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ABSTRACT: We study physical consequences of adding orientifolds to the ABJ triality,
which is among 3d N' = 6 superconformal Chern-Simons theory known as ABJ theory,
type IIA string in AdS; x CP? and N = 6 supersymmetric (SUSY) Vasiliev higher spin
theory in AdSs. After adding the orientifolds, it is known that the gauge group of the
ABJ theory becomes O(Np) x USp(2N3z) while the background of the string theory is
replaced by AdSs x CP3 /Zsy, and the supersymmetries in the both theories reduce to
N = 5. We propose that adding the orientifolds to the N' = 6 Vasiliev theory leads
to NV = 5 SUSY Vasiliev theory. It turns out that the A/ = 5 case is more involved
because there are two formulations of the N' = 5 Vasiliev theory with either O or USp
internal symmetry. We show that the two N’ = 5 Vasiliev theories can be understood as
certain projections of the NV = 6 Vasiliev theory, which we identify with the orientifold
projections in the Vasiliev theory. We conjecture that the O(N1) x USp(2N2) ABJ theory
has the two vector model like limits: Ny > N; and Ny > Ny which correspond to the
semi-classical N/ = 5 Vasiliev theories with O(N;) and USp(2N) internal symmetries
respectively. These correspondences together with the standard AdS/CFT correspondence
comprise the ABJ quadrality among the A’ = 5 ABJ theory, string/M-theory and two N =
5 Vasliev theories. We provide a precise holographic dictionary for the correspondences
by comparing correlation functions of stress tensor and flavor currents. Our conjecture is
supported by various evidence such as agreements of the spectra, one-loop free energies and
SUSY enhancement on the both sides. We also predict the leading free energy of the N' =5
Vasiliev theory from the CF'T side. As a byproduct, we give a derivation of the relation
between the parity violating phase in the N' = 6 Vasiliev theory and the parameters in the
N =6 ABJ theory, which was conjectured in [1].
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1 Introduction

At extremely high energy scale, string theory has been expected to exhibit a huge gauge
symmetry as infinitely many massless higher spin (HS) particles emerge in the spectrum [2].
Then the usual string scale 1/ v/ might arise as a dynamical scale via Higgsing the HS
gauge symmetry. While these expectations are still speculative, there exist a self-consistent
description of interacting HS gauge fields known as Vasiliev theory [3] independently of
string theory. It is then natural to explore the relation between string theory and Vasiliev
theory. The answer to this question remains largely open despite some attempts were made
to directly connect Vasiliev theory to the tensionless limit of string (field) theory [4-7]. One
of the indirect but steady steps towards answering this question is to reinterpret stringy
objects or concepts in the framework of the Vasiliev theory. In this paper we aim at un-
derstanding orientifolds in the context of higher spin AdS;/CFTj correspondence between
Vasiliev theory in AdSy and 3d conformal field theory (CFT) [8-12], which generalizes the
usual AdS/CFT correspondence [13].

To be specific, we study physical consequences of adding orientifolds into the setup
of ABJ triality [1, 14], which relates three apparently distinct theories as summarized in
figure 1. It involves ) 3d N = 6 superconformal Chern-Simons (CS) theory called N' = 6
ABJ theory [15, 16], which is the U(N)x x U(N + M)_j;, CS matter theory coupled to two
bi-fundamental hyper multiplets; ii) Type IIA string theory in AdS; x CP?; iii) Parity-
violating N = 6 supersymmetric (SUSY) Vasiliev theory with U(NN) internal symmetry in
AdSy. The N' = 6 ABJ theory is expected to describe low energy dynamics of N coincident
M2-branes probing! C*/Z;,, together with M coincident fractional M2-branes localized at
the singularity. The M-theory background associated with this setup is AdSy x S7/Zy, with
the nontrivial 3-form holonomy [ C5 ~ M/k. For k < N /5 the M-theory circle shrinks
and the M-theory is well approximated by type ITA string on AdS, x CP3. It is conjectured
in [1, 14, 17] that the N’ = 6 ABJ theory is also dual to the N’ = 6 Vasiliev theory with

2mi

k (2:17 22,253,24).

!The Zy orbifolding acts on the C* coordinate (21, z2, 23, z4) as (21, 22, 23, 24) ~ €



U(N) internal symmetry, in which the Newton constant G ~ 1/M. Especially the semi-
classical approximation of the Vasiliev theory becomes accurate in the following limit of
the ABJ theory

M, |k| - o0 with t= |]\k/:[| finite and N : finite. (1.1)
In this limit, the ABJ theory approaches a vector-like model which is the U(N + M)
SUSY CS theory coupled to 2N fundamental hyper multiplets with a weakly gauged U(N)
symmetry. This correspondence is a generalization of the duality between Vasiliev theory
and U(M) CS vector model [14, 18-22] to the case with weakly gauged flavor symmetries.?
In the ABJ triality, the fundamental string in the string theory is expected to be realized
as “flux tube” solution or “glueball”’-like bound state in the Vasiliev theory when the bulk
coupling is large. The N =6 ABJ triality was further investigated in [24, 25].

Now we add orientifolds into this scenario. For this purpose, it is convenient to begin
with the type IIB brane construction of the N' = 6 ABJ theory shown in figure 2 (see [15] for
detail). There are four ways to consistently add orientifold 3-planes in this setup. Recall
that there are four orientifold 3-planes® O3~, O3, 03 and év3+, whose combinations
with N D3-branes lead to the gauge groups O(2N), USp(2N), O(2N + 1) and USp(2N)
respectively. Specifically, consistently adding O3% into the N' = 6 set up with k& — 2k
leads to the N'=5 ABJ theory with the gauge group O(Nl)gk x USp(2N32)_k, where Ny
is an even integer. The odd N; case is obtained by adding O3 . In summary, the N’ =5
ABJ theory can have the four types of the gauge group:

1. O(2N)g, x USp(2N +2M)
2. O(2N +2M)g, x USp(2N)_4,
3. O(2N +1)g, x USp(2N +2M)_,
4. O(2N +2M + 1)g;, x USp(2N)_4,

The M-theory background dual to the N = 5 ABJ theory is given by* AdS; x S7/ Dy.
Similar to the A = 6 case, the M-theory circle shrinks for k& < N1/5 and the M-theory is well
approximated by the type IIA string in AdS; x CP3/Zy with the NS-NS 2-form holonomy
[ By o< M/k. While this is well known, inspired by the A" = 6 ABJ triality it is natural
to ask whether the A/ =5 ABJ theory also admits some dual higher spin description. To
the best of our knowledge, this aspect has not been studied in literature. The focus of this
paper is to establish the AdS/CFT correspondence among the N' = 5 ABJ theory, type
IIA string in AdSy x CP?/Zy and N' = 5 Vasiliev theory in AdSy with internal symmetry.

We carry out this by first constructing the N' = 5 Vasiliev theory. As shown in
section 2, there are two types of allowed internal symmetry for the A/ = 5 HS theory,

“There is also a study on this type of correspondence for non-SUSY cases [23].

303" can be regarded as O3~ plane with a half D3-brane. &fr and 037 planes are equivalent pertur-
batively but different non-perturbatively [26].

4]f)k is the binary dihedral group which consists of the Zop orbifolding and (z1,z22,23,24) ~
(iz5, —iz1,12%, —123).



M — theory on AdS; x S7/Z

N/ <« k< N

U(N)p x UNN + M)_;, AB] =———— T1IA string on AdS, x CP?
k,]\/lx
¥ fixed, ' fixed N = 6 Vasiliev theory

Figure 1. Summary of the N' = 6 ABJ triality.

ND3 +03% or 037

(N + M)D3 (N + M)D3 +03* or 03

Figure 2. The type IIB brane constructions for the ABJ theories. All the objects share three
common dimensions and the D3-branes wind the S'-direction. [Left] The ' = 6 case with the gauge
group U(N)g x U(N+M)_j. [Right] The N' =5 case with the gauge group O(N7)ax x USp(2N3) _k
where (rank[O(Ny)], N2) = (N, N + M) or (N + M, N).

which is either O or USp group. These two possibilities should correspond to two vector
limits of the N' = 5 ABJ theory. Recalling that the gauge group of the N' = 5 ABJ theory is
O(N1) x USp(N2), we first propose that the A/ =5 ABJ theory is dual to the semi-classical
N =5 Vasiliev theory with O(N7) internal symmetry in the following limit

M
No=|O(N1)|+M, M, |kl —oo with t= T and Nj : finite, (1.2)
where |O(Ny)] is the rank of O(N7). We also propose that the second limit corresponding
to the semi-classical Vasiliev theory with USp(2/V2) internal symmetry is

|O(N1)|=No+M, M, |kl —»oc0 with t= ka’ and Ny : finite. (1.3)
The correspondence between the HS and CFT parameters is as follows. As the N' =5
ABJ theory has the three parameters (k, M, N), the N = 5 Vasiliev theory also has the
three parameters (G, 0, N), where G is the Newton constant, 6 is the parity-violating
phase and N is the rank of the internal symmetry group. We derive the precise holographic
dictionary by matching correlation functions of stress tensor and flavor symmetry currents,
which we compute on the CFT side by SUSY localization [27]. As we will discuss in
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Figure 3. Summary of our proposal on the ABJ quadrality among the A/ = 5 ABJ theory,
string/M-theory and two N = 5 Vasiliev theories. The parameter N is the rank of “smaller” gauge
group, namely N = min(rank(O(Ny)), N2). The main difference from the ' = 6 case is that we
have two higher spin limits corresponding to the N' = 5 Vasiliev theories with different internal
symmetries.

section 4.7, the analysis of the stress tensor correlation function suggests that the Newton
constant Gy is related to M by

G t
=, (1.4)
LA 45 M sin 7t

while the comparison of the flavor current correlation function indicates that the parity-

violating phase 0 is related to ¢ by
Tt

2
We also show that the relation (1.5) is true also for the N' = 6 ABJ triality, where (1.5) was
conjectured but not proven in [1]. In the limit (1.2), the A/ = 5 ABJ theory approaches
the USp(2N2) SUSY CS theory coupled to Ny fundamental hyper multiplets with a weakly
gauged O(Np) symmetry while the limit (1.3) provides the O(N;) SUSY CS theory coupled
to No fundamental hyper multiplets with a weakly gauged USp(2/N2) symmetry. Our corre-

0= (1.5)

spondence is a generalization of the duality between Vasiliev theory and O(M) or USp(2M)
CS vector model [18-20, 28] to the case with weakly gauged flavor symmetries.’ As in the
N = 6 case, we expect that the fundamental string in the dual string theory is realized as
a “flux tube” in the N' = 5 Vasiliev theory. Combined with the standard AdS/CFT cor-
respondence, we conjecture the duality-like relations among the four apparently different
theories, namely the N'=5 ABJ theory, string/M-theory and two N’ = 5 Vasiliev theories
with O and USp internal symmetries. Thus we shall call it ABJ quadrality as summarized
in figure 3. Since the N' = 5 Vasiliev theories with O and USp internal symmetries have the
bulk 't Hooft couplings ~ N1 /Na and ~ No/N; respectively, the relation between the two
Vasiliev theories looks like a strong-weak duality of the bulk 't Hooft coupling as a result.

We have various evidence for the proposed correspondence between the N' = 5 ABJ
theory and Vasiliev theory. First we will see in section 4.3 that the spectrum of higher spin

5There are also proposals on dS/CFT correspondence between Vasiliev theory in dS, and USp(2M) CS
vector model coupled to matters with wrong statistics [29] (see also [30]).



particles in the N' = 5 Vasiliev theory agrees with that of the higher spin currents in the
N =5 ABJ theory.

Second, there is a non-trivial consistency among the spectra, N'= 6 ABJ triality and
“orientifold projection”. It is known [16] that the A/ =5 ABJ theory can be understood as
a certain projection of the N' = 6 ABJ theory. We show in section 3 that one can also derive
the N/ = 5 Vasiliev theory by applying a projection on the N' = 6 Vasiliev theory, which we
identify with the counterpart of the orientifold projection in the Vasiliev theory. Roughly
speaking, the projection acts on both the R-symmetry part and the internal symmetry
part of master fields® and preserves the USp(4) C SU(4) R-symmetry. More precisely, this
is achieved by projection conditions (3.5) induced by two automorphisms of the N' = 6 HS
algebra. Then we prove in section 4.4 that the action of the projection on the higher spin
currents in the ABJ theory is the same as the one on the Vasiliev theory. For example,
the N = 5 Vasiliev theory contains two short multiplets: a usual supergravity (SUGRA)
multiplet and gravitino multiplet. The gravitino multiplet carries adjoint representation
of O or USp internal symmetry. These two short NV = 5 supermultiplets appear once
imposing the projection conditions on the U(N) adjoint N'= 6 SUGRA multiplet in the
N = 6 Vasiliev theory.

Third, SUSY enhancement occurs on the both sides under the same circumstance as
discussed in section 4.5. It is known [31, 32| that the SUSY of the O(Ny)ar x USp(2N2)_
ABJ theory is enhanced from N =5 to N/ = 6 when N; = 2. Interestingly the dual N' =5
Vasiliev theory with the O(N7) internal symmetry has also enhanced N/ = 6 SUSY in the
O(2) case as explained in section 2.1.

Finally we find agreement of the sphere free energies on the both sides at O(log G)
up to a subtlety in the comparison. The subtlety is that the free energy of the ABJ theory
behaves as O(M?) while the one of the Vasiliev theory should behave as O(G') = O(M).
Therefore the ABJ theory has apparently more degrees of freedom than the Vasiliev theory
and we have to subtract some degrees of freedom appropriately. This problem appears
also in CS matter theory coupled to fundamental matters [14, 22]. and the N' = 6 ABJ
theory [24]. We propose that the free energy which should be compared to the one in
Vasiliev theory is
|ZGN,M|

FXS; = —log
' ‘ZGO,IM| ’

(1.6)
where Gy denotes the gauge group of each case in (4.10) and Zg, ,, is the sphere
partition function of the ABJ theory with the gauge group Gy . This quantity satisfies
the following reasonable properties: i) 1/M-expansion starts at O(M); ii) Invariance under
Seiberg-like duality; iii) The O(log M) term agrees with that in the one-loop free energy of
the N’ = 5 Vasiliev theory. Our proposal implies that the open string degrees of freedom
corresponding to the Vasiliev theory are given by figure 4 from the viewpoint of the brane
construction. Utilizing localization method and matrix model technique, we compute F]‘{,efw

5This projection for the O(N) internal symmetry case is SUSY generalization of a known projection
between non-SUSY Vasiliev theories with U(N) and O(N) internal symmetries, which are dual to U(M)
and O(M) CS theories coupled to N fundamental scalars or fermions at fixed points. One of differences is
that our projection acts also on the R-symmetry part.
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Figure 4. Identification of degrees of freedom corresponding to those of the Vasiliev theory from
the viewpoint of the brane construction. Strings denoted by the red solid lines are the HS degrees
of freedom while the blue dashed line is what we are subtracting.

up to the O(1) term in 1/M expansion but exact in ¢. Using this result and our holographic
dictionary, we propose that the free energy of the N’ = 5 Vasiliev theory with O(N7) or
USp(2N2) internal symmetry takes the form in the small G expansion

 8L34sl(6)  min{dimO(Ny), dimUSp(2Ny)}

Fi =
HS = Gy sin 20 9

logGny +0O(1), (1.7)

where’
I(z) =Im [Lig(i tan ;1:)] —zlogtanx. (1.8)

The first term in (1.7) should correspond to the tree level action of Vasiliev theory evaluated
on AdS,; which we cannot currently compare with any results in literature, since the full
action of the Vasiliev theory has not been constructed. Hence we regard our result as
prediction to the on-shell action of the N/ = 5 Vasiliev theory in AdS;. As mentioned
above, the second term agrees with the one-loop free energy of the Vasiliev theory on AdSy,
which is free of logarithmic divergences [33-35] and equal to (—1/2) times the number of
bulk spin-1 gauge fields obeying the mixed boundary condition [36].
In section 6, we summarize and discuss possible extensions of this work.

