
J
H
E
P
1
1
(
2
0
1
8
)
1
1
6

Published for SISSA by Springer

Received: September 28, 2018

Accepted: October 15, 2018

Published: November 20, 2018

Planar two-loop five-parton amplitudes from

numerical unitarity

S. Abreu,a F. Febres Cordero,a,b H. Ita,a B. Pagea and V. Sotnikova

aPhysikalisches Institut, Albert-Ludwigs-Universität Freiburg,

Hermann-Herder-Str. 3, Freiburg, D-79104 Germany
bPhysics Department, Florida State University,

77 Chieftan Way, Tallahassee, FL, 32306 U.S.A.

E-mail: abreu.samuel@physik.uni-freiburg.de,

ffebres@physik.uni-freiburg.de, harald.ita@physik.uni-freiburg.de,

ben.page@physik.uni-freiburg.de,

vasily.sotnikov@physik.uni-freiburg.de

Abstract: We compute a complete set of independent leading-color two-loop five-parton

amplitudes in QCD. These constitute a fundamental ingredient for the next-to-next-to-

leading order QCD corrections to three-jet production at hadron colliders. We show how

to consistently consider helicity amplitudes with external fermions in dimensional regular-

ization, allowing the application of a numerical variant of the unitarity method. Amplitudes

are computed by exploiting a decomposition of the integrand into master and surface terms

that is independent of the parton type. Master integral coefficients are numerically com-

puted in either finite-field or floating-point arithmetic and combined with known analytic

master integrals. We recompute leading-color two-loop four-parton amplitudes as a check

of our implementation. Results are presented for all independent four- and five-parton

processes including contributions with massless closed fermion loops.

Keywords: Perturbative QCD, Scattering Amplitudes

ArXiv ePrint: 1809.09067

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2018)116

mailto:abreu.samuel@physik.uni-freiburg.de
mailto:ffebres@physik.uni-freiburg.de
mailto:harald.ita@physik.uni-freiburg.de
mailto:ben.page@physik.uni-freiburg.de
mailto:vasily.sotnikov@physik.uni-freiburg.de
https://arxiv.org/abs/1809.09067
https://doi.org/10.1007/JHEP11(2018)116


J
H
E
P
1
1
(
2
0
1
8
)
1
1
6

Contents

1 Introduction 1

2 Dimensionally regulated helicity amplitudes 3

2.1 Embedding of fermionic states in dimensional regularization 3

2.2 Tensor decomposition of helicity amplitudes 6

2.3 Two-loop helicity amplitudes for NNLO phenomenology 8

2.4 Leading-color amplitudes 10

3 Calculation of planar multi-parton amplitudes 12

3.1 Finite fields and spinors 13

3.2 Tree amplitudes 15

3.3 Amplitude evaluation 16

4 Numerical results for helicity amplitudes 17

4.1 Four-parton amplitudes 17

4.2 Five-parton amplitudes 19

5 Conclusion 19

A Operations on γ matrices 22

B Divergence structure of two-loop five-parton amplitudes 23

B.1 Renormalization 24

B.2 Infrared behavior 24

B.3 Numerical results for one-loop amplitudes 25

1 Introduction

The progress in our understanding of the analytic properties of loop amplitudes has recently

led to the computation of the first two-loop five-point amplitudes in QCD [1–6]. These

computations focused on the leading-color contributions to the five-gluon process. In this

paper we take a further step and compute the scattering amplitudes of all five-parton

processes in the leading-color limit, including corrections with massless closed fermion

loops. Two-loop five-parton amplitudes without closed quark loops were recently presented

in ref. [7], and related work on the complete reduction of two-loop five-parton amplitudes

appeared in refs. [8, 9]. Our results are an important step towards the automation of the

calculation of two-loop partonic amplitudes, which are in turn an important ingredient

towards obtaining theory predictions to three-jet production at hadron colliders at next-

to-next-to-leading order (NNLO) in QCD.
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The main result of this paper is a numerical method for the computation of two-loop

multi-parton amplitudes, including massless quark states in addition to gluons. We apply

a numerical variant of the unitarity method [10–13], which was extensively used for one-

loop computations [14–17] and recently generalized to two loops [18–20]. In this paper

we extend its implementation to two-loop processes involving fermions. Four-parton two-

loop corrections interfered with their tree-level amplitudes [21–24] as well as the associated

helicity amplitudes [25–29] were computed with analytic methods some time ago, and we

recompute these results as a check of our implementation. The two-loop numerical unitarity

method we employ avoids the challenging algebra of analytic multi-scale computations and

is at the same time sufficient for the numerical phase-space integration required in cross-

section computations. To showcase its potential we provide numerical benchmark values

for five-parton amplitudes. To this end we compute integral coefficients with exact or

floating point arithmetic, and combine them with the numerical evaluation of the two-loop

master integrals [30, 31]. We leave an analysis of the integration over the physical phase

space to future work.

A number of developments is necessary for handling fermions. Fermion amplitudes

have been computed within the numerical unitarity method at one loop [32–36], and in

this paper we propose a generalization for two-loop amplitudes. We first discuss the treat-

ment of fermion states in dimensional regularization. At higher loop orders, the subtleties

in this procedure become increasingly relevant (see [37] for a recent review). In particular,

we discuss in detail the definition of dimensionally-regulated helicity amplitudes with pairs

of external quarks. We present a prescription for how to define a helicity amplitude at two

loops which can be used to compute interference terms in the ’t Hooft-Veltman scheme.

This prescription can be implemented numerically, extending well known analytic meth-

ods [25–29] which are not directly applicable in a numerical calculation since they rely on

abstract algebraic manipulations of the γ-matrix algebra.

A second technical advance concerns the implementation of the numerical unitarity

method in exact arithmetic [6] for amplitudes with fermions, based on the use of finite-

fields techniques for amplitude computations [38]. The main obstacle to overcome relates

to the fact that generic polynomial equations do not have solutions in a generic algebraic

field. This is in tension with the fact that in a unitarity-based approach one needs to

generate loop momenta satisfying the set of quadratic on-shell conditions. We describe

a way to handle this difficulty while maintaining the power of exact finite field computa-

tions when considering both gluons and fermions. We stress that the ability to perform

exact calculations on rational phase-space points is an additional feature of our computa-

tional framework, and the numerical unitarity method has also been implemented in more

standard floating-point arithmetic.

The article is organized as follows. In section 2 we define leading-color dimensionally-

regulated helicity amplitudes with external fermions. In section 3 we present explicit

details of our implementation. In section 4, we first present results for the leading-color

four-parton helicity amplitudes, and then present our numerical results for a complete set

of independent five-parton amplitudes. We also describe the checks we performed. We

give our conclusions and outlook in section 5. Finally, we present some useful γ-matrix
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identities in appendix A, as well as some details on the infrared structure of the amplitudes

in appendix B.

2 Dimensionally regulated helicity amplitudes

Dimensionally regulated scattering amplitudes are functions of the continuous dimension

parameter D = 4−2ε, which regulates both ultraviolet and infrared singularities of loop in-

tegrals. Within this framework, the state spaces of the external particles are also naturally

understood to be formally infinite dimensional. In practice, however, we are interested in

obtaining predictions for physical external states that are strictly four dimensional. For

instance, in this paper we will be computing helicity amplitudes. In order to compute a

dimensionally-regulated amplitude with a given set of four-dimensional external states, we

must find how to represent them in the D-dimensional space. That is, we must find a con-

sistent embedding of the physical four-dimensional state in D dimensions. This is trivially

achieved for gluon helicity states: these are vector particles and any four-dimensional po-

larization state can be embedded in a generic D-dimensional space by filling the remaining

components of the vector with zeros. For fermion states, however, the embedding is less

trivial as the nature of the D-dimensional Clifford algebra means that there is no single

associated state in D-dimensions. As such, one might wonder if it is possible at all to

unambiguously define four-dimensional helicity amplitudes with external fermions. In this

section we describe how we address this problem, inspired by the approach of refs. [26, 28],

and precisely define the objects that we will be computing in subsequent sections.

2.1 Embedding of fermionic states in dimensional regularization

There are several consistent regularization schemes that can be chosen, see e.g. ref. [37]

for a recent review, and our discussion applies to both the conventional dimensional reg-

ularization (CDR) and the ’t Hooft-Veltman (HV) schemes. The two schemes differ in

the way vector particles (gluons in our case) are treated, and we follow the description

given in the reference above.1 In CDR, all vector fields are vectors in a space of dimension

Ds = 4 − 2ε. In HV, one distinguishes between regular and singular vector fields. The

former do not lead to any singularities and are considered to be strictly four-dimensional

objects. The latter are a source of singularities and are Ds-dimensional vectors. For our

purposes, this means that gluons whose momentum we integrate over are Ds dimensional,

and external gluons whose momentum we do not integrate over are four dimensional. The

two schemes are consistent, in that their contributions to NNLO computations can be re-

lated by known transition rules [39], but as we shall see below the HV scheme introduces

some simplification in the calculation.

