)
− 2ρ2

s + ρs > 0 (C.19)

for every rs < r < Λ and the factor in the integrand is finite and suppressed in

the large l limit.

– If rs > rh/
√

2, then eq. (C.19) is valid just for r >
√
r∗rh, and again gives a

negligible contribution. For r <
√
r∗rh we have to change a sign and we get that

the factor in the integrand is:

κ(r) =
1

rh
ln

(
−
ε∗
(
ρ2
(
4ρ5

s − 2ρ3
s + 2ρs − 1

)
+ 2 (1− 2ρs) ρ

4
s

)
4ρ4

s (2ρs − 1) (ρ2 (2ρ2
s − 2ρs + 1)− 2ρ2

s + ρs)

)
. (C.20)

Inserting ε∗ from the solution in eq. (B.5), we find that the log factor in the

integrand simplifies to −l +O(l0), which cancels Ia2 .

Adding up all the contributions, we find eq. (3.23) for rs < rh/
√

2 and eq. (3.24) for

rs > rh/
√

2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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