2 N = 5 supersymmetric Vasiliev theory

In this section, we explain some details on the N/ = 5 SUSY Vasiliev theory. First we
construct the N’ = 5 Vasiliev theory for the two cases with O(N) and USp(2N) internal
symmetries. Next we linearize the NV = 5 Vasiliev theory around the AdS4 vacuum preserv-
ing N/ = 5 SUSY. We explicitly write down the equations of motion, gauge transformations
and SUSY transformations around the AdSs vacuum.

2.1 Construction

Here we construct the N' = 5 Vasiliev theory. The N' = 5 Vasiliev theory is based on
husp(4;4]4) SUSY higher spin algebra [37], which contains the maximal compact subal-
gebra usp(4) @ usp(4). As we will explain, this theory admits either O(N) or USp(2N)

"I(x) also has the integral representation I(x) = — Iy dy logtany and satisfies I(7/2 — z) = I(x).



as an internal symmetry. We begin with aspects which are common between the two
cases and then specify the internal symmetries. Four dimensional Vasiliev theory is real-
ized by introducing the spinorial oscillators® (Y, Z) = (y, 7, z, Z) with the associative but
non-commutative x-product defined as

— — — —

L — — —
* = exp [IC(Dye + 0:0)(Dys — 0,5) +1CY (O ga + 024)(0 5 — 0 5) | (2.1)

where C%% = —ie®8 and 0% = —ie®®. The indices a,f = 1,2 and d,B = 1,2 serve
as indices of two-component spinors. According to this definition, we have the following
identities
y* *yP = y*y? +iCP 2% %28 = 208 0P
[v*, fle = 2%CP0s f (2%, fl = —2iC%04f (22)
{y* Fle=2"f = 20C°P0.5f, {2 fho = 22°f + 2000, f

where f is arbitrary function of (z,Y, 7).

In the A/ = 5 Vasiliev theory, we take fields to be 8 N x 8 N matrices, which are tensor
products of 8 x 8 and N x N parts. Roughly speaking, the 8 x 8 part is needed to introduce
fermions and the size of this part depends on the type of SUSY while the N x N part
M describes internal symmetry and properties of M depend on the internal symmetry
under consideration. We describe the 8 x 8 part in terms of the six Grassmannian variables
(¢1,..., €% n) which commute with (Y, Z) and satisfy the Clifford algebra®

{&.¢y=6", =1, {n,¢'}=0. (2.3)

Viewing (¢%,7) as the SO(6) gamma matrices, we can realize the 8 x 8 part as a sum of
products of (&4,7).

The Vasiliev system is described by so-called master fields, which consist of the con-
nection 1-form A in (x, Z) space and the O-form ® given by

A=Az, y,7,2,2,E,n) = Qudxt + Spdz® + Sadz®, ®=®(x,y,7,2,7,n). (2.4)
They obey the spin-statistics condition
namemy(A, @) = (A, ), (2.5)
where 7’s are the homomorphisms of the x-product defined by

W(ya g,Z,Z) = (_ya g,—Z,Z), ﬁ(y,gj,z,f) = (y’ _g727_2)7 W&(gz) = _gz’ 7771(77) = -
(2.6)
The master fields contain both dynamical and auxiliary degrees of freedom. The physical
degrees of freedom are contained in the Z independent part of €2, and ® while S, and S

8See appendix A for some details.
9Strictly speaking, the products here are « product but we drop the * product symbol regarding (£%, 1)
for simplicity.



have only auxiliary degrees of freedom. When the fields carry non-trivial representations of
the internal symmetry, the Z independent parts of €2, and ® have the general expansions

Qulz=0 = E E<Qu,i1~-ik (0, QET " + Q4 (0, )€™ Z'“"?) @M,
q>0
k205
Plz—0 = E E(%---ik (p, Q)&% + @) (p, )" ““17) ® M,

p,q=0
k=0,...,5

(2.7)

where £ = ¢ ... ¢k and

1 . .
P(p,q) = ]Tgﬂpar--ocpdlmdqym PP g% (2.8)

The spin s gauge fields are described by the p+ ¢ = 25— 2 components of €2,|z—, in which
the p = ¢ and |p — ¢| = 1 components give rise to the (generalized) vierbein and gravitini
respectively, while the |p — ¢| > 1 components correspond to the spin connections. The
matter fields with spin s < % arise as components of ®|z_¢ with p+ ¢ < 1. The remaining
components in ®|z_( are auxiliary and related to the Weyl tensors of the physical fields
and their derivatives via equations of motion.

2.1.1 O(N) internal symmetry

Let us specify our internal symmetry to O(N). First we take M to be the N x N real matrix
associated with the internal symmetry O(NV), which can be decomposed into symmetric
and antisymmetric parts. Next we define the 7 map as

m(y,9,2,2) = (iy, iy, —iz,—12), 7(¢) =i, 7(n) = —in, (2.9)

and

(M) =M. (2.10)

The conditions (2.9) will be imposed also for the case with USp(2/N) internal symmetry
while the condition for M will differ from (2.10). Then we require the master fields to

satisfy the reality condition
Al=—A, o =x(@)T, (2.11)

and the 7-condition
T(A)=—-A, 71(P)=m(P), (2.12)
where I' = i¢! .- - €55 and T2 = 1. The t acts on (Y, Z, ¢4, ) and M according to'®
yh=gt, =20 ¢dT=¢, g =g, (=8¢, Enf=ng, M=)
(2.13)

The 7- and reality conditions affect the spectrum of physical degrees of freedom. We
now analyze their consequences on §,|z—g. First let us consider symmetric part of M,

OWe follow the notation of [17], which is different from the one in [1]: ¥ |ihere = Taltheres T |there =

— Yo ‘there~



which corresponds to two index symmetric representation of O(N). Noting that acting 7

on €2, ... i, £ gives the extra factor Ptk as a consequence, the T-condition requires!!
© ..
Qu\Z:OZZ{ ) ( (B2 €T + 0, W)
n=0 * p+qg=4n
D S (e R LAY >£”>
pHq=dn+1
1 11 -+14 7 1115
D (%) i (0, )+ (0, )€ + Q,m 15 (P, )€1
p+q=4n+2
+ Z <3'Qu,ijk(p7Q)§Z]k+Q:L(p7 ) Quzl 14(pa )5“ MT/)}' (214)
p+qg=4n+3 ’

The reality condition further requires

it Ic(k+1)+1

k(k—1)
2 —HQM,il---ik (Qap)’ Q JIR SRR A (pa Q) - (71)

Q. (pg)=(-1) i (05D) -
(2.15)

The analysis for ® is similar and the result for p > ¢ is

D(p,q)+ 41 Piyis (0, Q) T+ (p,q) e+ 5D (p,q)6" 50 p—g=0 mod 4

D|g—0= 31 @ik (P, @) ETF+ (p,q)n+ 1P s, (p,q) 7 p—g=1mod 4
qu)u (p, (I)f”+ . ‘I’;jk(p Q)f”k p—q=2 mod 4

(p Q)é +5| IERE 25(p Q)S“ 25‘1‘ 1 (I), ( ,q)fijn p—qg=3 mod 4

(2.16)

where due to the reality condition,'?

o (p,p) = é( DPHieakme (0,p), L (p,p) = i(—1)P T ijum® ™ (p.p) . (2.17)
The p < g components of ®|z_( are related to the p > ¢ ones via the reality condition (2.12).
The SO(5) indices are raised and lowered by 6. We summarize the final result in table 1.
Note that in SUSY Vasiliev theory with internal symmetry, fields in the usual SUGRA
multiplet are extended to matrices, and only the singlet components under the internal
symmetry, namely the trace part, are related to the operators inside the dual CFT stress
tensor multiplet via holography. The Konishi multiplet and other higher spin multiplets
exhibit the standard long multiplet pattern with the spin range being g

Next we consider anti-symmetric part of M corresponding to two index anti-symmetric
representation of O(NN). Then imposing 7-condition leads to

QH|Z=0:Z{ Z (;]QMW’C(p? )fljk+9/ (pv )77+ Qy,zl 14(p7 )521 " )

n=0 ~ p+q=4n+1

1 .
b (i€ + 0 el (215)

p+q=4n+2

"FErom now on we do not explicitly erte the matrix M for succinctness.

12 i ’1l U klm / .
As an example, for spin-1/2 fields, ®} ”k = —51€ikm Py, <I>£ = 5,suklm<I> i <I>O]: k= = i€ijum Py’
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5+5 1+10 10+10 5+10 1+5 1
1+1 5 1 5+1 10+5 10+10 5+10 1+5 1
1 5+1 10+5 10+10 5+10 1+5

1 5+1

w N = O

Table 1. The spectrum of physical fields carrying symmetric M in the A' = 5 Vasiliev theory with
the O(N) internal symmetry in the language of SO(5) representations. For s > 1 fields, the level ¢
is related to s by s = 204+ 2 — k/2 +r/2 where k is the number of &s and r is the number of 7. The
values of £ are assigned to spin-0, 1/2 fields such that fields belonging to the same supermultiplet
are labeled by the same £. The underlines denote the fields in the A/ = 5 SUGRA multiplet. This
table also provides the spectrum of physical fields associated with antisymmetric /M in the case
with USp(2N) internal symmetry.

1
+ Z <Qu,i(p7 q)gl + aQu,ilnis <p7 )5“ " + u Z]( )glj )

p+q=4n+3

1 111 i1
£ ()4 et T Yy 0+ S )6 ) |

p+g=4n

and the reality conditions requires

+ k(k—1) "t k(k+1)
Qi @)= (=12 Qi (@p) s Ly, 00) = (=12 Q5. (0,p) .
(2.19)
Similarly, ®|z—g for p > ¢ possesses the expansion
D4(p,q)67 + 5,9, 51 (p,9)E7F p—q=0 mod 4
D|y_o= ®;(p, )52"’_ 51 Fi1-i5 (p, Q)le 15""21!(1)/"(]77(,1)6@77 p—q=1 mod 4
D(p,q)+ 41 Piy iy (0, Q)€+ P (0, @)+ 57 P, i (@)1 p—g=2 mod 4
31 Pijk (0,07 +9 (p,q)n+ 5P, i, (P, )67 M p—q=3 mod 4
(2.20)
where the reality condition constrains'?
i
‘I)L-(p,p) = 5(—1)}7 Eijktm®™™ (p, p) . (2.21)

The p < g components of ®|;_( are related to the p > ¢ ones through the reality condi-
tion (2.12). The final result is summarized in table 2. Especially we have the gravitino
multiplet, which is underlined in table 2. The gravitino multiplet for N = 2 is special
because the two-index anti-symmetric representation of O(N) is singlet. Together with the

13For example, for spin-1/2 fields, @Ll = 4,5Uklm<1> kim g1

a,ijklm

. rt i klm
1f":ijkl'm(I) (I)a i _éeijkl'm(pa
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N =

10+10 5+10 145 1
1 5+1 10+5 10+10 5+10 1+5 1
1 5+1 10+5 10+10 5+10 1+5 1

1 5+1 10+5 10+10 ---

w N = O

Table 2. The spectrum of physical fields carrying antisymmetric M in the case with O(NN) internal
symmetry. For s > 1 fields, the level £ is related to s by s = 20+1—Fk/2+r/2 . The values of £ are
assigned to spin-0, 1/2 fields such that fields belonging to the same supermultiplet are labeled by the
same /. We have underlined the fields belonging to the gravitino multiplet. This table also provides
the spectrum of physical fields with symmetric J M in the case with USp(2/V) internal symmetry.

O(2)-singlet N' = 5 SUGRA multiplet, it comprises the N' = 6 SUGRA multiplet singlet
under the internal symmetry. This indicates that the supersymmetry of the O(2) case is
enhanced from N' = 5 to N/ = 6. For N # 2, the existence of the gravitino multiplet
does not imply the SUSY enhancement since SUSY generators should be singlet under the
internal symmetry and the gravitino multiplet does not contain any singlet parts. We will
come back to this point in section 4.5.

In summary, for bosonic fields carrying symmetric M, the even spins are always in the
1+1+5+5 representations of SO(5), and the odd spins are in the 10+ 10 representations.
For bosonic fields carrying antisymmetric M, the situation is reversed. The even spins are
always in the 10 + 10 representations of SO(5), while the odd spins are in the 1 +1+5+5
representations. The fermions are always in the 1 + 5 4+ 10 representations of SO(5),

regardless of their representations under O(N).

2.1.2 USp(2N) internal symmetry

Next we consider the A/ = 5 HS theory with USp(2N) internal symmetry. Construction
for this case is similar to the O(N) case except two points. First we take the internal
symmetry part M of the master fields to be 2N x 2N hermitian matrices. Second we take
7-condition for M as

(M) = (TMIHT, (2.22)
where J is the USp(2N) invariant tensor explicitly given by
0 1
—Iyxn O

Now let us figure out the spectrum of physical fields constrained by the 7-condition.
For this purpose, it is convenient to decompose M according to the symmetry property of
JM as in the O(N) case.

— 11 —



o If (JM)T = (IM), then 7(M) = —M. The full 7-condition hence implies that
Qu|z—0 and ®|z—( takes the same forms as (2.18) and (2.20). Hence the spectrum
for this case is the same as those for the O(N) case with MT = — M given in table 2.

o If (TM)T = —(JM), then 7(M) = M. The 7-condition makes Q,|z—¢ and ®|z—
the same forms (2.14) and (2.16) respectively. Therefore the spectrum for this case
is those for the O(N) case with MT = M summarized in table 1.

In summary, for bosonic fields carrying symmetric J M, the even spins are always in the
10+ 10 representations of SO(5), and the odd spins are in the 1+ 145+ 5 representations.
For bosonic fields carrying antisymmetric JM, the even spins are in the 1 + 145+ 5 rep-
resentations of SO(5), while the odd spins are in the 10+ 10 representations. The fermions
are always in the 1 + 5 + 10 representations of SO(5), regardless of their representations
under USp(2N). The consequence of the reality condition here is slightly different from
the O(N) case. The reality condition imposed on the master fields acts on the internal
symmetry matrix as hermitian conjugation. Thus the reality conditions induced on the
component fields are solely determined by the number of (Y, Z, £, 7) and can be easily ob-
tained from those in the O(N) case by adding an extra sign to the ones associated with
antisymmetric M.

2.2 Analysis of equations of motion and supersymmetry transformations

In this subsection, we first linearize Vasiliev equations around the AdS; vacuum preserving
N =5 SUSY. We show that fields comprising the N'= 5 SUGRA multiplet indeed satisfy
the linearized equations of motion of the N'=5 SO(5) gauged SUGRA around AdS,. We
then study the linearized HS gauge transformations and show that the HS gauge transfor-
mations generated by the Killing spinors of AdSy relate the fields in the N/ = 5 SUGRA
multiplet in the same way as the linearized SUSY transformation of the N' = 5 SO(5)
gauged SUGRA around AdSy.

2.2.1 AdS4 vacuum

The Vasiliev’s equations of motion for the master fields are'4

dA+A*A:i(de2+f/d22), A+ Ax® — dx71(A) =0, (2.24)

where d = 0,dz" + 0,0dz® + D5adz®, z# = (', r). V and V are functions of the master
0-form ®. By field redefinition one can reduce V and V to the following form

V=edxrl, V=e0xi, (2.25)
where k and & are the Kleinians operators defined as

L% _ ~_d_' _
k=e¥%  g=e¥F kT —F. (2.26)

1At linearized level, the internal symmetry and R-symmetry play no essential roles and therefore we
suppress their indices when analyzing the linearized Vasiliev’s equations.

