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1 Introduction

Recently it has been discussed in [1–13] (see [14] for a review) that asymptotic symmetries

for QED and Quantum Gravity (QG) in four-dimensional flat spacetime are related to

soft photon and graviton theorems [15–17]. The asymptotic symmetries are large gauge

transformations for QED and supertranslations in the BMS transformation [18, 19] for QG.

The symmetries are spontaneously broken and soft photons and gravitons can be regarded

as the associated Nambu-Goldstone (NG) bosons.1 Furthermore, it has been shown [24–29]

that the conservation of the charges generating the asymptotic symmetries is equivalent to

the electromagnetic or gravitational memory effects [30–44].

Thus, for QED and QG, we have the triangular equivalence relation associated with

the infrared dynamics illustrated in figure 1. We expect that such triangular relations hold

in other theories with massless particles. Actually, the massless scalar theories coupled to

massive scalars and fermions are considered in [45], and it is argued that the soft scalar

theorem can be written as the Ward-Takahashi identity and the theories have an infinite

1The statement that photons and gravitons are NG bosons is not new and it is discussed in [20–23].
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Figure 1. Triangular relation among soft theorem, asymptotic symmetry and memory effect.

number of conserved charges. One can show that the charge conservation is equivalent to

the scalar memory effect discussed in [38, 43]. However, the theories in [45] suffer from the

infrared divergences, and in general, the scalar boson acquires finite mass at loop level.

In this paper, we consider the case that the massless scalar is a NG boson. Unlike the

model considered in [45], we consider a theory without infrared divergences, and massless-

ness of scalar is ensured from the NG theorem.

The behaviors of scattering amplitudes in the soft limit of a NG boson are different

from those in QED and QG since the NG bosons interact only through derivative couplings.

Let ω be the energy of a soft particle. In QED and QG, the scattering amplitudes with soft

particle, ω → 0, are factorized into the product of O(ω−1) soft factor and the amplitudes

without soft particle. For the soft limit of NG boson, the O(ω−1) factors are absent, and

the soft factors start from O(1). Moreover, even the O(1) factors often vanish due to

so-called Adler’s zero [46, 47].

We consider a specific model that avoids Adler’s zero. The model contains a complex

scalar and a Dirac fermion, and there is a global axial U(1) symmetry, which is sponta-

neously broken by choosing a vacuum. This model may be regarded as a toy model of

real pions or axions in the beyond standard model, and therefore we call the associated

NG bosons pions. In this paper, we first review that the scattering amplitudes with a soft

pion give universal O(1) factors as in [48]. Then, we rewrite the soft pion theorem as the

Ward-Takahashi identity of S-matrix by identifying an infinite number of charges which

generate an asymptotic symmetry. Furthermore we show that the charge conservation can

be interpreted as a pion memory effect, where the information of hard particles is memo-

rized in a shift of 1/r2 coefficient of pion fields in future or past null infinity. Therefore,

the triangular relation in figure 1 is established for a theory with pions.

The remainder of this paper is organized as follows: in section 2, we specify a model

that we consider in this paper, and the soft pion theorem is presented. Then, the soft

theorem is rewritten in a form of the Ward-Takahashi identity, and we find an infinite

number of charges generating asymptotic transformations. In section 3, we investigate

the asymptotic behaviors of fields near null and timelike infinities, and see the asymptotic
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transformations. In section 4, we argue that the charge conservation is interpreted as a

pion memory effect. We confirm that the memory effect is consistent with the classical

asymptotic dynamics. Section 5 is devoted to the summary and discussion. We summarize

our conventions in appendix A and coordinate systems in appendix B.

2 Soft theorem in U(1)A model

2.1 Model

We consider a system of a complex scalar Φ and a Dirac spinor Ψ interacting as follows:2

L=−Ψ̄/∂Ψ−
√

2y

(
ΦΨ̄

1+γ5

2
Ψ+Φ∗Ψ̄

1−γ5
2

Ψ

)
−|∂µΦ|2−λ

2

2

(
|Φ|2−

(
v√
2

)2
)2

, (2.1)

where y is the real Yukawa coupling, and λ and v are also real couplings. This Lagrangian

possesses the chiral symmetry,

Φ→ eiθΦ, Ψ→ e−iθγ
5/2Ψ. (2.2)

The scalar potential in (2.1) leads to the spontaneous breaking of this U(1) symmetry. We

choose the vacuum configuration as Φ0=v/
√

2, and expand the fields around the vacuum as

Φ(x) =
1√
2

(v + φ(x)) eiπ(x)/v, Ψ(x) = e−iπ(x)γ
5/(2v)ψ(x), (2.3)

where φ(x) and π(x) are real scalar fields, and ψ(x) is the redefined Dirac field. The

Lagrangian is then given by

L = −ψ̄/∂ψ − y(v + φ)ψ̄ψ − 1

2

{
(∂µφ)2 + λ2v2φ2

}
− 1

2

(
1 +

φ

v

)2

(∂µπ)2

+
i

2v
(∂µπ) ψ̄γµγ5ψ − λ2v

2
φ3 − λ2

8
φ4

= −ψ̄ (/∂ +m)ψ − yφψ̄ψ − 1

2

{
(∂µφ)2 +m2

φφ
2
}
− 1

2

(
1 +

λ

mφ
φ

)2

(∂µπ)2

+
iy

2m
(∂µπ) ψ̄γµγ5ψ − mφλ

2
φ3 − λ2

8
φ4. (2.4)

Here m = yv and mφ = λv are mass of ψ and φ respectively. π is the NG boson associated

with the chiral symmetry (2.2), and we call it pion.

2.2 Soft pion theorem

We now investigate the soft theorem for the NG boson π(x). We will see that the soft

limit of our NG boson does not lead to the divergence unlike the leading soft theorems for

photons [15, 16], gravitons [17] and massless scalars [45], but it has a universal behavior at

the subleading order O(1).3

2See appendix A for conventions in our paper.
3In the absence of Ψ, O(1) contributions also vanish due to Adler’s zero [46, 47].
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First, we summarize the Feynman rules of our model (2.4). In the interaction picture,

fields π(x), ψ(x), ψ̄(x), φ(x) are expanded as

π(x) =

∫
d3p

(2π)3
1

2Ep

(
a
(π)
p eip·x + a

(π)†
p e−ip·x

)
, (2.5)

ψ(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
aspu

s(p)eip·x + bs†p v
s(p)e−ip·x

)
, (2.6)

ψ̄(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
bspv̄

s(p)eip·x + as†p ū
s(p)e−ip·x

)
, (2.7)

φ(x) =

∫
d3p

(2π)3
1

2Ep

(
a
(φ)
p eip·x + a

(φ)†
p e−ip·x

)
. (2.8)

The annihilation and creation operators satisfy the (anti-)commutation relations:[
a
(π)
p , a

(π)†
p′

]
=
[
a
(φ)
p , a

(φ)†
p′

]
= 2Ep(2π)3δ3(p− p′) , (2.9){

asp, a
s′†
p′

}
=
{
bsp, b

s′†
p′

}
= 2Ep(2π)3δ3(p− p′)δs,s

′
. (2.10)

Then, asymptotic one-particle states are defined by acting creation operators on the free

ground state such as |p〉0 = a
(π)†
p |0〉0.

From the Lagrangian (2.4), we obtain the Feynman rules for the perturbative compu-

tation of the S-matrix elements. The propagator of each field is as follows:

propagator of π: =
−i

p2 − iε , (2.11)

propagator of ψ:
p

=
−/p− im

p2 +m2 − iε , (2.12)

propagator of φ: =
−i

p2 +m2
φ − iε

, (2.13)

and the interaction vertices including the pions are

p

=
iy

2m
/pγ5 ,

p1

p2

=
2iλp1 · p2

mφ
,

p1

p2
=

2iλ2p1 · p2
m2
φ

.