We consider fermions in Ds dimensions, as is for instance necessary when a CDR gluon

or a singular HV gluon is emitted from a quark line. If the fermion line closes upon itself, as

in e.g. the Nf corrections to gluon amplitudes (i.e., corrections with a closed massless-quark

1Except for the meaning of Ds, which we use to denote the dimension of the CDR and HV singular

vector fields, to differentiate it from the dimensional regulator D.
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loop), we only need the defining property of the Clifford algebra

{γµ[Ds], γ
ν
[Ds]
} = 2gµν[Ds]

1[Ds]
, (2.1)

where we explicitly write the dimension Ds as a subscript of the γ-matrices and the metric,

and use a metric with mostly-minus Minkowski signature, g[Ds] = diag{1,−1, . . . ,−1}.
Here 1[Ds] is the identity operator in the representation space of the Clifford algebra. In

the presence of external fermions, however, we must also describe the corresponding states

and an explicit representation of the Ds-dimensional Clifford algebra is required. Since we

are ultimately interested in specifying four-dimensional external states, it is furthermore

convenient to construct the representation in a factorized way starting from four dimensions

(see e.g. refs. [40, 41]). We thus consider a Clifford algebra in Ds dimensions as the tensor

product of a four-dimensional and a (Ds − 4)-dimensional one:

(γµ[Ds])
bλ
aκ =


(
γµ[4]

) b
a
δλκ , 0 ≤ µ ≤ 3 ,

(
γ̃[4]

) b
a

(
γ

(µ−4)
[Ds−4]

) λ
κ
, µ > 3 ,

(2.2)

where γ̃[4] ≡ i(γ0
[4]γ

1
[4]γ

2
[4]γ

3
[4]), such that (γ̃[4])

2 = 1[4] is the identity operator in the four-

dimensional algebra. The indices a, b denote the spinor indices in the four-dimensional

algebra and κ, λ the ones of the (Ds − 4)-dimensional one. The γµ[Ds−4] form themselves

a (Ds − 4)-dimensional Clifford algebra with signature g[Ds−4] = diag{−1, . . . ,−1}. In

amplitude calculations we naturally encounter products of γ matrices, and in this paper

we will mainly focus on chains of γ[Ds−4] matrices. We thus define a convenient basis for

these chains, constructed by anti-symmetrizing over their Lorentz indices and given by (see

e.g. [40])

γµ1...µn
[Ds−4] =

1

n!

∑
σ∈Sn

sgn(σ)γ
µσ(1)

[Ds−4] . . . γ
µσ(n)

[Ds−4] , (2.3)

where Sn denotes the set of all permutations of n integers and sgn(σ) the signature of the

permutation σ ∈ Sn.

The spinor states associated with the Ds-dimensional Clifford algebra live in a Dt-

dimensional space.2 For four-dimensional momenta they can be constructed from a tensor-

product representation as

ψs,aκ = (uh)a(η
i)κ , and ψ̄aκs = (ūh)a(η̄i)

κ , (2.4)

where we have introduced an index s = {h, i} to denote the polarization states in terms

of spinors of the four- and (Ds − 4)-dimensional subspaces. Without loss of generality we

can require that (ηi)κ and (η̄i)
κ be dual to each other,

(η̄i)
κ(ηj)κ = δji , (2.5)

2We remind the reader that although Dt = 2Ds/2 for any finite-dimensional representation, Dt is set to

4 in dimensional regularization [41].
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and choose a canonical basis for the spinors in the (Ds − 4)-dimensional space, i.e. set

(ηi)κ = δiκ. In an on-shell computation in Ds dimensions we use the spinor states defined

in eq. (2.4) as external fermion wave functions. Given the choice of a canonical basis for

the (Ds − 4)-dimensional states, we can identify the (Ds − 4) polarization label i with the

spinor index κ in eq. (2.4). Thus, in the following we only insert four-dimensional spinors

and keep track of the (Ds−4)-dimensional embedding with the open (Ds−4) spinor index.

We note that a bilinear of external (Ds − 4)-dimensional spinors ηη̄′ can be expressed in

terms of the basis of γ-matrix chains introduced in eq. (2.3),

ηη̄′ = 1[Ds−4]f + γν1

[Ds−4]fν1 + γν1ν2

[Ds−4]fν1ν2 + . . . , (2.6)

where the {f, fν1 , fν1ν2 , · · · } are the constant coefficients in the decomposition. In loop

calculations, this naively introduces reference vectors and tensors that can yield linear

dependence on the components of the loop-momenta beyond four dimensions, see e.g. [34,

36], in contrast with what happens, for instance, in the case of amplitudes with only gluons.

We only mention this here as an observation since, as we shall see in the remaining of this

paper, this will not be an issue with our definition of helicity amplitudes.

The tensor product representation of the Clifford algebra is particularly useful to sepa-

rate four- and (Ds−4)-dimensional spinor indices in γ-matrix chains. Indeed, a product of

γ matrices where some Lorentz indices are within four dimensions (denoted µi), and some

are beyond four dimensions (denoted µ̂i) is split into two blocks, a four-dimensional and a

(Ds − 4)-dimensional one. For instance, we have(
γµ1

[Ds]
γµ̂2

[Ds]
γµ3

[Ds]
γµ̂4

[Ds]

) bλ
aκ

= −
(
γµ1

[Ds]
γµ3

[Ds]
γµ̂2

[Ds]
γµ̂4

[Ds]

) bλ
aκ

= −
(
γµ1

[4]γ
µ3

[4]

) b
a

(
γ

(µ̂2−4)
[Ds−4]γ

(µ̂4−4)
[Ds−4]

)λ
κ
.

(2.7)

Consider now contracting the above product of γ matrices with a four-dimensional fermion

state, such as the u and ū spinors:

ūa
(
γµ1

[Ds]
γµ̂2

[Ds]
γµ3

[Ds]
γµ̂4

[Ds]

) bλ
aκ
ub = −

(
ūγµ1

[4]γ
µ3

[4]u
)(

γ
(µ̂2−4)
[Ds−4]γ

(µ̂4−4)
[Ds−4]

)λ
κ
. (2.8)

The result is a tensor with open indices in the (Ds − 4)-dimensional space. We recall

that these are in one-to-one correspondence with a (Ds − 4)-dimensional state, and the

above expression (2.8) is thus equivalent to a contraction with on-shell helicity states in

Ds dimensions. Our ultimate goal is the calculation of amplitudes relevant for cross-

section computations, and we must then understand which tensor structures beyond four

dimensions are necessary. This will be done in the next subsections.

We finish this section with two comments. First, we note that in the HV scheme this

tensor decomposition results in simpler expressions than in CDR. Consider for instance the

tree-level qq̄ → QQ̄ amplitude(
M (0)

)λ1λ2

κ1κ2

∼ ūa1

(
γµ[Ds]

)b1λ1

a1κ1

ub1 ū
a2
(
γ[Ds]µ

)b2λ2

a2κ2
ub2 . (2.9)
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In the HV scheme, the gluon between the two quark lines is four dimensional, i.e., µ ≤ 3,

while in the CDR scheme, the gluon is Ds dimensional. From eq. (2.2) we thus get

(
M (0)

)λ1,λ2

κ1,κ2

=

M
(0)
0 δλ1

κ1
δλ2
κ2

in HV,

M
(0)
0 δλ1

κ1
δλ2
κ2

+M
(0)
1

(
γµ[Ds−4]

)λ1

κ1

(
γ[Ds−4]µ

)λ2

κ2

in CDR,
(2.10)

where the M
(0)
i are coefficients that are determined from products of four-dimensional γ-

matrices contracted with four-dimensional spinors. In the HV scheme the amplitude is

determined by a single coefficient, while in CDR two are needed. In the remainder of this

paper we thus choose to work in the HV scheme. Nevertheless, our discussion generalizes

to the CDR scheme in a straightforward way.

The second comment we wish to make is that, although in this section we consider

Ds = 4 − 2ε, which means the Clifford algebra defined in eq. (2.2) is infinite dimensional,

in numerical calculations one might need to construct an explicit representation of the

Clifford algebra and thus take Ds to be an even integer (larger than 4). The construction

of eq. (2.2) still holds and, in fact, it can be iterated: any even Ds can be reached by

constructing a tensor product of the (Ds − 2) algebra with a 2-dimensional algebra, even

if the (Ds − 2) algebra was already constructed as a tensor product of two algebras.

2.2 Tensor decomposition of helicity amplitudes

We consider a helicity amplitude M , expanded in perturbation theory, with the k-th order

term written as M (k). We saw previously that these are tensors in the (Ds−4)-dimensional

spinor space, see eq. (2.10) for an explicit example. Here we introduce a basis for the

associated tensor space in the spinor indices beyond four dimensions, whose elements are

denoted as vn. In general, the basis depends on the physical process described by M and on

the order k in the perturbative expansion. We will suppress this dependence for simplicity

of the notation and write

M (k) =
∑
n

vnM
(k)
n , (2.11)

where the M
(k)
n are computed from γµ[4] matrices and external states in four dimensions,

and the tensor structure of the amplitude in the spinor indices beyond four dimensions

is fully contained in the vn. In the following, we explicitly construct the basis {vn} for

two families of amplitudes: those with a pair qq̄ of external quarks and any number of

external gluons, and those with two pairs qq̄ and QQ̄ of external quarks (of either different

or identical flavor) and any number of external gluons.

The different tensors vn are constructed by contracting the Lorentz indices of chains of

γ[Ds] matrices with other Lorentz vectors in the amplitude after all loop integrations have

been performed. The remaining objects that carry Lorentz indices are four-dimensional

external momenta, four-dimensional polarization vectors and chains of γ[Ds] matrices. Any

Lorentz index in a γ[Ds]-matrix chain that is contracted with a four-dimensional object

becomes four-dimensional, contributing only a trivial tensor structure in the (Ds − 4)-

dimensional space. For instance, if εµ represents a four-dimensional polarization vector of

– 6 –
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an external gluon,

εµ

(
γµ[Ds]

)bλ
aκ

= εµ

(
γµ[4]

)b
a
δλκ . (2.12)

Similarly when two Lorentz indices are contracted inside the same chain of γ[Ds] matrices,

the tensor structure beyond four dimensions is trivial, as follows from:(
γµ[Ds]

)b1λ1

aκ

(
γ[Ds]µ

)bλ
b1λ1

= Dsδ
b
aδ
λ
κ . (2.13)

Non-trivial tensors vn are obtained by contracting Lorentz indices of two chains of γ[Ds−4]

matrices. The basis introduced in eq. (2.3) for these chains is particularly useful for com-

puting these contractions.