— 12 —



The parameter 6 in (2.25) is called parity violating phase, which breaks the parity of the
Vasiliev theory except for § = 0,7/2. Two models with § and 6 + 7/2 are related to each
other by the field redefinition A — A&, ® — i€'®E? for any i [1]. Each component of the
first equation in (2.24) is

A Q+xQ =0, d.S+5%S = i(eiHQ*mFdzz—i-e’w(I)*RdEQ) . dQ4d SHOxS+S5+Q =0,
(2.27)
where d, = 0,0dz® + 0za dz%, dz? = dzdz, and dz? = dz%Z4. The equation of motion of

the O-form read
AP+ QxP—Px7(Q) =0, dP+S*P—Pxr7(S)=0. (2.28)

In the Poincaré coordinates o
_ migdrtda’ + dr?

0s? e (2.20)
the AdS, background has the following vierbein and spin connection'®
1 ;L 1 &b _ ~
e= 0 yaypda’, W= @(Uﬁﬁyayﬁ + 60 Gady)dat (2.30)
which correspond to the exact solution to Vasiliev equations
AV —eyw, o0 =0, (2.31)

where e and w carry the unit matrix of the internal symmetry.

2.2.2 Linearization

Let us linearize the equation of motion around the AdSy vacuum (2.31). The linearized
equations around the AdS, background then take the forms

d 00 4 {w+e, QWY =0,
4.8 — i(eiﬁq,(l) * kTdz2? + e 00W) « gdz?) (2.32)
4,00 + 4,80 4 {w+e,5V}, =0,
and
dy®V 4+ [w, @D, + {e, 8V}, =0, d. 0V =0. (2.33)

For simplicity, from now on we omit the superscript and simply use €2, S and ® to denote
the first order master fields. The second equation in (2.33) indicates that ® is independent
of z. Next, from the second equation in (2.32) S can be solved in terms of ®:

. 1
S = lzadzaele/ tdt[® * 'Y 3]
0

. 1 )
5 T+ %zadzdeﬂ@ / tdt[® x e¥"%4] . (2.34)
0

z—tz z—tz

where we have chosen the gauge S|z—o = 0 and applied the identity (A.4). It is useful to
split 2 into the z-dependent and independent parts

Q=W(,Y,¢n)+Wi(Y, ZE ), (2.35)

5The flat and curved indices on o are related by e*? = %eﬁafj‘ﬂdz’“ = ﬁa(‘jﬁézdm“ = ﬁcfﬁﬂdx”.
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with W’|z—9 = 0. W’ can be determined from the third equation in (2.32)

: (2.36)

z—tz zZ—tz

1 1
W' = zo‘/ dt(DoSq) + ZO‘/ dt(DoSg)
0 0
where DSy = dpSa + [w + €, Sa]«. Plugging (2.34) into (2.36), some explicit calculations

give

1
W' = jeigzo‘/ dt(1 — t)(2iwastz” + e, 0578 )( (z, —tz,gj)eityaZ“)F
0 (2.37)

1 ) . 7('17
+ ie_leza/ di(1 - t)(2iwd5t25 +e3aCP0,) (@(x,y, —tz)e™ Zd) .
0

Finally, using the results above, the first equation in (2.32) and (2.33) can be recast as

DoW = 16196“5/\6&’?8@56@#@)(9:, 0, )T +ie ¥ePone 40

30y ®(2,,0), Do® =0, (2.38)

where we have defined

Dy:=V — Qiead[yaa—a + YaOya] 50 =V + Qeo‘d[yagjd — OyaOyal ,
Y ! o (2.39)

V = dy — 21w (yadys + yp0ye) — 2iw® (yaa + §i5050) -
2.2.3 Relation to N = 5 SO(5) gauged supergravity

In the following, we shall show that the fields comprising the N/ = 5 SUGRA multiplet
indeed satisfy the standard equations of motion when linearized around AdSy, and therefore
carry the correct degrees of freedom. In SUSY Vasiliev theory with internal symmetry,
fields inside SUGRA multiplet are matrix valued and only the single components under
the internal symmetry are closely related to operators inside the dual CFT stress tensor
multiplet. From (2.38) we derive the linearized equations of motion for fields in the N’ =5
SUGRA multiplet, which are summarized as follows

e spin-0
The complex scalars ®7* are the Y-independent components of ® and satisfy

V,F 26040 M = 0, v, 058 1 2¢,,0, 07 — 26;9%2;1& 5 =0, (240)

Taking another covariant derivative of the first equation and solving for V®,4 from
the second equation, we arrive at the Klein-Gordon equation

V2QUM 4 9giik — (2.41)

where we have used efjde“w = ¢*P edﬁ. and €*? edﬁ CIJa e 0.

° spin—%

There are two Weyl fermions @/, and ®*. From (2.38) their equations are

V= 2e)00! =0, V00 200U~ 0. (2.42)

Multiplying them by e#+, the second terms of both equations above vanish and we
obtain the free Dirac equations

ooV, =0, otoV,@Hk =0, (2.43)

— 14 —



e spin-1
The spin-1 gauge fields denoted as B,/ are the Y-independent components of W and
obey

Uy =2 (dBY)og, o5V, 005 — 107 0, (2.44)

o aBA,b -

Multiplying the second equation by ¢ and utilizing the first equation, we obtain
the Maxwell equations and the linearized Bianchi identity

VH(dBY),, =0, 0"V ,(dBY),, =0. (2.45)
° spin—%
The gravitini W¢ are in the 5 representation of SO(5) and according to (2.38) they
obey .
VWE + 2iea5Wé = —ie 0efd N ey 257. (2.46)

Multiplying both sides of the equation above by o#*#;%, the r.h.s. vanishes and we
obtain the linearized Rarita-Schwinger equation around AdSy

(VWi + Ziewa W ) = 0. (2.47)

e spin-2
The graviton is described by the vierbein W, and spin connections Wy, W, i via a
set of first order equations contained in (2.38)

VWas + 2iea’ W, + 2’ Wag = 0, (2.48)
VWap + diea“Wes = ie 7 A eXs®opn . (2.49)

Multiplying the second equation by ¢ ,? leads to
oM PN W ey + 4 G Pe, g = 0. (2.50)

This equation together with (2.48) amounts to the usual linearized Einstein equation
with a negative cosmological constant.

The fields above form a supermultiplet of OSp(5/4) which is a subalgebra of the
husp(4;4]|4) HS algebra when the background is fixed to AdSy. Therefore the linearized
SUSY transformation relating different spins in the N' =5 SUGRA multiplet can be read
off from the HS gauge transformation around AdS;. The HS gauge transformation of the
master 1-form is given as

dA =de+ [A, €, (2.51)

where d = 0, da# + D,0dz® 4 0z dz® and the gauge parameter € is in general a function of
(z, y, ) and &°. The parameters generating SUSY transformations are the components of
¢ linear in y and 3 which we denote as A,y® + Aqy®. A and A are chosen such that the
AdSy solution is invariant under the gauge transformation

de(Aoy® + AaT®) + [e + w, Aay® + As7] = 0. (2.52)

,15,



In fact A, and A, correspond to the Killing spinors of AdS,. For the N’ =5 case, they are
linear in &7,

Ao = ALE, Ay =ALE, (2.53)
where A?, and A% are fermionic. Around the AdS; vacuum, the master 1-form transforms
according to

5(Q© +Q) =00 = [, Aay® + Aal®s, 65 =[S, Aay® + Aai®s - (2.54)

We focus on the first transformation, which is physical while the second one is auxiliary.
Since Q = W(z,y,y) + W'(z,y,7, 2, Z), we have

SW = [W, Agy® + AsTs + W', Aay® + As% (2.55)

Z=0
The solution of W’ is given in (2.37). It is of the form W’ = 2*H, + 2YHy, where H and H
are functions of (Y, 7). Because of the properties (2.2) of the *-product, the second term
on the r.h.s. of (2.55) may contribute when W', A and A depend on internal anticommuting
parameters. For the master O-form we have the twisted HS gauge transformation

50 = [®, Apy]x — {@, AT} (2.56)

Substituting the component expansion of W and @ to (2.55) and (2.56), we then read off the
linearized SUSY transformations of the fields inside the N' = 5 SUGRA multiplet as follows

spin-2:  dWyaa =W AL —2W! A

potra pocttao

3 . . A o o
spin-s i OWj o =21A" Waa +20Wap A"+ Bl A, —2iei Fij A

AL
spin-1: (535 :—4in[f’°‘A£ —e*ieeg‘j‘@gkl_\g—i-h.c.,

Spin—% L DUk =2l AL 9@k gla 12619F55AW, 5P = -2 AT 4-2iP™ AT
spin-0:  PYH =giplik Alla _geiikimg! pmaex (2.57)

where F;]B is the anti-self-dual part of the field strength of B,ij and @ is the gradient of
the scalar ®™. After proper rescaling and expressing them in terms of the vector basis,
the transformation above can be recast into the familiar form

de,* = gw“qpm- + h.c.

51/)2 = %wfpab%bei — QQBL]-ej + %F,;Tij’ng'Yuej + 95”’7#6]' )
5Buij _ (efiegwuxijk 4 26%,/) +h.c.,

SxTk = — gy, + gq/uueiBFlZl[zjek} + go'Me

) 1 ..
OX = —Oudy' e+ 9o, @ == MG

g o 1 ..
6¢zgkl — _8 <€[1X]kl] + ﬂsz]klm emX) . (258)
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Supersymmetry | Internal s=0,1,2,... s =

N=6¢ | uw) e e @ e [t |[e [ e [

Table 3. The spectra of the N' = 6 Vasiliev theories with the U(XV) internal symmetry. The indices
I, J, K label the fundamental representation of SO(6)z. The Young tableaux with the cross denote
the adjoint representation of U(N).

When 6 = 0, this transformation reproduces those of the linearized N' = 5 SUGRA around
AdSy.

3 N = 5 Vasiliev theory from N = 6 Vasiliev theory

In this section we discuss that the N' = 5 HS theory constructed in the last section can
be understood as certain projections of the A" = 6 HS theory. Then using this result, we
obtain supersymmetric boundary conditions for the A" =5 HS theory.

3.1 Projections of the N’ = 6 Vasiliev theory

Before we discuss the projection, we quickly review the formulation of the N’ = 6 Vasiliev
theory. The N/ = 6 Vasiliev theory is based on the hu(4; 4|4) HS algebra [37], which contains
u(4) ®u(4) as the maximal compact subalgebra. The master fields in the A” = 6 HS theory
are also tensor products of 8 x 8 matrices described by the Clifford algebra and the N x N
matrices M associated with the internal symmetry. In contrast to the N' = 5 case, we take
the internal symmetry part M to be N x N hermitian matrices and do not impose the
T-condition, while we take formally the same reality and spin-statistics conditions:

Al=—A, ' =x(®), n7me(A ®) = (A, ), (3.1)

which determine the allowed internal symmetry to be U(N) [17, 37]. The above condi-
tions determine the spectrum of the AN/ = 6 Vasiliev theory with U(N) internal symmetry
summarized in table 3. In particular, all the fields carry the adjoint representation of the
internal symmetry U(N).

Now we consistently truncate the A” = 6 Vasiliev theory to the N’ = 5 theory following
the approach!® of [37]. Generally, in order to truncate SUSY Vasiliev theory consistently,
one needs an automorphism p defined on the original theory as

p(P) = —i"P)g(P), (3.2)

where P is any component of the master fields, m(P) is 0 (1) if P is bosonic (fermionic)
and o is an anti-automorphism defined on P as

o(Py. ), = ST P(iy,i5),* (S )sa (3.3)

'SConventions in this subsection closely follow those in [37].
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where o, 3, v denote the combined indices for the R-symmetry and internal symmetry. The
matrix S2° projects the original R-symmetry and internal symmetry to their subgroups
preserving S For the N = 6 HS theory P has the following structure

B, F.,*
Pf:( o >®MNxN, (3.4)

where the diagonal blocks B are bosons while the off-diagonal blocks F are fermions. The
SU(4) indices «, 8, a’, ' run from 1 to 4 and My« y denotes the N x N matrix transforming
under the adjoint representation of the internal symmetry U(V). Using the SO(6) gamma
matrix, the SU(4) basis can be converted to the SO(6) basis spanned by ¢! (see appendix B
for details).

To obtain the N' = 5 Vasiliev theory, we impose the following condition on the N’ = 6
HS fields

p(Alz=0) = Alz=0, p(®|z=0) = —7(®|z=0), (3.5)
where 7(y,y) = (y,—y) and

Jaxa 0
S = & gNxN - (3.6)
( 0 J4><4>

Here Jyx4 is the invariant matrix of USp(4) group, and will reduce the R-symmetry group
from SU(4) to USp(4) ~ SO(5). gnxn is the metric defined on the representation space of
U(N) internal symmetry group. According to [37], the only non-trivial gnx is either the
symmetric oy n or the anti-symmetric Jyxny (when N is even) and this choice determines
whether the internal symmetry is O(NN) or USp(NN) as we will see soon. The Z-dependent
components related to the Z-independent components via equations of motion are subject
to similar projections.

3.1.1 O(N) internal symmetry

Let us first choose gnxn to be dnxn. This projects the internal symmetry to O(N). We
focus on the consequence of the projection on the master 1-form. For bosonic fields, the
projection condition implies'”

_im-l—nt]ﬁ'y&ch% cé’d(mv n)Joc(S(Sda = Ba, (JLB7 b(ma n)a

1o ) , 3.7
_iernJB K 6bCE7’,05 7d(7n7 n)Jo/(S’(;da = IB30/,(1f8 7b(m’ n), ( )

where a, 3,...,a/,3,... denote the vector indices of USp(4) and a,b,... stand for the
vector indices of O(N). The projection condition on bosons requires

gt ab () = BP Y (mn),  imTBY P (m,n) = BP0 (m, n), (3.8)

"We have suppressed the spinor indices of the master field since the projection trivially acts on the
indices. For example, if we denote the spinor indices by a1, az,... and &1, da, ..., then the first condition
in (3.7) is

—imtr P ste, O Jos0da = Ba,a™"

a1, QO] 5eeey Gn QY yeeey Qmy XY 5oy Qn '’

The spinor indices in other equations of this section can be recovered similarly.
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where we have used J*# and §% to raise and lower the vector indices of USp(4) and O(N)
respectively. When m+n = 0,4,8,--- corresponding to odd spins, we have two cases with

e both (o, 8) and (a, b) being symmetric. This corresponds to the adjoint representation
of USp(4) and the symmetric representation of O(N) group. The number of fields is
then X

/ .
(10 +10) gy [QN(N * 1)]0 ’
(N)

e both («, ) and (a,b) being also antisymmetric. This corresponds to the antisym-
metric representation of USp(4) and the adjoint representation of O(M). Then the
number of fields is

1
(1 +1"+5+5) g, * [2N(N — 1)}
Oo(N)

When m +n = 2,6,10,--- or even spins, we have two cases with

e (o, ) being symmetric and (a,b) being antisymmetric. This corresponds to the
adjoint representations of both USp(4) and O(N), which leads us to the number of
fields .

/ .
(10 +10) g, ) % [2N(N - 1)] .
(N)

e (a, ) being antisymmetric and (a,b) being symmetric. This gives the antisymmet-
ric representation of USp(4) and the symmetric representation of O(NN). Then the
number of fields is

Ly 4 1)

(1+1+5+ 5’)Usp(4) X [2

} O(N)
The projection conditions for fermions are

—imEnHL g8 s 8 (mn) Josdda = Fa,o” b (m,n), 39)
—im+"+1Jﬂ75ch% C‘S/’d(m7 n)Jors0da = For, 2 b(m,n), '

which relate the two sets of complex fermions. Therefore, for each half-integer spin, the
number of fields is given by 16 x N2. The 4 x 4 SU(4) matrix decomposes under USp(4)
to 1 + 5 + 10 representations. Putting bosons and fermions together, we see that the
spectrum matches with that of the N =5 HS theory with O(NNV) internal symmetry given
by tables 1 and 2 in section 2. We can also similar analysis for the master 0-form and the
results match with the spectrum given in section 2.