(2.14)

We consider scattering processes including an outgoing pion with momentum ωqµ

where qµ is a normalized null vector qµ = (1, q̂) with |q̂|2 = 1, and take the soft limit

ω → 0. Since all of the vertices given in eq. (2.14) are proportional to momenta of the

pions, they vanish if the momenta become zero. Thus, the soft limit generally takes the

Feynman diagrams to zero unless the limit hits some singularities. Such singularities occur

only when the external line of the soft pion is attached to the external lines of fermions (or

anti-fermions) as figure 2.
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Figure 2. A part of a diagram relevant to the soft limit. The circle represents the other part of

the diagram. The momentum pµ − ωqµ approaches to on-shell in the soft limit ω → 0.

The external leg, the vertex and the propagator shown in figure 2 give a factor

−/p+ ω/q − im
(p− ωq)2 +m2

(
iy

2m
ω/qγ5

)
us(p) . (2.15)

Since pµ is the on-shell momentum (p2 = −m2) and us(p) satisfies /pus(p) = imus(p), the

factor becomes finite in the soft limit ω → 0 as

− iy

2mp · q q
µpνγ5γµνu

s(p) , (2.16)

where γµν = 1
2 [γµ, γν ]. Using the total angular momentum operator of one-fermion which

is defined as

Jµν := −i
(
pµ

∂

∂pν
− pν

∂

∂pµ

)
− i

2
γµν , (2.17)

and the identity

γ5γµν = − i
2
εµνρσγ

ρσ (ε0123 = 1) , (2.18)

we have

− iy

2mp · q q
µpνγ5γµν = − iy

2mp · q εµνρσq
µpνJρσ . (2.19)

Notice that only the spin part of eq. (2.17) contributes to eq. (2.19). Thus, the soft limit

of the diagram is equivalent to considering the diagram without the soft pion and changing

the plane-wave spinor us(p) into

us(p)→ − iy

2mp · q εµνρσq
µpνJρσus(p) . (2.20)

Similarly, the diagram where a soft pion is attached to the external legs of fermions and

(anti-fermions) is equivalent to the diagram where ūs(p), vs(p), v̄s(p) are replaced as follows:

ūs(p)→ iy

2mp · q εµνρσū
s(p)qµpνJρσ, (2.21)

vs(p)→ − iy

2mp · q εµνρσq
µpνJρσvs(p) , v̄s(p)→ iy

2mp · q εµνρσ v̄
s(p)qµpνJρσ . (2.22)
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In addition, if the soft pion leg is attached to other than that above, i.e., external legs of

a itself and the massive scalar φ, internal lines and vertices, such diagrams vanish in the

soft limit, since any internal momenta do not become on-shell as in the proofs of the soft

photon and graviton theorems [17]. Therefore, the soft pion theorem can be interpreted as

acting the operator,

iy

2mp · q εµνρσq
µpνJρσ, (2.23)

to all external legs including the scalar ones because it is trivially zero for scalar particles.

We express the S-matrix element without soft pions as

〈out|0 S |in〉0 , (2.24)

where 〈out|0 and |in〉0 represent asymptotic multi-particle states with no soft pions, and

S denotes the S-matrix operator acting on the asymptotic states. Then, the S-matrix

element including an outgoing pion is given by 〈out|0 a
(π)
ωq̂ S |in〉0 and satisfies

lim
ω→0

〈out|0 a
(π)
ωq̂ S |in〉0 = J (1)(q) 〈out|0 S |in〉0 , (2.25)

with

J (1)(q) =
∑
k

−iy ηk
2mpk · q

εµνρσq
µpνkJ

ρσ
k , (2.26)

where k labels hard particles with momentum pµk and the total momentum Jρσk , and ηk =

1 (−1) for incoming (outgoing) fermions and outgoing (incoming) anti-fermions. In the

case for the incoming soft pion with momentum ωqµ, the S-matrix element also satisfies

the similar equation

lim
ω→0

〈out|0 S a(π)†ωq̂ |in〉0 = J (1)(q) 〈out|0 S |in〉0 . (2.27)

We thus have the relation4

lim
ω→0

〈out|0 S a(π)†ωq̂ |in〉0 = lim
ω→0

〈out|0 a
(π)
ωq̂ S |in〉0 . (2.28)

Eq. (2.25) is the soft pion theorem that relates the S-matrix elements with and without

a soft pion. Unlike the soft photon and graviton theorems, the soft limit of the pion

does not gives an O(ω−1) factor. In this sense, the theorem (2.25) is the subleading soft

theorem [49–53]. In fact, the right-hand side of (2.25) is similar to the subleading part of

the soft theorem in [53].

4This relation can be understood from the crossing symmetry too.
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2.3 Soft pion theorem as the Ward-Takahashi identity

In this subsection we show that the soft pion theorem (2.25) can be written as the Ward-

Takahashi identity.

We first define the soft charge operator Qsoft(q̂) as

Qsoft(q̂) := − i

4π
lim
ω→0

(
a
(π)†
ωq̂ − a

(π)
ωq̂

)
. (2.29)

This Hermitian operator creates (or annihilates) a soft pion, and the coefficients are chosen

for later convenience. Noting the relation (2.28), we have

〈out|0

(
Qsoft(q̂)S − S Qsoft(q̂)

)
|in〉0 =

i

2π
lim
ω→0

〈out|0 a
(π)
ωq̂ S |in〉0 . (2.30)

We next relate the equation (2.30) to the S-matrix element with insertions of a hard

charge such as

− 〈out|0

(
Qhard(q̂)S − S Qhard(q̂)

)
|in〉0 , (2.31)

using the soft theorem (2.25). If we have such a hard charge operator, we obtain the

equation like the Ward-Takahashi identity:

〈out|0 (Q(q̂)S − S Q(q̂)) |in〉0 = 0, (2.32)

with

Q(q̂) = Qsoft(q̂) +Qhard(q̂) . (2.33)

The hard charge operator Qhard(q̂) actually exists, and is given by

Qhard(q̂) :=
y

8πm2

∫
d3p

(2π)3
1

2Ep

∑
s,r

(
ūr(p)γ5

qµpνγµν
p·q us(p)ar†p a

s
p+v̄s(p)γ5

qµpνγµν
p·q vr(p)br†p b

s
p

)
.

(2.34)

We now confirm that this hard charge Qhard(q̂) certainly satisfies (2.32). Since the soft NG

boson insertion is equivalent to changing external legs as (2.20), (2.21) and (2.22), taking

care of the factor i/(2π) in (2.30) and the sign in (2.31), Qhard(q̂) should change external

legs of fermions as follows,

us(p)→ y

4πmp · q q
µpνγ5γµνu

s(p) , ūs(p)→ y

4πmp · q ū
s(p)qµpνγ5γµν , (2.35)

vs(p)→ −y
4πmp · q q

µpνγ5γµνv
s(p) , v̄s(p)→ −y

4πmp · q v̄
s(p)qµpνγ5γµν . (2.36)

We recall that the Wick contraction between ψ(x) in (2.6) and a fermionic creation operator

as†p gives the plane-wave mode us(p)eipx. If we apply the hard charge operator (2.34) to

the incoming one-fermion state |p, s〉0 = as†p |0〉0, we have

Qhard(q̂) |p, s〉0 =
y

8πm2

∑
r

ūr(p)
qµpνγ5γµν

p · q us(p)ar†p |0〉0 . (2.37)

– 7 –
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Using the identity (A.9), one can find that the Wick contraction between ψ(x) and this

state gives the following plane wave

y

4πmp · q q
µpνγ5γµνu

s(p)eipx. (2.38)

One can also find that if the hard charge operator (2.34) is acted on one-particle states for

incoming anti-fermions and outgoing (anti-)fermions, it correctly changes the plane-waves

as (2.35) and (2.36).