Let us consider an amplitude with a pair qq̄ of external quarks and any number of

external gluons. There is a single chain of γ[Ds−4] matrices and, as there are no other

objects with (Ds − 4) indices, it follows from the discussion above that for this case there

is a single term in the sum of eq. (2.11):

M (k)(q, q̄, g, . . . , g) = w0M
(k)
0 , with (w0)λκ = δλκ . (2.14)

We define the dual tensor w0 such that w0 ·w0 = 1, with more details given in appendix A.

Let us now consider an amplitude with two quark pairs of different flavors, qq̄ and QQ̄,

and any number of gluons. We can now contract Lorentz indices between two different

chains of γ matrices, and the basis {vn} is then larger in this case. Using the basis for the

γ-matrix chains introduced in eq. (2.3), we construct the associated basis {vn}:

(v0)λ1λ2
κ1κ2

= δλ1
κ1
δλ2
κ2
,

(v1)λ1λ2
κ1κ2

= (γµ1

[Ds−4])
λ1
κ1

(γ[Ds−4]µ1
)λ2
κ2
,

...

(vm)λ1λ2
κ1κ2

= (γµ1...µm
[Ds−4] )λ1

κ1
(γ[Ds−4]µ1...µm

)λ2
κ2
,

...

(2.15)

where we have made explicit the indices in the (Ds − 4)-dimensional space. The basis

{vn} is infinite dimensional for Ds = 4−2ε (because there are infinitely many independent

terms of the form of eq. (2.3)), but at each order in the perturbative expansion only a

finite number of basis elements contribute, as follows from inspecting the corresponding

Feynman diagrams. We thus have

M (k)(q, q̄, Q, Q̄, g, . . . , g) =

nk∑
n=0

vnM
(k)
n . (2.16)

In the HV scheme, the decomposition is independent of the number of external gluons. In

particular, the value of nk can be determined from the amplitude with no external gluons,

by examining the Feynman diagrams with the most singular gluons. These are ladder-type

four-point diagrams with the gluons in the rungs. We find for instance that n0 = 0, n1 = 3

– 7 –
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and n2 = 5 for tree-level, one- and two-loop amplitudes, respectively. Our decomposition is

similar to the one presented in ref. [28], but differs in the choice of basis tensors in eq. (2.11).

In practical calculations, one is interested in computing specific coefficients M
(k)
n in

the decomposition of eq. (2.11). We construct the basis {vn} such that this operation is

trivial, i.e., it satisfies

v†n · vm = cnδ
n
m , c0(Ds) = 1 and cn>0(Ds) = O(ε) . (2.17)

The calculation of the coefficients cn requires some technical operations on γ matrices that

we present in appendix A. We then construct the dual basis {vn}, with elements

vn =
1

cn
(vn)† . (2.18)

Using the dual basis, we directly get

M (k)
n = vn ·M (k). (2.19)

Finally let us consider an amplitude with two identical quark pairs, which can be

constructed by anti-symmetrizing the distinct-flavor amplitude M (k) over the two fla-

vors [28, 29]. It is then easy to see that the decomposition of eq. (2.11) requires an enlarged

basis compared to the distinct-quark case of eq. (2.15). We thus define the tensors {ṽn} as

(ṽn)λ1λ2
κ1κ2

= (vn)λ2λ1
κ1κ2

, (2.20)

and the decomposition of eq. (2.11) is over the sets {vn} and {ṽn}. The basis tensors satisfy

vnv
m = δmn , ṽnṽ

m = δmn , vnṽ
m = δm0 δn,0 +O(ε) , (2.21)

where the set {ṽn} is constructed to be dual to {ṽn} in the same way as in eq. (2.18).

We finish this subsection with a comment on the case where Ds is a finite integer

D0
s . All the discussion above holds, but one must be careful with a small detail. The

basis of the Clifford algebra in eq. (2.3) now contains only a finite number of terms, and

the basis of tensors {vn} is consequently restricted by the dimension D0
s . If one wants to

compute the coefficient of a given tensor vi, one must thus choose D0
s large enough such

that vi ∈ {vn}. Nevertheless, one can check that a calculation done in D0
s dimensions

agrees with the Ds = D0
s limit of the same calculation done in generic Ds.

2.3 Two-loop helicity amplitudes for NNLO phenomenology

We have established that helicity amplitudes in dimensional regularization are tensors in

the (Ds−4)-dimensional space and introduced a basis of that space on which we can decom-

pose the amplitude. We should in principle compute all coefficients in the decomposition.

However, it turns out that in a given phenomenological application not all coefficients may

be relevant. We discuss below the two cases involving external quarks pertinent to the

subject of this paper, the amplitudes with only external gluons being trivial in this regard.

– 8 –
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Two-loop qq̄g . . . g amplitude. For the case of an amplitude with a pair qq̄ of external

quarks and any number of external gluons, there is a single coefficient to determine, see

eq. (2.14). At order k in perturbation theory we call this object A(k). It is computed using

A(k)(q, q̄, g, . . . , g) = M
(k)
0 (q, q̄, g, . . . , g) = w0 ·M (k)(q, q̄, g, . . . , g) , (2.22)

i.e. by tracing over the (Ds − 4)-dimensional indices of the fermion line. In this paper we

are mostly interested in k = 2.

Two-loop qq̄QQ̄g . . . g amplitude. For a two-loop amplitude with two quark pairs of

different flavors, qq̄ and QQ̄, and any number of gluons there are in principle six coefficients

to determine. However, in an NNLO computation (that is not loop-induced) the two-loop

amplitude is interfered with the tree amplitude, which has a single tensor structure in the

HV scheme. The contribution we must compute is of the form(
M (0)

)†
M (2) =

(
M

(0)
0

)†
M

(2)
0 , (2.23)

where we have used the orthogonality of the tensors vn and the fact that c0(Ds) = 1, see

eq. (2.17). For NNLO corrections, it is thus sufficient to compute the coefficients M
(2)
0

through

A(2)(q, q̄, Q, Q̄, g, . . . , g) = M
(2)
0 = v0 ·M (2)(q, q̄, Q, Q̄, g, . . . , g), (2.24)

which amounts to computing the (Ds − 4)-dimensional trace of M (2) on each fermion line.

We define the amplitude A(k)(q, q̄, Q, Q̄, g, . . . , g) for any order k in an analogous way.

This approach is similar to the one of ref. [28] and is in agreement with the prescription

of ref. [36]. On a first look, it might however look inconsistent with the way qq̄QQ̄ helicity

amplitudes are defined in ref. [29]. Written in the formalism we have introduced in this

section, the authors compute

ṽ0 ·M (2)(q, q̄, Q, Q̄) , (2.25)

and, given the relations of eq. (2.21), this would not necessarily give the same A(2)(q, q̄,

Q, Q̄) defined in eq. (2.24). For phenomenological applications, however, one can show

that only the so-called finite remainder is relevant [42], and we now show that the choices

of eqs. (2.24) and (2.25) give the same result for this quantity.3 We first recall that the

infrared poles of a renormalized QCD amplitude MR have a universal structure, and we

can write an amplitude in terms of its universal pole structure and a finite remainder which

we will denote F [43–46]. More explicitly, for a two-loop amplitude we have

M
(2)
R = I(2)M

(0)
R + I(1)M

(1)
R + F (2) , (2.26)

where I(1) and I(2) are operators in color space. We refer the reader to appendix B for

explicit expressions for these operators in the leading-color approximation of the amplitudes

considered in this paper. Since F (2) is finite, we have

v0 · F (2) = ṽ0 · F (2) +O(ε), (2.27)

3This was already pointed out by the authors of ref. [29], who discuss the agreement of their finite

remainder results with those of ref. [28].
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and the remainder computed from eq. (2.24) thus agrees with the one computed from

eq. (2.25).

Finally, we now show that in the case of two pairs of identical quarks we can also use

the definition of eq. (2.24) for NNLO phenomenology. The relevant contribution is the

interference of the tree-level amplitude with the remainder, i.e.(
M (0) − M̃ (0)

)
·
(
F (2) − F̃ (2)

)
=
(
M

(0)
0 − M̃ (0)

0

)(
v0 · F (2) − ṽ0 · F̃ (2)

)
+O(ε), (2.28)

where we denote with tildes the flavor exchanged objects. Here, we have used the orthogo-

nality of the vn and ṽn up to O(ε) to simplify the expression. Importantly, the right hand

side of eq. (2.28) now only contains terms that can be computed through the definition

of eq. (2.24).

2.4 Leading-color amplitudes

In this paper we compute a complete set of independent four- and five-parton helicity

amplitudes in the leading-color approximation. More concretely, we keep the leading terms

in the formal limit of a large number of colors Nc, and scale the number of massless flavors

Nf whilst keeping the ratio Nf/Nc fixed. Each amplitude can be decomposed in terms of

color structures whose coefficients are related by symmetry, and in this section we define

our notation for the color decomposition of the amplitudes. We denote the fundamental

generators of the SU(Nc) group by (T a) ̄i , where the adjoint index a runs over N2
c −1 values

and the (anti-) fundamental indices i and ı̄ run over Nc values. We use the normalization

Tr(T aT b) = δab.