3.1.2 USp(2N) internal symmetry

If we choose ganxan = Janx2n, then the internal symmetry is reduced to USp(2N).
Similar to the previous case, the conditions on bosons now read

_im-i-nJB'yjch% 06, d(m’ n) Joas Tad = IBoz, aﬁ’ b(m’ n)a

A ! ! (3.10)
it g8 gbeB 5 n) T Tad = Bar o0 (m, ).
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After raising and lowering the indices by J*? and J%, we find
— BB (i ) = B (m, ), —i™TBY P () = BP0 (m,n). (3.11)
When m +n =0,4,8,---, or odd spins, we have the two cases with

e (o, ) being symmetric and (a,b) being antisymmetric. This corresponds to the
adjoint representation of USp(4) and the (reducible) antisymmetric representation of
USp(2N). The number of fields is then

(10 +10%) 5,0y X IN2N = Dluspen) i

e (a, B) being antisymmetric while (a,b) being symmetric. This corresponds to the an-
tisymmetric representation of USp(4) and adjoint representation of USp(2/N). Hence
we have the number of fields

(1+1'+5+ 5,)USp(4) X [N(2N + 1)]usp(en) -

For m +n = 2,6,10,--- or even spins, we have the two cases with

e (a,p) and (a,b) being symmetric. This corresponds to the adjoint representations
both in USp(4) and USp(2N), which give the number of fields as

(10 + 10/)USp(4) x [N(2N + 1)]uspeny ;

e (o, ) and (a,b) being antisymmetric. This gives the antisymmetric representation of
USp(4) and the (reducible) antisymmetric representation of USp(2N). The number
of fields is then

(1 +2"+5+5") g ) * [N2N = Duspen) -

For fermions, the projection conditions read

—imAn L g8 gbep, 8 (m n) JosTud = Fa, o (m,n),

—mAnt g8y pbep 4 (im0 Jars Tua = Far o 0 (m, ). (312
Again this condition simply relates the two sets of complex fermions. The number of
fermions for each half-integer spin is then 16 x (2N)2. The 4 x 4 SU(4) matrix decomposes
under USp(4) to 1 + 5 + 10 representations. Putting bosons and fermions together, we
see that the spectrum matches with that of the A/ =5 HS theory with USp(2N) internal
symmetry summarized in tables 2 and 1 in section 2. Similar analysis can be done for the
master 0-form ® and the results match with the spectrum given in section 2.
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3.2 Supersymmetric boundary conditions

In the previous subsection, we have shown that the N’ = 5 Vasiliev theory can be obtained
from the consistent truncations of the A = 6 theory. Therefore the SUSY boundary con-
ditions of the N/ = 5 models inherit those of the N' = 6 models. The pure AdS; vacuum in
the N' = 6 Vasiliev theory preserves the full N'= 6 SUSY. The linear boundary conditions
imposed on the fluctuations of fields around this vacuum have been analyzed in [1], in which
the R-symmetry neutral spin-1 gauge field inside the SUGRA obeys the mixed boundary
condition with the mixing angle related to the -parameter.'® This can be easily seen from
the linearized SUSY transformations for the A" = 6 SUGRA multiplet given below

de," = €I’yaww~ + h.c.
T 1

oy, = §w£L)“b7abe” — QQA{LJEJ + —\[Fp_o,”%(’fyuej + g6 e, e,

64,1 = = (e Mermn +2v2e 0,7 +he,

0A, = —Qe_ieéfyuxl + h.c.,

IJK _ 9, GlIKL 17 K] 4 gl TKL L

)

3.
Ver+ 5"V E,
1 .
Ox = —0ug" ey + S E el + got el
1
5¢IJKL — 2\/7< I, JKL] + 4EIJKLMN6MXN> : (313)

where I,J... =1,...,6 are the SO(6) indices, fermions carrying upper and lower SO(6)
indices have the opposite chiralities with respect to 5 and

B 1 . 1 *
Fo= §(Fuu +ixF), ¢ = ﬂelJKLMNGbKLMN, drrmn = (") (3.14)

In terms of the new variables

(Z[JKL = o W0ylIKL ﬁu_v = 210F}:V’ K = o710\ 1K Gl = oy T (3.15)
the SUSY transformations above can be recast to the standard form independent of the
O-parameter.'® Therefore, the Fefferman-Graham expansion leads to the mixed boundary
conditions for the original fields. In particular, the bulk spin-1 gauge field satisfies

=0, (3.16)

2i6
Rele Fij]r:()

which is equivalent to

1 .
sin 260 F}; = 5 cos 20€iij]k (3.17)

r=0

18GSimilar phenomenon was discovered in the w-deformed A = 6 supergravity [38]. There due to nonlinear
effects, the mixing angle takes discreet values.

19Using the linearized equation of motion for x’, one can show that the super-covariant field strength
Fuv = Fuy + - - - satisfies 6.7-';, = 4ery, 0,
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Fields of spin s > 1 must satisfy the Dirichlet boundary conditions in order to avoid the
propagating HS gauge fields in the dual boundary theory. There is another R-symmetry
neutral spin-1 gauge field belonging to a spin-4 supermultiplet. It appears in the transfor-
mation of gravitini and therefore does not admit any mixed boundary condition. Decom-
posing the N' = 6 SUGRA multiplet under OSp(5/4) leads to an N' =5 SUGRA multiplet
and an A/ = 5 gravitino multiplet, consisting of the fields

(en® o AT XTTE XS 0™ @ (0, AN, A X0 X, ¢7), IT=1,...,5. (3.18)

Therefore, in the N’ = 5 Vasiliev theory, the spin-1 gauge fields satisfying mixed boundary
conditions belongs to the gravitino multiplet. According to table 2, there are %(N -1)
such spin-1 gauge fields when the internal symmetry is O(NN), while there are N(2N + 1)

of them for the USp(2N) internal symmetry.

4 ABJ quadrality

In this section we propose the AdS/CFT correspondence between the N = 5 Vasiliev
theoryon AdS, and the N'=5 ABJ theory. Combining this with the standard AdS/CFT
correspondence, we arrive at ABJ quadratlity. We provide a precise holographic dictionary
and various evidence for this correspondence. We finally give a prediction of the leading
free enrgy from the ABJ theory to the bulk side.

4.1 ABJ theory and its string/M-theory dual

Here we review some properties of the ABJ theory and the standard AdS/CFT correspon-
dence between the ABJ theory and string/M-theory.

4.1.1 N = 6 case

The N/ = 6 ABJ theory [15, 16] is the 3d A/ = 6 superconformal CS matter theory with the
gauge group U(N7)g x U(N3)_j coupled to two bi-fundamental hyper multiplets. If we de-
compose the bi-fundamental hypers into pairs of 3d N' = 2 bi-fundamental chiral multiplets
A1 2 and anti-bi-fundamental chirals By 2, the superpotential of this theory is given by

W o Tr (.AlBl.AQBQ — .AlBQAQBl) . (4.1)

The N = 6 ABJ theory is expected to describe the low energy dynamics of N coincident
M2-branes probing C*/Z;,, together with M coincident fractional M2-branes localized at
the singularity. The M-theory background associated with the M2-brane configuration is
M

1
Cs=" -

1
) L (4.2)
2 53/chs7/Zk k’ 2

R2
ds%l = Idsid54 + R2d5§7/Zk,

where?® in the unit of the Planck length £, the radius R is given by R/¢, = (3272kN )%
If we identify the M-theory circle with the orbifolding direction by Zg, then the M-theory

20The factor “1/2” has been corrected in [39].
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circle radius Rj; is given by

1
Ru R 32m2N\ ©
o _(uey) as
As the M-theory circle shrinks for k > N'/5 the M theory is well approximated by the
type ITA string on AdS; x CP? with the B-field holonomy

1 M 1
— By = — ——. (4.4)
27T C]Pﬂ C(C]P:?) k 2

The radius of CP? in the unit of string length ¢, and the string coupling constant g, are

given by

1 1
Rps 32m2N\ 4 32m2N\ 2
o ()L g (B (4.5)

Therefore the approximation by the type ITA SUGRA is accurate for NY/® <« k < N.
There are several tests of this correspondence at classical level (see e.g. [40]) and some
tests at one-loop level?! [41-44, 47, 48].

The “braneology” associated with figure 2 [Left] suggests some interesting properties
of the ABJ theory [16]. First, the brane configuration implies that SUSY is broken for
M > |k| [50-52] as it follows from so-called “s-rule” [49], which forbids multiple D3-branes
from ending on a NS5/D5-brane pair (now we have |k| such pairs). This statement is also
supported by some field theory computations on Witten index [50-52] and sphere partition
function [53, 54]. It was also argued in [16] that the theory with M > |k| should not be
unitary by carefully taking into account the CS level shift [55-57] at low-energy. Second,
the brane configuration also indicates the Seiberg-like duality between two ABJ theories
with the gauge groups

U(N+ M)k X U(N)_k — U(N + k- M)_k X U(N)k , (46)

following from the brane-creation effect [49], which means a D3-branes is created when an
NS5-brane and a D5-brane cross from each other. This duality has already been checked
for the sphere partition function [47, 48, 53, 54, 58, 59].

4.1.2 N =5 case

The N =5 ABJ theory is the 3d N = 5 superconformal CS theory with the gauge group
O(N1)ar x USp(2N3)_j coupled to one bi-fundamental hyper multiplet. The N'=5 ABJ
theory can be obtained by the following projection of the N' = 6 ABJ theory with the
gauge group U(N7)ap, x U(2N2) _o4:

Bi=JAl, By=JAL, (4.7)

T ocalization of the supergravity [45] reproduced full 1/N corrections of S* partition function for M =
0 [41-43] up to renormalization of Newton constant and non-perturbative corrections of the 1/N expansion
(the results of [46] seem to suggest that bulk one-loop free energy contributed by the supergravity KK
modes alone are not sufficient to reproduce the O(N°) term in the CFT free energy).
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where 7 is the invariant tensor of USp(2N3). Then superpotential of the A" =5 theory in
3d N = 2 language is given by

W o Tr (Ale{Aszg — AlegAQJA{) . (4.8)

The N =5 ABJ theory is expected to be low-energy effective theory of N M2-branes
probing C*/ Dj, with M fractional D3-branes. The M-theory background associated with
this setup is AdSy x S7/Dy, with the 3-form background [ C3 ~ % As in the NV = 6 case,
for k> N1/5 the M-theory circle shrinks and the M-theory is well approximated by type
IIA string on AdS, x CP? /Zy with the B-field holonomy [ By ~ M/k. There are some
checks of this correspondence at classical level [60, 61] and one-loop level [44, 62-67].

As in the N/ = 6 case, the brane physics associated with figure 2 [Right] implies some
nontrivial properties of the N' = 5 ABJ theory. Firstly, the “s-rule” suggests that the
SUSY is broken if

M > |k| +1 for O(2N + 2M)9; x USp(2N) _,
M > |k| — 1 for USp(2N + 2M)g x O(2N) _o,
M > |k| for O(2N + 2M + 1)g; x USp(2N)_y,
M > |k| for USp(2N + 2M )i x O(2N + 1)_gp. (4.9)
This statement is also supported by computations of the sphere partition function on the
field theory side [65-67], which showed vanishing of the partition function in the parameter
regime above. The argument based on CS level shift also implies that the theory is non-

unitary in the parameter regime above. Secondly, compared to the N' = 6 case, the brane
creation effect suggests that the N'=5 ABJ theory possesses richer Seiberg-like dualities:

O(2N +2M)g x USp(2N)_j, «— O(2N +2(k — M + 1))_9, x USp(2N)y,
USp(2N + 2M )i, x O(2N)_9, <— USp(2N +2(k — M — 1)) x O(2N )9,
O(2N +2M + 1)9p, x USp(2N)_ <— O(2N +2(k — M) +1)_ox x USp(2N);,
USP(2N + 2M);: x O(2N + 1)_gp <— USP(2N + 2(k — M))_ X O(2N +1)g;.. (4.10)

Some checks on these dualities for sphere partition function?? can be found in [66, 67].

4.2 Proposal for the AdS/CFT correspondence between ABJ theory and
SUSY Vasiliev theory

4.2.1 N = 6 case

First we review the N' = 6 ABJ triality [1]. It is conjectured in [1, 14] that the U(N); x
U(N + M)_; ABJ theory is dual to parity violating N' = 6 Vasiliev theory in AdSj.
Especially, in this conjecture, semi-classical approximation of the Vasiliev theory becomes
good in the following limit of the ABJ theory

M, |k| - oo with ¢= — :finite and N : finite .

M
||

22Strictly speaking, the O(2N + 2M)a;, x USp(2N)_, case with M = 0 and M = |k| + 1 has not been
checked due to a technical reason [66]. In appendix C, we give another argument to support these dualities.
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Indeed it has been shown that the spectrum of the bulk fields matches with that of the
single trace primary operators in the vector limit of the ABJ theory.

Correspondence between parameters in the two theories is as follows. As the N' = 6
ABJ theory has the three parameters (k, M, N), the N' = 6 Vasiliev theory also has the
three parameters (G, 0, N), where G is the Newton constant, € is the parity-violating
phase and N is the rank of the U(/NV) internal symmetry. First the Newton constant Gy
is roughly related to M by Gx ~ 1/M and analysis of stress tensor correlator on the CEFT
side suggests the more precise relation [25]:

Gn 2t

= . 4.11
L2A qgs Msinmt ( )
It was conjectured in [1] that the parity-violating phase @ is related to ¢ by
Tt
0=— 4.12
. (412)

which we will justify in section 4.7. The higher spin symmetry in this setup is broken by
1/M effects since divergences of higher spin currents are given by double trace operators [1,
68, 69].

In this scenario, the fundamental string in the dual string theory is expected to
be realized as a “flux tube” string or a “glueball”’-like bound state in the Vasiliev the-
ory. While a single string state in the string theory corresponds to the CFT operator
~ tr(ABAB--- ABAB) schematically, the field in the Vasiliev theory corresponds to the
CF'T operator of the form ~ AB. Thus as the 't Hooft coupling in Vasiliev theory increases,
we expect the bound states to form the string excitations.

There is a subtlety in the comparison of the bulk and boundary free energies. This
is because the free energy of the ABJ theory in the limit (1.1) behaves as O(M?) due to
the U(N 4+ M) vector multiplet while Vasiliev theory is dual to vector model in general,
whose leading free energy should behave linearly in M. Therefore the ABJ theory has
apparently more degrees of freedom than the Vasiliev theory and we have to subtract some
degrees of freedom appropriately for the comparison. This issue was addressed in [24],
which proposed the definition of the free energy for ABJ theory in the vector limit as

FN=6 _ | Zuxuvenn |

vec

—log , (4.13)

| Zu |

where Zypr)_, is the partition function for the N = 0 case and is the same as that of the
N = 3 SUSY pure CS theory with the gauge group U(M)_i. The quantity Fye. satisfies
the following three properties:

1. 1/M-expansion starts at O(M);

2. Invariance under Seiberg-like duality: M — |k| — M, k — —k because this acts on
the denominator ‘ZU( M) k! as the level-rank duality of the pure CS theory;

3. The O(log M) term matches the O(log Gy) term in the one-loop free energy of the
Vasiliev theory.
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Especially the second point excludes a possibility to divide by Zyv4a)_, rather than
Zy(m)_,» which is a naive expectation from the story of CS theory coupled to fundamental
matters [14, 22]. Indeed it is known that the “mirror” representation of Zy(y), xu(nv4nr)_,

factorizes into Zy(yr)_, and a N-dimensional integral [53, 54] which also supports the

—k
division by Zy)_,-

4.2.2 N =5 case

Now we propose the ABJ quadrality. We have seen in section 2 that the N/ = 5 SUSY
Vasiliev theory admits the two choices of internal symmetries, O(N) and USp(2N). This
implies that there are two limits of the N’ =5 ABJ theory which are dual to semi-classical
approximations of the two A/ = 5 Vasiliev theories.