Therefore, the soft theorem (2.25) is equivalent to eq. (2.32) with soft charge (2.29)

and hard charge (2.34). It implies that the S-matrix is invariant under the transformations

generated by Q(q̂), i.e., our theory has the symmetry. The charges Q(q̂) are parametrized

by q̂, and hence we obtain an infinite number of conserved charges.

Now we obtain the generator of the symmetry which reproduces the soft pion theorem

as the Ward-Takahashi identity. In the following sections, we try to investigate the meaning

of the symmetry and charge.

Before closing this subsection, we comment that we also have the “leading” soft pion

theorem:

lim
ω→0

ω 〈out|0 a
(π)
ωq̂ S |in〉0 = lim

ω→0
ω 〈out|0 S a(π)†ωq̂ |in〉0 = 0 , (2.39)

which means the absence of O(ω−1) soft factor. It implies that there is another charge

Q0(q̂) defined as

Q0(q̂) := − 1

4π
lim
ω→0

ω
(
a
(π)
ωq̂ + a

(π)†
ωq̂

)
, (2.40)

which is the same as the soft part of the charge defined in [45] up to a numerical factor. It

satisfies

〈out|0 Q0(q̂)S |in〉0 = 〈out|0 S Q0(q̂) |in〉0 = 0 . (2.41)

2.4 Ward-Takahashi identity for spontaneously broken symmetry

In this subsection, we comment that the subleading soft theorem (and the leading soft the-

orem) can also be derived from the Ward-Takahashi identity for the U(1)A symmetry (2.2).

(See, e.g., [54] for relevant discussions.)

The symmetry corresponds to a constant shift of π, and the conserved current can be

computed from the Lagrangian (2.4) as

jµπ :=
δL
δ∂µπ

= −∂µπ−
(

2
λ

mφ
φ+

λ2

m2
φ

φ2

)
∂µπ +

iy

2m
ψ̄γµγ5ψ. (2.42)

The Ward-Takahashi identity corresponding to the current conservation ∂µj
µ
π = 0 takes

the form

〈∂µjµπ (x)

n∏
i=1

π(xi)

A∏
a=1

O(xa)〉 = −i
n∑
i=1

δ4(x− xi)〈
n∏
j 6=i

π(xj)

A∏
a=1

O(xa)〉 , (2.43)

– 8 –
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where O(xa) denote fields except for pions π(x). The soft theorem follows from this iden-

tity [54]. First, we perform the Fourier transformation from xµ to massless on-shell mo-

mentum ωqµ and apply the LSZ reduction to the remaining fields. Then, if we take the

soft limit ω → 0, the right-hand side of the identity vanishes, and furthermore in the

left-hand side, the first term in (2.42) gives the amplitude with one soft pion, the second

term does not contribute in the soft limit and the last term gives the amplitude with soft

factors (2.23). Thus, the soft pion theorem (2.25) is obtained from the Ward-Takahashi

identity (2.43).

The leading soft theorem (2.39) is also obtained trivially in the above procedures with

multiplying an extra factor ω.

Therefore, the Ward-Takahashi identities discussed in section 2.3 are included in the

Ward-Takahashi identity (2.43) for the broken U(1)A symmetry.5

3 Asymptotic symmetry

In this section, we study the asymptotic transformations generated by the charge opera-

tor (2.33). As in the large gauge transformations in QED and QG [14], we consider smeared

charges defined as

Qsoft[ε] :=

∫
S2

d2θ
√
γ ε(θ)Qsoft(q̂(θ)) , (3.1)

Qhard[ε] :=

∫
S2

d2θ
√
γ ε(θ)Qhard(q̂(θ)) , (3.2)

where ε(θ) is an arbitrary function on unit two-sphere S2. More precisely, we have two func-

tions ε±(θ) which are respectively defined on spheres in future and past null (or timelike)

infinities I ± (i±). Note that angle coordinates θA in I ± are related to each other antipo-

dally as explained in appendix B.6 Thus, ε+(θ) and ε−(θ) satisfy the antipodal matching

as large gauge parameters in QED [14]. In the following, for simplicity, we use ε(θ) which

denotes ε±(θ) collectively.

Similarly, we define the smeared charge of Q0 in (2.40) as

Q0,out[ε] :=

∫
S2

d2θ
√
γ ε(θ)Q0(q̂(θ)) , (3.3)

Q0,in[ε] := −
∫
S2

d2θ
√
γ ε(θ)Q0(q̂(θ)) . (3.4)

5The situation is the same as in QED. The leading and subleading soft photon theorem are the con-

sequences of the gauge invariance, and can be derived from the conventional Ward-Takahashi identity of

QED. However, by considering the large gauge transformation which depends on the angle, we can obtain

the interesting connection with the memory effect. We will comment the advantage of the asymptotic

symmetry in section 5.
6Momentum q̂(θ) has the same parametrization for both θA. For example, if we take the stan-

dard spherical coordinates (θ, ϕ) for both future and past sphere, the points with the same coordinates

(θ, ϕ) represent the antipodal point of each other. However, q̂ is parametrized by the same expression

q̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) for both (θ, ϕ).

– 9 –
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3.1 Asymptotic behaviors of massless fields

We first consider the asymptotic behaviors of the massless field π(x) at null infinities. The

EoM of π(x) is given by

∂2π + ∂µj
µ = 0 , (3.5)

where

jµ :=

(
2
λ

mφ
φ+

λ2

m2
φ

φ2

)
∂µπ +

y

2m
jµ5 with jµ5 := −iψ̄γµγ5ψ. (3.6)

Note that the EoM (3.5) is nothing less than the conservation of the broken U(1)A current

jµπ defined in (2.42).

Near future null infinity I +, we use the retarded coordinates (u, r, θA) defined in

appendix B. In these coordinates, the solutions of (3.5) decaying at r →∞ is expanded as7

π(x) =
π
(1)
I +(u, θ)

r
+

π
(2)
I +(u, θ)

r2
+ . . . . (3.7)

Since the source term ∂µj
µ does not contribute to the leading order, the leading term π

(1)
I +/r

should be the same as that of the free field (2.5). Using the stationary phase approximation

used in, e.g., [3, 45], the free field is expanded as∫
d3p

(2π)3
1

2Ep

(
a
(π)
p e−iEp(u+r)+irp·x̂(θ) + a

(π)†
p eiEp(u+r)−irp·x̂(θ)

)
= − i

8π2r

∫ ∞
0
dω
(
a
(π)
ωx̂(θ)e

−iωu − a(π)†ωx̂(θ)e
iωu
)

+O(r−2) , (3.8)

where x̂ = x/r denotes a point on S2 which is parametrized by θA. Thus, we obtain

π
(1)
I +(u, θ) = − i

8π2

∫ ∞
0
dω
(
a
(π)
ωx̂(θ)e

−iωu − a(π)†ωx̂(θ)e
iωu
)
. (3.9)

Similarly, using the advanced coordinates (v, r, θA) near past null infinity I −, π(x) is

expanded as

π(x) =
π
(1)
I−(v, θ)

r
+

π
(2)
I−(v, θ)

r2
+ . . . . (3.10)

Noting that a point xµ in the usual Minkowski coordinates is parametrized as

xµ = (v − r,−r x̂(θ)) in the advanced coordinates, one can find that π
(1)
I− is given by

π
(1)
I−(v, θ) =

i

8π2

∫ ∞
0
dω
(
a
(π)
ωx̂(θ)e

−iωv − a(π)†ωx̂(θ)e
iωv
)
. (3.11)

7Since we consider the vacuum corresponding to π = 0, we do not consider solutions which have

O(r0) terms.
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From (3.9) and (3.11), we find that charges Q0,out and Q0,in act on the asymptotic

fields as follows:[
iQ0,out[ε], π

(1)
I +(u, θ)

]
= ε(θ) ,

[
iQ0,in[ε], π

(1)
I−(v, θ)

]
= ε(θ) . (3.12)

Thus, Q0,out and Q0,in generate angle-dependent shifts of the asymptotic 1/r coefficients of

π(x). Due to the “leading” soft theorem (2.41), we can say that zero modes with respect

to u and v of π
(1)
I± do not contribute to scattering problems or they are just labels of

superselection sectors.