In this work, we will compute amplitudes where the external partons have well defined

(either positive or negative) helicities, following the conventions of ref. [47]. We first discuss

the four-point amplitudes. We will consider amplitudes for the scattering of four gluons, one

quark pair and two gluons, and two distinct quark pairs. In the leading-color approximation

we write

A(1g, 2g, 3g, 4g)
∣∣
leading color

=
∑

σ∈S4/Z4

Tr (T aσ(1)T aσ(2)T aσ(3)T aσ(4))

×A(σ(1)g, σ(2)g, σ(3)g, σ(4)g) ,

(2.29)

A(1q, 2q̄, 3g, 4g)
∣∣
leading color

=
∑
σ∈S2

(T aσ(3)T aσ(4)) ı̄2i1

×A(1q, 2q̄, σ(3)g, σ(4)g) ,

(2.30)

A(1q, 2q̄, 3Q, 4Q̄)
∣∣
leading color

= δ ı̄2i3 δ
ı̄4
i1
A(1q, 2q̄, 3Q, 4Q̄) , (2.31)

where Sn denotes all permutations of n indices and Sn/Zn denotes all non-cyclic permuta-

tions of n indices. We write the particle type explicitly as a subscript, and all remaining

properties of each particle (momentum, helicity, etc.) are implicit in the associated num-

ber. In the case of amplitudes involving quarks, we recall that the amplitudes A have been

defined in eqs. (2.22) and (2.24). For the five-point case, we will consider the amplitudes

for the scattering of five gluons, one quark pair and three gluons, and two distinct quark
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Figure 1. Representative Feynman diagrams for leading-color A(2)(g, g, g, g, g) amplitudes, con-

tributing at order N0
f , N1

f and N2
f .

pairs and one gluon. In the leading-color approximation we write

A(1g, 2g, 3g, 4g, 5g)
∣∣
leading color

=
∑

σ∈S5/Z5

Tr (T aσ(1)T aσ(2)T aσ(3)T aσ(4)T aσ(5))

×A(σ(1)g, σ(2)g, σ(3)g, σ(4)g, σ(5)g) ,

(2.32)

A(1q, 2q̄, 3g, 4g, 5g)
∣∣
leading color

=
∑
σ∈S3

(T aσ(3)T aσ(4)T aσ(5)) ı̄2i1

×A(1q, 2q̄, σ(3)g, σ(4)g, σ(5)g) ,

(2.33)

A(1q, 2q̄, 3Q, 4Q̄, 5g)
∣∣
leading color

= (T a5) ı̄2i3 δ
ı̄4
i1
A(1q, 2q̄, 5g, 3Q, 4Q̄)

+ (T a5) ı̄4i1 δ
ı̄2
i3
A(1q, 2q̄, 3Q, 4Q̄, 5g) ,

(2.34)

with similar notation as in the four-point case. For both the four- and five-point cases, the

amplitude with two identical quark pairs can be obtained by anti-symmetrizing over the

distinct flavors q and Q as discussed in the previous subsection.

The kinematic coefficients of equations (2.29)–(2.34), denoted by the various A, are

known as the leading-color partial amplitudes. They can be perturbatively expanded up

to the two-loop order as

A = g3
0

(
A(0) +

α0

4π
NcA(1) +

(α0

4π

)2
N2

cA(2) +O(α3
0)

)
, (2.35)

where α0 = g2
0/(4π) is the bare QCD coupling and A(k) denotes a k-loop partial amplitude.

The partial amplitudes can be further organized in terms of the number of closed fermion

loops, ranging from none up to the loop order, which each contribute one power of Nf . We

write

A(1) = A(1)[N0
f ] +

Nf

Nc
A(1)[N1

f ] ,

A(2) = A(2)[N0
f ] +

Nf

Nc
A(2)[N1

f ] +

(
Nf

Nc

)2

A(2)[N2
f ] .

(2.36)

In the leading-color approximation, the structure of these amplitudes simplifies, receiving

contributions only from planar diagrams. Representative diagrams for each of the five-

parton amplitudes we consider are given in figures 1, 2 and 3.
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Figure 2. Representative Feynman diagrams for leading-color A(2)(q, q̄, g, g, g) amplitudes, con-

tributing at order N0
f , N1

f and N2
f .

Figure 3. Representative Feynman diagrams for leading-color A(2)(q, q̄, Q, Q̄, g) amplitudes, con-

tributing at order N0
f , N1

f and N2
f .

3 Calculation of planar multi-parton amplitudes

In order to compute two-loop four- and five-parton amplitudes, we apply a variant of

the unitarity method [10–13] suitable for automated numerical computations of multi-loop

amplitudes [18–20]. The aim of the computation is to determine the coefficient functions

cΓ,i and combine them with the master integrals IΓ,i in the standard decomposition of the

amplitude:

A(k) =
∑
Γ∈∆

∑
i∈MΓ

cΓ,i IΓ,i . (3.1)

Here ∆ is the set of all diagrams that specify different propagator structures Γ in the

amplitude. The index i runs over the set MΓ of master integrals associated with each

propagator structure.

In order to determine the coefficient functions cΓ,i, we promote eq. (3.1) to the inte-

grand level. The integrand is denoted A(`l), where `l represents the loop momenta, and

we decompose it as [18]

A(k)(`l) =
∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,imΓ,i(`l)∏
j∈PΓ

ρj
, (3.2)

where PΓ is the set of propagators in the diagram Γ, and the ρj denote inverse propagators.

We extended the sum in eq. (3.1) to also run over surface terms contained in the set SΓ.

These surface terms vanish upon integration but they are necessary to parametrize the

integrand. The surface terms are constructed from a complete set of so-called unitarity-

compatible integration-by-parts identities [18, 48–50]. For all the processes considered in

this article we use the master/surface-term parametrization given in ref. [6], which only

depends on the kinematics of the processes. While in amplitudes with fermions additional
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Lorentz-symmetry breaking terms may appear prior to integration (see e.g. [34, 36] and the

discussion below eq. (2.6)), they do not in our definition of helicity amplitudes in eq. (2.19).

The cancellation of these terms will be discussed in section 3.1.

In the numerical unitarity method, the coefficients cΓ,i in the ansatz (3.2) can be

determined by building systems of linear equations through sampling of on-shell values of

the loop momenta `l. In the on-shell limit the leading contributions of eq. (3.2) factorize,∑
states

∏
i∈TΓ

Atree
i (`Γl ) =

∑
Γ′≥Γ ,

i∈MΓ′∪SΓ′

cΓ′,imΓ′,i(`
Γ
l )∏

j∈(PΓ′\PΓ) ρj(`
Γ
l )
, (3.3)

where we label the set of the tree amplitudes associated to the vertices in the diagram Γ

by TΓ, and the sum on the left-hand side represents the sum over all internal states on the

internal edges of the diagram Γ.

In eq. (3.3) the loop momenta `Γl is such that all propagators in PΓ are on-shell, and

so in these limits we also probe diagrams Γ′ such that PΓ ⊆ PΓ′ (a relation that we

denote as Γ′ ≥ Γ). Beyond one loop there exist diagrams in ∆ with doubled propagators.

The numerators of such diagrams correspond to leading and subleading terms in their

on-shell limits, and for the latter no factorization of the integrand into tree amplitudes is

known. Nevertheless, as shown in ref. [19], one can systematically organize the set of cut

equations (3.3) in such a way that all master-integral coefficients necessary to obtain the

full amplitude can be computed.

In the following, we discuss the details of the procedure when applied to processes

with fermionic degrees of freedom. First, in section 3.1, we discuss an approach that allows

the use of finite fields in the presence of fermions. Next, in section 3.2, we discuss the

implementation of the products of tree amplitudes with fermions. Finally, in section 3.3,

we describe how these components come together to compute the integrated amplitude.

3.1 Finite fields and spinors

The extension of unitarity approaches to employ only operations defined in an algebraic

field was proposed in ref. [38]. A finite-field based calculation allows to compute exact

values for the integral coefficients cΓ,i of eq. (3.1) in a numerical framework. This idea

was applied recently in [5, 6] for pure gluon-scattering amplitudes, and here we discuss our

implementation for amplitude computations with fermions.

From here on we denote by F an arbitrary number field. In practice, we will be

interested in F being the field of rational numbers Q or the finite field Zp of all integers

modulo a prime number p. In general, polynomial equations do not have solutions in F.

This is at odds with the fact that in a unitarity-based approach one needs to generate loop

momenta which satisfy a set of quadratic conditions corresponding to setting propagators

to zero. In ref. [6], this was resolved by making sure that all scalar products between the

momenta in the problem were F-valued. In the presence of fermions, the situation becomes

more complicated due to the extension of the Clifford algebra beyond four dimensions.

More specifically, terms such as `µγ[Ds]µ exhibit the (D−4)-dimensional components of the

loop momenta, which are in general not F-valued for on-shell momenta (more concretely,
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if we work on the field of rational numbers these components are in general irrational),

leading to terms in the sub-currents of the Berends-Giele recursion that are not F-valued.

To address this issue, we start with a parametrization of the on-shell spaces as in ref. [6]

but always use normalized basis vectors. We write the two-loop momenta as

`1 = (`1,[4], ~µ1) , `2 = (`2,[4], ~µ2) , (3.4)

where we denote their (D − 4)-dimensional components as ~µ1 and ~µ2. Next, we choose an

orthonormal basis ~ni of the (D − 4)-dimensional space with n1 in the direction of ~µ1 and

write

~µ1 = r1~n1, ~µ2 =
µ12

µ11
r1~n1 + r2~n2 where r1 =

√
µ11, r2 =

√
µ22 − µ2

12/µ11, (3.5)

with µij = ~µi ·~µj . In a theory containing only vector particles we only ever need the values

r2
i , which are F-valued both on- and off-shell [6]. In contrast, in a theory with fermions,

components of Berends-Giele currents will take the generic form

a00 + a10r1 + a01r2 + a11r1r2, (3.6)

which is not F-valued. In order to nevertheless be able to work in the field F, we consider the

algebra V over the field F, with V the vector space spanned by the basis {r0 = 1, r1, r2, r1r2}
and equipped with the standard addition and multiplication. All components of the

Berends-Giele are elements in the algebra, and can thus be written as a linear combi-

nation of the ri with F-valued coefficients. More concretely, this means we only need to

determine the aij in eq. (3.6) which are F-valued by construction.