We first propose that the O(Ny)ar x USp(2N3)_r ABJ theory is dual to the semi-

classical N' = 5 Vasiliev theory with O(Ny) internal symmetry in the following limit23

M
No=|O(N1)|+ M, M, |kl —oo with t= T and N : finite,
where |O(N7)| is the rank of O(Ny), specifically, |O(2N)| = |O(2N +1)| = N. The second
limit corresponding to the Vasiliev theory with USp(2/N3) internal symmetry is

M
|O(N1)|=No+M, M, |kl —»oc0 with t= T and Ny : finite.
As we will discuss in section 4.7, for both cases, the Newton constant G is related to

M by
Gy t

2 = : )
LA 4 M sin 7t

and the parity-violating phase 0 is related to ¢ by

Tt
0= 5
As in the NV = 6 case, we expect that the fundamental string in the dual string theory
is realized as a “flux tube” string or “glueball”’-like bound state in the Vasiliev theory,
and strong coupling dynamics of the Vasiliev theory exhibits the bound states to form the
string excitations. Thus, as summarized in figure 3, our ABJ quadrality relates the four
apparently different theories: the N =5 ABJ theory, string/M-theory and N' = 5 Vasiliev
theories with O and USp internal symmetries.

Comparison of free energies encounters a similar issue to the N'= 6 case. Namely the
free energy in the ABJ theory behaves as O(M?) rather than O(M), due to the vector mul-
tiplet associated with the “larger gauge group”. Therefore we have to subtract something
appropriately as in the ' = 6 case [24]. In the end, we propose

|ZGN,M|

FXSy = —log
’ |ZG0,M| 7

M—-1/2 M+41/2 M M
o and I,

These differences may be neglected in the higher spin limits according to the purpose of the study.

ZFor general (k, M, N), more appropriate definitions of ¢ are respectively.
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where we used the shorthand notation Gy s to represent the gauge group?* of each case
in (4.10). Indeed we will see that this quantity behaves as O(M) in the higher spin limits
and contains a O(log M) term, which agrees with the O(log G ) term in the one-loop free
energy of the N’ =5 Vasiliev theory. Here invariance under the Seiberg-like duality (4.10)
is more complicated than in the N' = 6 case since we now have four types of N' =15 ABJ
theory. For the two types with O(2N + 2M )9 x USp(2N)_j and O(2N + 2M + 1)9 %
USp(2N) _, gauge groups, Zg, ,, is nothing but the partition function of N' =2 O(2M ),

and O(2M + 1)g;, pure CS theories, respectively, whose level-rank dualities are®>

The Seiberg-like dualities act on Zg, ,, exactly like this and hence the ratio is duality
invariant. Similarly for the O(2N)ox x USp(2N + 2M)_ type, Zg, ,, is the one of N =2
USp(2M)_j, pure CS theory satisfying the level-rank duality

USp(2N);, «+— USp(2|k| — 2N — 2)_y, (4.15)

which is the same action as the Seiberg-like duality. The most subtle case is the O(2N +
1)ox x USp(2N + 2M)_ case, where Zg,,, is the partition function of the O(1)a; X
USp(2M)_j, theory. Although the O(1) sector does not have gauge degrees of freedom, it
gives an additional fundamental hyper multiplet of USp(2M)_j because of the “zero-root”
in O(1). However using localization results, one can show that the partition function Zg, ,,
is the same?® as that of the N' = 2 O(2M + 1)9;, pure CS theory and hence the Seiberg-like
duality acts on Zg, ,, as the level-rank duality (4.14) for the O(2M + 1)g;, case. Thus the
ratio (1.6) is invariant under the Seiberg-like duality for all the cases. This implies that
the open string degrees of freedom underlying the vector limits of AV = 5 ABJ theory are
given by figure 4 from the viewpoint of the brane construction.

4.3 Matching of spectrum
In this section we find agreement between the spectrum of the HS currents in the N’ =5
ABJ theory in the vector limits and that of the HS fields in the A/ = 5 Vasiliev theory.

4.3.1 O(N) internal symmetry

We have proposed that the O(N})ar X USp(2N2)_ ABJ theoery is dual to the semiclassical
N = 5 Vasiliev theory with the O(N7) internal symmetry in the limit (1.2). Then the
dynamical higher spin gauge fields in the bulk should be dual to gauge invariant single
trace operators in the sense of USp(2N3), which can be expressed in terms of the scalars

2Note that this definition includes also the N = 6case(4.13) if we parameterize Gnyu =
U(N)k X U(N + M),k.

ZThese dualities are essentially level-rank dualities of pure bosonic CS theory. The main difference is
that the pure bosonic CS theory has CS level shift: keg = k+heasign(k), where he is dual coxeter number of
gauge group G and we have ho(ny = N —2 and hyspeny = N + 1. If we take k — ke in (4.14) and (4.15),
then the duality is nothing but exchange of bare CS level and rank.

26This seems accidental for the round S% partition function. For instance, this statement is not true for
squashed S® partition function.
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and fermions in the ABJ theory: ¢q q and 9g g, where r,s = 1,--- 2Ny label USp(2N3),
a,B=1,---,4 label the R-symmetry USp(4) ~ SO(5) indices, and a,b = 1,--- , N7 label
O(N7). The scalars and fermions are subject to the symplectic real condition

¢*a7ra _ Jaﬁjrsgb/&sbéab’ (¢C)a7m _ Jaﬁjrs(sabwﬁ,sba (4.16)

where J7% and J*# are USp(2N,) and USp(4) invariant tensors respectively, and ¢ is the
charge conjugation of ¢. In the limit (1.2), the O(N7) is weakly gauged and the operators
dual to the bulk fields are bilinear in ¢4, and g, since it must be invariant under the
gauge group USp(2N3). For example, the operators dual to the bulk scalars are

Dlo(a” D818)  Vonla Va0 Plafa P800 Yafa VB » (4.17)

where we use the following notation for contraction of the USp(2N3) indices in this sub-
subsection:

¢a,a : Qb,B,b = ¢’a,rajrs¢ﬁ,sb- (418)

The symmetry properties of the indices are chosen such that the operators do not van-
ish identically.?” It is straightforward to see that the first two operators belong to the

representations
1
(1+1 +5+5)SO(5) ® [2N1(N1 +1) , (4.19)
O(Ny1)
and the last two are in the representations
1
(10 + 10)50(5) ® [QNl(Nl - 1)] : (4.20)
O(N1)

Likewise, other even spin single trace operators can be constructed. In odd spin cases, for
example, the operators for s = 1 take the form

Dlafa Oudae)s Voo - Wu¥ales  Plan(a OuPayp)s  Yias(a - Tus)p) - (4.21)

Other choices of the symmetry give rise to operators which are written as total derivatives
of other operators, meaning that they are descendants. One can see that the first two
operators lie in the representation

1
(1+1+5+ 5)80(5) ® [QNl(Nl — 1)} o’ (4.22)
1)
while the last two are of the representations
L 4
(10 + 10)80(5) ® 5Nl(Nl +1) . (4.23)
1)

For other odd spin operators, the construction is the similar. The fermionic operators
are constructed from one ¢q o and one 93 4. For instance, the spin-1/2 operators are

2TNote that we have x=x, and YyuX = =y in 3d.
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Table 4. The spectrum of the HS primary operators in the N'=5 ABJ theory in the limit (1.2).
The indices 4, j label the fundamental representation of SO(5)z. The Young tableaux denotes the
representation of O(N).

Y- @b The product of two USp(4) fundamental representations yields 16 = 145410
representations of USp(4) ~ SO(5). The product of two O(N) indices gives rise to

[;Nl(Nl 4 1)]

D |:;N1(N1 — 1):| , (424)
O(N1)) O(N1)
where the symmetric representation includes the trace part. A simple way to obtain to
obtain all the half-integer spin operators is to replace the scalar field ¢, ,, by a chiral
superfield in the integer spin operators. The gauge invariant HS operators in the A’ = 5
ABJ theory in the limit (1.2) are summarized in table 4. The spectrum coincides with that
of the N/ = 5 Vasiliev theory the O(N7) internal symmetry.

4.3.2 USp(2N) internal symmetry

Let us take the limit (1.3) corresponding to the semi-classical N' = 5 Vasiliev theory with
the USp(2N3) internal symmetry. Since the USp(2/N2) symmetry is weakly gauged in this
limit, construction of HS primary operators dual to the bulk HS gauge fields is analogous
to the previous case and they should be invariant under O(N7) gauge symmetry in the
present case. Hence we use the following notation for contraction of the O(N;) indices in
this subsubsection:

¢o¢,r : ¢B,s = ¢a,ra5ab¢5,sb- (425)
When the 't Hooft coupling is small, the primary operators dual to the bulk scalars are

¢[o¢,[r : ¢B],s]7 77/_}[04,[7’ : wﬁ],s] ) ¢(o¢,(r : (Z)B),s)v lﬁ(a,(r : 1%’),5) . (426)

Other even spin operators possess the same symmetry properties. It is straightforward to
see that the first two operators carry the representations

(L+145+5)500 @ [N2(2N2 — D] uspans) - (4.27)
and the last two are in the representations

(10 + 10)50(5) ® [N2(2N2 + 1)] usp(2n,) - (4.28)
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Supersymmetry | Internal | s=0,2,4,... s=1,3,5... s =
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Table 5. The spectrum of HS primary operators in the A’ =5 ABJ theory in the limit (1.3). The
Young tableaux denotes the representation of USp(2N).

For odd spin case, for example we have the spin-1 primary operators
Plasr Oudpls)ys Vit W¥BLs) s Planlr  Oudp)s)y Diafr Tus).e) (4.29)
It is straightforward to see that the first two operators carry the representations
(1+1+5+ 5)30(5) ® [N2(2N2 + 1)] usp2ns,) » (4.30)
and the last two are in the representations
(10 + 10)80(5) ® [N2(2N2 — 1)] usp(2n,) - (4.31)

Other spin odd operators have the same index structure. The fermionic operators are
constructed from one ¢, and one vy 4. For instance, the s = % operators are g -
¢8,s- The product of two USp(4) fundamental representations yields 16 = 1 + 5 + 10

representations of USp(4) ~ SO(5). The product two USp(2N3) indices gives rise to

[N2(2N2 + 1)] usp(ans) © [N2(2N2 — 1)] uspens) » (4.32)

where the antisymmetric representation includes the trace part.

4.4 Relating HS and CFT projections

The N/ = 6 ABJ theory with gauge group U(Np)ar X U(2N2)_o have the two pairs of
fundamental chirals A; 2 and anti-bi-fundamental chirals B; 2, which carry the (Nl,ﬁg)
and (N1, 2N3) representations of the gauge groups respectively. Regarding A; 2 as N1 x 2N,
matrix and By 2 as 2N X Ny matrix, the reduction from N = 6 to N = 5 is achieved by
imposing the projection condition By = JAT, By = JAL [31]. These conditions restricts
the gauge groups to be O(N7) x USp(2Nz). A; 2 and BLQ can be assembled into a vector
transforming as the fundamental representation of the SU(4) R-symmetry

C = (Ai, Ay, Bl BY) = (A1, Ag, —ALT, —A5T) (4.33)

C obeys the symplectic reality condition C, = agC*ﬁ] which amounts to (4.16) and re-
duces the R-symmetry from SU(4) to USp(4). Recall that J is the USp(4) invariant matrix

Jos = ( 0 12“) . (4.34)

—1ox2 0
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In terms of components, the complex matter fields can be represented as ¢, r, and
Y3 sb, where 7, s run from 1 to 2Ny of U(2N3), «, B run from 1 to 4 of SU(4), and a, b run
from 1 to N7 of U(Ny). The simplest chiral primary operators in the N' = 6 ABJ theory
are the mass operators

&awa(ﬁﬁ,ra 5 d;camawﬂ’ra . (435)
In section 3, we have shown that the N' = 5 Vasiliev theories can be obtained from the
N = 6 theory by imposing the automorphisms (3.2). Here we relate the projections on the
CF'T side to that on the bulk side.
4.4.1 O(N) internal symmetry
In the limit (1.2), the U(N;) symmetry is weakly gauged and therefore one can liberates
the U(N;) indices in the mass operators (4.35)

Oy = ¢ - g, O %4 =P gy, (4.36)

where we are using the notation (4.18) for the contraction in this subsubsection. When the
projection condition (4.7) is imposed, we have

0%y = J5%hs . - Ty 0pad™ " = Jps0paJ69°0% 1 ., (4.37)
and same for the fermion mass operator @’. This can be rewritten in a more compact form
O=Sos™H, O0=SOSH, Suaps=Japdab, (4.38)

or equivalently
oWaBab _ _ H()Baba 7 (4.39)

where the USp(2N5) and O(Ny) indices are raised and lowered by J™* and 6 respectively.
Other even spin operators are constructed by inserting even number of derivatives between
¢¢ and 1) with the similar USp(4) and O(N;) index structure. For operators of odd spins,
their analogs of (4.37) have an additional minus sign. For example, the spin-1 operators are

0%y := ™ - Oudpp, Of%gy = s, (4.40)
which satisfy
OVR s = — JasGa 69OV (4.41)

where for the bosonic spin-1 operator O}/ A ’ab, we have identified two operators differing by
a total derivative. Equivalently, this can be written as

Ol(;) _ _(SOI(:) Sfl)T7 or O(/)fjﬁ,ab _ O(/)ga,ba ) (442)

This symmetry property holds also for other operators with odd spins. As for complex

spin—% operators which are bilinear in bosons and fermions, we have

Or*“gp =9 - dpgp, (4.43)
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which are related to its complex conjugate by
OFaaﬁb — Jm/@b%a . Jﬁaqp’b — Ja’YJB(SC(_QF’ya&b ) (4.44)

Therefore the number of spin—% operators is reduced from 32M? to 16M?2.

All these conditions on the bilinear operators are equivalent to those on the Vasiliev
theory side given in (3.9) and (3.8). On the HS side the spin is characterized by the number
of Y-oscillators. The condition (y,y) — (iy,iy) imposed by the anti-automorphisms then
distinguishes the symmetry properties of even and odd spin operators in the same way as
in (4.39) and (4.42). The number of fermionic operators are also constrained in the same
way as the fermionic HS fields.

4.4.2 USp(2N) internal symmetry

In the other limit (1.3), the U(2N3) symmetry is weakly gauged and one can liberates the
U(2N2) indices in the mass operators (4.35). The projection condition (4.7) then implies

0(25) _ (80(25) S_l)T, 0(25+1) _ _(80(2s+1) 8_1)T, Sar,ﬁs = Jaﬁjrsu (4-45)

which are equivalent to (3.10). The projection condition (4.7) also constrains the number
of fermionic operators in a way similar to (3.12).

4.5 SUSY enhancement

In section 2.1 we have seen that the N = 5 Vasiliev theory with the O(Nj) internal
symmetry has enhanced N' = 6 SUSY in the O(2) case since the two index anti-symmetric
representation of O(Np) becomes trivial and the gravitino multiplet combined with the
N =5 SUGRA multiplet comprises the A = 6 SUGRA multiplet. Interestingly similar
phenomenon occurs also in the CFT side [31, 32]. It was shown that Gaiotto-Witten type
theory [70] with N' = 5 SUSY has enhanced N' = 6 SUSY if representations of matters
can be decomposed into a complex representation and its conjugate. Now the N = 5
ABJ theory with the gauge group O(2)ax X USp(2N2)_ belongs to this class and therefore
SUSY of the NV =5 ABJ theory is enhanced to N' = 6 when the gauge subgroup O(N7)
is O(2). Thus the analysis in section 2.1 shows that the AN/ = 5 Vasiliev theory with the
O(N) internal symmetry knows about the SUSY enhancement in the N’ =5 ABJ theory.
This is a strong evidence for our proposal.