The commutator of soft charge Qsoft[ε] and π
(1)
I± leads to[

iQsoft[ε], π
(1)
I +(u, θ)

]
= u ε(θ) ,

[
iQsoft[ε], π

(1)
I−(v, θ)

]
= −v ε(θ) , (3.13)

or [
iQsoft[ε], ∂uπ

(1)
I +(u, θ)

]
= ε(θ) ,

[
iQsoft[ε], ∂vπ

(1)
I−(v, θ)

]
= −ε(θ) . (3.14)

Therefore, soft charge Qsoft[ε] generates the angle-dependent translations of ∂uπ
(1)
I +

and ∂vπ
(1)
I− .

3.2 Asymptotic behaviors of massive fields

To see the asymptotic behaviors of massive fields near timelike infinities i±, we use the

hyperbolic foliation with coordinates (τ, ρ, θA) explained in appendix. B.

Applying the stationary phase approximation to the free forms (2.6), (2.7), Dirac fields

ψ and ψ̄ are expanded in the far future τ → +∞ as

ψ(x) =
ψ
(1)
+ (ρ, θ)

τ
3
2

+O
(
τ−

5
2

)
, ψ̄(x) =

ψ̄
(1)
+ (ρ, θ)

τ
3
2

+O
(
τ−

5
2

)
(3.15)

with

ψ
(1)
+ (ρ, θ) =

√
m

2(2π)
3
2

∑
s

(
aspu

s(p)e−imτ−
3πi
4 + bs†p v

s(p)eimτ+
3πi
4

)∣∣∣
p=mρ x̂(θ)

, (3.16)

ψ̄
(1)
+ (ρ, θ) =

√
m

2(2π)
3
2

∑
s

(
as†p ū

s(p)eimτ+
3πi
4 + bspv̄

s(p)e−imτ−
3πi
4

)∣∣∣
p=mρ x̂(θ)

. (3.17)

From these expressions, we obtain the following commutators:[
iQhard(q̂), ψ

(1)
+ (ρ, θ)

]
=
−iy qµpν
4πmp · q

∣∣∣∣
p=mρ x̂(θ)

γ5γµν ψ
(1)
+ (ρ, θ), (3.18)

[
iQhard(q̂), ψ̄

(1)
+ (ρ, θ)

]
=

iy qµpν

4πmp · q

∣∣∣∣
p=mρ x̂(θ)

ψ̄
(1)
+ (ρ, θ)γ5γµν . (3.19)

For the smeared hard charge Qhard[ε], the commutators are given by[
iQhard[ε], ψ

(1)
+ (ρ, θ)

]
=
−iy
4πm

Λ(ρ, θ; ε)ψ
(1)
+ (ρ, θ) , (3.20)[

iQhard[ε], ψ̄
(1)
+ (ρ, θ)

]
=

iy

4πm
ψ̄
(1)
+ (ρ, θ)Λ(ρ, θ; ε) , (3.21)
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where the Λ is given by

Λ(ρ, θ; ε) :=

∫
S2

d2θ′
√
γ ε(θ′)G(ρ, θ; q̂(θ′)), G(ρ, θ; q̂) =

qµY νγ5γµν
q · Y . (3.22)

Here Y µ(ρ, θ) = (
√

1 + ρ2, ρx̂(θ)), and G satisfies D2G(ρ, θ; q̂) = 0, where D2 is Laplacian

on H3 (see appendix B).

Note that when ε is a constant function on S2, we have

Λ(ρ, θ; ε) = −4π ε

(√
1 + ρ2

ρ
− Arcsinhρ

ρ2

)
γ5γ0i x̂

i(θ)

= −4π ε

(√
1 + ρ2

ρ
− Arcsinhρ

ρ2

)(
σ · x̂(θ) 0

0 σ · x̂(θ)

)
, (3.23)

which is a spin operator directed to x̂(θ). Note that it is known that the factor σ · x̂(θ)

also appears in the dipole potential of the pion sourced by the fermion, see e.g. [55].

In the same manner, Dirac fields ψ and ψ̄ are expanded in the far past τ → −∞ as

ψ(x) =
ψ
(1)
− (ρ, θ)

(−τ)
3
2

+O
(

(−τ)−
5
2

)
, ψ̄(x) =

ψ̄
(1)
− (ρ, θ)

(−τ)
3
2

+O
(

(−τ)−
5
2

)
, (3.24)

with

ψ
(1)
− (ρ, θ) =

√
m

2(2π)
3
2

∑
s

(
aspu

s(p)e−imτ+
3πi
4 + bs†p v

s(p)eimτ−
3πi
4

)∣∣∣
p=mρ x̂(θ)

, (3.25)

ψ̄
(1)
− (ρ, θ) =

√
m

2(2π)
3
2

∑
s

(
as†p ū

s(p)eimτ−
3πi
4 + bspv̄

s(p)e−imτ+
3πi
4

)∣∣∣
p=mρ x̂(θ)

. (3.26)

Thus, we obtain [
iQhard[ε], ψ

(1)
− (ρ, θ)

]
=
−iy
4πm

Λ(ρ, θ; ε)ψ
(1)
− (ρ, θ) , (3.27)[

iQhard[ε], ψ̄
(1)
− (ρ, θ)

]
=

iy

4πm
ψ̄
(1)
− (ρ, θ)Λ(ρ, θ; ε) . (3.28)

4 Charge conservation as memory effect

In this section, we give the interpretation of the charge,

Q[ε] = Qsoft[ε] +Qhard[ε] , (4.1)

and argue that the conservation of the charge is equivalent to a pion memory effect.

4.1 Expression of charge in terms of the asymptotic fields

We first express the hard charge Qhard[ε] by the asymptotic fields. The axial current jµ5

defined in eq. (3.6) behaves near timelike infinities i± as

jµ5 =
j
µ5(1)
± (σ)

(±τ)3
+O

(
(±τ)−4

)
, j

µ5(1)
± (σ) := −iψ̄(1)

± (σ)γµγ5ψ
(1)
± (σ) , (4.2)
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where σα represent the coordinates on H3. Using this asymptotic current j
µ5(1)
± , the hard

charge Qhard(q̂) is expressed as

Qhard(q̂) =
y

4πm

∫
H3

d3σ
√
hYµ : j

µ5(1)
± : +

y

4πm

∫
H3

d3σ
√
h

qµ
Y · q : j

µ5(1)
± : , (4.3)

where hαβ is the metric on H3 (see appendix B), Y µ(ρ, θ) = (
√

1 + ρ2, ρx̂(θ)), and : :

denotes normal ordering. Note that the first term in (4.3) does not depend on angle q̂.