An important observation is that, although the coefficients a10, a01 and a11 in eq. (3.6)

are non-zero in intermediate stages of the calculations, they vanish for the integrands of

helicity amplitudes as defined in eq. (2.11). This cancellation of the ri terms holds in the

HV scheme and is due to the projection onto the invariant tensors vn of eq. (2.11), which

yields polynomials in the Lorentz invariants µij at the integrand level. To see this point

more explicitly, consider the integrand Mk(`l) of an amplitude with an arbitrary number of

quark lines where the subscript k encodes the dependence on the (Ds − 4) spinor indices.4

We can write the integrand in the form

Mk(`l) =
∑
n,m

fρ1···ρn,σ1···σm
k

(
n∏
i=1

~µ1 ρi

) m∏
j=1

~µ2σi

 , (3.7)

with the tensors fρ1···ρn,σ1···σm
k implicitly defined. By construction, they depend on the

(Ds − 4) components of the loop momenta through the Lorentz invariant scalar products

µij . The (Ds − 4) Lorentz indices we write explicitly can only be carried in fρ1···ρn,σ1···σm
k

by (Ds − 4)-dimensional γ-matrices or metric tensors. In our definition (2.11) of helic-

ity amplitudes, the (Ds− 4)-dimensional spinor indices are to be contracted with invariant

tensors, leading to traces of γ[Ds−4] matrices which can be expressed in terms of metric ten-

sors. Consequently, the Lorentz indices in a contraction of fρ1···ρn,σ1···σm
k with an invariant

4This can be viewed as a generalization of the decomposition in eq. (2.11) to the integrand level.
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tensor are carried by metric tensors only. Hence, after contraction with invariant tensors,

the integrand only depends on µij . In contrast, evaluating amplitudes that introduce a

reference axis in the (Ds − 4)-dimensional space would lead in general to a dependence on

the components of the ~µi and thus on the ri terms. This is the case for instance when

considering gluon-polarization components in the (Ds − 4) dimensions (as required in the

CDR scheme) or generic values of the (Ds−4)-dimensional spinors ηi, as written explicitly

in eq. (2.6).

We finish with a comment that is not related to the use of finite fields but follows

from the discussion above. Since our representation of fermion amplitudes is manifestly

Lorentz invariant in (Ds−4) dimensions prior to loop integration, the integrands of fermion

amplitudes can be decomposed in terms of the same set of master integrands and surface

terms as those used for amplitudes with gluons only [6, 20].

3.2 Tree amplitudes

In order to numerically calculate the necessary products of tree amplitudes used in the cut

equations (3.3), we implement a Berends-Giele recursion [51]. The presence of the fermionic

degrees of freedom means that we require concrete representations of the Clifford algebra

in Ds dimensions, where Ds is even. It can be shown that integrands of the HV amplitudes

defined in eqs. (2.22) and (2.24) depend at most quadratically on the parameter Ds. As we

must also take Ds ≥ 6, we implement the recursion for three values of Ds, specifically 6, 8

and 10. Explicit constructions can be found (for example) in [40, 41] or obtained using the

factorized definition in (2.2). Importantly, to obtain manifestly real representations of the

Clifford algebra, we continue components of momenta to imaginary values keeping kine-

matic invariants real valued. For gluon amplitudes, the analytic continuation can be equiv-

alently interpreted as changing the metric signature to g′[Ds] = diag{+1,−1,+1, . . . ,−1}.
As far as spinor representations are concerned, the two perspective are not equivalent as

the latter would also alter the inner product of the spinors. Effectively we work in the

alternating signature while maintaining the conjugation operation for spinors as defined in

Minkowski signature.

In order to implement the prescription of eqs. (2.22) and (2.24) for computing am-

plitudes with external fermions, we first construct four-dimensional states with a specific

helicity from Weyl spinors using the conventions of ref. [47]. To handle the (Ds − 4)-

dimensional Clifford algebra we work with a canonical basis for the associated spinors

ηiκ = δiκ and fix η̄κi to be its dual as in eq. (2.5). Through eq. (2.4) we then construct

the full set of Ds-dimensional states associated with a given four-dimensional state. The

projections in eqs. (2.22) and (2.24) then amount to the evaluation of (normalized) traces

over the (Ds − 4)-dimensional indices.

We close with two technical remarks. First, within our implementation all internal

Lorentz indices are taken to be Ds-dimensional despite the HV prescription that this should

only be the case for one-particle-irreducible diagrams. This is allowed because the differ-

ence between this prescription and the HV prescription does not contribute to the helicity

amplitudes as defined in eqs. (2.22) and (2.24). Second, with an appropriate normaliza-

tion of the spinor states and their conjugates, the components of the spinors in internal
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state-sums also take the form of eq. (3.6), so no special treatment is needed in finite-field

computations.

3.3 Amplitude evaluation

We start by constructing the set ∆ of all propagator structures which are associated to a

given amplitude in the decomposition of eq. (3.2). For this task we produce all cut diagrams

in the full-color process employing QGRAF [52], followed by a color decomposition per-

formed in Mathematica according to ref. [53]. In the latter step, tree-level decompositions

for processes involving several fermion lines are necessary and we perform them following

ref. [54]. We then take the leading-color limit and extract a hierarchically-organized set

of propagator structures associated to the color-ordered amplitudes in eqs. (2.29)–(2.34).

This decomposition is then processed by a C++ code. The master/surface-term decomposi-

tion which we employ is the same as the one used in refs. [6, 20]. It was constructed using

the computational algebraic geometry package SINGULAR [55] to solve syzygy equations

that allow to obtain a set of unitarity-compatible surface terms.

Solving the multiple systems of linear equations associated to all cut equations (3.3) is

achieved through PLU factorization and back substitution. To reconstruct the dependence

of the master-integral coefficients on the dimensional regulators D and Ds we sample over

enough values to resolve their rational or polynomial dependence, respectively. In a gen-

eralization of ref. [32], the quadratic Ds dependence is reconstructed from the evaluations

at Ds = 6, 8 and 10. Explicit D dependence on the integral coefficients is induced by

the D-dependent surface terms. We sample multiple values of D randomly to extract the

rational dependence of all master coefficients by using Thiele’s formula [38, 56].

The above approach to obtaining the coefficients in the decomposition of the amplitude

in eq. (3.1) is implemented in a numerical framework which allows two independent com-

putations. The first involves evaluation over the finite fields provided by Givaro [57]. We

use cardinalities of order 230 and, to improve on the multiplication speed, we implement

Barrett reduction [58, 59]. For a given rational kinematic point, we perform the com-

putation in a sufficient (phase-space-point dependent) number of finite fields to apply a

rational-reconstruction algorithm after using the Chinese Remainder theorem. The second

mode of operation carries out the evaluations in high-precision floating-point arithmetic.

In this case we do neither employ the technology to control algebraic terms described in

section 3.1 nor do we use the refined computational setup based on real-valued operations.

The coefficients are then combined with master integrals as in eq. (3.1) to give the

integrated amplitudes. For four-parton amplitudes we use the same implementation of the

integrals as the one used in ref. [20] and for five-parton amplitudes we use the same as in

ref. [6]. In the former case, we used our own calculation of a set of master integrals. In the

latter case, we used the integrals of ref. [30] for the five-point master integrals, the integrals

of ref. [60] for the lower point integrals, and our own calculation of the one-loop-factorizable

integrals. In all cases, the polylogarithms in the ε-expansion of the master integrals are

evaluated with GiNaC [61], which can be tuned to the desired precision.
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4 Numerical results for helicity amplitudes

In this section we present numerical values for leading-color two-loop multi-parton helicity

amplitudes. We first present our results for four-parton amplitudes. These are known

in analytic form [25, 27–29] and we use them as a validation of our approach. Then

we present our new computation of five-parton helicity amplitudes. We include all Nf

corrections corresponding to closed massless-quark loops.

For each different choice of external partons we consider, we will show tables of numeri-

cal results for a full set of independent helicity assignments corresponding to a single partial

amplitude in the color decompositions of eqs. (2.29)–(2.34). Furthermore, we present results

only for distinct flavor configurations: as discussed in section 2, see eq. (2.28), results for

finite remainders of amplitudes with identical quarks can be obtained by antisymmetrizing

on the flavor assignments. In appendix B we give all the ingredients required for computing

these remainders, in particular results for one-loop amplitudes expanded through order ε2.

4.1 Four-parton amplitudes

We evaluate the four-gluon, two-quark two-gluon and four-quark amplitudes at the phase-

space point5

p1 = (1, 1,−i, 1) ,

p2 = − 1

16
(3, 0, 0,−3) ,

p3 =
1

48
(25,−51, 45 i, 7) ,

p4 = − 1

48
(64,−3,−3 i, 64) ,

(4.1)

with corresponding invariants s12 = −3/4 and s23 = −1/4 where sij = (pi + pj)
2. We set

the regularization scale µ to 1 and the normalization of the results is fixed by the expansion

in eqs. (2.35) and (2.36). All results are presented in the HV scheme.