4.6 Correlation functions and free energy of ABJ theory in higher spin limit

Here we compute two-point functions of a U(1) flavor symmetry current and stress tensor,
and sphere free energy in the N'=5 ABJ theory. In 3d CFT on flat space, the two-point
function of U(1) flavor symmetry current j, is constrained as

(i )'.(0)>_l&+ﬁ 10503 (2) (4.46)
JREVII] = Tgp2 g2 T gn kO] - ‘
where P;; = 6ij82 — 0;0;. Here we compute 7 and s associated with the U(1) flavor
symmetry which assigns charges +1 and —1 to the chiral multiplet A; and As respectively
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in 3d N = 2 language. Two-point function of the canonically normalized stress tensor in
3d CFT on flat space [71] takes the form

1
167222

(ezkma P]Z + Ejkma ]Dzé + ezfma F)]k + ejfma sz) 5( )( )7

C
Z:‘QT
192

(4.47)

where we normalize ¢y such that for each free real scalar or Majorana fermion, ¢y = 1.
One may expect that there is a simple relation between 7¢ and c7 in the ABJ theory since
extended SUSY field theories have non-Abelian R-symmetry which includes the U(1)g
symmetry and U(1) flavor symmetries. Indeed it is known [72] that 7 in the N' =6 ABJ
theory has the relation

cr = 47‘f . (4.48)

In appendix E we prove that this relation holds also in the N' = 5 ABJ theory based on
the result of [72] and so-called large-N orbifold equivalence [73-75]. Therefore, ¢ can be
obtained once 7y is known. 7y and Ky can be computed from the partition function on
53 [76] deformed by real mass:2®

1 0%Z
/if—27TIm 5 ( )

_ _— . 4.4
20) om? |, 20 om? |, (4.49)

The mass deformed partition function Z(m) can be exactly computed by SUSY localiza-
tion [101-103] and its explicit form is

le:U’ dNQV ik Z Z
m ’W’/ 271’ Ny 271’ N2627T< =t J = lyb)Z\(/)eC( )Z\%gp( )Zbi(:u'vyvm)7 (450)

where
W = 2" Nyl Wol, (4.51)
2
79 () [ic; [2 sinh 2552 . 2 sinh MT“J} for even Ny
- ) . . 12 )
- [H]E 4 sinh? %ﬂ} I[Li; {2 sinh #5H2 . 2 sinh ﬂﬂ} for odd N;
2
Z\%gp {H 4 sinh? l/b:| H [2 sinh 2% 5 Yo 9¢inh V‘I;_Vb] :

a<b

1
I1;2cosh W-Q cosh W X (m——m)

Zbl(#’? V’ m) = ' 1

1 2cosh Ub+m [T, , 2cosh ”i_l;b+m-2 cosh ”i+l;b+m x (m——m)

for even Ny

for odd N; '

|Wo| is the rank of the Weyl group associated with gauge group O(N7), which is equal to
2N=INT (2N N) for O(2N) (O(2N +1)).

%The real mass can be introduced by taking 3d A/ = 2 background vector multiplet associated with the
flavor symmetry to be constant adjoint scalar with flat connection and trivial gaugino.
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4.6.1 O(N) internal symmetry

We first consider the limit N7 < Ns. In this case, the N’ = 5 ABJ theory is dual to the
bulk A = 5 HS theory with O(N7) internal symmetry. We rewrite the partition function as

1 le,u, ik N1 2
Z = T ji=1Hj . V(M,V) 4 2
(m) Wo / oM T II (mw <e >Usp(m),k’ (4.52)

agrooto(ny)

where -
2sinh =+
Vipw)= > log =t —log Z(u,vim), (4.53)

a .
Qagrooto(ny) H

and (O)usp(2n,)_, denotes the unnormalized VEV over the USp(2/Ng) part

O _ 1 d™>v 1) — YL v2 9 hVa_Vb 9 hVa+Vb N24 inh?
< >USp(2N2),k_2N2N2! € =9s sin 9 + 2811 T bHI simn= vy,

(2m) "2
aF#b
(4.54)
where )
mi
g = —— . 4.
g - (4.55)

This is formally the same as the VEV of O in the USp(2N3)_;, CS matrix model on S3
(without the level shift). When N;/k < 1, the integration over p is dominated by the
region p ~ 0 and we can approximate V (i, ) by small 4 expansion

V(p,v) = —log Zui(p = 0,v,m) + O (i)
No
= —-N; Z {log (1+e"™) +log (14 €™™) — Va} +0?). (4.56)

a=1

Because the integration measure over v is an even function of v, we find in the limit
Ni/k < 1, the mass deformed partition function is approximately given by

. No
Z(m) ~ Z8, s (72 Nl) <exp [—Nl > log(1 + et (1+ e”a—m)} > . (4.57)
USp(2N2)_

a=1
where??
1 dVz 15w orank(O(N))+1 (9. \dim(O(N))
Z(O}auss(gaN) = / * (& 219 J=1 33? H (aI) = ( Wg)
[Wol J (2m)N vol(O(NN))
a€rooto(N)
(4.58)
Now we are interested in the planar limit of the <ev(“’”)>USp(2 No) s part. Since the planar

limit of the USp(2N2)_ CS theory is the same as the one of O(2N3) ox CS theory,® we

QN N(N+1)/4

29 —
30vol(O(N)) = Tt/ (see e.g. [TT]).
Notice that <O>USp(2Ng),k,unnormalized = ZUSp(QNg),;C <O>USp(2N2),k,normalized and in the planar hmlta

<O>USp(2N2),k, normalized, planar — <(9>O(2N2),2k7 normalized, planar-
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can rewrite Z(m) in the higher spin limit as
0
Z(m) = Z((})auss (kv N1> ZUSp(QNQ)_kCS

N (4.59)
X <exp [—Nl Z log(1 + ¥ t™)(1 + e”“m)] > ,
O(2N3) _o, planar

a=1

where (- )0(2N) s, planar denotes the normalized VEV in the planar limit of O(2N2) o
CS matrix model. It can be computed by combining the result of appendix D with the
technique in [78]. Let us introduce

No
1
90(Xits) = — 3 <Zlog<1 — Xe >> , (4.60)
a=1 O(2N3) _o, planar
where i~
ty = — 02 (4.61)
k
Using (4.60), we find that in the planar limit
(%)) Usp(ans) . normalized = €XD [N1Nz (go(—em;t2) + go(—e_m;h))] . (4.62)

To compute go(Y';t2), we first use the relation between the single trace VEV in O(2N) _o
CS and U(NN)_j CS in the planar limit, which is shown in appendix D. This relation leads

us to
go(X;t2) = gu(X;2ta), (4.63)
where
1 v,
gu(X;2ty) = N <Zlog (1— Xe )> . (4.64)
a U(N2)_p, planar

gu(X;t) was obtained in [78] for arbitrary X as

71'2
g (Xit) = % [6 _ %(log n(x)) +logh(x) (log (1 — e *h(X)) ~ log (1~ h(X)))
“Liy(h(X)) + Lis(e~"h(X)) — Lig(e_t)] , (4.65)
where
h(X) = % [1 X+ /AF X2 4etX] . (4.66)

Using this, we get

2
9 (eV (m¥)y

Om?

T

USp(2N2), normalized

m=0
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where Ny = |O(Ny)|+M, and t = M /k. Notice that Z(0) in the higher spin limit is given by

Z(O) ~ 62N1N29U(*1;2t2)Zgauss (7]::1, N1> ZUSp(ZNg),kC57 (468)

we finally obtain

Ni1M =i t AN M sint 410(Ny)| M t
;= —gRe (M g 1) _ ANM sinwt o HOWNDIM LT oy
mt 2 mt t 2
Then using cr = 47y immediately leads us to
16 N1 M sin 7t
op = A ST (4.70)

t

As a consistency check, let us consider the ¢ — 0 limit. Then, since the N' = 5 ABJ
theory has 8 N1Ns real scalars and 8 Ny Ns Majorana fermions, ¢p should be 16 N1 Ny =
16N1M + O(1), which is reproduced by our result. The result on xy in (4.69) is not ap-
parently invariant under Seiberg duality. However, we can make xy invariant under the
duality by shifting x; by the integer 2|O(N1)|k, which is the degree of freedom of adding
a local CS counterterm in the CFT Lagrangian [79]. After the shift, we find

2|O(N1)|M cost
Fflhitted = n : (4.71)

In appendix F we show that 7; and ky| ..., are the same as the ones in two-point function
of O(Ny) gauge current in the HS limit.
Utilizing (4.68), we can compute the free energy (1.6) in the limit Ny < Nj as

Z
R, = —1og |20

= — ——— 4.72
‘ZgSSP(QM)_k’ N1 <Ny ( )
o i ZgSSp@NQ)—k‘
= —2N1MR€ |:gU(—1, 2t2):| — log ‘ZGauss <k, Nl) ’ - lOg W + 0(1) .
Using the result of appendix G on the third term above we obtain
ANM t dim|[O(N
FYfSy = —1 (g) + lm[Q(l)] log M + O(1) (4.73)
' s

where N is the rank of the global symmetry group O(Nj) in the higher spin limit and
I(z) = Im [Lig(i tan x)] —zlogtanx.

4.6.2 USp(2N) internal symmetry

We now turn to the other limit Ny > Ns. In this case, the N' =5 ABJ theory is dual to
the bulk NV = 5 HS theory with USp(2Ns) internal symmetry. The mass deform partition
function can be rewritten as

ANy ik V2 2 v
Z(m) = |WUs | / o) R H (- v) <6V(u7 )> 7 (4.74)
P

O(N1)2k
Qa€rootysp(2ny) (N1)2
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where

2sinh %%
Vip,v) = Z logﬁ log Zyi(p, v, m), (4.75)
aErootUSp(2N2>

and (O)o(n,),, denotes the unnormalized VEV over the O(N7) part

leM 1 ZHQ . o - /’L
(O)o(N1)ar = Wol / )N Oe 29s =il H QSIDhT, (4.76)
Qagrooto(ny)
where )
1
gs = ? . (477)

(O)0(Ny)y is formally the same as the VEV in the O(N1)gx CS matrix model on S? . In
the higher spin limit No/k < 1, V(u,v) can be approximated by small v expansion

V(u,v) = —log Zii(p, v = 0,m) + O1?) (4.78)

= —2N, Z [log (1+e*™) +log (14 €™™) — pj + log (2 cosh %) + 0.

J

Using the fact that the integration measure over p is an even function of u, we find

ZgS (—mN.
Z(m) ~ Gauss ( mk ;Nf) <exp [—2]\72 Z log(1 + e”ﬁm)(l + e”j*m)] > , (4.79)
(2 cosh 7) ; (V1)a

where?!

N(2N+1)
2

1 dVz _ 1N 2N+1(27g)
ZUSp N — / 2 Z':lx' . =
Gauss(9: V) = [t | mw e T I vol(USp(2N))

agrootysp(2n)

(4.80)

Now we need to compute the <ev(“”’ ) in the planar limit. Let us rewrite Z(m) in

>O(N1)2k
the higher spin limit as

Zgak (_%i’ NQ) ZO(Nl)QkCS

Z(m) ~ Gauss
(2 cosh %) 22

) <eXp (<28 log(1 + e (1 4 )] >
g (

O(N71 )2k, normalized

(4.81)

Then we find in the planar limit

1
Vipv) ~_ 2N>|O(N- Mt ey
< >O(N1)2k,normalized (2C08h%)2N2exp 2’ ( 1)’(90( € ’1)+go( € ’1)) ’
(4.82)
where
H|O(Ny)
=T (4.83)

3150l(USp(2N)) = 27 *Nvol(O(2N + 1)).
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As in the previous case, we obtain

82
om?2

2No M mi t :
<€V(M’V)>O(N1)normalized - 71'2t e_Tt sin %€4N2M9U(_172t1) * O<1) 7 (4'84)

m=0

where we have set |O(N1)| = Na + M and ¢t = M /k. Since Z(0) in the higher spin limit is

given by
1. i
Z(0) ~ oAN2Mgu ( 1’2“)235555 <_k’N2> ZO(Ny ) CS » (4.85)

we finally obtain

2No M _xi t 4Ny M sin Tt
7 = —8Re <— 27 e sin 7r> = 275111#7 Kf sin® — . (4.86)
mt it 2
and
32N9 M sin 7t
cr =415 = oo ts1n7r . (4.87)
T

As a consistency check, let us consider the ¢ — 0 limit. In this limit, ¢y should behave as
16 N1 Ny = 32NoM + O(1) and this is consistent with our result. As in the previous case,
we can make k¢ invariant under the duality by shifting ¢ by the integer —2Nsk:

2NoM cosmt
5 laied = (439)

In appendix F we find that 74 and ry¢| 4 are given by the same formula as those in

shifte
two-point function of USp(2N2) gauge current in the HS limit.

The free energy in the other higher spin limit N7 > Ny is given as

1Z(0)]|

— o 4.89
2| e

Fyar = —log

USp(2Nz) [ T 1208
= —4N>,MRe[gu(—1;2t1)] —log‘ZGaESS ’ <—> ’ —1og‘ng2M)%| +0(1).
CSs

Using the results of appendix G, we obtain

_ANoM <7rt> N dim[USp(2N2)]

2 2

vec
No, M —
2, 7-(—t

log M + O(1). (4.90)

4.7 Holographic dictionary and prediction of on-shell action

In the previous subsection, we have computed cr, 77 and k¢ associated with the R-currents
and the free energy (1.6) in the two different higher spin limits. The results are summarized

below
32N M sin 7t SN M sinnt 2N M cos t
cr=—"--——, Tf=———, Kf=——7—, M>N,
7t 7t t
AN M t in{dimO(N7), dimUSp(2.N:
Fhr = — 1 (D s+ il dmOU) OO g ar + 0), (@)
4 T

where N = min{|O(Ny)|, N2} and M = |Na — |O(N7)||. We can relate the Newton con-
stant on the bulk to the CFT parameters using the logic in [25] and ¢y computed in the
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previous subsection. First let us consider usual AdS/CFT correspondence between CFT
and Kinstein gravity. If we consider the canonically nomarlized Einstein-Hilbert action,
then the stress tensor two-point function is generated by

1
S[g] = / d*z/gR (4.92)
167TGN quadratic term
In this normalization the holographic computation shows [80]
G 32
2N = = (4.93)
LAdS Einstein gravity mer

Now we come back to the Vasiliev theory with internal symmetry whose fields are matrix
valued. Since the graviton coupling to the CF'T stress tensor should be singlet under both
the bulk R-symmetry and internal symmetry, we have to take the singlet part and identify
the Newton constant with

Gy 32 t

= = . 4.94
Li qgs T™Ner  Msinmt ( )

Next we find the relation between the parity-violating phase 6 and the parameters in
the ABJ theory. The mixed boundary condition (3.17) for the bulk USp(4) singlet spin-1
gauge field implies that a bulk CS term should be added to the boundary action

1 . y
S[A] = 12 /d%dz\/—gFWF“”—i- Zilk/d‘gme”kAiajAk. (4.95)
Ibulk ™

The mixed boundary condition (3.17) then follows from the variational principle. We find
that

2
tan2 = —— (4.96)

92 nckbuik
The action (4.95) also leads to the holographic two point function for the dual spin-1
current (in the Euclidean signature)

1 1 ikpy
(0107 — 00)) —5 + —2 e, 1,000 (). (4.97)

Ji(w)J; "o
(Ji(x) J(y holographic 27T29bu1k v o

where the parity even term has been read off from [81]. Comparing the holographic result
with the CFT result, we obtain
1 Ty
- = 4.98
Thunckoune 8k 499
As discussed in appendix F, the results on 77 and s take the same form as those for the
U(1) flavor symmetry in the previous subsection up to the integer shift of x¢ by the local
counter term. Using (4.91) we arrive at the relation between 6 and ¢

it

0=—.
2

One can easily show that this is true also for the N' = 6 ABJ theory using the results in
appendix F.
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We can compare the CFT free energy in (4.91) with the free energy of the Vasiliev
theory. First, utilizing the results derived in [33-35], one can check that the bulk free
energy at one-loop is free of UV divergence [33-35]. The coefficient of the log M term
also agrees with the expectation from [36], which states that each bulk spin-1 gauge fields
obeying the mixed boundary condition contribute to the one loop free energy of the Vasiliev
theory by —(1/2)log M. Thus the coefficient of the log M term should be (—1/2) times
the dimension of the weakly gauged symmetry group, which is O(Np) for N3 < Ny and
USp(2N3) for Ny > Njy. Due to the lack of a bulk HS action, it is infeasible to compute
the bulk leading free energy and compare it to the CFT one. However, one can translate
the CFT leading free energy to its bulk counterpart by assuming our conjecture. Using the
identifications (1.4) and (1.5), we predict that the leading term in the free energy of the
N = 5 Vasiliev theory takes the form

— 8LA2AdSI(6)

FO) = ZZaas7 )
HS ™ G y7sin 260

(4.99)
One should notice that FI({OS) diverges as O(log @) in the limit § — 0, which was also observed
in the /' = 6 case [24]. At this moment, due to the lack of a well defined bulk action, we are
not able to confirm this by a direct evaluation on the bulk and postpone the interpretation
of this divergence to future work.