From eq. (3.9), creation and annihilation operators of a pion are written as

a
(π)
ωx̂(θ) = 4πi

∫
dueiωuπ

(1)
I +(u, θ) , a

(π)†
ωx̂(θ) = −4πi

∫
due−iωuπ

(1)
I +(u, θ) , (4.4)

where we assume that ω > 0. Thus, the soft charge Qsoft[ε] in (3.1) can be represented as

the integral over future null infinity I +

Qsoft[ε] = −2

∫
I +

dud2θ
√
γ ε(θ)π

(1)
I +(u, θ). (4.5)

Considering the past null infinity I −, it is also written as

Qsoft[ε] = 2

∫
I−
dvd2θ

√
γ ε(θ)π

(1)
I−(v, θ). (4.6)

Here we insert the asymptotic expansion (3.7) into EoM (3.5), and obtain

∂uπ
(2)
I +(u, θ) = −1

2
∆S2π

(1)
I +(u, θ) , (4.7)

where the source term ∂µj
µ is irrelevant at this order. Thus, taking the smearing function ε

as ε = ∆S2ζ where ζ(θ) is an arbitrary function on S2, the soft charge (4.5) can be written

as follows:

Qsoft[∆S2ζ] = 2

∫
I +

dud2θ
√
γ∆S2ζ(θ)π

(1)
I +(u, θ)

= −4

∫
I +

dud2θ
√
γ ζ(θ)∂uπ

(2)
I +(u, θ)

= −4

∫
S2

d2θ
√
γ ζ(θ)

[
π
(2)
I +(u =∞, θ)− π

(2)
I +(u = −∞, θ)

]
. (4.8)

It means that the soft charge is related to a shift of π
(2)
I + . Since π

(2)
I + is the 1/r2 coefficient

of pion π, we call it dipole-like charge. We conclude that the soft charge measures the shift

of the dipole-like charge in each angle.

Therefore, the conservation of charge Q[∆S2ζ] can be interpreted as the conservation

of the following quantity:

− 4

∫
S2

d2θ
√
γ ζ(θ)

[
π
(2)
I +(u =∞, θ)− π

(2)
I +(u = −∞, θ)

]
+

∫
S2

d2θ
√
γ ζ(θ)∆S2Qhard(q̂(θ)) .

(4.9)
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This is the memory effect8 in the sense that the information of the hard charge is memorized

in the shift of π
(2)
I + . In general, Qhard(q̂(θ)) can be expanded in terms of the spherical

harmonics if we require the regularity of Qhard(q̂(θ)) on S2. Eq. (4.9) implies that ` = 0

mode of π
(2)
I + does not change during any scattering process.

4.2 Classical derivation of the memory effect

Here we confirm that EoM (3.5), or the current conservation ∂µj
µ
π = 0, implies the con-

servation of (4.9). We consider the situation that the initial total charge is zero and

π
(2)
I +(u = −∞, θ) also vanishes. Thus, we should have

−4

∫
S2

d2θ
√
γ ζ(θ)π

(2)
I +(u =∞, θ) +

∫
S2

d2θ
√
γ ζ(θ)∆S2Qhard(q̂(θ)) = 0 . (4.10)

First, we define the axial current in (τ, σα) coordinate as

jτ5 :=
∂τ

∂xµ
jµ5 , jα5 :=

∂σα

∂xµ
jµ5 , (4.11)

whose asymptotic behavior in the future infinity τ → +∞ is given by

jτ5 =:
j
τ5(1)
+ (σ)

τ3
+O

(
τ−4

)
, jα5 =:

j
α5(1)
+ (σ)

τ4
+O

(
τ−5

)
. (4.12)

Then, one can show that ∂µj
µ5 behaves in the future infinity τ → +∞ as

∂µj
µ5 =

1

τ4
Dαj

α5(1)
+ (σ) +O(τ−5) , (4.13)

where Dα denotes the covariant derivative on the unit hyperbolic space H3. Let pion

behave near τ →∞ as

π =
π
(1)
+ (σ)

τ
+

π
(2)
+ (σ)

τ2
+O(τ−3). (4.14)

Since we have

∂2

(
π
(1)
+ (σ)

τ

)
=

1

τ3
(D2 + 1)π

(1)
+ (σ) , ∂2

(
π
(2)
+ (σ)

τ2

)
=

1

τ4
D2

π
(2)
+ (σ) , (4.15)

eq. (4.13) implies that EoM (3.5) leads to

(D2 + 1)π
(1)
+ = 0, (4.16)

D2
π
(2)
+ = − y

2m
Dαj

α5(1)
+ . (4.17)

Note that the first term in jµ given by (3.6) is O(τ−7/2), and does not contribute in this

order. Although the source free equation (4.16) is not important in our analysis, one can

find its regular solutions, which behave at ρ→∞ as π
(1)
+ ∼ log ρ/ρ [45].

8This pion memory effect is small compared with that of QED and QG where the leading effect is O(1/r).

This corresponds to the fact that the soft pion theorem starts from subleading order while the soft photon

and graviton theorems starts from the leading order.
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We now solve more important equation (4.17). It can be solved by Green’s function

GH3(σ, σ′) on H3 satisfying

D2GH3(σ, σ′) =
1√
h
δ(3)(σ, σ′) . (4.18)

The solution is given by

GH3(σ, σ′) =
1

4π

(
Y · Y ′√

(Y · Y ′)2 − 1
+ 1

)
, (4.19)

where Y µ(σ) is embedding from H3 to flat space R1,3 given by Y µ(ρ, θ) = (
√

1 + ρ2, ρx̂(θ)),

and Y ′µ = Y µ(σ′). The last constant in (4.19) is chosen so that GH3 decays at ρ → ∞.

Using this Green’s function, π
(2)
+ is given by9

π
(2)
+ (σ′) = − y

2m

∫
H3

d3σ
√
hGH3(σ′, σ)Dαj

α5(1)
+ (σ)

=
y

2m

∫
H3

d3σ
√
h ∂αGH3(σ′, σ) j

α5(1)
+ (σ) , (4.20)

where we assume that there is no surface term in integration by parts.

Next, we take the limit ρ′ →∞ in (4.20). In this limit, we have

lim
ρ′→∞

∂αGH3(σ′, σ) j
α5(1)
+ (σ) = − 1

4πρ′2

(
Yµj

µ5(1)
+

(Y · q′)2 +
q′µj

µ5(1)
+

(Y · q′)3

)
, (4.21)

where q′µ is a unit null vector parametrized by spherical coordinates θ′A in σ′ as

q′µ = (1, x̂(θ′)). Furthermore, we have

−1

2
∆′S2

(
q′µ

Y · q′
)

=
Y µ

(Y · q′)2 +
q′µ

(Y · q′)3 , (4.22)

where the Laplacian ∆′S2 acts on θ′A. Therefore, we obtain

lim
ρ′→∞

ρ′2 π
(2)
+ (ρ′, θ′) =

y

16πm
∆′S2

∫
H3

d3σ
√
h
q′µj

µ5(1)
+

Y · q′

=
1

4
∆′S2Q

hard(q̂(θ′)) . (4.23)

The asymptotic fields π
(n)
+ (n = 1, 2) near timelike infinity i+ are related to the asymp-

totic fields π
(n)
I + near null infinity I + as

π
(n)
I +(u =∞, θ) = lim

ρ→∞
ρn π

(n)
+ (ρ, θ) . (4.24)

Thus, we have

π
(2)
I +(u =∞, θ) =

1

4
∆S2Qhard(q̂(θ)) . (4.25)

This equation is equivalent to the pion memory effect (4.10).

9Although π
(2)
+ might have the part satisfying the source free equation D2

π
(2)
+ = 0, we ignore it. It may

be consistent with the case that we now consider. We assume that 1/r2 component of π at spacelike infinity

is zero and the change of π arises only from the source term ∂µj
µ.
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5 Summary and discussions

In this paper, we have considered the model where the global axial U(1) symmetry is

spontaneously broken. After the symmetry breaking, there is the NG boson interacting

with other particles through the derivative couplings. Since we may regard this theory as a

toy model of pions or axions, we call this NG boson pion. We have investigated the physics

of the pions at low energy. It is well-known that the scattering amplitude including the

soft pion can be written as the amplitude without soft pion multiplied by a soft factor.