In table 1 we show numerical results for the bare two-loop four-parton helicity am-

plitudes. In order to expose the pole structure of the amplitudes (see appendix B) we

normalize them to the corresponding tree-level amplitude if it is nonvanishing, or to the

corresponding A(1)[N0
f ](ε = 0) amplitude otherwise. The results have been obtained with

exact values for the integral coefficients and with the master integrals evaluated to a pre-

cision that allows to show 10 significant digits.

We have validated our results by carrying out a set of checks. We verified that they

satisfy the expected infrared pole structure [43]. We summarize the relevant formulae for

this check in appendix B. Furthermore, we have carried out a systematic validation of

the ε0 contributions of all of our results against their known analytic expressions from

refs. [25, 27–29]. For the four-gluon amplitudes we have compared directly the ε0 pieces

of our results with the analytic expressions of [25]. For the two-quark two-gluon and four-

quark amplitudes we have used the one-loop results given in appendix B.3 to compute

the corresponding finite remainders F (2) as defined in eq. (2.26). After accounting for

the different choices of normalization for the H[n](ε) operators (see appendix B) made in

refs. [27] and [28], we have found perfect agreement.

5Units of energy are chosen arbitrarily. The amplitudes presented in the tables 1, 2, 3 and 4 are

normalized to be dimensionless.
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A(2)[N0
f ]/A(norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+
g , 2

+
g , 3

+
g , 4

+
g ) 0 0 −4.000000000 −23.74072126 −63.52221777

(1−g , 2
+
g , 3

+
g , 4

+
g ) 0 0 −4.000000000 −35.31127327 −133.5083818

(1−g , 2
−
g , 3

+
g , 4

+
g ) 8.000000000 55.65274878 164.6421815 222.3267401 −8.390444844

(1−g , 2
+
g , 3

−
g , 4

+
g ) 8.000000000 55.65274878 176.0091465 332.2956004 486.5023259

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g ) 0 0 −3.000000000 −24.41444952 −74.97642231

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g ) 4.500000000 28.51508962 73.34964082 75.65107559 −9.311163231

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g ) 4.500000000 28.51508962 64.00475414 −13.64171730 −376.4555455

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄

) 2.000000000 10.19374511 8.003461515 −55.57160018 −92.52942183

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄

) 2.000000000 10.19374511 −4.028725695 −134.3060579 −234.1564069

A(2)[N1
f ]/A(norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+
g , 2

+
g , 3

+
g , 4

+
g ) 0 0 4.000000000 27.74072126 86.81849458

(1−g , 2
+
g , 3

+
g , 4

+
g ) 0 0 4.000000000 39.31127327 172.4199379

(1−g , 2
−
g , 3

+
g , 4

+
g ) 0 −2.000000000 −15.96133691 −59.69423578 −141.8161833

(1−g , 2
+
g , 3

−
g , 4

+
g ) 0 −2.000000000 −18.16301631 −81.04594245 −230.6319267

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g ) 0 0 0.5454545455 3.784151849 3.326492162

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g ) 0 0.5000000000 4.307232180 15.70646205 21.70488360

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g ) 0 0.5000000000 4.307232180 13.62982056 −12.51632628

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄

) 0 1.666666667 10.55774898 23.90612711 −30.33285238

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄

) 0 1.666666667 10.55774898 15.88466897 −106.4874291

A(2)[N2
f ]/A(norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+
g , 2

+
g , 3

+
g , 4

+
g ) 0 0 0 0 1.444444444

(1−g , 2
+
g , 3

+
g , 4

+
g ) 0 0 0 0 0

(1−g , 2
−
g , 3

+
g , 4

+
g ) 0 0 0 0 0.03086419753

(1−g , 2
+
g , 3

−
g , 4

+
g ) 0 0 0 0 0

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g ) 0 0 0 0.1212121212 1.189856320

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g ) 0 0 0 0 0

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g ) 0 0 0 0 0

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄

) 0 0 0.4444444444 3.473917619 14.37639897

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄

) 0 0 0.4444444444 3.473917619 14.37639897

Table 1. The bare two-loop four-parton helicity amplitudes evaluated at the phase space point

in eq. (4.1). We set the normalization factor A(norm) to A(1)[N0
f ](ε = 0) for the amplitudes with

vanishing trees, and to A(0) otherwise.
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4.2 Five-parton amplitudes

We present results for the five-parton amplitudes evaluated at the phase-space point

p1 =

(
1

2
,

45

272
,

45i

272
,
1

2

)
,

p2 =

(
−1

2
, 0, 0,

1

2

)
,

p3 =

(
21

26
,−21

26
,− 5i

26
,− 5

26

)
,

p4 =

(
−1169

2652
,

2165

10608
,−13459i

38896
,−5075

9724

)
,

p5 =

(
− 973

2652
,

581

1326
,

1813i

4862
,−2779

9724

)
,

(4.2)

with corresponding invariants

s12 = −1, s23 = −8/13, s34 = −1094/2431,

s45 = −7/17, s51 = −749/7293 .
(4.3)

We set the regularization scale µ to 1 and the normalization of the results is fixed by the

expansion in eqs. (2.35) and (2.36). All results have been computed in the HV scheme.

Given that our integral coefficients are computed as exact rational numbers, the final

precision of our results is determined by how many digits we require from GiNaC [61] in

the evaluation of the polylogarithms in the master integrals we use [30, 60]. In table 2 we

present results with 10 significant digits.

All results in table 2 have been checked to satisfy the pole structure of two-loop ampli-

tudes [43]. The one-loop amplitudes required for these checks have been obtained from our

own setup, and cross-checked up to order ε0 with BlackHat [17]. We present their nu-

merical values in appendix B. The N0
f piece of the all-plus five-gluon amplitude have been

checked to reproduce the analytic result of [3], and for the other helicity configurations we

have validated the results of [5] with our implementation. We also find agreement with the

numerical results of the N0
f terms of the two-quark three-gluon and four-quark one-gluon

two-loop amplitudes which have been presented in the revised version of ref. [7]. Finally,

we also cross-checked the pole structures of other helicity configurations, not explicitly

shown. As our setup is a numerical one, this amounts to internal consistency checks of our

computational framework.

5 Conclusion

We have presented the calculation of the planar two-loop four- and five-parton helicity

amplitudes, extending the numerical variant of the two-loop unitarity method already

used in [6, 20] to amplitudes with fermions. Our results include all corrections associated

with closed massless fermions loops. Numerical results for some of the amplitudes we have

computed have been presented recently [7]. Given our results, the complete set of two-

loop amplitudes required for a NNLO QCD calculation of three-jet production at hadron

colliders in the leading-color approximation are now available.

We first described a formalism for computing multi-loop helicity amplitudes with ex-

ternal fermions in dimensional regularization, consistent with the approaches of refs. [26,
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A(2)[N0
f ]/A(norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 −5.000000000 −29.38541207 −62.68413553

(1−g , 2
+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 −5.000000000 −42.33840431 −159.9778589

(1−g , 2
−
g , 3

+
g , 4

+
g , 5

+
g ) 12.50000000 84.83123596 243.4660216 301.9565843 −152.0528809

(1−g , 2
+
g , 3

−
g , 4

+
g , 5

+
g ) 12.50000000 84.83123596 269.4635002 551.6251881 984.0882231

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

+
g ) 0 0 −4.000000000 −33.66432052 −117.5792214

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

−
g ) 8.000000000 51.38308777 127.3357346 55.24748112 −511.9128286

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g , 5

+
g ) 8.000000000 51.38308777 137.2047686 143.1002284 −154.2224796

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g , 5

+
g ) 8.000000000 51.38308777 133.2453937 110.9941406 −263.9507190

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5+
g ) 4.500000000 23.78050411 33.01035431 −76.65528489 −305.7123751

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5+
g ) 4.500000000 23.78050411 25.33119767 −122.8050519 −400.0885233

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5−g ) 4.500000000 23.78050411 25.00917906 16.91995611 579.1225796

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5−g ) 4.500000000 23.78050411 −1009.208812 −4797.768367 4827.790534

A(2)[N1
f ]/A(norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 5.000000000 34.38541207 78.06348509

(1−g , 2
+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 5.000000000 47.33840431 206.9626532

(1−g , 2
−
g , 3

+
g , 4

+
g , 5

+
g ) 0 −2.500000000 −15.82327813 −36.65791641 −15.54781774

(1−g , 2
+
g , 3

−
g , 4

+
g , 5

+
g ) 0 −2.500000000 −20.72836557 −83.86917083 −215.3966037

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

+
g ) 0 0 1.416882412 11.98234731 38.78056708

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

−
g ) 0 0.6666666667 7.912904946 38.94492002 78.45710970

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g , 5

+
g ) 0 0.6666666667 5.701796856 20.47669656 20.24036826

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g , 5

+
g ) 0 0.6666666667 5.878666845 21.43074531 17.31964894

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5+
g ) 0 2.500000000 17.25407596 48.27686582 11.71960460

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5+
g ) 0 2.500000000 17.27259645 44.99884204 −15.14666233

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5−g ) 0 2.500000000 3.980556493 −29.18374008 −149.0347042

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5−g ) 0 2.500000000 180.9505853 624.1255757 −2759.824817

A(2)[N2
f ]/A(norm) ε−4 ε−3 ε−2 ε−1 ε0

(1+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 0 0 −13.52483164

(1−g , 2
+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 0 0 −0.08295433103

(1−g , 2
−
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 0 0 0.2400910586

(1−g , 2
+
g , 3

−
g , 4

+
g , 5

+
g ) 0 0 0 0 0.008096515560

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

+
g ) 0 0 0 0.2361470687 2.541010053

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

−
g ) 0 0 0 0.3690523831 3.782474720

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g , 5

+
g ) 0 0 0 0.0005343680110 0.004830824685

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g , 5

+
g ) 0 0 0 0.03001269961 0.3139119453

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5+
g ) 0 0 0.4444444444 3.910872659 18.01752271

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5+
g ) 0 0 0.4444444444 3.919103985 18.09637714

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5−g ) 0 0 0.4444444444 −1.988469328 −28.36258323

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5−g ) 0 0 0.4444444444 76.66487683 646.7253090

Table 2. The bare two-loop five-parton helicity amplitudes evaluated at the phase space point

in eq. (4.2). We set the normalization factor A(norm) to A(1)[N0
f ](ε = 0) for the amplitudes with

vanishing trees, and to A(0) otherwise.
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28, 36]. This was achieved by embedding the four-dimensional external fermionic states

in Ds dimensions and preserving the invariance of the amplitude under Lorentz transfor-

mations in the (Ds − 4)-dimensional space. Within this formalism, we precisely stated

our definition of helicity amplitudes and devised a numerical method to compute parton

scattering amplitudes in the HV scheme. After interference with the Born amplitudes,

changing to other regularization schemes can be achieved by known transition rules [39].