5 Conclusions and discussions

We have studied the physical consequences of adding the orientifolds to the N' = 6 ABJ
triality [1, 14], which leads us to the ABJ quadrality. The ABJ quadrality is the AdS/CFT
correspondence among the N' = 5 ABJ theory with the gauge group O(N7)ax, x USp(2N2) g,
type ITA string in AdSy x CP3/Zy and two N = 5 supersymmetric Vasiliev theories in AdS;.
It has turned out that the A/ = 5 case is more involved since there are two formulations
of N' = 5 Vasiliev theory with either O or USp internal symmetry. Accordingly, we have
proposed that the two possible vector-like limits of the N = 5 O(Ny) x USp(2N2) ABJ
theory defined by Ny > N and Ny > Ny correspond to the semi-classical N' = 5 Vasiliev
theories with O(N7) and USp(2Nz) internal symmetries respectively. We have also put
forward the precise holographic dictionary between the parameters on the both sides by
matching the correlation functions, where the Newton constant G is related to M and ¢
by (1.4) and the parity violating phase 6 is related to t via (1.5).

We have provided various evidence for the correspondence between the N' = 5 ABJ
and Vasiliev theories. First, the full spectrum of the A/ = 5 Vasiliev theory has been shown
to match with that of the higher spin currents in the N' = 5 ABJ theory. Second, we
have exhibited the equivalence of the “orientifold projections” on the HS and CFT sides
at the level of the spectrum. Third, we have observed the SUSY enhancement from N =5
to N = 6 occurs on both sides when the weakly gauged symmetry is O(2). Finally, we
have proposed that the free energy of the N/ = 5 Vasiliev theory should be compared to
the combination (1.6) on the CFT side, which has the following properties i) The leading
term in the 1/M-expansion is linear in M; ii) It respects the Seiberg-like duality (4.10); iii)
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The O(log M) term matches the O(log Gv) term in the one-loop free energy of the N' =5
Vasiliev theory. Based on the free energies defined for the vector limits of the N' =5 ABJ
theory, we predict the form of the leading free energies of the N' = 5 Vasiliev theories in
AdSy upon applying the holographic dictionary.

So far our results on the HS side rely on the linear analysis of Vasiliev equations and
HS gauge transformation rules. In order to extract three and higher point correlation
functions of 3d higher spin currents from 4d Vasiliev equations, one must go beyond the
linear level and derive the higher order corrections to the linearized equations of motion.
As observed in [21, 82|, there are subtleties in deriving HS interaction vertices from the
Vasiliev equations. The standard way of solving the Vasiliev equations order by order in the
weak field expansion leads to apparent non-localities in certain cubic vertices. Especially
in the parity violating case, the bulk computation following the procedure of [21] cannot
reproduce the three-point correlation functions in which the three spins do not satisfy the
triangle inequality.®2 It is illustrated in the recent papers [59] that the apparent non-
locality in the cubic vertices can be circumvented and there exists a well defined procedure
which gives rise to manifestly local quadratic corrections to the free equations of motion
for generic 0. It was recently shown in [87] that if restricting [85, 86] to bosonic A-
model, then the result of [85, 86] agree with the previous result [88] obtained by means
of reconstructing HS vertices from CFT correlators. It is interesting to generalize the
analysis in [85, 86] to the case with extended SUSY and internal symmetry so that one
can compare the three-point correlators computed from the A/ = 5 Vasiliev theories with
those computed in the N = 5 ABJ theory. It is known [89] that SUSY Ward identities
provide a simple relation between the three- and two-point correlators of the currents
within the stress tensor multiplet. Therefore, for instance, matching (T'TT)2/(TT)? on
both sides provides an independent check of the identification between the HS and CFT
parameters. However, one should bear in mind that in AdSy, the A = 1 Fefferman-Graham
coeflicients of the scalars and the magnetic components of the spin-1 gauge fields can survive
at the AdS boundary and give finite contributions to the boundary action which may affect
three and higher point functions. The choice of boundary terms for these fields should be
consistent with their boundary conditions. As far as we are aware, fully HS invariant
boundary actions have not been constructed and it is illuminating to construct them in
future investigation. The cubic corrections to the free equations of motion seem to contain
genuine non-localities [90, 91]. However, these non-localities may still be compatible with
holography and a proper interpretation of them is currently under investigation.

We have shown that the N' = 5 Vasiliev theories with O and USp internal symmetries
descends from the projections (3.5) of the N’ = 6 Vasiliev theory, which we identify with
the orientifold projections in the Vasiliev theory. It is interesting to identify counterparts
of orientifold projections in other “stringy” HS AdS/CFT correpondences [92-94]. One of
important open problems is to link Vasiliev theory to string theory more directly. Although
we expect that the fundamental string in the string theory is realized by the “flux tube

32Except for the (0s1s2) case where although the three spins do not obey the triangle inequality, the cor-
responding HS cubic vertices are local since they are governed by the HS algebra. Computation of all corre-
lators of type (s1s20) was recently completed in [83]. The 0—s— s vertex was also obtained in [84] last June.
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solution” in the Vasiliev theory as in [1], for the time being, it seems difficult to check this
because it is not known how to quantize Vasiliev theory. One of the approaches from string
theory is to analyze equations of motion of the dual string field theory in the “tensionless”
limit and compare to Vasiliev equations. Finally it is known that some supersymmetric
quantities in the ABJ theory are described by topological string [47, 48, 65, 95-98] (see
also [99] from a slightly different perspective). This fact may give some insights on the
relation between string theory and Vasiliev theory.
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A Bulk basics

Spinor convention. In 4d Minkowski space with isometry SO(3,1) ~ SL(2,C), we use

(") = (1,007, (")’ = (-1,0%)s", 1=0,1,2,3, (A.1)

where ¢ are the usual Pauli matrices. We also refer to the fourth component of o* as o”.
Spinor indices are raised or lowered by € = io?. We also define

1 .1 :
(0o = 5(a#(}v —o"5") P, ()" = 5(5u0u — Vo), (A.2)
: : I R e 7 S i
with the properties Op = e Tap = TBa and Oip = i

Consistencies of 7- and reality conditions with Vasiliev equations. We first show
that the reality conditions and the 7-projection conditions are imposed in a consistent way

(AT = A, (@) =TR x s x ®x k% K[ = mimem, (P) = @, (A3)

72(A) = namemy(A) = A, 7(®) = namemy(P) = 7(®) = D, .
where we have used the properties of the Kleinians

kx f(y,9,2,2) = f(2,9,y,2)k, Ex f(y,9,2,2) = [y, % 2, 9k,

f(y,Q,Z,Z)*K:f(—Z,ﬂ, _yag)ﬁa f(y)gvzug)*’%:f(y)_gazy _Q)R (A4)

By field redefinitions that are consistent with field equations, one can put V and V in a
simple form

V=e®xrl, V=ePdxk. (A.5)
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We now show that the field equations are invariant under reality and 7-conditions

(do A+ AxA) = —(dy At AxA) = —i 2201422 (0] (A.6)
= —i [dZ%(e T RArxDxkD) +d22 (e kxkx D kD)] = —i [dZZ(TQ/)—&—dz?(V)} ,

T(dg A+ AxA)=—(d, A+ AxA)= i[—dzz(r(f/)) —dZ2(r(V))] (A.7)
= —% [d22 (9T knix®*R)+dz2 (e RrRxD*FR)] = —% [d22(V) +d22(‘7)],

where we used 77mem, A = Exkx AxkxkKl' = A. Since the Vasiliev’s equation of motion
for the master O-form can be derived from the equation of motion of the 1-form by using
Bianchi identity, the equation of motion for the O-form is also be invariant under reality
condition and 7-condition.

B Relation between SO(5) and USp(4) indices

In addition to the representations of the internal symmetry, each HS field carries in the
N = 5 Vasiliev theory also the indices of the fundamental representation of SO(5) ~ USp(4)
R-symmetry group. In section 2, we have worked in the SO(5) notation while in section 3 we
have used the USp(4) notation for the convenience in the reduction from N =6 to N' = 5.
In this appendix we explain a connection between these two notations. The connection is
provided by the SO(5) gamma matrices obeying the following symmetry properties
¢’ = -0, cte =1, o)y =—c, (o) =4"C,

(,yijkC)T — vijkC, (,yijle)T _ —’Yijklc, (,yijklmC)T — _,yijklmc‘ (Bl)
Here C matrix is the analog of the charge conjugation matrix defined in even dimensions.
Now we are ready to show the equivalence between the 7-condition introduced in section 2
and the automorphism projection introduced in section 3. First of all, by comparing (2.9)
and (2.22) with (3.3), it is straightforward to see that the both projection conditions act in
the same way on the internal symmetry of the HS fields. Moreover, in both cases the spino-
rial oscillators undergo the same transformation Y — iY’, which in turn distinguishes the
symmetry properties of HS fields with different spins. Finally one can identify the C' matrix
with the USp(4) invariant matrix .J, and gamma matrices 7 with £&’. The symmetry proper-

ties of the two USp(4) indices, e.g. (3.8) and (3.11), as required by the automorphism condi-
tion, are then translated into the requirements on the SO(5) representations through (B.1).

C Seiberg-like dualities in ABJ theory

In this appendix we provide another argument to support the Seiberg-like dualities (4.10)
for the N' =5 ABJ theory. It is known [58] that the Seiberg-like duality for S® partition
function in the A" =6 ABJ theory can be understood from Giveon-Kutasov duality [104],
which is another Seiberg-like duality for U(NN); SQCD coupled to fundamental hyper mul-
tiplets. Here we argue that the dualities (4.10) for the N' = 5 ABJ theory can be also
understood as Giveon-Kutasov type dualities with the gauge group O(N)qx or USp(2N ).
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U(N + M), X U(N)_ type. First we review the argument [58] for the N/ = 6 case.
Let us freeze the path integral over the U(N)_j vector multiplet. Then the theory becomes
the U(N 4 M), SQCD with 2N fundamental hyper multiplets and the background U(N)_j
vector multiplet. Conversely thinking, the N' = 6 ABJ theory can be derived by gauging
U(N)_j in the U(N + M), SQCD. For S partition function, this gauging procedure is
technically equivalent to integrating over real mass associated with the U(N)_; symmetry
in the localization formula. For this type of SQCD, there is a duality called Giveon Kutasov
duality [104], which states that the equivalence between the gauge groups

UNe ¢ U(Ny = Ne+ Kl (C.1)

where Ny is the number of the fundamental hyper multiples. Since N. = N + M and
Ny = 2N in our SQCD, this duality transforms as33

M —|k|—-M, k— —k, (C.2)

which is the same action as the Seiberg-like duality in the NV = 6 ABJ theory. Thus if
Giveon-Kutasov duality is correct, then the Seiberg-like duality in the A/ = 6 ABJ theory
is also correct. Fortunately there is already a proof of Given-Kutasov duality for the S3
partition function [59] and this leads us to the Seiberg-like duality in the N' = 6 ABJ theory.

O(N1)2r, X USp(2N)_k type. Let us take rank[O(Ni)] = N + M and freeze the
USp(2N)_j vector multiplet similarly. Then the theory becomes O(Np)gr SQCD with
4N fundamental chiral multiplets and the background USp(2/N)_j vector multiplet. This
type of SQCD has the conjectural duality [105]:

O(Nc>2k <~ O(Nf _Nc+2’k‘ +2)72ka (CS)

where Ny is the number of the fundamental chiral multipltets. For our SQCD with N, =
2N +2M and Ny = 4N, this duality transforms as

M— |kl -M+1, k— —k, (C4)

which is the same as the Seiberg-like duality in the O(2N + 2M)q, x USp(2N)_; ABJ
theory. Next, for our SQCD with N, = 2N +2M + 1 and Ny = 4N, the Giveon-Kutasov-
like duality acts as

M — k|- M, k— —k, (C.5)

which is the same action as the Seiberg-like duality in the O(2N +2M +1)a; x USp(2N)
ABJ theory.

33More precisely, there are induced Chern-Simons terms of flavor symmetry, which make the other gauge
group U(N)_g to U(N)y.
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USp(2N + 2M); X O(N1)—2r type. Let us freeze the O(Ny)_ox vector multiplet.
Then the theory becomes USp(2N + 2M ), SQCD with Nj pairs of fundamental chiral
multiplet and the background O(Nj)_s; vector multiplet. There is a conjectural duality
for the USp-type SQCD [105]:

USP(2N)e & USp(2(Nf — No — 1+ [K[))_s (C.6)

where Ny is the number of the pairs of the fundamental chiral multipltets. For our SQCD
with N. = N + M and Ny = 2N, this transforms as

M= |k|—M—1, k- —k, (C.7)

which is the same as the Seiberg-like duality in the USp(2N + 2M ), x O(2N)_9r ABJ
theory. When N; = 2N + 1, the Giveon-Kutasov-like duality transforms as

M — k|- M, k— —k, (C.8)

which is the same action as the Seiberg-like duality in the USp(2N +2M )i x O(2N +1)_o
ABJ theory.