First, we have reviewed the soft pion theorem, and showed that the subleading soft

pion theorem can be written as the simple form, eq. (2.25). Then, we have pointed out that

the soft pion theorem can be interpreted as a Ward-Takahashi identity of S-matrix under

an asymptotic symmetry as eq. (2.32). This suggests that there is a symmetry in the theory

which was not known before. The charge of the asymptotic symmetry consists of “soft”

and “hard” parts, where the soft part creates and annihilates a soft pion, and hard part is

responsible for the transformations of hard particles. We have clarified the transformation

law of each field under the symmetry, and shown that the conserved quantity associated

with this transformation is the dipole charge of the pion at every angle. The soft charge

represents the difference of the dipole component of the pion before and after the scattering

process, and the hard charge corresponds to the dipole flux carried by hard particles. The

conservation of the charge indicates that the change of the dipole component of the pion is

determined by the change of the dipole flux of the hard particle at every angle (see (4.9)),

which is nothing but the pion memory effect in analogy with the electromagnetic and

gravitational ones. Therefore, there is a deep connection among the soft pion theorem,

asymptotic symmetry and the memory effect. In this sense, we have established that the

triangular equivalence relation in a NG boson theory, as in the case of QED and QG.

As we saw in section 2.4, the leading and subleading soft pion theorems can be obtained

from the Ward-Takahashi identity for the broken U(1)A symmetry [54]. In this sense, our

asymptotic symmetry is the consequence of the U(1)A symmetry, although they seem to

be different. To identify or investigate the relation between them is an interesting problem.

One may wonder if our asymptotic symmetry is useful because it follows from the usual

global U(1)A symmetry. We think that the advantages to consider the asymptotic symme-

try are the following two things. First, the relation to the memory effect is clear. Second,

only asymptotic symmetries might be meaningful if we generalize the theory including

quantum gravity. Actually, it is believed (see e.g. [56]) that there is no global symme-

try in quantum gravity. Thus, if we consider the theory of pions coupled with quantum

gravity, the original U(1)A is no longer the physical symmetry. However, our asymptotic

transformations may still play the role of a symmetry like large gauge transformations of

gauge theories.

Finally, we comment on the possible future directions. For pions in our world or axions

in the beyond the standard model, the axial symmetry is slightly broken by the explicit

breaking term and/or the chiral anomaly. It would be interesting to study the triangular

relation in this context.
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In this paper, we have found the asymptotic symmetry of the S-matrix. Although we

know the transformations of asymptotic fields and the conserved quantity associated to the

symmetry, we do not understand this symmetry completely. One way to understand the

symmetry more precisely would be considering the canonical quantization of the theory at

the constant time or null surface.

The subleading soft pion theorem is considered in this paper. It is interesting to

look for the sub-subleading soft pion theorem, which is not known before to the best

of our knowledge. The photon and gluon has soft theorem up to the subleading order

while the graviton has soft theorem up to sub-subleading order, and the natural question

is what happens in the soft pion theorem. Furthermore, the soft photon and graviton

theorems are completely fixed by the gauge symmetry as well as the Poincare symmetry

and locality [57–59]. We expect that a similar argument should hold in the pion case.

Another open issue is the loop correction to the soft theorem. In the case of gluons

and gravitons, if there exist infrared singularities, loop corrections modify the tree level

soft theorem [60, 61]. The generalization of their discussions to scalar particles might be

interesting. The related discussion was made in ref. [62].

In [63], it is conjectured that black holes have soft hairs corresponding to soft photons

and gravitons on the event horizon. It is an important problem to examine the possibility

that black holes carry soft pion hairs.

We hope to return to these issues in the future.
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A Convention and formulas

The metric signature in this paper is (−,+,+,+).

We use the following representation of the Dirac matrices

γ0 =

(
−i 0

0 i

)
, γi =

(
0 −iσi
iσi 0

)
, (A.1)

and we have

{γµ, γν} = 2ηµν , γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
, (A.2)

[γ0, γi] =

(
0 −2σi

−2σi 0

)
, [γi, γj ] =

(
[σi, σj ] 0

0 [σi, σj ]

)
. (A.3)
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The conjugate of the Dirac spinor Ψ is defined as

Ψ̄ := iΨ†γ0 . (A.4)

The Dirac equations for the positive and negative frequencies in the momentum rep-

resentation are

(i/p+m)us(p) = 0, (−i/p+m)vs(p) = 0. (A.5)

We normalize the solutions as follows

us(p) =

(√
Ep +mξs

piσi√
Ep+m

ξs

)
, vs(p) =

(
piσi√
Ep+m

ηs√
Ep +mηs

)
(A.6)

with

ξ1 = η1 =

(
1

0

)
, ξ2 = η2 =

(
0

1

)
. (A.7)

They satisfy

ūs(p)us
′
(p) = 2mδss

′
, v̄s(p)vs

′
(p) = −2mδss

′
, (A.8)∑

s

usi (p)ū
s
j(p) = −i(/p+ im)ij ,

∑
s

vsi (p)v̄
s
j (p) = −i(/p− im)ij . (A.9)

B Coordinate systems

In this appendix, we summarize coordinate systems used in this paper.

For the standard Minkowski coordinates xµ = (t,x), the flat metric is given by

ds2 = −dt2 + |dx|2. (B.1)

We also use the spherical coordinates (t, r, θA) where r =
√
|x|2 is the radial distance

and θA (A = 1, 2) are coordinates on unit two-sphere. The metric in the coordinates is

represented as

ds2 = −dt2 + dr2 + r2γABdθ
AdθB, (B.2)

where γAB is the metric on unit two-sphere.

It is convenient for studying the behaviors of massless fields near future null infinity

I + to use the retarded coordinates (u, r, θA), where retarded time u is defined as u = t−r.
The metric in the retarded coordinates takes the form

ds2 = −du2 − 2dudr + r2γABdθ
AdθB. (B.3)

Future null infinity I + is r →∞ surface parametrized by (u, θA).

Similarly, the advanced coordinates (v, r, θA) are useful for working near past null

infinity I −. Advanced time v is given by v = t+ r. As in [14, 65], the angle coordinates
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θA in the advanced coordinates is not the same as those in the retarded coordinates. We

take θA in the advanced coordinates so that they represent the antipodal point of the point

θA in the retarded coordinates.10 The metric in the advanced coordinates is

ds2 = −dv2 + 2dvdr + r2γABdθ
AdθB. (B.4)

Past null infinity I − is r →∞ surface parametrized by (v, θA).

Near future and past timelike infinities i±, we use the hyperbolic foliation of Minkowski

space with coordinates (τ, ρ, θA) considered in [6]. For future region t2 > r2 with t > 0,

the coordinates are related to the spherical ones as

τ :=
√
t2 − r2, ρ :=

r√
t2 − r2

. (B.5)

The angle coordinates θA is the same as those in the retarded coordinates. The metric is

given by

ds2 = −dτ2 + τ2 hαβdσ
αdσβ , (B.6)

where σα = (ρ, θA) are coordinates of unit three-dimensional hyperbolic space H3 with

metric

hαβdσ
αdσβ =

dρ2

1 + ρ2
+ ρ2γABdθ

AdθB. (B.7)

For past region t2 > r2 with t < 0, τ is given by τ := −
√
t2 − r2. We take the angle

coordinates θA as the same ones in the advanced coordinates. The metric is also given by

eq. (B.5).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151

[arXiv:1308.0589] [INSPIRE].