Our computational approach relies on a parametrization of the two-loop four- and

five-point massless integrand in terms of master integrands and surface terms. With our

definition of helicity amplitudes, we can reuse the same parametrization already used for

four- and five-point gluon amplitudes independently of the type of partons. We extended

the finite-field implementation of ref. [6] to fermion amplitudes, allowing us to compute ex-

act master-integral coefficients for all partonic subprocesses at rational phase-space points.

The computations were also performed in an alternative setup using floating-point arith-

metic and we find agreement between the two variants of our numerical method.

We present reference values for helicity amplitudes. These are obtained by combining

the master-integral coefficients we compute with the corresponding master integrals, in

particular using the recently obtained analytic expressions for five-point integrals [30, 31].

We have validated our results in a number of ways: we reproduce the results for two-loop

four-parton helicity amplitudes computed from their known analytic expressions [25, 27,

28], we find the correct infrared structure of each amplitude and we validate the finite

pieces of recently published five-parton results [1–7] as detailed in section 4.2.

The techniques developed in this paper show the potential for the automation of two-

loop multi-particle amplitude calculations in the Standard Model. Our numerical approach

is relatively insensitive to the addition of scales. Having already implemented vector and

spinor fields, we are now ready to explore processes of phenomenological relevance that

include jets, (massive) gauge bosons and leptons in the final state. While techniques

for computing two-loop master integrals progress and new methods appear for handling

infrared divergent terms in real-real and real-virtual contributions, we expect to provide

a program that can deliver one- and two-loop matrix elements necessary for computing

precise QCD predictions for the LHC.
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A Operations on γ matrices

In the following we derive the values of the contraction of the tensors w0 and vn which are

used in eqs. (2.14) and (2.16). In this appendix we take d to be an even integer denoting

the dimension of the space for which the Clifford algebra is defined and we denote the

dimension of the γ-matrix representation by dt = Tr(1[d]) = 2d/2. In the main text, we are

interested in the case

d = (Ds − 4) . (A.1)

Since amplitude computations are homogeneous in the factor dt, it can be factored out and

replaced by a suitable value in order to suit the four-dimensional limit. In this appendix, we

keep the parameter dt in analytic form in order to maintain a consistent finite-dimensional

algebra and for clarity of the equations. In the main text we use formulas with the re-

placement dt → 1 imposed, which is the value consistent with a calculation in dimensional

regularization [41].

We start with the trivial case of w0 which appears in eq. (2.14). It is easy to find that

w0 = δλκ , w0 = δκλ/dt , w0 · w0 = δλκδ
κ
λ/dt = 1 . (A.2)

For the tensors vn of eq. (2.16) we must first consider traces of γ-matrix chains of

the form

γµ1...µn
[d] =

1

n!

∑
σ∈Sn

sgn(σ)γ
µσ(1)

[d] . . . γ
µσn
[d] , (A.3)

with Sn denoting the set of permutations of n integers and sgn(σ) the signature of the

permutation σ ∈ Sn. Given a unitary representation of the γµ[d] matrices, hermitian conju-

gation reverses the γ-matrix chains and flips the Lorentz index position. This can be seen

from the definition of the Clifford algebra (2.1) which implies γµ[d]γ[d]µ = 1[d] for any fixed µ.

Assuming that the γµ[d] are unitary, i.e. (γµ[d])
† = (γµ[d])

−1, then implies (γµ[d])
† = γ[d]µ. For

the above product of γ matrices this in turn leads to

(γµ1...µn
[d] )† = γ[d]µn...µ1

. (A.4)

Unitary representations for the Clifford algebra can always be found as explained for ex-

ample in ref. [40]. We will require the following traces of antisymmetric γ-matrix chains,

Tr(γµ1...µn
[d] γ[d] νm...ν1

) =

{
dt
∑

σ∈Sn sgn(σ)δ
µσ(1)
ν1 · · · δµσ(n)

νn m = n

0 m 6= n
, (A.5)

where the summation runs over all permutations Sn of n elements. The traces are computed

in fixed integer dimensions where the dimensions of the γ-matrix representation is taken

to be dt dimensional. For contracted Lorentz indices we will also use that∑
µ1,...,µn

∑
σ∈Sn

sgn(σ)δ
µσ(1)
µ1 . . . δ

µσ(n)
µn =

d!

(d− n)!
. (A.6)
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The sum counts the number of antisymmetric tensors of rank n in d dimensions, which

is the number of ways to choose an ordered subset of n elements from a fixed set of d

elements. With these preparatory equations we can compute the inner products of the vn
tensors of eq. (2.15) which yield the normalisation factors cn of eq. (2.17):

cn = v†n · vn = Tr(γ[d]µn...µ1
γν1...νn

[d] ) Tr(γµn...µ1

[d] γ[d] ν1...νn)

= d2
t

∑
σ∈Sn

∑
µ1,...,µn

∑
σ̃∈Sn

∑
ν1,...,νn

sgn(σ) sgn(σ̃)δ
µσ(n)
ν1 · · · δµσ(1)

νn δν1
µσ̃(n)

· · · δνnµσ̃(1)

= d2
t

∑
σ∈Sn

sgn(σ)

( ∑
µ1,...,µn

∑
σ̃∈Sn

sgn(σ̃)δ
µσ(n)
µσ̃(n)

· · · δµσ(1)
µσ̃(1)

)

= d2
t

∑
σ∈Sn

sgn(σ)2 d!

(d− n)!

= d2
t

d!n!

(d− n)!
.

(A.7)

In the above formulas the summation over the indices νi is trivially performed. In the

next step, we isolate a contribution of the form that we computed in eq. (A.6), which gives

the same result for each permutation σ but multiplied by sgn(σ). The final results follows

trivially. As expected, for each n the result has zeros in the dimensions d for which there are

insufficient distinct labels µi and νi available to form antisymmetric index configurations

of n indices. We recall that in the main text we set dt = 1 and d = Ds − 4.

Finally we collect the results for the contractions of the tensor ṽm and vn required

for amplitudes with two quark lines of identical flavor, see eq. (2.20). These contractions

lead to a single trace instead of a product of traces as was the case in eq. (A.7). We refer

to the above intuitive argument: tensor contractions including vn or ṽn vanish whenever

the dimensionality d is insufficient to accommodate the respective antisymmetric index

arrangements in the Lorentz indices µi and νi. In particular this implies that contractions

including the tensors vn are proportional to d for n 6= 0. We find that

ṽ†0 · v0 = δκ1
λ2
δκ2
λ1
δλ1
κ1
δλ2
κ2

= dt ,

ṽ†m · vn = dt d pmn(d) = O(ε) , for {m,n} 6= {0, 0} .
(A.8)

Here pmn(d) is a polynomial-valued matrix which we will not require explicitly for the

present paper, and in the last equality we made explicit the fact that in this paper we are

interested in the case d = Ds − 4 = O(ε).

B Divergence structure of two-loop five-parton amplitudes

We use the HV dimensional regularization scheme to handle both ultraviolet and infrared

divergences. UV divergences are removed through renormalization and the remaining in-

frared poles can be computed from the corresponding lower-order amplitudes [43–46]. In

this appendix we detail this procedure. Reproducing the pole structure of the amplitudes

we have computed is an important check of our results.
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B.1 Renormalization

We perform renormalization of the QCD coupling in the MS scheme. It is implemented by

replacing the bare coupling by the renormalized one, denoted αs, in eq. (2.35). The bare

and renormalized couplings are related through

α0µ
2ε
0 Sε = αsµ

2ε

(
1− β0

ε

αs
4π

+

(
β2

0

ε2
− β1

ε

)(αs
4π

)2
+O

(
α3
s

))
, (B.1)

where Sε = (4π)εe−εγE , with γE = −Γ′(1) the Euler-Mascheroni constant. µ2
0 is the scale

introduced in dimensional regularization to keep the coupling dimensionless in the QCD

Lagrangian, and µ2 is the renormalization scale. In the following, we set µ2
0 = µ2 = 1. The

leading-color coefficients of the QCD β-function are

β0 =
Nc

3

(
11− 2

Nf

Nc

)
, β1 =

N2
c

3

(
17− 13

2

Nf

Nc

)
. (B.2)

The perturbative expansion of the renormalized amplitude is

AR = S
−λ

2
ε gλs

(
A(0)
R +

αs
4π
NcA(1)

R +
(αs

4π

)2
N2

cA
(2)
R +O(α3

s)

)
, (B.3)

where λ is the power of g0 in the tree amplitude, with α0 = g2
0/(4π) and similarly for αs.