D O(2N)_g CS v.s. U(N)_, CS theories

In this appendix we derive a simple relation between eigenvalue densities in the U(N) and
O(2N) Chern-Simons matrix models in the planar limit. The S® partition function in the
U(N)_x CS theory is [100-103]

1 dNV —Si (v
where?* gU = —2ri/k and
1 Va — 1\ 2
SU(V)ZQ—UZVg— 2 log <281nh a2 b> . (D.2)
9s a=1 1<a<b<N

In the planar limit N — oo, tyy = gV N = fixed, the matrix integral is dominated by a
saddle point determined by

1 _
—Va — QZcoth Ya= % ), (D.3)
s b#a 2

Introducing the eigenvalue density

N

pu(vity) = % S 6 — ), (D.4)

a=1

34The minus sign is just convention for convenience in the main text.
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the saddle point equation becomes

— X

1

e 2P | dxpy(x;ty) coth v =0. (D.5)
U

Under the standard one cut ansatz py(v;ty) has been explicitly found (see e.g. [40]) and

satisfies
pu(vity) = pu(—vitu). (D.6)
This means that py(v;ty) also satisfies

1
P QP/dJ:pU(x;tU) coth
U

vV+x

=0. (D.7)

Combining the two saddle point equations, we also find the equivalent saddle point equation

9 _
P 2P/dpr(:c;tU) coth % - 2P/dx,0U(x;tU) coth ~ tr_ 0. (D.8)
U
The action for the O(2N )y, CS matrix model is
293 ZV — Z [log <2sinh Va_l/b) +log <2s1nh a_;jb> . g =—7i/k
a=1 1<a<b<N

(D.9)

which leads to the saddle point equation
o =23 coth 2 93 cotn P T +”” = 0. (D.10)

b#a b#a
Introducing the eigenvalue density po(v;to), the saddle point equation takes the form

+x

1
—v —2P | dzpo(z;to) cothi - 2P/d$p0 x;to) coth =0. (D.11)

to
Comparing this with the (D.8), we find that the saddle point equation is solved by the
following eigenvalue density

po(vito) = pu(vity = 2to). (D.12)

Thus we can use the solution of the U(/N) CS matrix model for the O(2N) CS matrix model.
This can be understood as a particular example of the so-called orbifold equivalence for
field theories in the planar limit [73-75].

E Proof of ¢y = 41 in the N' = 5 ABJ theory

In this appendix we show the relation ¢p = 477 holds in the N' = 5 ABJ theory. We
first review the derivation of this relation in the N' = 6 ABJ theory [72]. It is known [72]
that ¢z in a 3d A/ = 2 CFT with a classical SUGRA dual is related to the sphere energy
FS3 = —IOgZSs by

64

crlsuera = ol : (E.1)
SUGRA
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Al | Ay | By | By
U(L)y | +1 | +1 | —1] -1
Ul)g | 41| =1 ] +1] -1
U(l)g | +1 | 1| —1]+1

Table 6. Assignments of U(1)? flavor charges in the N = 6 ABJ theory in 3d A/ = 2 language.

7¢ also has a simple relation to Fgs in the N' = 6 ABJ theory in the classical SUGRA
limit. Let us consider three U(1) flavor symmetries in the N' = 6 ABJ theory explained
in table 6 and analyze the coefficient 7, in the two-point function of U(1), flavor current
(a =1,2,3). We can compute 7, in terms of the S3 free energy F(m) deformed by the real
mass®® m, associated with U(1), [76]:

82F (m)

2
om?

7, = 8 Re (E.2)

‘ma:O

One can actually show 71 = 75 = 73 [72] and we simply denote 7, by 7y below. An explicit
calculation shows that 74 in the SUGRA limit of the N'= 6 ABJ theory is given by [72]

(E.3)

_ O oN=6
Tf‘SUGRA - 2 Fgs

Comparing this with (E.1), one immediately finds ¢z = 475.

Let us now turn to the A/ = 5 case. For this case, the relation (E.1) between ¢ and Fgs
still holds in the SUGRA limit but we do not know at this moment whether (E.3) is also cor-
rect since there exist no explicit calculations to check (E.3) in literature. Here instead of us-
ing (E.1) and (E.3) directly, we adopt the idea of large-N orbifold equivalence or orientifold
equivalence [73-75] which states that when theory B is obtained from theory A via a pro-
jection by the group I', then in the planar limit the free energies of these two theory satisfy

Fy

1 = I
planar |F| blanar ’

Fpl (E.4)

where |T'| is the order of I'. To use the orientifold equivalence, we regard the N' = 5
O(N1)ak x USp(2N3)_i, ABJ theory as the quotient of the N'= 6 U(N)ax x U(2N2)_op
theory by the projection (4.7). First we consider the relation between cp’s in the NV =5
and NV = 6 ABJ theories. It is known [106] that ¢p in 3d N = 2 superconformal field
theory is related to the squashed sphere free energy F! 53 by

32 OFg

722 lpmt (E:5)

cr =

35In [72], this analysis is done by means of trial U(1)r charges but technically this is equivalent to using
real masses.
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where b is the squashing parameter and b = 1 corresponds to the round sphere. Combining
this with the orientifold equivalence leads us to3°

O (NV1)26 X USP(2N2) -k _ L U(N1)2exU@N2) 2k
T

CU
planar 2 T

(E.6)

planar

Next let us proceed to 7¢. Since the orientifold projection breaks the U(1); and U(1)3
symmetries, we consider 7y associated with the U(1)s symmetry, which assigns charge +1
to one chiral multiplet and charge —1 to the other chiral multiplet. Then using (E.2) and
the orientifold equivalence, we find

T;)(Nl)szUSp(QNz)—k 17_?(N1)2k><U(2N2)_2k . (E7)

planar planar

Combining this with (E.6) and ¢ = 47y for the N' = 6 case, we easily see that ¢y = 47y
still holds in the N =5 ABJ theory.

F Gauge current correlation functions

In order to determine the relation between the bulk parity violating phase § and parameters
in the ABJ theory, we need the coefficients in the two-point functions of the currents associ-
ated with the “smaller” gauge group. In this appendix, we shall compute these coeflicients
in the higher spin limits. We emphasize that this has not been done even for the N' = 6 case.

U(INV1) gauge current in the U(Np), X U(Nz2)_g theory. The N =6 ABJ theory
can be viewed as gauging the U(NNy) flavor symmetry with the CS gauge field at level
k in the U(Ny)_r SQCD with 2N} fundamental hyper multiplets. More precisely, if we
parametrize the 2N; hypers by (Q;, Q;) (j =1,---,Nyp), then the gauged flavor symmetry
is U(Ny) rotation of @; and Q; simultaneously. In the higher spin limit, the U(V}) gauge
interaction is very weak and we can approximate the two point function of the U(N7) gauge
current in the ABJ theory by the one of the U(/N7) flavor current in the SQCD, which can
be computed by localization.

To compute the coefficients in the two point function of the U(N7) flavor current, we
need the S? partition function of the SQCD deformed by the real mass associated with the
U(N;) flavor symmetry. We can easily write down the partition function before gauging
just by freezing the integrals over the U(N7) vector multiplet in the ABJ theory:

P e% ;V:I1 13 / dN2y, e Ha# 2sinh Yeg*
Na)_ D = € dm a=lra
U(N2)-,SQC No! (2) N2 ij=11 I, (2 cosh@)

5, (F.1)

where 115 is the real mass associated with the U(N;) flavor symmetry and the numerator
in the first factor is the CS term of the background U(Ny) vector multiplet with the level

360ne can also check this explicitly by using (E.1) and the result of [60] on the free energy of the N' =5
ABJ theory in the classical SUGRA limit.
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k. For our purpose, it is sufficient to know only one component of U(N7) and hence we

take p; = m:
ilemz N. . Va—Us
e ir ANy ik Ny o Ha#Qsth
ZG(N2)_pSQeD(m) = / e dr Zwa=1Ya ; (F.2)
(N2)-£5Q NQ' (27[')N2 Ha (2C03h mgua)QNl

where m is understood as the real mass associated with the diagonal part of U(N7) sym-
metry. We can calculate the coefficients 7¢ and x5 by [76]

7r = —8 Re 1 OZZU(NQ)_kSQCD(m)
! Z(Ny)_,5qep(0) om? L ’

K¢ = 2mlm 1 82ZU(N2)—kSQCD(m) (F3)
! ZU(Nz)kaQCD(O) om? . .

Similar to the procedure adopted in section 4.6, we can rewrite the mass deformed
partition function in the planar limit as

iN1k o

ZG(Ny)_sqep(m) = e an "™ Zy(n,) o8 exp [2N1N29U(_e_m;t2)}- (F.4)

Now recall that the mass deformed partition function of ABJ theory in the HS limit is [25]

271 _
Zn—=6AB3(M) = Z&auss (k’ Nl) ZU(Na)_,CS €XP {N1N2 (gu(—€™;t2) + gu(—e™™; t2))}-
(F.5)
Comparing the above two equations, we find
1 O?Zy(ny)_wsqen(m) kN, N 1 9?Zn—6ans(m) ’
ZG(Na)_sqep(0) om? o 2 Zn=6ani(0) om? m—t
(F.6)
Hence, using the result of [25], we obtain
- :4NMsin7rt7 . :NMcosmf' (F.7)
f mt ! t

7y is the same as the one of U(1) flavor symmetries obtained in [25] while s is diffent only
by the integer k.

O(N1) gauge current in the O(N7)2r X USp(2N2)_j theory. We can compute
the gauge current two point function as in the NV = 6 case. We regard the ABJ theory
as gauging the O(N7) flavor symmetry with CS level 2k of USp(2N2)_j, SQCD with N
fundamental hyper multiplets. Then the partition function before gauging is

éﬁkz|.0(lN1)| (2 N2 Ny
e2r —J= J VvV _ ik 2 2
ZUSp(QNQ)—kSQCD = 2N2N2| / (QW)NQ € 2« 21 Z\%gp(y)zbi(ﬂ> v, O) ) (F8)

where the functions in the integrand are defined in (4.51) and p; plays a role as the real
mass associated with the O(Ny) flavor symmetry and the first exponential factor is the
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background O(N;) CS term with the level 2k. When p; = m, we can rewrite the mass
deformed partition function in the planar limit as

Zusp(2N2)_xsQep (M) (F.9)
ik|O(NY)] 62\0(1\71)INQ(go(—em)-i-go(—@*m)) for even Ny,

m2
=e T Zusplanucs X {620(N1>|N2(go<—em>+go<—e-m>)+2N2go(—1;t2> for odd N,
Recalling (4.57) and (4.67), we find

1 0 Zusp(2ns)_xsqQep (1)
ZUSp(QNz)_kSQCD(O) om? m=0 (F 10)
. Zk"O(Nl)‘ 1 8QZN:5ABJ(m ‘

_ + - .
T Zn=5a85(0) om m=0,N,—2|0(N1)]

Thus we obtain
8|O(N1)|M sin (mt) 2|O(N1)| M cos it
e s /{f = .
Tt t

(F.11)

Tf

7¢ is the same as the one of the U(1) flavor symmetry (4.69) while £ is the same as the
shifted one (4.71).

USp(2N2) gauge current in the O(N71)2r X USp(2N2)_j theory. In this case, the
theory before gauging USp(2N2) is O(V1)ar SQCD with Ny fundamental hyper multiplets
and the back ground CS term of USp(2N3)_j, whose partition function is

ik s~ N2 2

e 2n a=1Ya leu ik 2
ZO(N1)2:8QCD = ol / N e 24 2 (v) Zui(p,v,0) | (F.12)

where v, is now understood as the real mass associated with USp(2/N2) and the exponential
prefactor is the background USp(2N3) CS term of the level —k. If we take v, = m, the
mass deformed partition function in the planar limit becomes

_ikNZ 2 _om _,—m
Zoymsaen(m) = €= ™ Zo ), cse? ONIINa (g0 (=M ta0 (=)
1 for even Ny, (F.13)
X 1

W for odd Nl .
2

Recalling (4.79) and (4.84), we find

1 8 Zo(Ny)ssqen (1) ~ ikNo N 1 9?Zn—saB3(m)
Zo(N1)arsqen(0) om? - m Zn=5a83(0) om? —p
(F.14)
which immediately gives rise to
8N M sin (7t) 2N M cos Tt

7t is the same as the one of the U(1) flavor symmetry (4.86) while £ is the same as the
shifted one (4.88).
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G The ratio of the pure CS partition functions

In section 4.6, we have utilized the ratio of the S? partition functions of the pure CS theory
in the large M-expansion. In this appendix, we present more details of computing the ratio.
The pure CS partition function with gauge group G is

dlGl g —itm? Lo

2 -

Z6s(9) |W|/27r e @ [ 2sinh
a#0

~(Zaso D15 (G
117 a>0 2 2@ 2 TG - P
:(detC)Q ‘gl ek P H2 n P
a>0
where C'is Cartan matrix and p is Weyl vector p = %Za>0 o.
U(N) type. When G = U(NV), we have
U(N) 1 . (m ﬁ Nt
‘ZCS (g)‘ = N2 H 2sin kN/2 H 2sm— . (G.2)

1<b<m<N

Now we would like to expand log |ZgéN+M)’“ |/]ZgéM)’“| up to O(log M). This can be done
by using the technique in [107]. We first rewrite the pure CS free energy as

M—-1

UMy _ M . T
log|Zqg " = - log k + zzl (M — j)log <2s1n k) : (G.3)
j:
To expand this, we use the formula
1
sin (7z) = 7z H <1—> , N —j)logj =logGa(N + 1), (G.4)
j=1

where G3(z) is the Barnes G-function. Then the free energy becomes

M M 2
U(M Fl=——1logk+ —(M — 1)log%r +logGo(M + 1)

log | Z¢,
og | 5

M-1 2 (G.5)
+ Z (M —j) Z log ( 2k2>
=1 =

The last term is often referred to as perturbative piece:

27.2
j=1 m=1 k m=1 m k j=1
which has the expansion [107]
[ SN S) o 2g—2+h
log ZP(M), =YY FF, </<> M" (G.7)
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Here we need only the g = 0 part, whose coefficients are

| Bh—2|
F({’Dhgzg - 0, F(fh24 - —m . (G8)

Using the above formula, we find

|Z5s
128 )

(N+M)s \ 2

1
og A

—2+h
= —NM + NM log (2nt) +ZhF0h< ) M+ 0(1), (G.9)
where we have used
2

N 1 3
log Gy(N +1) = —~log N — - log N — ZN2 +0(1). (G.10)

Performing the sum over h explicitly, we finally obtain

| ZGN MR CLO(—1,1 — ) — (1O (—1,1 +¢
o5 = YA (b + ( e M) vo). (@)
CS

O(2N) type. For the O(2N) gauge group, we have

O@2N)ar| _ 2 . m(m—1¥) . m(m+Y0)
267 = g 1 2ein == 2ein s
1<l<m<N
U(N U(N U(2N+1 1/2
B 93/4 |ZC§ )2k| |ZC§ )k| ) |ZC§ + )21@’ (©.12)
kL2 |Zg§N+1)2k| |ZICJ§N+1)k| ’
Using the result for the U(N) case, we find
O(2N+2M)gy, U@2N+2M+1)gy,
Zcs |1 |Zcs |
log @D =3 @A s +O(1) (G.13)
1Zcs™ ™ Zcs |
(1,1 —8) = ¢ (=1,14¢
:2NM<logt+< (=1 )tC (=L1+Y) +0(1).
O(2N + 1) type. For the O(2N + 1) gauge group, the CS partition function is
N
O(RN+1)a| V2 . m(m—12) . m(m+0) ol
‘ZCS = W H 28in % - 2sin o% HZsmﬁ
1<t<m<N (=1
1/2 (2N) |ZCSN+1 |
2k
= k72|25 P (G.14)
Then the result for the U(N) case leads us to
|ZO(2N+2M+1)2]€’ |ZO(2N+2M)2k|
(O] _ CS
10g O(M+1)ar = log W 0(1) (G15)
1Zcs | [ Zcs |
L0 (—1,1 =) = ¢ (=1,1+¢
:2NM<logt+C (=1, )tC (CL1+Y) +0O(1).
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USp(2N) type. The CS partition function for this case is given by

N
UspeN)| . V2 . m(m—{) . m(m+0) 4
‘ZCS k _W H ZSmT-QanTHQsm?
1<¢<m<N =1
E1/2 7N+,
_ ‘Z (2N)2x M. (G.16)
1258
Thus using the above results, we obtain
log g B+ 0(1) (G.17)
US 2M), (2M)
2 1268
10 (1,1 —¢) —¢1O(—1,1
:2NM<10gt+C (=1, t)tC (=L1+9) +0(1).
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