[2] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152

[arXiv:1312.2229] [INSPIRE].

[3] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft

graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

[4] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the

quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

[5] T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED,

JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

10If we take the standard spherical coordinates {x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ} and set

θA = (θ, ϕ) in the retarded coordinates, θA in the advanced coordinates are given by θA = (π − θ, ϕ+ π).

– 19 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP07(2014)151
https://arxiv.org/abs/1308.0589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0589
https://doi.org/10.1007/JHEP07(2014)152
https://arxiv.org/abs/1312.2229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2229
https://doi.org/10.1007/JHEP05(2015)151
https://arxiv.org/abs/1401.7026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7026
https://doi.org/10.1007/JHEP08(2014)058
https://arxiv.org/abs/1406.3312
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3312
https://doi.org/10.1007/JHEP10(2014)112
https://arxiv.org/abs/1407.3789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3789


J
H
E
P
1
1
(
2
0
1
7
)
2
0
3

[6] M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon

theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].

[7] D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, arXiv:1506.02906

[INSPIRE].

[8] M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for

massive particles, JHEP 12 (2015) 094 [arXiv:1509.01406] [INSPIRE].

[9] M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations,

JHEP 11 (2016) 012 [arXiv:1605.09677] [INSPIRE].

[10] M. Campiglia and A. Laddha, Sub-subleading soft gravitons: New symmetries of quantum

gravity?, Phys. Lett. B 764 (2017) 218 [arXiv:1605.09094] [INSPIRE].

[11] E. Conde and P. Mao, Remarks on asymptotic symmetries and the subleading soft photon

theorem, Phys. Rev. D 95 (2017) 021701 [arXiv:1605.09731] [INSPIRE].

[12] M. Campiglia and A. Laddha, Sub-subleading soft gravitons and large diffeomorphisms,

JHEP 01 (2017) 036 [arXiv:1608.00685] [INSPIRE].

[13] E. Conde and P. Mao, BMS Supertranslations and Not So Soft Gravitons, JHEP 05 (2017)

060 [arXiv:1612.08294] [INSPIRE].

[14] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory,

arXiv:1703.05448 [INSPIRE].

[15] F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96

(1954) 1428 [INSPIRE].

[16] M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin

1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].

[17] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

[18] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general

relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962)

21 [INSPIRE].

[19] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat

space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

[20] R. Ferrari and L.E. Picasso, Spontaneous breakdown in quantum electrodynamics, Nucl. Phys.

B 31 (1971) 316 [INSPIRE].

[21] N. Nakanishi and I. Ojima, Proof of the Exact Masslessness of Gravitons, Phys. Rev. Lett. 43

(1979) 91 [INSPIRE].

[22] H. Hata, Restoration of the Local Gauge Symmetry and Color Confinement in Nonabelian

Gauge Theories, Prog. Theor. Phys. 67 (1982) 1607 [INSPIRE].

[23] T. Kugo, H. Terao and S. Uehara, Dynamical gauge bosons and hidden local symmetries,

Prog. Theor. Phys. Suppl. 85 (1985) 122 [INSPIRE].

[24] A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft

Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

[25] S. Pasterski, Asymptotic Symmetries and Electromagnetic Memory, JHEP 09 (2017) 154

[arXiv:1505.00716] [INSPIRE].

– 20 –

https://doi.org/10.1007/JHEP07(2015)115
https://arxiv.org/abs/1505.05346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05346
https://arxiv.org/abs/1506.02906
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.02906
https://doi.org/10.1007/JHEP12(2015)094
https://arxiv.org/abs/1509.01406
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.01406
https://doi.org/10.1007/JHEP11(2016)012
https://arxiv.org/abs/1605.09677
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.09677
https://doi.org/10.1016/j.physletb.2016.11.046
https://arxiv.org/abs/1605.09094
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.09094
https://doi.org/10.1103/PhysRevD.95.021701
https://arxiv.org/abs/1605.09731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.09731
https://doi.org/10.1007/JHEP01(2017)036
https://arxiv.org/abs/1608.00685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.00685
https://doi.org/10.1007/JHEP05(2017)060
https://doi.org/10.1007/JHEP05(2017)060
https://arxiv.org/abs/1612.08294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08294
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05448
https://doi.org/10.1103/PhysRev.96.1428
https://doi.org/10.1103/PhysRev.96.1428
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,96,1428%22
https://doi.org/10.1103/PhysRev.96.1433
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,96,1433%22
https://doi.org/10.1103/PhysRev.140.B516
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,140,B516%22
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://inspirehep.net/search?p=find+J+%22Proc.Roy.Soc.Lond.,A269,21%22
https://doi.org/10.1098/rspa.1962.0206
https://inspirehep.net/search?p=find+J+%22Proc.Roy.Soc.Lond.,A270,103%22
https://doi.org/10.1016/0550-3213(71)90235-5
https://doi.org/10.1016/0550-3213(71)90235-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B31,316%22
https://doi.org/10.1103/PhysRevLett.43.91
https://doi.org/10.1103/PhysRevLett.43.91
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,43,91%22
https://doi.org/10.1143/PTP.67.1607
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,67,1607%22
http://dx.doi.org/10.1143/PTP.85.122
https://inspirehep.net/search?p=find+IRN+1436430
https://doi.org/10.1007/JHEP01(2016)086
https://arxiv.org/abs/1411.5745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5745
https://doi.org/10.1007/JHEP09(2017)154
https://arxiv.org/abs/1505.00716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00716


J
H
E
P
1
1
(
2
0
1
7
)
2
0
3

[26] A. Kehagias and A. Riotto, BMS in Cosmology, JCAP 05 (2016) 059 [arXiv:1602.02653]

[INSPIRE].

[27] S. Hollands, A. Ishibashi and R.M. Wald, BMS Supertranslations and Memory in Four and

Higher Dimensions, Class. Quant. Grav. 34 (2017) 155005 [arXiv:1612.03290] [INSPIRE].

[28] Y. Hamada, M.-S. Seo and G. Shiu, Memory in de Sitter space and Bondi-Metzner-Sachs-like

supertranslations, Phys. Rev. D 96 (2017) 023509 [arXiv:1702.06928] [INSPIRE].

[29] P. Mao and H. Ouyang, Note on soft theorems and memories in even dimensions, Phys. Lett.

B 774 (2017) 715 [arXiv:1707.07118] [INSPIRE].

[30] Y.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of

superdense stars, Sov. Astron. 18 (1974) 17.

[31] V.B. Braginsky and L.P. Grishchuk, Kinematic Resonance and Memory Effect in Free Mass

Gravitational Antennas, Sov. Phys. JETP 62 (1985) 427 [INSPIRE].

[32] V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental

prospects, Nature 327 (1987) 123.

[33] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys.

Rev. Lett. 67 (1991) 1486 [INSPIRE].

[34] A.G. Wiseman and C.M. Will, Christodoulou’s nonlinear gravitational wave memory:

Evaluation in the quadrupole approximation, Phys. Rev. D 44 (1991) R2945.

[35] L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D 46

(1992) 4304 [INSPIRE].

[36] K.S. Thorne, Gravitational-wave bursts with memory: The Christodoulou effect, Phys. Rev.

D 45 (1992) 520 [INSPIRE].

[37] L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class.

Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].

[38] A. Tolish and R.M. Wald, Retarded Fields of Null Particles and the Memory Effect, Phys.

Rev. D 89 (2014) 064008 [arXiv:1401.5831] [INSPIRE].

[39] L. Susskind, Electromagnetic Memory, arXiv:1507.02584 [INSPIRE].

[40] L. Bieri, D. Garfinkle and S.-T. Yau, Gravitational wave memory in de Sitter spacetime,

Phys. Rev. D 94 (2016) 064040 [arXiv:1509.01296] [INSPIRE].