For four-parton amplitudes λ = 2, and for five-parton amplitudes λ = 3. The renormalized

amplitudes A(i)
R are related to the bare amplitudes A(i) as follows:

A(0)
R = A(0),

A(1)
R = S−1

ε A(1) − λ

2ε

β0

Nc
A(0) ,

A(2)
R = S−2

ε A(2) − λ+ 2

2ε

β0

Nc
S−1
ε A(1) +

(
λ(λ+ 2)

8ε2

(
β0

Nc

)2

− λ

2ε

β1

N2
c

)
A(0) .

(B.4)

B.2 Infrared behavior

The poles of renormalized amplitudes are of infrared origin and can be predicted from the

previous orders in the perturbative expansion [43–46]:

A
(1)
R = I

(1)
[n] (ε)A

(0)
R +O(ε0) ,

A
(2)
R = I

(2)
[n] (ε)A

(0)
R + I

(1)
[n] (ε)A

(1)
R +O(ε0) ,

(B.5)

with the operators I
(1)
[n] and I

(2)
[n] depending on the number and the type of the scattering

particles. This dependence is denoted by the subscript [n]. For amplitudes in the leading-

color approximation and for which all quark lines have distinct flavor, the operators I
(1)
[n]

and I
(2)
[n] are diagonal in color space and can be written in a very compact form. The

operator I
(1)
[n] is given by

I
(1)
[n] (ε) = − eγEε

Γ(1− ε)

n∑
i=1

γai,ai+1 (−si,i+1)−ε , (B.6)
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with the indices defined cyclically. The index ai denotes a type of particle with momentum

pi, i.e., in the context of our paper, ai ∈ {g, q, q̄, Q, Q̄}. We introduced the auxiliary symbols

γa,b, symmetric under the exchange of indices, γa,b = γb,a, and defined according to:

γg,g =
1

ε2
+

1

2ε

β0

Nc
,

γq,Q = γq,Q̄ = γq̄,Q = γq̄,Q̄ =
1

ε2
+

3

2ε
,

γg,q = γg,q̄ = γg,Q = γg,Q̄ =
γg,g + γq,Q

2
,

γq,q̄ = γQ,Q̄ = 0 .

(B.7)

The operator I
(2)
[n] is

I
(2)
[n] (ε) =− 1

2
I

(1)
[n] (ε)I

(1)
[n] (ε)−

β0

Ncε
I

(1)
[n] (ε) +

e−γEεΓ(1− 2ε)

Γ(1− ε)

(
β0

Ncε
+K

)
I

(1)
[n] (2ε) + H[n](ε) ,

(B.8)

where

K =
67

9
− π2

3
− 10

9

Nf

Nc
, (B.9)

and H[n](ε) is a diagonal operator at leading color that depends on the number of external

quarks and gluons in the process,

H[n](ε) =
eγEε

εΓ(1− ε)

n∑
i=1

(
δai,gHg + (δai,q + δai,q̄ + δai,Q + δai,Q̄)Hq

)
, (B.10)

with (see e.g. [27])

Hg =

(
ζ3

2
+

5

12
+

11π2

144

)
−
(
π2

72
+

89

108

)
Nf

Nc
+

5

27

(
Nf

Nc

)2

,

Hq =

(
7ζ3

4
+

409

864
− 11π2

96

)
+

(
π2

48
− 25

216

)
Nf

Nc
.

(B.11)

The poles of the bare amplitudes, as presented for example in tables 1 and 2, can be

recovered from those of the renormalized amplitude by using eqs. (B.4).

B.3 Numerical results for one-loop amplitudes

To predict the expected pole structure of the amplitudes computed in section 4 it is neces-

sary to compute corresponding one-loop results up to high enough order in ε. For complete-

ness, we present one-loop results in tables 3 and 4 which we have obtained with our own

implementation of one-loop numerical unitarity. The expansion has been performed up to

O(ε2) in order to allow the evaluation of finite remainders as in eq. (2.26). This was used

to reproduce the analytic results for finite remainders of the qq̄gg and qq̄QQ̄ amplitudes

of refs. [27, 28]. The results are normalized to remove overall phase ambiguities in the

amplitudes, choosing the tree-level amplitude if it does not vanish, or the leading term of

the one-loop amplitude otherwise. We present numerical values with 10 significant digits.

– 25 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
6

A(1)[N0
f ]/A(norm) ε−2 ε−1 ε0 ε1 ε2

(1+
g , 2

+
g , 3

+
g , 4

+
g ) 0 0 1 3.144383516 4.993655130

(1−g , 2
+
g , 3

+
g , 4

+
g ) 0 0 1 6.037021519 19.41121185

(1−g , 2
−
g , 3

+
g , 4

+
g ) −4.000000000 −14.82985386 −21.50563510 −4.242972632 39.45669987

(1−g , 2
+
g , 3

−
g , 4

+
g ) −4.000000000 −14.82985386 −24.34737636 −23.80446527 −30.91926414

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g ) 0 0 1 5.886473216 18.18093693

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g ) −3.000000000 −10.42169654 −13.75537910 −2.227311547 15.67564907

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g ) −3.000000000 −10.42169654 −10.64041688 20.52306512 101.8467214

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄

) −2.000000000 −6.013539220 4.503971305 55.27734017 156.3375209

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄

) −2.000000000 −6.013539220 −1.512122300 22.96961380 57.55706218

A(1)[N1
f ]/A(norm) ε−2 ε−1 ε0 ε1 ε2

(1+
g , 2

+
g , 3

+
g , 4

+
g ) 0 0 −1.000000000 −4.144383516 −9.138038646

(1−g , 2
+
g , 3

+
g , 4

+
g ) 0 0 −1.000000000 −7.037021519 −26.44823337

(1−g , 2
−
g , 3

+
g , 4

+
g ) 0 0.6666666667 3.337846407 7.778113386 9.642499788

(1−g , 2
+
g , 3

−
g , 4

+
g ) 0 0.6666666667 3.888266255 11.57993010 23.40355137

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g ) 0 0 −0.1818181818 −1.074210422 −3.518712119

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g ) 0 0 0 0 0

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g ) 0 0 0 0 0

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄

) 0 −0.6666666667 −2.605438214 −5.691068008 −8.728233619

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄

) 0 −0.6666666667 −2.605438214 −5.691068008 −8.728233619

Table 3. The bare one-loop four-parton helicity amplitudes evaluated at the phase space point

in eq. (4.1). We set the normalization factor A(norm) to A(1)[N0
f ](ε = 0) for the amplitudes with

vanishing trees, and to A(0) otherwise.
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A(1)[N0
f ]/A(norm) ε−2 ε−1 ε0 ε1 ε2

(1+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 1 3.033832975 4.587604357

(1−g , 2
+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 1 5.624431423 16.89796219

(1−g , 2
−
g , 3

+
g , 4

+
g , 5

+
g ) −5.000000000 −17.88291386 −24.30905600 0.2206218531 59.35260478

(1−g , 2
+
g , 3

−
g , 4

+
g , 5

+
g ) −5.000000000 −17.88291386 −29.50855173 −34.92963561 −64.50302993

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

+
g ) 0 0 1 5.892137144 18.35590938

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

−
g ) −4.000000000 −13.76243861 −15.50477253 17.23285932 101.5375461

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g , 5

+
g ) −4.000000000 −13.76243861 −17.97203103 1.496892271 50.75427433

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g , 5

+
g ) −4.000000000 −13.76243861 −16.98218729 7.025105072 65.53899984

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5+
g ) −3.000000000 −8.843501370 −1.852152501 37.28945738 105.9935237

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5+
g ) −3.000000000 −8.843501370 −4.411871382 26.32328221 81.15715418

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5−g ) −3.000000000 −8.843501370 342.9945174 1000.539160 −355.3299610

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5−g ) −3.000000000 −8.843501370 −1.744812968 −9.470771643 −176.4533405

A(1)[N1
f ]/A(norm) ε−2 ε−1 ε0 ε1 ε2

(1+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 −1.000000000 −4.033832975 −8.621437332

(1−g , 2
+
g , 3

+
g , 4

+
g , 5

+
g ) 0 0 −1.000000000 −6.624431423 −23.52239361

(1−g , 2
−
g , 3

+
g , 4

+
g , 5

+
g ) 0 0.6666666667 2.494683591 2.329188091 −8.735477566

(1−g , 2
+
g , 3

−
g , 4

+
g , 5

+
g ) 0 0.6666666667 3.475701080 8.982161551 14.85398827

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

+
g ) 0 0 −0.3542206031 −2.268220888 −7.918667025

(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

−
g ) 0 0 −0.5535785746 −3.637432164 −12.69744845

(1+
q , 2

−
q̄ , 3

+
g , 4

−
g , 5

+
g ) 0 0 −0.0008015520164 −0.004344237791 −0.01257682159

(1+
q , 2

−
q̄ , 3

−
g , 4

+
g , 5

+
g ) 0 0 −0.04501904941 −0.2962279378 −1.036895298

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5+
g ) 0 −0.6666666667 −2.939327989 −7.089932089 −11.96893214

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5+
g ) 0 −0.6666666667 −2.933154494 −7.055606900 −11.86563786

(1+
q , 2

−
q̄ , 3

−
Q, 4

+
Q̄
, 5−g ) 0 −0.6666666667 −57.49865762 −259.2491530 −668.4609808

(1+
q , 2

−
q̄ , 3

+
Q, 4

−
Q̄
, 5−g ) 0 −0.6666666667 1.491351996 9.944256190 24.03526126

Table 4. The bare one-loop five-parton helicity amplitudes evaluated at the phase space point

in eq. (4.2). We set the normalization factor A(norm) to A(1)[N0
f ](ε = 0) for the amplitudes with

vanishing trees, and to A(0) otherwise.
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