[41] Y.-Z. Chu, Gravitational Wave Memory In dS4+2n and 4D Cosmology, Class. Quant. Grav.

34 (2017) 035009 [arXiv:1603.00151] [INSPIRE].

[42] A. Tolish and R.M. Wald, Cosmological memory effect, Phys. Rev. D 94 (2016) 044009

[arXiv:1606.04894] [INSPIRE].

[43] D. Garfinkle, S. Hollands, A. Ishibashi, A. Tolish and R.M. Wald, The Memory Effect for

Particle Scattering in Even Spacetime Dimensions, Class. Quant. Grav. 34 (2017) 145015

[arXiv:1702.00095] [INSPIRE].

[44] L. Bieri, D. Garfinkle and N. Yunes, Gravitational wave memory in ΛCDM cosmology, Class.

Quant. Grav. 34 (2017) 215002 [arXiv:1706.02009] [INSPIRE].

[45] M. Campiglia, L. Coito and S. Mizera, Can scalars have asymptotic symmetries?,

arXiv:1703.07885 [INSPIRE].

– 21 –

https://doi.org/10.1088/1475-7516/2016/05/059
https://arxiv.org/abs/1602.02653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.02653
https://doi.org/10.1088/1361-6382/aa777a
https://arxiv.org/abs/1612.03290
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.03290
https://doi.org/10.1103/PhysRevD.96.023509
https://arxiv.org/abs/1702.06928
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.06928
https://doi.org/10.1016/j.physletb.2017.08.064
https://doi.org/10.1016/j.physletb.2017.08.064
https://arxiv.org/abs/1707.07118
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07118
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,62,427%22
http://dx.doi.org/10.1038/327123a0
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevLett.67.1486
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,67,1486%22
http://dx.doi.org/10.1103/physrevd.44.r2945
https://doi.org/10.1103/PhysRevD.46.4304
https://doi.org/10.1103/PhysRevD.46.4304
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,4304%22
https://doi.org/10.1103/PhysRevD.45.520
https://doi.org/10.1103/PhysRevD.45.520
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D45,520%22
https://doi.org/10.1088/0264-9381/30/19/195009
https://doi.org/10.1088/0264-9381/30/19/195009
https://arxiv.org/abs/1307.5098
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5098
https://doi.org/10.1103/PhysRevD.89.064008
https://doi.org/10.1103/PhysRevD.89.064008
https://arxiv.org/abs/1401.5831
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5831
https://arxiv.org/abs/1507.02584
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02584
https://doi.org/10.1103/PhysRevD.94.064040
https://arxiv.org/abs/1509.01296
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.01296
https://doi.org/10.1088/1361-6382/34/3/035009
https://doi.org/10.1088/1361-6382/34/3/035009
https://arxiv.org/abs/1603.00151
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.00151
https://doi.org/10.1103/PhysRevD.94.044009
https://arxiv.org/abs/1606.04894
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.04894
https://doi.org/10.1088/1361-6382/aa777b
https://arxiv.org/abs/1702.00095
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00095
https://doi.org/10.1088/1361-6382/aa8b52
https://doi.org/10.1088/1361-6382/aa8b52
https://arxiv.org/abs/1706.02009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02009
https://arxiv.org/abs/1703.07885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.07885


J
H
E
P
1
1
(
2
0
1
7
)
2
0
3

[46] S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved

axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].

[47] I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev.

D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].

[48] S.L. Adler and Y. Dothan, Low-energy theorem for the weak axial-vector vertex, Phys. Rev.

151 (1966) 1267 [INSPIRE].

[49] F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys.

Rev. 110 (1958) 974 [INSPIRE].

[50] D.J. Gross and R. Jackiw, Low-Energy Theorem for Graviton Scattering, Phys. Rev. 166

(1968) 1287 [INSPIRE].

[51] R. Jackiw, Low-Energy Theorems for Massless Bosons: Photons and Gravitons, Phys. Rev.

168 (1968) 1623 [INSPIRE].

[52] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem,

arXiv:1404.4091 [INSPIRE].

[53] V. Lysov, S. Pasterski and A. Strominger, Low’s Subleading Soft Theorem as a Symmetry of

QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].

[54] M. Bianchi, A.L. Guerrieri, Y.-t. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on

effective actions, JHEP 10 (2016) 036 [arXiv:1605.08697] [INSPIRE].

[55] A. Arvanitaki and A.A. Geraci, Resonantly Detecting Axion-Mediated Forces with Nuclear

Magnetic Resonance, Phys. Rev. Lett. 113 (2014) 161801 [arXiv:1403.1290] [INSPIRE].

[56] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.

D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[57] J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and

graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].

[58] Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and

Gravitons from Gauge Invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987]

[INSPIRE].

[59] Y. Hamada and G. Shiu, work in progress.

[60] Z. Bern, S. Davies and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons

and Gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].

[61] S. He, Y.-t. Huang and C. Wen, Loop Corrections to Soft Theorems in Gauge Theories and

Gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

[62] A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems,

arXiv:1705.10078 [INSPIRE].

[63] S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.

116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

[64] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017)

103 [arXiv:1601.05437] [INSPIRE].

[65] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation

Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

– 22 –

https://doi.org/10.1103/PhysRev.137.B1022
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,137,B1022%22
https://doi.org/10.1103/PhysRevD.91.105017
https://doi.org/10.1103/PhysRevD.91.105017
https://arxiv.org/abs/1412.2145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2145
https://doi.org/10.1103/PhysRev.151.1267
https://doi.org/10.1103/PhysRev.151.1267
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,151,1267%22
https://doi.org/10.1103/PhysRev.110.974
https://doi.org/10.1103/PhysRev.110.974
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,110,974%22
https://doi.org/10.1103/PhysRev.166.1287
https://doi.org/10.1103/PhysRev.166.1287
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,166,1287%22
https://doi.org/10.1103/PhysRev.168.1623
https://doi.org/10.1103/PhysRev.168.1623
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,168,1623%22
https://arxiv.org/abs/1404.4091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4091
https://doi.org/10.1103/PhysRevLett.113.111601
https://arxiv.org/abs/1407.3814
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3814
https://doi.org/10.1007/JHEP10(2016)036
https://arxiv.org/abs/1605.08697
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.08697
https://doi.org/10.1103/PhysRevLett.113.161801
https://arxiv.org/abs/1403.1290
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1290
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120
https://doi.org/10.1103/PhysRevD.90.065024
https://arxiv.org/abs/1406.6574
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6574
https://doi.org/10.1103/PhysRevD.90.084035
https://arxiv.org/abs/1406.6987
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6987
https://doi.org/10.1103/PhysRevD.90.085015
https://arxiv.org/abs/1405.1015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1015
https://doi.org/10.1007/JHEP12(2014)115
https://arxiv.org/abs/1405.1410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1410
https://arxiv.org/abs/1705.10078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.10078
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.231301
https://arxiv.org/abs/1601.00921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.00921
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://arxiv.org/abs/1601.05437
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05437
https://doi.org/10.1007/JHEP05(2017)161
https://arxiv.org/abs/1611.09175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.09175

	Introduction
	Soft theorem in U(1)(A) model
	Model
	Soft pion theorem
	Soft pion theorem as the Ward-Takahashi identity
	Ward-Takahashi identity for spontaneously broken symmetry

	Asymptotic symmetry
	Asymptotic behaviors of massless fields
	Asymptotic behaviors of massive fields

	Charge conservation as memory effect
	Expression of charge in terms of the asymptotic fields
	Classical derivation of the memory effect

	Summary and discussions
	Convention and formulas
	Coordinate systems

